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Abstract
Artificial bee colony (ABC) algorithm is an optimization algorithm based on a particular intelligent behaviour of honeybee swarms. This work

compares the performance of ABC algorithm with that of differential evolution (DE), particle swarm optimization (PSO) and evolutionary

algorithm (EA) for multi-dimensional numeric problems. The simulation results show that the performance of ABC algorithm is comparable to

those of the mentioned algorithms and can be efficiently employed to solve engineering problems with high dimensionality.
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1. Introduction

Evolutionary algorithms (EA) are generally known as

general-purpose optimization algorithms, which are capable of

finding near-optimal solutions to the numerical, real-valued test

problems for which exact and analytical methods do not

produce optimal solutions within a reasonable computation

time. One of the evolutionary algorithms which has been

introduced recently is differential evolution (DE) algorithm [1].

The DE algorithm has been proposed to overcome the main

disadvantage of poor local search ability of genetic algorithm

(GA) [2]. The important difference between the GA and the DE

algorithm is at the selection operations they employed.

At the selection operation of the GA, the chance of being

selected of a solution as a parent depends on the fitness value of

that solution. In DE algorithm, all solutions have an equal

chance of being selected as parents, i.e. the chance does not

depend on their fitness values. After a new solution is produced

by using a self-adjusting mutation operation and a crossover

operation, the new solution competes with its parent for the next

generation and the better one wins the competition. In other

words, a greedy scheme is applied to select one of them for the

next generation. The use of a mutation operation, which has the
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self-adaptability feature, a crossover operation and a greedy

process for the selection, makes DE a fast converging

evolutionary algorithm. Besides its simplicity and flexibility,

DE also does not face any Hamming Cliff problem like the

binary GA [3,4]. Therefore, DE algorithm has received

significant interest from researchers studying in different

research areas and has been applied to several real-world

problems [5–8].

Swarm intelligence has become a research interest to many

research scientists of related fields in recent years. The swarm

intelligence is defined as ‘‘. . .any attempt to design algorithms

or distributed problem-solving devices inspired by the

collective behaviour of social insect colonies and other animal

societies. . .’’ by Bonabeau et al. [9]. Bonabeau et al. focused

their viewpoint on social insects alone, such as termites, bees,

wasps as well as different ant species. However, the term swarm

is used in a general manner to refer to any restrained collection

of interacting agents or individuals. The classical example of a

swarm is bees swarming around their hive; nevertheless the

metaphor can easily be extended to other systems with a similar

architecture. For instance, an ant colony can be thought of as a

swarm whose individual agents are ants; a flock of birds is a

swarm of birds; an immune system [10] is a swarm of cells as

well as a crowd is a swarm of people [11].

Particle swarm optimization (PSO) algorithm, which has

become quite popular recently, models the social behaviour of

bird flocking or fish schooling [12]. PSO is a population-based

stochastic optimization technique and well adapted to the

optimization of nonlinear functions in multi-dimensional
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space. PSO consists of a swarm of particles moving in a search

space of possible solutions for a problem. Every particle has a

position vector representing a candidate solution to the problem

and a velocity vector. Moreover, each particle contains a small

memory that stores its own best position seen so far and a global

best position obtained through communication with its

neighbour particles.

A few models have been developed to model the intelligent

behaviours of honeybee swarms and applied for solving

combinatorial type problems [13–20]. There is only one

numerical optimization algorithm in the literature based on

intelligent behaviour of honeybee swarms [21]. Yang

developed a virtual bee algorithm (VBA) [21] to solve the

numerical optimization problems. VBA has been introduced

to optimize only the functions with two parameters. In VBA,

a swarm of virtual bees are generated and started to move

randomly in the phase space. These bees interact when they

find some target nectar corresponding to the encoded values

of the function. The solution for the optimization problem can

be obtained from the intensity of bee interactions. For

optimizing multivariable numerical functions, Karaboga has

described a bee swarm algorithm called artificial bee colony

(ABC) algorithm [22], which is different from the virtual bee

algorithm, and Basturk and Karaboga compared the

performance of ABC algorithm with the performance of

GA in [23].

This work compares the performance of ABC algorithm

with that of DE and PSO algorithms, and EA for a set of well-

known test functions. Also, the performance of ABC is

analysed under the change of control parameter values. In

Section 2, the behaviour of real honeybees is described and then

the artificial bee colony algorithm is introduced in Section 3. In

Section 4, the experimental study is described and finally, the

simulation results obtained are presented and discussed in

Section 5.

2. Behaviour of real bees

The minimal model of forage selection that lead to the

emergence of collective intelligence of honey bee swarms

consists of three essential components: food sources, employed

foragers and unemployed foragers, and defines two leading

modes of the behaviour: recruitment to a nectar source and

abandonment of a source [24].
(i) F
ood sources: the value of a food source depends on

many factors, such as its proximity to the nest, richness

or concentration of energy and the ease of extracting

this energy. For the simplicity, the ‘‘profitability’’ of a

food source can be represented with a single quantity

[25].
(ii) E
Fig. 1. Behaviour of honeybee foraging for nectar.
mployed foragers: they are associated with a particular

food source, which they are currently exploiting or are

‘‘employed’’ at. They carry with them information about

this particular source, its distance and direction from the

nest and the profitability of the source and share this

information with a certain probability.
(iii) U
nemployed foragers: they are looking for a food source to

exploit. There are two types of unemployed foragers—

scouts searching the environment surrounding the nest for

new food sources and onlookers waiting in the nest and

finding a food source through the information shared by

employed foragers. The mean number of scouts averaged

over conditions is about 5–10% [25].
The exchange of information among bees is the most

important occurrence in the formation of collective knowl-

edge. While examining the entire hive, it is possible to

distinguish some parts that commonly exist in all hives. The

most important part of the hive with respect to exchanging

information is the dancing area. Communication among bees

related to the quality of food sources occurs in the dancing area.

The related dance is called waggle dance. Since information

about all the current rich sources is available to an onlooker on

the dance floor, she probably could watch numerous dances

and choose to employ herself at the most profitable source.

There is a greater probability of onlookers choosing more

profitable sources since more information is circulating about

the more profitable sources. Employed foragers share their

information with a probability, which is proportional to the

profitability of the food source, and the sharing of this

information through waggle dancing is longer in duration.

Hence, the recruitment is proportional to profitability of a food

source [15].

In order to understand the basic behaviour characteristics of

foragers better, let us examine the Fig. 1. Assume that there are

two discovered food sources: A and B. At the very beginning, a

potential forager will start as unemployed forager. That bee will

have no knowledge about the food sources around the nest.



D. Karaboga, B. Basturk / Applied Soft Computing 8 (2008) 687–697 689
There are two possible options for such a bee:
(i) I
t can be a scout and starts searching around the nest

spontaneously for a food due to some internal motivation or

possible external clue (‘S’ in Fig. 1).
(ii) I
t can be a recruit after watching the waggle dances and

starts searching for a food source (‘R’ in Fig. 1).
After finding the food source, the bee utilizes its own

capability to memorize the location and then immediately starts

exploiting it. Hence, the bee will become an ‘‘employed

forager’’. The foraging bee takes a load of nectar from the

source and returns to the hive, unloading the nectar to a food

store. After unloading the food, the bee has the following

options:
(i) I
t might become an uncommitted follower after abandon-

ing the food source (UF).
(ii) I
t might dance and then recruit nest mates before returning

to the same food source (EF1).
(iii) I
t might continue to forage at the food source without

recruiting after bees (EF2).
It is important to note that not all bees start foraging

simultaneously. The experiments confirmed that new bees

begin foraging at a rate proportional to the difference between

the eventual total number of bees and the number presently

foraging.

3. Artificial bee colony (ABC) algorithm

In ABC algorithm, the colony of artificial bees contains

three groups of bees: employed bees, onlookers and scouts.

First half of the colony consists of the employed artificial bees

and the second half includes the onlookers. For every food

source, there is only one employed bee. In other words, the

number of employed bees is equal to the number of food

sources. The employed bee of an abandoned food source

becomes a scout. The search carried out by the artificial bees

can be summarized as follows:
- E
mployed bees determine a food source within the

neighbourhood of the food source in their memory.
- E
mployed bees share their information with onlookers within

the hive and then the onlookers select one of the food sources.
- O
nlookers select a food source within the neighbourhood of

the food sources chosen by themselves.
- A
n employed bee of which the source has been abandoned

becomes a scout and starts to search a new food source

randomly.

The main steps of the algorithm are given below:

Initialize

REPEAT

� Move the employed bees onto their food sources and

determine their nectar amounts.
� Move the onlookers onto the food sources and determine their

nectar amounts.

� Move the scouts for searching new food sources.

� Memorize the best food source found so far.
UNTIL (requirements are met)

Each cycle of the search consists of three steps: moving the

employed and onlooker bees onto the food sources and

calculating their nectar amounts and determining the scout bees

and then moving them randomly onto the possible food sources.

A food source represents a possible solution to the problem to

be optimized. The nectar amount of a food source corresponds

to the quality of the solution represented by that food source.

Onlookers are placed on the foods by using ‘‘roulette wheel

selection’’ method [26]. Every bee colony has scouts that are

the colony’s explorers. The explorers do not have any guidance

while looking for food. They are primarily concerned with

finding any kind of food source. As a result of such behaviour,

the scouts are characterized by low search costs and a low

average in food source quality. Occasionally, the scouts can

accidentally discover rich, entirely unknown food sources. In

the case of artificial bees, the artificial scouts could have the fast

discovery of the group of feasible solutions as a task. In ABC

algorithm, one of the employed bees is selected and classified

as the scout bee. The classification is controlled by a control

parameter called ‘‘limit’’. If a solution representing a food

source is not improved by a predetermined number of trials,

then that food source is abandoned by its employed bee and the

employed bee associated with that food source becomes a

scout. The number of trials for releasing a food source is equal

to the value of ‘‘limit’’, which is an important control parameter

of ABC algorithm.

In a robust search process, exploration and exploitation

processes must be carried out together. In the ABC algorithm,

while onlookers and employed bees carry out the exploitation

process in the search space, the scouts control the exploration

process. In the case of real honeybees, the recruitment rate

represents a ‘‘measure’’ of how quickly the bee colony finds and

exploits a newly discovered food source. Artificial recruiting

could similarly represent the ‘‘measurement’’ of the speed with

which the feasible solutions or the ‘‘good quality’’ solutions of

the difficult optimization problems can be discovered. The

survival and progress of the bee colony are dependent upon the

rapid discovery and efficient utilization of the best food

resources. Similarly the successful solution of difficult

engineering problems is connected to the relatively fast

discovery of ‘‘good solutions’’ especially for the problems

that need to be solved in real time.

As other social foragers, bees search for food sources in a

way that maximizes the ratio E/T (where E is the energy

obtained and T is the time spent for foraging). In the case of bee

swarms, E is proportional to the nectar amount of food sources

discovered by bees and the bee swarm works to maximize the

honey being stored inside the hive. In a maximization problem,

the goal is to find the maximum of the objective function F(u),

u 2 Rp. Assume that ui is the position of the ith food source;

F(ui) represents the nectar amount of the food source located at
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ui and is proportional to the energy E(ui). Let P(c) = {ui(c)ji = 1,

2, . . ., S} (c: cycle, S: number of food sources around the hive)

represent the population of food sources being visited by bees.

As mentioned before, the preference of a food source by an

onlooker bee depends on the nectar amount F(u) of that food

source. As the nectar amount of the food source increases, the

probability with the preferred source by an onlooker bee

increases proportionally. Therefore, the probability with the

food source located at ui will be chosen by a bee can be

expressed as

Pi ¼
FðuiÞPS

k¼1 FðukÞ
(1)

After watching the dances of employed bees, an onlooker

bee goes to the region of food source located at ui by this

probability and determines a neighbour food source to take its

nectar depending on some visual information, such as signs

existing on the patches. In other words, the onlooker bee selects

one of the food sources after making a comparison among the

food sources around ui. The position of the selected neighbour

food source is calculated as the following:

uiðcþ 1Þ ¼ uiðcÞ � fiðcÞ (2)

fi(c) is a randomly produced step to find a food source with

more nectar around ui. f(c) is calculated by taking the differ-

ence of the same parts of fi(c) and fk(c) (k is a randomly

produced index) food positions. If the nectar amount

F(ui(c + 1)) at ui(c + 1) is higher than that at ui(c), then the

bee goes to the hive and share her information with others and

the position ui(c) of the food source is changed to be ui(c + 1),

otherwise ui(c) is kept as it is.

Every food source has only one employed bee. Therefore,

the number of employed bees is equal to the number of food

sources. If the position ui of the food source i cannot be

improved through the predetermined number of trials ‘‘limit’’,

then that food source ui is abandoned by its employed bee and

then the employed bee becomes a scout. The scout starts to
Table 1

Numerical benchmark functions

Function

f 1ð~xÞ ¼ 0:5þ sin2 ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
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2
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2ÞÞ
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i¼1
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search a new food source, and after finding the new source, the

new position is accepted to be ui.

4. Experiments

In order to evaluate the performance of the ABC algorithm,

some classical benchmark functions given by Krink et al. [27]

are presented in Table 1. Results of ABC algorithm have been

compared with the results presented by Krink et al. [27] of DE,

PSO and EA. In the ABC algorithm, maximum number of

cycles was taken as 1000 for f 1ð~xÞ and f 2ð~xÞ; 5000 for

f 3ð~xÞ; f 4ð~xÞ; f 5ð~xÞ in order to equalize the total number of

evaluation as 100,000 for the first two functions and 500,000 for

the other three functions, respectively, as in ref. [27]. The

percentage of onlooker bees was 50% of the colony, the

employed bees were 50% of the colony and the number of scout

bees was selected to be at most one for each cycle. In ABC, the

number of onlooker bees is taken equal to the number of

employed bees so that ABC has less control parameters. The

increase in the number of scouts encourages the exploration as

the increase of onlookers on a food source encourages the

exploitation. The values of the control parameters of ABC

algorithm used in the simulation studies and the values assigned

for the control parameters of PSO, DE and EA in ref. [27] are

given in Table 2. From the table, it is seen that the assigned

values for DE and PSO in ref. [27] are the recommended values

in the literature for the associated control parameters.

In experiments, f 1ð~xÞ Schaffer function has 2 parameters,

f 2ð~xÞ Sphere function has 5 parameters, f 3ð~xÞ Griewank,

f 4ð~xÞ Rastrigin and f 5ð~xÞ Rosenbrock functions have 50

parameters. Parameter ranges, formulations and global

optimum values of these functions are given in Table 1.

Function f 1ð~xÞ is a two-dimensional Schaffer’s F6 function.

~x is in the interval of [�100, 100]. Global minimum value

for this function is 0 and optimum solution is ~xopt ¼
ðx1; x2; . . . ; xnÞ ¼ ð0; 0; . . . ; 0Þ. Surface plot and contour lines

of f 1ð~xÞ are shown in Fig. 2. Function f 2ð~xÞ is Sphere function

that is continuous, convex and unimodal.~x is in the interval of

[�100, 100]. Global minimum value for this function is 0 and
Ranges Minimum value

�100 � xi � 100 f 1ð~0Þ ¼ 0

�100 � xi � 100 f 2ð~0Þ ¼ 0

�600 � xi � 600 f 3ð~1 0 0Þ ¼ 0

�5.12 � xi � 5.12 f 4ð~0Þ ¼ 0

�50 � xi � 50 f 5ð~1Þ ¼ 0



Fig. 2. Schaffer F6 function: (a) surface plot and (b) contour lines.

Table 2

Parameter values used in the experiments

DE [26] PSO [26] EA [26] ABC

popSize 50 popSize 20 popSize 100 Colony size 100

CF 0.8 v 1.0! 0.7 pe 1.0 no 50% of the colony

f 0.5 wmin 0 pm 0.3 ne 50% of the colony

wmax 2.0 sm 0.01 ns 1

n 10 Limit ne � D

popSize, population size; CF, crossover factor for DE; f, scaling factor; v, inertia weight; wmin, wmax, lower and upper bounds of the random velocity rule weight; pc,

crossover rate for EA; pm, mutation rate; sm, mutation variance; n, elite size; no, onlooker number; ne, employed bee number; ns, scout number; D, dimension of the

problem.
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optimum solution is ~xopt ¼ ðx1; x2; . . . ; xnÞ ¼ ð0; 0; . . . ; 0Þ.
Surface plot and contour lines of f 2ð~xÞ are shown in Fig. 3.

Function f 3ð~xÞ is Griewank function. ~x is in the interval

of [�600, 600]. The global minimum value for this function

is 0 and the corresponding global optimum solution is

~xopt ¼ ðx1; x2; . . . ; xnÞ ¼ ð100; 100; . . . ; 100Þ. Since the num-

ber of local optima increases with the dimensionality, this

function is strongly multimodal. The multimodality disappears

for sufficiently high dimensionalities (n > 30) and the problem

seems unimodal. Surface plot and contour lines of f 3ð~xÞ are

shown in Fig. 4. Function f 4ð~xÞ is Rastrigin function. This

function is based on Sphere function with the addition of cosine
Fig. 3. Sphere function: (a) surfa
modulation to produce many local minima. Thus the function is

multimodal. The locations of the minima are regularly

distributed. The difficult part about finding optimal solutions

to this function is that an optimization algorithm easily

can be trapped in a local optimum on its way towards

the global optimum. ~x is in the interval of [�5.12, 5.12].

The global minimum value for this function is 0 and

the corresponding global optimum solution is ~xopt ¼
ðx1; x2; . . . ; xnÞ ¼ ð0; 0; . . . ; 0Þ. Surface plot and contour lines

of f 4ð~xÞ are shown in Fig. 5. Function f 5ð~xÞ is well-known

classic optimization problem: Rosenbrock valley. The global

optimum is inside a long, narrow, parabolic-shaped flat valley.
ce plot and (b) contour lines.



Fig. 4. Griewank function: (a) surface plot and (b) contour lines.

Fig. 5. Rastrigin function: (a) surface plot and (b) contour lines.
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Since it is difficult to converge to the global optimum of this

function, the variables are strongly dependent, and the gradients

generally do not point towards the optimum, this problem is

repeatedly used to test the performance of the optimization

algorithms.~x is in the interval of [�50, 50]. Global minimum

value for this function is 0 and optimum solution is

~xopt ¼ ðx1; x2; . . . ; xnÞ ¼ ð1; 1; . . . ; 1Þ. Global optimum is the

only optimum, function is unimodal. Surface plot and contour

lines of f 5ð~xÞ are shown in Fig. 6.
Fig. 6. Rosenbrock function: (a) sur
5. Results and discussion

Each of the experiments was repeated 30 times with

different random seeds, and the average function values of the

best solutions found have been recorded. The mean and the

standard deviations of the function values obtained by DE,

PSO, EA [26] and ABC algorithms for under the same

conditions are given in Table 3. Values less than ES12 are

reported as 0. On f 1ð~xÞ and f 2ð~xÞ functions, DE, EA and ABC
face plot and (b) contour lines.



Table 3

The results obtained by DE, PSO, EA and ABC algorithms

DE [26] PSO [26] EA [26] ABC

f 1ð~xÞ 0 � 0 0.00453 � 0.00090 0 � 0 0 � 0

f 2ð~xÞ 0 � 0 2.51130ES8 � 0 0 � 0 0 � 0

f 3ð~xÞ 0 � 0 1.54900 � 0.06695 0.00624 � 0.00138 0 � 0

f 4ð~xÞ 0 � 0 13.1162 � 1.44815 32.6679 � 1.94017 0 � 0

f 5ð~xÞ 35.3176 � 0.27444 5142.45 � 2929.47 79.8180 � 10.4477 0.133109389824 � 0.262242170275

Fig. 7. Evolution of mean best values for Schaffer function ( f 1ð~xÞ).
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found the optimum value within the given cycle duration while

PSO could not. On f 3ð~xÞ and f 4ð~xÞ functions, while DE and

ABC showed equal performance and found the optimum, PSO

and EA demonstrated worse performance than DE and ABC.

On f 5ð~xÞ function, ABC produced the best results. As seen
Fig. 8. Evolution of mean best valu
from the results presented in Table 3, the ABC algorithm

produces the best performance among the algorithms con-

sidered in the present investigation.

In order to analyse the behaviour of the ABC algorithm, it

has been run with different population sizes (colony sizes) and
es for Sphere function ( f 2ð~xÞ).



Table 4

Mean of best function values obtained for 1000 cycle by ABC algorithm under

different colony sizes

Functions Colony size

10 50 100

f 1ð~xÞ 0.0029045 9.38ES09 2.48ES13

f 2ð~xÞ 5.85ES17 3.93ES17 4.30ES17

f 3ð~xÞ 0.0028331 1.28ES17 1.22ES17

f 4ð~xÞ 2.5229548 4.51ES16 4.37ES16

f 5ð~xÞ 9.2173464 0.159732 0.0852967
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limit values. In Table 4, the mean of best function values with

different colony sizes varying as 10, 50 and 100 have been

presented. The progress of the mean best values presented in

Table 4 has been shown in Figs. 7–11. From Table 4 and

Figs. 7–12, it can be concluded that as the population size

increases, the algorithm produces better results. However, after

a sufficient value for colony size, any increment in the value

does not improve the performance of the ABC algorithm

significantly. For the test problems carried out in this work, the

colony size of 50–100 can provide an acceptable convergence

speed for search.

As mentioned before, the ‘‘scout bee’’ production is

controlled by the control parameter ‘‘limit’’ in the ABC

algorithm. There is an inverse proportionality between the

value of ‘‘limit’’ and the scout production frequency. As the

value of ‘‘limit’’ approaches to infinity, the total number of the

scouts produced goes to zero. The results of the ABC algorithm

presented in Table 3 were obtained for the colony size of 100. In

order to show the effect of the scout production process on the

performance of the algorithm, the average of the best function

values found for the different ‘‘limit’’ values (0.1 � ne � D,

0.5 � ne � D, ne � D and ‘‘without scout’’) and colony sizes

(20, 40 and 100) is given in Table 5. As seen from Table 5,

for the multimodal functions f 1ð~xÞ; f 3ð~xÞ and f 4ð~xÞ, when
Fig. 9. Evolution of mean best value
the scout production frequency is very high (limit

value = 0.1 � ne � D) or zero (without scout), the results

obtained by the ABC algorithm are worse than those produced

by using the moderate values for limit, such as 0.5 � ne � D

and ne � D. For the unimodal functions f 2ð~xÞ and f 5ð~xÞ, the

production of scouts does not have any useful effect on the

performance of the algorithm. However, as expected, it

improves the search ability of the algorithm for the multimodal

functions and its benefit becomes much clearer for the smaller

colony sizes.

In ABC algorithm, while a stochastic selection scheme

based on the fitness (nectar) values, which is similar to

‘‘roulette wheel selection’’ in GA, is carried out by onlooker

bees, a greedy selection scheme as in DE is used by onlookers

and employed bees to make a selection between the source

position in their memory and the new source position.

Moreover, a random selection process is carried out by scouts.

Also, the neighbour source (solution) production mechanism

used in ABC is similar to the mutation process, which is self-

adapting, of DE. From this point of view, in DE and ABC

algorithms, the solutions in the population directly affect the

mutation operation since the operation is based on the

difference of them. In this way, the information of a good

member of the population is distributed among the other

members due to the greedy selection mechanism employed. In

ABC algorithm, there is no explicit crossover unlike DE and

GA. However, the transfer of good information between the

members is carried out by the mutation process in ABC, while

this transfer is managed by the mutation and the crossover

operations together in DE. Therefore, although the local

converging speed of a standard DE is quite good, it might

encounter the premature convergence in optimizing multimodal

problems if a sufficient diversity is not provided within the

initial population. In the ABC, while the intensification process

is controlled by the stochastic and the greedy selection

schemes, the diversification is controlled by the random
s for Griewank function ( f 3ð~xÞ).



Table 5

Effect of the ‘‘limit’’ value, which controls the scout production, on the performance of the ABC algorithm (The bold value indicates the best among the values obtained under different limit values for the same function)

Functions Colony

size

20 (ne = no = 10) 40 (ne = no = 20) 100 (ne = no = 50)

Limit = 0.1

� ne � D

Limit = 0.5

� ne � D

Limit = ne

� D

Without

scout

Limit = 0.1

� ne � D

Limit = 0.5

� ne � D

Limit = ne

� D

Without

scout

Limit = 0.1

� ne � D

Limit = 0.5

� ne � D

Limit = ne

� D

Without

scout

f 1ð~xÞ (D = 2) Mean 0.0025368 0.0012855 0.0002596 0.0007829 0.0007739 0.0001606 9.11ES07 0.0001566 4.52ES05 5.25ES05 5.80ES09 2.97ES08

S.D. 0.0015612 0.0016302 0.0004912 0.0007829 0.0009476 0.0003679 1.65ES06 0.0004697 0.00015 0.0002 1.78ES08 8.18ES08

f 2ð~xÞ (D = 5) Mean 0.30081 3.52ES17 4.35ES17 4.07ES17 0.0001875 3.96ES17 4.17ES17 4.14ES17 9.38ES17 5.10ES17 7.28ES17 6.76ES17
S.D. 0.2334196 1.21ES17 1.01ES17 1.15ES17 0.0001494 1.18ES17 1.11ES17 1.01ES17 8.02ES17 2.99ES17 4.83ES17 4.92ES17

f 3ð~xÞ (D = 50) Mean 0.0004213 0.0004198 0.0003442 0.0041657 0.0002479 1.00ES11 3.57ES12 0.0009854 0.0002758 0.0003329 0.0006321 0.0013274

S.D. 0.0022681 0.0022557 0.0018068 0.0012934 0.0013348 4.06ES11 1.36ES11 0.0037412 0.0005389 0.0006839 0.0022135 0.004603

f 4ð~xÞ (D = 50) Mean 0.1283467 0.0025718 3.58ES14 0.0994959 0.0331656 8.39ES05 3.41ES07 3.58ES5 5.1634613 5.4318354 5.0961036 5.4057093

S.D. 0.3139938 0.0138492 1.84ES13 0.2984877 0.1786006 0.0004015 1.51ES06 1.09ES09 1.9603541 1.9868015 1.9478082 2.1876648

f 5ð~xÞ (D = 50) Mean 3.7243047 2.4621987 6.298043 44.237393 1.8110815 1.8449032 1.0749639 0.0089114 54.291323 53.33046 45.981747 46.032145

S.D. 4.2432528 5.1234923 7.0465668 220.39974 2.3644827 2.2459113 1.1727714 0.043152 30.940497 26.549226 36.328997 27.775953

ne, Number of employed bees; D, dimension of the problem; runs = 30; total evaluation number = 20,000 for f 1ð~xÞ and f 2ð~xÞ; 100,000 for f 3ð~xÞ; f 4ð~xÞ and f 5ð~xÞ.
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Fig. 10. Evolution of mean best values for Rastrigin function ( f 4ð~xÞ).

Fig. 11. Evolution of mean best values for Rosenbrock function ( f 5ð~xÞ).
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selection. The performance of ABC is very good in terms of the

local and the global optimization due to the selection schemes

employed and the neighbour production mechanism used.

Consequently, the simulation results show that the ABC

algorithm, which is flexible and simple to use and robust

optimization algorithm, can be used efficiently in the

optimization of multimodal and multi-variable problems.

6. Conclusion

In the present investigation, the performance of the ABC

algorithm has been compared with that of differential evolution,

particle swarm optimization and evolutionary algorithm for

multi-dimensional and multimodal numeric problems. The

behaviour of ABC algorithm under different control parameter
values has also been analysed. Simulation results show that

ABC algorithm performs better than the mentioned algorithms

and can be efficiently employed to solve the multimodal

engineering problems with high dimensionality.

Appendix A. Supplementary data

Supplementary data associated with this article can be

found, in the online version, at doi:10.1016/j.asoc.2007.05.007.
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[16] D. Teodorovič, Transport modeling by multi-agent systems: a swarm

intellgence approach, Transport. Plann. Technol. 26-4 (August) (2003)

289–312.
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