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Chapter 2

Transmission Line
Equations, Parameters,
and Solutions

The lines and cables that deliver electrical energy have characteristic
values of circuit parameters determined by their sizes, shapes, and material
constitution. As suggested in the last chapter, for many diverse reasons it is
important to know the specific values of these parameters. In this chapter,
the calculation of these parameters is presented in probably the easiest and
shortest correct method. The inherent relationship between the several
circuit parameters is brought out by a consideration of the theory from
both a distributed circuit and an electromagnetic field approach. In this
way the labor of calculating the “external” line parameters is cut almost in
half.

2.1 LINE EQUATIONS AND SOLUTIONS FROM A DISTRIBUTED
CIRCUITS VIEWPOINT

First consider only single-phase lines. The physical arrangement of two
types of such lines is suggested in Fig. 2.1(a). The circuit model for an
incremental length, Az, of such lines is suggested in Fig. 2.1(b). The
transmission line (or telegrapher’s) equations may be obtained by applying
Kirchoff’s voltage and current laws to the circuit, so as to obtain, in the
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Figure 2.1 Some typical transmission lines and a circuit model for an incremental
length. (a) Structures. (b) Distributed circuit model.

limit as Az—0, the equations
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In these equations £,R, C, §, are the per unit length values of inductance,
resistance, capacitance, and conductance.

These equations can be solved with the aid of Laplace transforms to .
eliminate the time, and we will do this later. For now, we will simplify
matters by assuming that ® and § are zero. Then, combining the simplified
equations by eliminating one or the other of the two vanables, we obtain
the equations

2 2 2; 2;
9—” =£3(22 and — =B@§—' (2.2)
022 ot? az2  or?
Specific solutions to these equatlons depend on boundary, initial, and
source conditions, but it is easy to show by trial that any function of the
form

=f(t+ VEC =f( + )
v=f( z) or vo=flz NS

satisfies the equations. Equations 2.2 are called wave equations and the
solutions are traveling waves. The “plus” sign option in the solutions gives
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waves traveling in the negative z direction, the “minus™ sign option gives
waves traveling in the positive z direction. Each solution option describes a
voltage wave that travels with a speed c=1/VEC. To repeat, ftxz/c)
represents an arbitrary function; which particular function applies in a
given situation is determined by the excitation.

Suppose we have a voltage function v=£(¢—z/c). The current function
is then determined by the simplified line equations since

3 130 1[ 1\./ z
a—gael-el-3)

and integrating* the time function i=(1/£c¢)f(t—z/c). Note then that the
ratio of v to i is a constant,

% - Mc)— —ee=p—L_ =\/g =z,
5o ft=2/c) vEe

this constant ratio being called the surge impedance (or sometimes the
characteristic impedance). Similarly, if the current is a known function,

a2 Sl omdle)
g
§=ec=@v—é_é-= = =Zlozyo

the latter being known as the surge admittance.

Example 2.1

Suppose a current I, = Af(¢) is injected into an infinitely long transmission
line at its center, z=0, as in Fig. 2.2. The function may be thought of as a
pulse of any shape. The current splits so that

, A , —A
i(0,0+)==f(2), i(t,0-)=—=f(1)
Thus, for points z >0, the solutions to Egs. 2.2 are
Az S, Az
=3/(-%). ”“ZOzf(’ 2)

This is a wave traveling to the right (i.e., the pulse propagates). For z <0,
the solutions are

=) eened)

*We can ignore the arbitrary constant associated with the integration; that constant simply
allows for the possibility of a steady dc current to be present along with the time varying
current that is of main interest to us. .



12 TRANSMISSION AND DISTRIBUTION OF ELECTRICAL ENERGY
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Figure 2.2 A current source injects a current into a line assumed to be infinitely
long in both directions. The current splits and waves start out to the left and right
as indicated.

This is a wave traveling to the left (i.e., toward negative values).

* Note in Summary

Ce=Z,, Ce=Yo=o, E£EP=1

0

The boxed relations above are quite helpful because the quantity c, the
velocity of the waves, turns out to be a constant depending only on the line
material —in particular c=1/Vye for lossless lines, as will be demon-
strated next.

2.2 TRANSMISSION LINE THEORY FROM
THE POINT OF VIEW OF ELECTROMAGNETIC FIELDS

There are several important transmission line properties that hold for
idealized transmission structures independent of the actual type of struc-
ture. For example, the velocity of propagation is determined primarily by
the properties (dielectric constant and permeability) of the insulating
medium about the conductors. This fact is shown readily by a study of the
field equations. We can make the connection between the transmission line
variables v and i/ and the field variables E and H as follows: The line
voltage is the (line) integral of the electric field, E, from one conductor to
the other in a z-plane, that is,

v=j?Edh

The current is the closed line integral of the magnetic field, H, around the
conductor, in a plane of z, that is,

i=¢Hdh

It follows from these equations that both the z and the ¢ variations of the
circuit variable, v, and the field variable, E, must be the same and that
both the z and ¢ variations of i and H must also be the same. We will
therefore study the field equations to see how E and H vary with z and .
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Consider Maxwell’s equations as they apply to the space around the
transmission lines, since these are among the most reliable equations
known,

JE dH
VXH= EE s VXE= [J,a—t
Now recall that the magnetic fields generated by the currents in most
idealized transmission line structures have no component along the direc-
tion of propagation. Moreover, the conductivity of most line conductors is
quite high, which means that typically the component of the electric field
in the direction of propagation is very small. Thus, taking z to be the
direction of propagation as before, we will assume that H,=0=E,. Then,
if we expand VX H in Maxwell’s equation

a, &, a, '
9 0 9| . 0H, OH, 3H, £ _ 0H, JE
VxH= ax 5 2| Mz ta, ax e dy ~ 3 az ot
H H, 0
we note that since dE/0¢ has no z-component, it follows that
0H, 9H,
dy  ox

and more importantly,
L OH, 3H  JE

X

_.ax?z_q.ayW =5E 2.3)
or equating corresponding components
0H, dE, 0H, OF,
oz o oz ot @4)
In similar fashion from the second Maxwell equation, it follows that
oE, 0H, oE, 0H,
z - M E M @5

That is, inspection of these equations shows that the components of £ and
H satisfy transmission line-like equations. Taking the first and second
members of Eqs. 2.4 and 2.5 in pairs, it can be seen that the components
E, and H, are analogous to v and i in the lossless version of the
transmission line equations, (Eqgs. 2.1), while the components E, and H,
are also analogous to v and i in the same way. The parameters ¢ (permittiv-
ity) and p. (permeability) are analogous to © and £ in the lossless transmis-
sion line equations.

With these analogies in mind, we can combine the equations by
eliminating one or the other of E or H and so obtain wave equations
similar to Eqs. 2.2. Eliminating E, first by the step of differentiating the
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first of Eq. 2.4 with respect to z and the first of 2.5 with respect to ¢, we
have

2 2 2

OH,  E, e(_“a Hy)=,wa H,
ar? or?

Similarly with the other components

3’H, [ 9’E, 3*H,

a 22 az at a tz

Both components of H thus satisfy the wave equations. Consequently, we

can write a wave equation for the vector H itself. '

0’H — e °H

022 o

In a similar fashion, we may obtain a wave equation for both components

of the vector E

o 2
o2 o
All of the components of E and H thus satisfy equations similar to the
wave equations for v and i written as Eqs. 2.2. The solutions therefore have
the delayed functional form found above for v and i. For example, the
function E, =f(¢1+z/c), where f(¢) is any function, satisfies the wave
equation for E and by analogy c=1/Vye ; then from Egs. 2.4 and 2.5 it
follows that H, must have the form H, =+ Ve/u f(txz/c) since

JoE 1 z oH,
Y “+ ’ Y \= X

*f (t+ c) K

oz

ot
o s )

It is clear then that both E and H are waves that travel at the same speed*
c=1/Vye and they have the same functional form. But as pointed out
above, the circuit variables v and i must have the same z (spatial) and ¢
(time) variation as the field variables E and H, respectively; it follows then
that the waves for v and i must travel at this same speed, c=1 /Vue . In
the MKS system of units, free space has the following parameter values.

eO=LXlO—9farad (F)/m, po=47x10""H/m,

367
or poeo=3X1071,  (poe) *=3x10%m/s
This is what we wanted to show.
*We have adopted the symbol ¢ here for the speed, rather than v, in order to avoid confusion

with our symbol for the time varying voltage. Here the speed ¢ is not always equal to the
speed of light in free space, that is, it depends upon g and e.
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According to the transmission line equations presented earlier, (Egs.
2.1), the speed of propagation on a line is c=1/VEE . It must be then that
C=pe. The finite conductivity of actual conductors is responsible for the
fact that the velocity of propagation on actual lines is slightly less than the
value given above, as we shall see later.
Summarizing once again, the voltage v and current / on a lossless
transmxssxon line must propagate with speed c=1/ \/—e and also
=1/VEC. It follows that

£ Cext = Mext€ext

ext

which will prove to be a very useful relationship. The subscript “ext” has
been attached to remind us that p and ¢ are the permeability and permittiv-
ity values for the space outside or “external” to the conductors. Bext
associated with the magnetic flux outside the conductors and C,,, is the
capacitance arising from the charges on the surface of and the electrlc field
between conductors. Also, we have for the surge impedance

ZO(ext) =Eextc v ext/ ext and Simﬂarly

YO(ext) = CextC = Veext / Bext

Note that with u, ¢, and Cgiven, £,,, is determined; no separate calculation
is required to find the external inductance (or if £, is given, G, is
determined).

The line parameters are important in that they influence stability, energy
storage, and the specific values of v and i in surges. As we have seen, in a
surge traveling in one direction, if the current is i=f,(¢—z/c) then the
voltage is v=Z,f,(t—z/c) or if v=f(t—z/c) then i= Y, f(t—z/c). Surges
travel more or less undisturbed until they encounter a discontinuity in the
line. As we will see later, they are in general reflected from discontinuities.

v(0, 1)
vt 2)

1
= +
(\ /\ t tl - .
0 “ z (km)

N
1250 2500

v (1250 km, ¢)

,. f\ /N
LN X

Figure 2.3 Waveforms for the example of the 60-Hz generator that is switched on.

1 -
T=280 &
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As an example, suppose we have an ideal voltage generator at z=0 on a
line having Z, =400 Q. If the generator is switched on at time t=1,, to a
60-cycle, rms voltage of 138 kV, we might have, ideally, o(z,0)
= V2 138,000u(t—t,)sinwt, w=377. Then, until the wave meets some-
thing that forces v/i to be different from 400 @, the voltage and current
will be o(7, z)=V2 X 138,000u(t—z/c—ty)sinw(t—z/c)V, i(z,1)=V2 X

345u(t—z/c—ty)sinw(t—z/c), c="V 1/uge, =just under 3%10° km/s.
The waveform as a function of both z and ¢ is suggested in Fig. 2.3.

2.3 SURGE IMPEDANCE LOADING

If a line is terminated in a resistance Ry =Z,, the pulse or surge is not
reflected since the ratio v/i is the same at the resistor terminals as on the
line with the surge. We will consider the question of reflections in detail in
the next chapter. For now, let us simply agree that for certain terminations,
a traveling wave will not be reflected. When a line has a wave that travels
in one direction only, it is easy to find the power being transferred. Thus,
in preliminary design consideration, planners often assume “surge imped-
ance loading” (SIL),* or at least reference the transmitted power to that
handled with SIL. With SIL, since we have a wave that goes in one
direction only, v=f(¢t—z/c), and i=v/Z,, the power is p=vi=0v%/Z,, so
the power capability of different voltage classes is readily estimated. For
example, with the voltage generator and line described in the previous
paragraph, p=(V2 X138,000)%/Zyu(t—z/c—1,) sin w(t—z/c), and, at
any location z < ct, the average power passing after the first half-cycle goes
by is P,, = (138,000)%/ Z, =47.6 MW. As before, the current implied by the
surge impedance loading is about 345 amperes (A), rms.

The questions that remain are: “Is 400  a reasonable value for surge
impedance?” “How large a conductor is required to handle 345 A (or more
generally, the current implied by surge impedance loading a given voltage
class)?”’ To answer these questions, we should know how to calculate the °
line parameters; this we shall do next. We will calculate the line capaci-
tance first, since many other parameters can be found once it is known.

PROBLEMS

2.1 An approximation for the effect of lightning striking a transmission line is the
insertion of a current source across the line, with the current having the form

I=Io7tl—exp(—:;£), t>0

I=0, t<0

*Even though lines are not usually loaded at this special level at the 60-Hz operating
frequency.



Chapter 3 ]

Transients on
Transmission Lines

Having learned to calculate the parameters of single-phase lines, we now
return to the subject of transient voltages and currents. The important
transients in power systems are those associated with various switching
operations, with faults, and with lightning (plus those associated with
information carried at high frequencies along the wires).

3.1 LAPLACE TRANSFORM SOLUTION OF TRANSMISSION LINE
EQUATIONS

To handle general transients on general lines, it is economical to employ a
transform (Laplace or Fourier) method to eliminate the time from the
transmission line equations. Recall the definition of the Laplace transform.

F(s)=f0°°e-"f(t)dz

Applying this transform to the line equations and boundary conditions we
67
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obtain
TM Line Equations Transformed Equations
dv i , av A
i —[3— —Ri = = (sE+R)I 3.1)
g; - @ —6v - sﬁ ——(C+8V (3.2
v(0,7)= f(t) = V0, s)= F(s)
v(z, t)=0 (infinite line) = V(z,s)=0
as z—o0 as z—o0
o(L, t)=i(L, )R, =  W(L,s)=I(L,s)R,

In the latter equation, it has been assumed that the line is terminated in a
resistance, R;.

In the transformed operations, it has been assumed that the quantities
i(z,0+), and v(z,0+), the initial values of current and voltage, are zero.
For certain problems it may be advantageous to insert appropriate values
for such initial conditions when they are known.

The next step is to solve the transformed equations in the space variable.
The actual voltages and currents are then obtained by the inverse trans-
form operation.

For example, eliminating I between Eqs. 3.1 and 3.2

LY (R+sR)G+CIV=W, Y =(R+sE)(6+5C)

The solution to this second-order differential equation for ¥ can be written
in terms of sines, hyperbolic functions, or exponentials.

We will choose the exponential form. Two arbitrary constants are
necessary for the solution of the second-order differential equation.

V(z,s)=Ae" + Be™ ¥ A (3.3)

where 4 and B are the constants to be determined. From Eq. 3.1

1 av 1
1=————————=——.——— A'Yz_B -Yz
(R+sL) dz  (R+sEL) v[ Ae™ —Be™]
Define
Yo= -Zl—o = ( GJl-Zs £) = ;;i% (characteristic or surge admittance)
3.4)
I=—Y,[ Ae¥* —Be ] 3.5)

If we have an ideal voltage generator connected to the line at z=0, we
have the conditions listed below Eq. 3.2, v(0,#)=£(¢) and V(0 s)=F(s)
and there is a source or excitation condition that gets things going. This
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- also provides a condition on the constants: evaluating 3.3 at z=0.
F(s)=A+B (3.6)

One more condition is needed to determine A and B. If the line is
infinite in length, V,_, (z, s)=0, so from 3.3, 4=0, and

V(z,s)=F(s)e ™, «z,s)=YyF(s)e "
If the line is terminated at z=L by a resistor R,

V(L,s) . Ae™ +Be 't
I(L,s) - — Yy(Ae™ — Be ~%)

(3.7)

Define a reflection coefficient p(L)=(A/B)e*'*; this definition, in-
‘serted into Eq. 3.7 gives
R, _1+4p(L)
Zy 1-p(L)
or solving for p(L),
O
L/ 4o LT 4

Then from Eq. 3.6, B=F(s)—A=F(s)—Bp(L)e "% or

—2yL
S ) and then 4= ____F(s)p(L)e (3.8)
1+p(L)e 2t 14+p(L)e~27-

3.1.1 Speclal Cases

* A. Matched Load. R, =Z,=p(L)=0=A4=0. This is surge impedance (or
“natural”) loading and V(z, s)=F(s)e ~** as in the case of the infinite line
above.

* B. Open Circuit. R; = c0=>p(L)=1=B=F(s)/1+e 2", From Egs. 3.3
and 3.8,

F(s)

~yz v(z—2L)
pap 7 [e=" +e ] 3.9)

V(z)= "

* C. Short Circuit. R; =0=>p(L)=—1, B=F(s)/1—e ~2*L, Similarly,

F(s)

— —yz __ ,v(z—2L)
V(z)—1 _ZYL[e v —e ] (3.10)

To find the time variation of voltage, and current, we must obtain the
inverse transforms of these voltages: that is, v(¢, z)=L ™[V (s, 2)).
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3.2 THE PROPAGATION CONSTANT AND SIMPLE INVERSIONS

The quantity, y, contains the s-variable

y=Y(RA+sL)(8+sC) | (3.11)

and therefore it strongly influences the exact form of the inverse transfor-
mation. In general, with the square root function indicated, the inverse
transform can only be done numerically. But under certain conditions, the
transform can be obtained analytically to a good approximation. With one
exception, the “certain conditions” are that R and § be very small, which is
often a good approximation. We will examine a few common special cases.

Speclal Case 1
8 = 0, R<sL. In this case

y=V(9+38)sC =sVEC (1+%)”2 ;s\/@(ui

ZSE)
N ¢

Let us utilize this result for special case 1, surge impedance loading. In this
case

or

V(s’z)___F(S)e—yz=F(s)e—s\/@ze(-l/2)&\/€/ﬁz
or

v(t,2)=L"[V(s,z)]=e'" 1/2)4"\/87731_'[ F(s)e“v@‘]

=e—(&/2)\/aizf(t— \/@z)u(t— \/E@z)

where u(?) is the familiar step function. This is an attenuated wave traveling at a
speed =1/VEC, having value zero until #>(£C)"/2z. Notice that the form of
this solution is the same as that we encountered in Chapter 2, for lossless lines
(R=8=0), except that in the present case there is attenuation. The wave
maintains its shape as it moves along at speed v=1/VEC but it shrinks in
amplitude.

The other common cases give similar solutions but differ in the detailed
formula for the attenuation constant.

Speclal Case 2
RsL, <5, RE«s?LC. Then

1=V (R+sL)(8+5C) = V0+s(RC+8L)+sLC

. 172
~ sVEG [HM]
s£C

. l(%@+€ﬁ)}
=~ sVEC {1+ Rl

_ 1o../€ 1, /8
=sVEE +7@L\/;+§G\/—g
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_1 C 1 £
an attenuation constant. Then for surge impedance loading
V(s,z)=F(s)e ¥ =F(s)e “e -sVee:
and performing the inverse transformation,
o(t,z)=e " *f(t— VECz)u(t—VEL?Z)

which is again an attenuated but undistorted wave.
In neither of the two cases is the approximation valid at dc or near zero
frequency.

To save writing, define

Speclal Case 3

A line may be designed such that }/£=8/C, with no other restriction on the
magnitude of R and 8. In this case the propagation constant has a simple form
as follows.

2C . ARG

Y -sZB@+s(@,@+QB)+6ﬁ,§ s288[1+ 2E@+s288]
2 2, 22 |_. [ ]
=5 E@[1+ i —--——282 $2LC 1+_s[.°,

or

y=sVE® [1+%]=s\/e@ +a\/-§—

This result is of the same form as the other two special cases except for a
different attenuation rate. For a line that is surge impedance loaded, v(¢, z) is an
attenuated but undistorted traveling wave. A line having parameters so designed
is called a “distortionless” line or “heaviside” line.

3.3 INVERTING THE LAPLACE TRANSFORM SOLUTION TO GIVE THE
TIME DOMAIN VALUES

Except for these special cases, the line introduces distortions that are
complicated and difficult to discuss. Generally speaking, the effects are the
rounding of the corners of square waves and the “stretching” of pulses.

Returning to the special cases of open circuit and short circuit termina-
tion, we will let the propagation constant be y=a+s VEC , with « not a
function of s. In Sec. 3.1 we found the following result for the case of the
open circuited line.

- T e verenin) v, )

The easiest way to inverse transform this function is to do a little algebra
first, to get a series representation of the factor 1/1+e ~27L; this can be
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done, for example, by synthetic division.
l_e—27L +e-—4yL__e—6yL+ e

1+e 27k
1+e 27k
_e—-2'yL
__e—2'yL —e —4yL
e—4yL

e—47L 4 o —6YL
6L
That is, from the steps shown above
1
14 27L
The advantage of this may not be evident at first, but note
V(s,z)=F(s)[e " +e*7C 2D ]| (1—e 2L 4o~ 41L —p=6rL 4 ...)

=1—e_27L+e_47L—e_67L+”‘

or
V(s,z)=F(s)e " + F(s)e *"*~21) _ F(s)e ~1(+20L)
_F(s)e+y(z—4L) +F(S)e—7(z+4L) 4o

Now we can inverse transform term by term (¢=1/VEEC) to obtain the
voltage on the open circuited line.

U(t,z)=e“”f(t— %)u(t_%)+‘—’_a(21“")f(t+ (Z_ch))
xu(t+(Z__L'Z_—L—))_e_a(z+2L)f(t“——“(z+ch))u(t—w).i..... ’

C

This is most easily interpreted with the aid of a bounce diagram.

However, before discussing this bounce diagram, we should pause to
point out a few more helpful details about the voltages and currents on
lines. If the voltage generator at the input is not ideal but has some internal
impedance Z, the effect is two-fold. First, the voltage that starts down the
line is less than the ideal value and in fact, by voltage division, the voltage
(Zy/Zy + Z,)f(¢) actually starts down the line (Fig. 3.1).

Second, any wave traveling to the left and incident on the input end is
reflected with a voltage reflection coefficient,

e )
Pe=Z 12,
with p, = —1 corresponding to the ideal voltage source discussed above.

That is, the input end behaves like a load for those waves impinging on it
from the right.
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+
r@ Z,

Figure 3.1 Voltage division be-
tween source and surge imped-
ance.

We can then go back to Sec. 3.1 and work out the constants 4 and B
that hold for the imperfect generator on a line terminated with a load R,
(reflection coefficient p(L)=(R; —Zy)/(R, +Z,). The transformed volt-
age is found in this way to be

' F(s)Z, 1
V(z,s)= . - [e—vz +p(L)eY¢—20)
Z,+2Zy 1-pp(Lye " )
The synthetic division discussed above can be done on the factor 1/(1—
p.p(L)e 2"L) to get a series, from which V(z, s) can be written
2

V4
V(z,5)=F(s) ':Zo [e " +p(L)er—2D)
8

+po(L)e YE*2D 4 p p2(L)e 14D 4. ] (3.12)

Now this expression can be inverse transformed term by term to obtain

(e=1/VER)

o L (o3 (S PR O

Xu(t— Q—L—c—z—))+pgp(L)e‘“(2L“b‘(t— Q—Lcﬂl)u(t— 2L_c+5)+ e ]

and so on with the terms best interpreted with the aid of the bounce
diagram.

Finally, note that we could have done the entire analysis from the start
with current, i(z, t), rather than voltage (by eliminating the voltage), with
similar results. The current reflection coefficient would have been

v(z,t)=

z—2L)
c

YL_YO

P(L)= gy =P (D)
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Note: current and voltage reflection coefficients are negatives of each other.

3.4 BOUNCE OR LATTICE DIAGRAMS

The device known as the bounce diagram is most helpful in keeping track
of one point on the time function representing the wave as it reflects back
and forth from the ends of the line. The time function may be either
voltage or current, providing the appropriate reflection coefficient is used,
that is, p” for voltage diagrams, p for current diagrams.

To construct the bounce diagram, Fig. 3.2, one first draws a pair of
parallel lines (those running up and down on the page); a horizontal scale
between these lines represents distance along the line section lengths. A
vertical scale represents time elapsed, and this scale is often measured in
units of transit time, that is, the time for a wave to travel the length of a
line section. A diagonal zig-zag line represents the wave as it bounces back
and forth between the ends or between discontinuities. The position of a
given point on the wave, say the wavefront, is then easily found given the
time by placing a straight edge across the page at the designated time and
finding the intersection with the zig-zag; or the time of arrival at a given
position is found by orienting a straight edge up and down at the given
position, and noting the intersections with the zig-zag line. The reflection
coefficients are indicated under the parallel lines representing the ends or
discontinuities. The amplitude on successive bounces is conveniently indi-
cated on each bounce.

The leading and trailing edge of a pulse may be tracked by thinking of
the leading edge as the beginning of a “string” of length proportional to
the velocity times the time difference between leading and trailing edge.
The total voltage or current at any position in space and time is the
superposition of all “bounces” above that point on the diagram provided
the trailing edge still exists on the “bounce” line at the position under
consideration.

For example, the position of leading edge and trailing edge at a time
5.757 after the leading edge left the generator end is indicated in Fig.
3.2. At this time, at the point i L distant from the generator the “field”
(voltage or current) is the sum of Ap(L)+Ap(L)p, +Ap*(L)p, +Ap*(L)p},
while at a point 3 I L distant from the left end, it is the sum of Ap(L)p, +
Ap*(L)p, +Apz(L)p +Ap*(L)e}. '

If the attenuation on the line is not negligible, the amplitude following
each bounce should be decreased by a factor e ~*% since the wave would
be attenuated by that amount on each transit.

The bounce diagram is a very useful conceptual tool. However, in power
system practice, its digital equivalent is programmed for use on a large-scale
digital computer. Such programs include techniques for studying all the
cases we will consider, and many others. One of the more widely known
and used of these is the “Bonneville Transient Analysis Program” (from
BPA).
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Figure 6.34 Voltage distribution along the surface of a single clean cap-and-pin
insulator unit. [Source: EHV Transmission Line Reference Book (Edison Electric Inst.).]
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Figure 6.35 Typical voltage distribution on the surface of three clean cap-and-pin
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Figure 6.38 Probability of occurrence of peak amplitudes of stroke currents (from
combined field data). [Source: EHV Transmission Line Reference Book (Edison Electric
Inst.).]
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Figure 6.25 Equivalent circuit for estimating the current in a body contacting a
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6.7.3 Hazards to People

According to Dalziel’s* electrocution formula, the 60-Hz body current
leading to a possible fatality through ventricular fibrillation is

I1=0.165/V1t 6.9

where ¢ is in seconds in the range from about 8.3 ms to 5 s. The current
that will flow in the body depends on the body resistance, the effective
grounding resistance of the body, the open circuit voltage at the point on
the conductor which contacts the individual, and the impedance seen
looking back into the system at the point of contact. The latter two factors
will be recognized as the essentials in the Thévenin equivalent circuit for
the contact points (ground and the conductor). The current can then be
calculated with the aid of this equivalent circuit,

Vn

[=——0
Zy+2Z,

where Z,, is the total impedance in the “human” part of the circuit as
described above. The idea is indicated graphically in Fig. 6.25. Typical
values of resistances are shown in the table, but these are subject to wide
variations. A typical person to ground capacitance when on a 1-cm-thick
insulator is about 200 pF.



TABLE 6.1 Typical Electric Shock Energy Effects

Millijoules
1. Minimum primary shock energy 50,000
2. More conservative value (IEEE) ' 25,000
3. “Unpleasant” shock energy 250
4. Minimum secondary shock energy 0.5-1.5
5. Perception threshold 0.12

The current calculated in this way may be used in Eq. 6.9 to determine
the time to a possible fatality, for if the current exceeds that given by Eq.
(6.9) for a stated time, a fatality is likely. Moreover, currents in the range
from 5 to 20 mA, if sustained, are likely to interfere with muscular control
so that the individual cannot “let go” and free him or herself from the
circuits. If currents in excess of the “let go” levels for an individual are
continued, the result is likely to be a collapse, unconsciousness, asphyxia,
and death. Tables 6.1 and 6.2 show effects of current on people.



TABLE 6.2 Typical Effects of Currents on Feopie™

Current (mA)

Direct Current

60 Hz rms

Effect Men

Women

Men

Women

1. No sensation on hand 1
2. Slight tingling. Per-

ception threshold 52
3. Shock—not painful

but muscular control

not lost 9
4. Painful shock— painful

but muscular control

not lost 62
5. Painful shock—let go

threshold 76

6. Painful and severe
shock, muscular con-
tractions, breathing
difficult 90

7. Possible ventricular
fibrillation from
short shocks:
(a) shock duration
0.03s 1300
(b) Shock duration
30s 500
(c) Almost certain ventricular
fibrillation (if shock
duration is over one
heart beat interval) 1375

0.6

35

41

1

1300

500

1375

04

1.1

1.8

16.0

23

100

275

0.3

0.7

1.2

10.5

15

1000

100

275

2Threshold for 50% of the males and females tested.



If the field strength levels are high enough, people in the region begin to
sense the field in one way or another even though there are no significant
currents to ground. The threshold of perception is in the range of 10-15
kV/m, where the sensations are body hair erection and tingling between
body and clothes. Such activity is apparently not harmful, but at higher
fields, perhaps as low as 15-20 kV /m, sparks may form and contacts to
grass, weeds, or the handling of conducting objects are unpleasant, at least.
At higher fields, corona may form at some places with small radii such as
ears. This phenomenon is also disturbing to animals.
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line.






