
CHAPTER 7

THE SOLAR RESOURCE

To design and analyze solar systems, we need to know how much sunlight is
available. A fairly straightforward, though complicated-looking, set of equations
can be used to predict where the sun is in the sky at any time of day for any
location on earth, as well as the solar intensity (or insolation: incident solar
Radiation) on a clear day. To determine average daily insolation under the com-
bination of clear and cloudy conditions that exist at any site we need to start with
long-term measurements of sunlight hitting a horizontal surface. Another set of
equations can then be used to estimate the insolation on collector surfaces that
are not flat on the ground.

7.1 THE SOLAR SPECTRUM

The source of insolation is, of course, the sun—that gigantic, 1.4 million kilo-
meter diameter, thermonuclear furnace fusing hydrogen atoms into helium. The
resulting loss of mass is converted into about 3.8 × 1020 MW of electromagnetic
energy that radiates outward from the surface into space.

Every object emits radiant energy in an amount that is a function of its tem-
perature. The usual way to describe how much radiation an object emits is to
compare it to a theoretical abstraction called a blackbody. A blackbody is defined
to be a perfect emitter as well as a perfect absorber. As a perfect emitter, it radiates
more energy per unit of surface area than any real object at the same temperature.
As a perfect absorber, it absorbs all radiation that impinges upon it; that is, none
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386 THE SOLAR RESOURCE

is reflected and none is transmitted through it. The wavelengths emitted by a
blackbody depend on its temperature as described by Planck’s law :

Eλ = 3.74 × 108

λ5

[
exp

(
14,400

λT

)
− 1

] (7.1)

where Eλ is the emissive power per unit area of a blackbody (W/m2 μm), T is
the absolute temperature of the body (K), and λ is the wavelength (μm).

Modeling the earth itself as a 288 K (15◦C) blackbody results in the emission
spectrum plotted in Fig. 7.1.

The area under Planck’s curve between any two wavelengths is the power emit-
ted between those wavelengths, so the total area under the curve is the total radiant
power emitted. That total is conveniently expressed by the Stefan–Boltzmann law
of radiation:

E = AσT 4 (7.2)

where E is the total blackbody emission rate (W), σ is the Stefan–Boltzmann
constant = 5.67 × 10−8 W/m2-K4, T is the absolute temperature of the black-
body (K), and A is the surface area of the blackbody (m2).

Another convenient feature of the blackbody radiation curve is given by Wien’s
displacement rule, which tells us the wavelength at which the spectrum reaches
its maximum point:

λmax(μm) = 2898

T (K)
(7.3)

where the wavelength is in microns (μm) and the temperature is in kelvins.
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Figure 7.1 The spectral emissive power of a 288 K blackbody.
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Example 7.1 The Earth’s Spectrum. Consider the earth to be a blackbody
with average surface temperature 15◦C and area equal to 5.1 × 1014 m2. Find
the rate at which energy is radiated by the earth and the wavelength at which max-
imum power is radiated. Compare this peak wavelength with that for a 5800 K
blackbody (the sun).

Solution. Using (7.2), the earth radiates:

E = σAT 4 = (5.67 × 10−8 W/m2 · K4) × (5.1 × 1014 m2) × (15 + 273 K)4

= 2.0 × 1017 W

The wavelength at which the maximum power is emitted is given by (5.3):

λmax(earth) = 2898

T (K)
= 2898

288
= 10.1 μm

For the 5800 K sun,

λmax(sun) = 2898

5800
= 0.5 μm

It is worth noting that earth’s atmosphere reacts very differently to the much
longer wavelengths emitted by the earth’s surface (Fig. 7.1) than it does to the
short wavelengths arriving from the sun (Fig. 7.2). This difference is the funda-
mental factor responsible for the greenhouse effect.

While the interior of the sun is estimated to have a temperature of around
15 million kelvins, the radiation that emanates from the sun’s surface has a
spectral distribution that closely matches that predicted by Planck’s law for a
5800 K blackbody. Figure 7.2 shows the close match between the actual solar
spectrum and that of a 5800 K blackbody. The total area under the black-
body curve has been scaled to equal 1.37 kW/m2, which is the solar insolation
just outside the earth’s atmosphere. Also shown are the areas under the actual
solar spectrum that corresponds to wavelengths within the ultraviolet UV (7%),
visible (47%), and infrared IR (46%) portions of the spectrum. The visible
spectrum, which lies between the UV and IR, ranges from 0.38 μm (violet)
to 0.78 μm (red).

As solar radiation makes its way toward the earth’s surface, some of it is
absorbed by various constituents in the atmosphere, giving the terrestrial spec-
trum an irregular, bumpy shape. The terrestrial spectrum also depends on how
much atmosphere the radiation has to pass through to reach the surface. The
length of the path h2 taken by the sun’s rays as they pass through the atmo-
sphere, divided by the minimum possible path length h1, which occurs when
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Figure 7.2 The extraterrestrial solar spectrum compared with a 5800 K blackbody.

the sun is directly overhead, is called the air mass ratio, m. As shown in
Figure 7.3, under the simple assumption of a flat earth the air mass ratio can
be expressed as

Air mass ratio m = h2

h1
= 1

sin β
(7.4)

where h1 = path length through the atmosphere with the sun directly overhead,
h2 = path length through the atmosphere to reach a spot on the surface, and
β = the altitude angle of the sun (see Fig. 7.3).
Thus, an air mass ratio of 1 (designated “AM1”) means that the sun is directly
overhead. By convention, AM0 means no atmosphere; that is, it is the extrater-
restrial solar spectrum. Often, an air mass ratio of 1.5 is assumed for an average
solar spectrum at the earth’s surface. With AM1.5, 2% of the incoming solar
energy is in the UV portion of the spectrum, 54% is in the visible, and 44% is
in the infrared.

The impact of the atmosphere on incoming solar radiation for various air
mass ratios is shown in Fig. 7.4. As sunlight passes through more atmosphere,
less energy arrives at the earth’s surface and the spectrum shifts some toward
longer wavelengths.



THE SOLAR SPECTRUM 389

b

h2

h2

IO

h1

h2

h1

"top" of atmosphere

h1

1

sin b
m = =

Figure 7.3 The air mass ratio m is a measure of the amount of atmosphere the sun’s
rays must pass through to reach the earth’s surface. For the sun directly overhead, m = 1.

2100

1800

1500

1200

900

600

300

0
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

Wavelength, microns

D
ire

ct
 s

ol
ar

 r
ad

ia
tio

n 
in

te
ns

ity
 a

t n
or

m
al

 in
ci

de
nc

e
W

/m
2 -

m
ic

ro
n

Outside the atmosphere, m = 0

At the earth's surface
sea level, m = 1

At the earth's surface
sea level, m = 5
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7.2 THE EARTH’S ORBIT

The earth revolves around the sun in an elliptical orbit, making one revolution
every 365.25 days. The eccentricity of the ellipse is small and the orbit is, in
fact, quite nearly circular. The point at which the earth is nearest the sun, the
perihelion, occurs on January 2, at which point it is a little over 147 million
kilometers away. At the other extreme, the aphelion, which occurs on July 3, the
earth is about 152 million kilometers from the sun. This variation in distance is
described by the following relationship:

d = 1.5 × 108

{
1 + 0.017 sin

[
360(n − 93)

365

]}
km (7.5)

where n is the day number, with January 1 as day 1 and December 31 being day
number 365. Table 7.1 provides a convenient list of day numbers for the first day
of each month. It should be noted that (7.5) and all other equations developed
in this chapter involving trigonometric functions use angles measured in degrees,
not radians.

Each day, as the earth rotates about its own axis, it also moves along the
ellipse. If the earth were to spin only 360◦ in a day, then after 6 months time
our clocks would be off by 12 hours; that is, at noon on day 1 it would be the
middle of the day, but 6 months later noon would occur in the middle of the
night. To keep synchronized, the earth needs to rotate one extra turn each year,
which means that in a 24-hour day the earth actually rotates 360.99◦, which is a
little surprising to most of us.

As shown in Fig. 7.5, the plane swept out by the earth in its orbit is called
the ecliptic plane. The earth’s spin axis is currently tilted 23.45◦ with respect to
the ecliptic plane and that tilt is, of course, what causes our seasons. On March
21 and September 21, a line from the center of the sun to the center of the
earth passes through the equator and everywhere on earth we have 12 hours of
daytime and 12 hours of night, hence the term equinox (equal day and night).
On December 21, the winter solstice in the Northern Hemisphere, the inclination
of the North Pole reaches its highest angle away from the sun (23.45◦), while
on June 21 the opposite occurs. By the way, for convenience we are using the

TABLE 7.1 Day Numbers for the First Day of Each
Month

January n = 1 July n = 182
February n = 32 August n = 213
March n = 60 September n = 244
April n = 91 October n = 274
May n = 121 November n = 305
June n = 152 December n = 335
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Figure 7.5 The tilt of the earth’s spin axis with respect to the ecliptic plane is what
causes our seasons. “Winter” and “summer” are designations for the solstices in the
Northern Hemisphere.

twenty-first day of the month for the solstices and equinoxes even though the
actual days vary slightly from year to year.

For solar energy applications, the characteristics of the earth’s orbit are con-
sidered to be unchanging, but over longer periods of time, measured in thousands
of years, orbital variations are extremely important as they significantly affect
climate. The shape of the orbit oscillates from elliptical to more nearly circular
with a period of 100,000 years (eccentricity). The earth’s tilt angle with respect
to the ecliptic plane fluctuates from 21.5◦ to 24.5◦ with a period of 41,000 years
(obliquity). Finally, there is a 23,000-year period associated with the precession
of the earth’s spin axis. This precession determines, for example, where in the
earth’s orbit a given hemisphere’s summer occurs. Changes in the orbit affect
the amount of sunlight striking the earth as well as the distribution of sunlight
both geographically and seasonally. Those variations are thought to be influential
in the timing of the coming and going of ice ages and interglacial periods. In
fact, careful analysis of the historical record of global temperatures does show
a primary cycle between glacial episodes of about 100,000 years, mixed with
secondary oscillations with periods of 23,000 years and 41,000 years that match
these orbital changes. This connection between orbital variations and climate
were first proposed in the 1930s by an astronomer named Milutin Milankovitch,
and the orbital cycles are now referred to as Milankovitch oscillations. Sorting
out the impact of human activities on climate from those caused by natural varia-
tions such as the Milankovitch oscillations is a critical part of the current climate
change discussion.

7.3 ALTITUDE ANGLE OF THE SUN AT SOLAR NOON

We all know that the sun rises in the east and sets in the west and reaches its
highest point sometime in the middle of the day. In many situations, it is quite
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useful to be able to predict exactly where in the sky the sun will be at any time,
at any location on any day of the year. Knowing that information we can, for
example, design an overhang to allow the sun to come through a window to help
heat a house in the winter while blocking the sun in the summer. In the context
of photovoltaics, we can, for example, use knowledge of solar angles to help
pick the best tilt angle for our modules to expose them to the greatest insolation.

While Fig. 7.5 correctly shows the earth revolving around the sun, it is a
difficult diagram to use when trying to determine various solar angles as seen
from the surface of the earth. An alternative (and ancient!) perspective is shown
in Fig. 7.6, in which the earth is fixed, spinning around its north–south axis; the
sun sits somewhere out in space, slowly moving up and down as the seasons
progress. On June 21 (the summer solstice) the sun reaches its highest point, and
a ray drawn at that time from the center of the sun to the center of the earth
makes an angle of 23.45◦ with the earth’s equator. On that day, the sun is directly
over the Tropic of Cancer at latitude 23.45◦. At the two equinoxes, the sun is
directly over the equator. On December 21 the sun is 23.45◦ below the equator,
which defines the latitude known as the Tropic of Capricorn.

As shown in Fig. 7.6, the angle formed between the plane of the equator and
a line drawn from the center of the sun to the center of the earth is called the
solar declination, δ. It varies between the extremes of ± 23.45◦, and a simple
sinusoidal relationship that assumes a 365-day year and which puts the spring
equinox on day n = 81 provides a very good approximation. Exact values of
declination, which vary slightly from year to year, can be found in the annual
publication The American Ephemeris and Nautical Almanac.

δ = 23.45 sin

[
360

365
(n − 81)

]
(7.6)

Computed values of solar declination on the twenty-first day of each month are
given in Table 7.2.
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Figure 7.6 An alternative view with a fixed earth and a sun that moves up and down.
The angle between the sun and the equator is called the solar declination δ.
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TABLE 7.2 Solar Declination δ for the 21st Day of Each Month (degrees)

Month: Jan Feb Mar Apr May Jun July Aug Sept Oct Nov Dec
δ: −20.1 −11.2 0.0 11.6 20.1 23.4 20.4 11.8 0.0 −11.8 −20.4 −23.4

While Fig. 7.6 doesn’t capture the subtleties associated with the earth’s orbit,
it is entirely adequate for visualizing various latitudes and solar angles. For
example, it is easy to understand the seasonal variation of daylight hours. As
suggested in Fig. 7.7, during the summer solstice all of the earth’s surface above
latitude 66.55◦ (90◦ − 23.45◦) basks in 24 hours of daylight, while in the Southern
Hemisphere below latitude 66.55◦ it is continuously dark. Those latitudes, of
course, correspond to the Arctic and Antarctic Circles.

It is also easy to use Fig. 7.6 to gain some intuition into what might be a good
tilt angle for a solar collector. Figure 7.8 shows a south-facing collector on the
earth’s surface that is tipped up at an angle equal to the local latitude, L. As can
be seen, with this tilt angle the collector is parallel to the axis of the earth. During
an equinox, at solar noon, when the sun is directly over the local meridian (line
of longitude), the sun’s rays will strike the collector at the best possible angle;
that is, they are perpendicular to the collector face. At other times of the year
the sun is a little high or a little low for normal incidence, but on the average it
would seem to be a good tilt angle.

Solar noon is an important reference point for almost all solar calculations.
In the Northern Hemisphere, at latitudes above the Tropic of Cancer, solar noon
occurs when the sun is due south of the observer. South of the Tropic of Capri-
corn, in New Zealand for example, it is when the sun is due north. And in
the tropics, the sun may be either due north, due south, or directly overhead at
solar noon.

Equinox

December 21

Arctic circle
Lat 66.55 

Antarctic circle
Lat - 66.55 

Tropic of Cancer

Equator

N

Tropic of Capricorn

June 21

Figure 7.7 Defining the earth’s key latitudes is easy with the simple version of the
earth–sun system.
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Figure 7.8 A south-facing collector tipped up to an angle equal to its latitude is per-
pendicular to the sun’s rays at solar noon during the equinoxes.

On the average, facing a collector toward the equator (for most of us in the
Northern Hemisphere, this means facing it south) and tilting it up at an angle
equal to the local latitude is a good rule-of-thumb for annual performance. Of
course, if you want to emphasize winter collection, you might want a slightly
higher angle, and vice versa for increased summer efficiency.

Having drawn the earth-sun system as shown in Fig. 7.6 also makes it easy to
determine a key solar angle, namely the altitude angle βN of the sun at solar noon.
The altitude angle is the angle between the sun and the local horizon directly
beneath the sun. From Fig. 7.9 we can write down the following relationship
by inspection:

βN = 90◦ − L + δ (7.7)

where L is the latitude of the site. Notice in the figure the term zenith is intro-
duced, which refers to an axis drawn directly overhead at a site.

N

L
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horizontal

L

Zenith

Equator
Altitude angle bN

d

bN

Figure 7.9 The altitude angle of the sun at solar noon.
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Example 7.2 Tilt Angle of a PV Module. Find the optimum tilt angle for
a south-facing photovoltaic module in Tucson (latitude 32.1◦) at solar noon on
March 1.

Solution. From Table 7.1, March 1 is the sixtieth day of the year so the solar
declination (7.6) is

δ = 23.45 sin

[
360

365
(n − 81)

]
= 23.45◦ sin

[
360

365
(60 − 81)

◦
]

= −8.3◦

which, from (7.7), makes the altitude angle of the sun equal to

βN = 90◦ − L + δ = 90 − 32.1 − 8.3 = 49.6◦

The tilt angle that would make the sun’s rays perpendicular to the module at
noon would therefore be

Tilt = 90 − βN = 90 − 49.6 = 40.4◦

Altitude angle bN = 49.6° 

Tilt 40.4° S

PV module

7.4 SOLAR POSITION AT ANY TIME OF DAY

The location of the sun at any time of day can be described in terms of its
altitude angle β and its azimuth angle φs as shown in Fig. 7.10. The subscript
s in the azimuth angle helps us remember that this is the azimuth angle of the
sun. Later, we will introduce another azimuth angle for the solar collector and a
different subscript c will be used. By convention, the azimuth angle is positive in
the morning with the sun in the east and negative in the afternoon with the sun
in the west. Notice that the azimuth angle shown in Fig. 7.10 uses true south as
its reference, and this will be the assumption in this text unless otherwise stated.
For solar work in the Southern Hemisphere, azimuth angles are measured relative
to north.
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Figure 7.10 The sun’s position can be described by its altitude angle β and its azimuth
angle φS . By convention, the azimuth angle is considered to be positive before solar noon.

The azimuth and altitude angles of the sun depend on the latitude, day number,
and, most importantly, the time of day. For now, we will express time as the number
of hours before or after solar noon. Thus, for example, 11 A.M. solar time is one
hour before the sun crosses your local meridian (due south for most of us). Later
we will learn how to make the adjustment between solar time and local clock time.
The following two equations allow us to compute the altitude and azimuth angles
of the sun. For a derivation see, for example, T. H. Kuen et al. (1998):

sin β = cos L cos δ cos H + sin L sin δ (7.8)

sin φS = cos δ sin H

cos β
(7.9)

Notice that time in these equations is expressed by a quantity called the hour
angle, H . The hour angle is the number of degrees that the earth must rotate
before the sun will be directly over your local meridian (line of longitude). As
shown in Fig. 7.11, at any instant, the sun is directly over a particular line of
longitude, called the sun’s meridian. The difference between the local meridian
and the sun’s meridian is the hour angle, with positive values occurring in the
morning before the sun crosses the local meridian.

Considering the earth to rotate 360◦ in 24 h, or 15◦/h, the hour angle can be
described as follows:

Hour angle H =
(

15◦

hour

)
· (hours before solar noon) (7.10)

Thus, the hour angle H at 11:00 A.M. solar time would be +15◦ (the earth needs
to rotate another 15◦, or 1 hour, before it is solar noon). In the afternoon, the
hour angle is negative, so, for example, at 2:00 P.M. solar time H would be −30◦.
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Figure 7.11 The hour angle is the number of degrees the earth must turn before the sun
is directly over the local meridian. It is the difference between the sun’s meridian and the
local meridian.

There is a slight complication associated with finding the azimuth angle of
the sun from (7.9). During spring and summer in the early morning and late
afternoon, the magnitude of the sun’s azimuth is liable to be more than 90◦ away
from south (that never happens in the fall and winter). Since the inverse of a
sine is ambiguous, sin x = sin (180 − x), we need a test to determine whether
to conclude the azimuth is greater than or less than 90◦ away from south. Such
a test is

if cos H ≥ tan δ

tan L
, then |φS | ≤ 90◦; otherwise |φS | > 90◦

(7.11)

Example 7.3 Where Is the Sun? Find the altitude angle and azimuth angle
for the sun at 3:00 P.M. solar time in Boulder, Colorado (latitude 40◦) on the
summer solstice.

Solution. Since it is the solstice we know, without computing, that the solar
declination δ is 23.45◦. Since 3:00 P.M. is three hours after solar noon, from
(7.10) we obtain

H =
(

15◦

h

)
· (hours before solar noon) = 15◦

h
· (−3 h) = −45◦

Using (7.8), the altitude angle is

sin β = cos L cos δ cos H + sin L sin δ

= cos 40◦ cos 23.45◦ cos(−45◦
) + sin 40◦ sin 23.45◦ = 0.7527

β = sin−1(0.7527) = 48.8◦
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From (7.9) the sine of the azimuth angle is

sin φS = cos δ sin H

cos β

= cos 23.45◦ · sin(−45◦
)

cos 48.8◦ = −0.9848

But the arcsine is ambiguous and two possibilities exist:

φS = sin−1(−0.9848) = −80◦
(80◦west of south)

or φS = 180 − (−80) = 260◦
(100◦west of south)

To decide which of these two options is correct, we apply (7.11):

cos H = cos(−45◦
) = 0.707 and

tan δ

tan L
= tan 23.45◦

tan 40◦ = 0.517

Since cos H ≥ tan δ

tan L
we conclude that the azimuth angle is

φS = −80◦
(80◦west of south)

Solar altitude and azimuth angles for a given latitude can be conveniently
portrayed in graphical form, an example of which is shown in Fig. 7.12. Similar
sun path diagrams for other latitudes are given in Appendix B. As can be seen,
in the spring and summer the sun rises and sets slightly to the north and our need
for the azimuth test given in (7.11) is apparent; at the equinoxes, it rises and sets
precisely due east and due west (everywhere on the planet); during the fall and
winter the azimuth angle of the sun is never greater than 90◦.

7.5 SUN PATH DIAGRAMS FOR SHADING ANALYSIS

Not only do sun path diagrams, such as that shown in Fig. 7.12, help to build
one’s intuition into where the sun is at any time, they also have a very practical
application in the field when trying to predict shading patterns at a site—a very
important consideration for photovoltaics, which are very shadow sensitive. The
concept is simple. What is needed is a sketch of the azimuth and altitude angles
for trees, buildings, and other obstructions along the southerly horizon that can
be drawn on top of a sun path diagram. Sections of the sun path diagram that
are covered by the obstructions indicate periods of time when the sun will be
behind the obstruction and the site will be shaded.
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Figure 7.12 A sun path diagram showing solar altitude and azimuth angles for 40◦

latitude. Diagrams for other latitudes are in Appendix B.

There are several site assessment products available on the market that make
the superposition of obstructions onto a sun path diagram pretty quick and easy to
obtain. You can do just as good a job, however, with a simple compass, plastic
protractor, and plumb bob, but the process requires a little more effort. The
compass is used to measure azimuth angles of obstructions, while the protractor
and plumb bob measure altitude angles.

Begin by tying the plumb bob onto the protractor so that when you sight
along the top edge of the protractor the plumb bob hangs down and provides
the altitude angle of the top of the obstruction. Figure 7.13 shows the idea. By
standing at the site and scanning the southerly horizon, the altitude angles of
major obstructions can be obtained reasonably quickly and quite accurately.

The azimuth angles of obstructions, which go along with their altitude angles,
are measured using a compass. Remember, however, that a compass points to
magnetic north rather than true north; this difference, called the magnetic dec-
lination or deviation, must be corrected for. In the continental United States,
this deviation ranges anywhere from about 22◦E in Seattle (the compass points
22◦ east of true north), to essentially zero along the east coast of Florida, to
22 ◦W at the northern tip of Maine. Figure 7.14 shows this variation in magnetic
declination and shows an example, for San Francisco, of how to use it.
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Figure 7.13 Measuring the altitude angle of a southerly obstruction using a plumb bob
and protractor.
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Figure 7.14 Lines of equal magnetic declination across the United States. The example
shows the correction for San Francisco, which has a declination of 17◦E.

Figure 7.15 shows an example of how the sun path diagram, with a superim-
posed sketch of potential obstructions, can be interpreted. The site is a proposed
solar house with a couple of trees to the southeast and a small building to the
southwest. In this example, the site receives full sun all day long from February
through October. From November through January, the trees cause about one
hour’s worth of sun to be lost from around 8:30 A.M. to 9:30 A.M., and the small
building shades the site after about 3 o’clock in the afternoon.

When obstructions plotted on a sun path diagram are combined with hour-by-
hour insolation information, an estimate can be obtained of the energy lost due to
shading. Table 7.3 shows an example of the hour-by-hour insolations available
on a clear day in January at 40◦ latitude for south-facing collectors with fixed tilt
angle, or for collectors mounted on 1-axis or 2-axis tracking systems. Later in
this chapter, the equations that were used to compute this table will be presented,
and in Appendix C there is a full set of such tables for a number of latitudes.
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Figure 7.15 A sun path diagram with superimposed obstructions makes it easy to esti-
mate periods of shading at a site.

TABLE 7.3 Clear Sky Beam Plus Diffuse Insolation at 40◦ Latitude in January
for South-Facing Collectors with Fixed Tilt Angle and for Tracking Mounts (hourly
W/m2 and daily kWh/m2-day)a

Solar Tracking Tilt Angles Latitude 40◦

Time
One-Axis Two-Axis 0 20 30 40 50 60 90

January 21 (W/m2)
7, 5 0 0 0 0 0 0 0 0 0
8, 4 439 462 87 169 204 232 254 269 266
9, 3 744 784 260 424 489 540 575 593 544
10, 2 857 903 397 609 689 749 788 803 708
11, 1 905 954 485 722 811 876 915 927 801
12 919 968 515 761 852 919 958 968 832

kWh/d: 6.81 7.17 2.97 4.61 5.24 5.71 6.02 6.15 5.47

a A complete set of tables is in Appendix C.

Example 7.4 Estimate the insolation available on a clear day in January on a
south-facing collector with a fixed, 30◦ tilt angle at the site having the sun path
and obstructions diagram shown in Fig. 7.15.
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Solution. With no obstructions, Table 7.3 indicates that the panel would be
exposed to 5.24 kWh/m2-day. The sun path diagram shows loss of about 1 h of
sun at around 9 A.M., which eliminates about 0.49 kWh. After about 3:30 P.M. there
is no sun, which drops roughly another 0.20 kWh. The remaining insolation is

Insolation ≈ 5.24 − 0.49 − 0.20 = 4.55 kWh/m2 ≈ 4.6 kWh/m2 per day

Notice it has been assumed that the insolations shown in Table 7.3 are appropriate
averages covering the half-hour before and after the hour. Given the crudeness
of the obstruction sketch (to say nothing of the fact that the trees are likely to
grow anyway), a more precise calculation isn’t warranted.

7.6 SOLAR TIME AND CIVIL (CLOCK) TIME

For most solar work it is common to deal exclusively in solar time (ST), where
everything is measured relative to solar noon (when the sun is on our line of
longitude). There are occasions, however, when local time, called civil time or
clock time (CT), is needed. There are two adjustments that must be made in order
to connect local clock time and solar time. The first is a longitude adjustment
that has to do with the way in which regions of the world are divided into time
zones. The second is a little fudge factor that needs to be thrown in to account
for the uneven way in which the earth moves around the sun.

Obviously, it just wouldn’t work for each of us to set our watches to show
noon when the sun is on our own line of longitude. Since the earth rotates 15◦ per
hour (4 minutes per degree), for every degree of longitude between one location
and another, clocks showing solar time would have to differ by 4 minutes. The
only time two clocks would show the same time would be if they both were due
north/south of each other.

To deal with these longitude complications, the earth is nominally divided into
24 1-hour time zones, with each time zone ideally spanning 15◦ of longitude. Of
course, geopolitical boundaries invariably complicate the boundaries from one
zone to another. The intent is for all clocks within the time zone to be set to the
same time. Each time zone is defined by a Local Time Meridian located, ideally,
in the middle of the zone, with the origin of this time system passing through
Greenwich, England, at 0◦ longitude. The local time meridians for the United
States are given in Table 7.4.

The longitude correction between local clock time and solar time is based on the
time it takes for the sun to travel between the local time meridian and the observer’s
line of longitude. If it is solar noon on the local time meridian, it will be solar noon
4 minutes later for every degree that the observer is west of that meridian. For
example, San Francisco, at longitude 122◦, will have solar noon 8 minutes after
the sun crosses the 120◦ Local Time Meridian for the Pacific Time Zone.

The second adjustment between solar time and local clock time is the result
of the earth’s elliptical orbit, which causes the length of a solar day (solar noon
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TABLE 7.4 Local Time Meridians for U.S.
Standard Time Zones (Degrees West of Greenwich)

Time Zone LT Meridian

Eastern 75◦

Central 90◦

Mountain 105◦

Pacific 120◦

Eastern Alaska 135◦

Alaska and Hawaii 150◦

to solar noon) to vary throughout the year. As the earth moves through its orbit,
the difference between a 24-hour day and a solar day changes following an
expression known as the Equation of Time, E:

E = 9.87 sin 2B − 7.53 cos B − 1.5 sin B (minutes) (7.12)

where

B = 360

364
(n − 81) (degrees) (7.13)

As before, n is the day number. A graph of (7.12) is given in Fig. 7.16.
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Figure 7.16 The Equation of Time adjusts for the earth’s tilt angle and noncircular orbit.
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Putting together the longitude correction and the Equation of Time gives us
the final relationship between local standard clock time (CT) and solar time (ST).

Solar Time (ST) = Clock Time (CT) + 4 min

degree
(Local Time Meridian

− Local longitude)◦ + E(min) (7.14)

When Daylight Savings Time is in effect, one hour must be added to the local
clock time (“Spring ahead, Fall back”).

Example 7.5 Solar Time to Local Time. Find Eastern Daylight Time for solar
noon in Boston (longitude 71.1 ◦W) on July 1st.

Solution. From Table 7.1, July 1 is day number n = 182. Using (7.12) to (7.14)
to adjust for local time, we obtain

B = 360

364
(n − 81) = 360

364
(182 − 81) = 99.89◦

E = 9.87 sin 2B − 7.53 cos B − 1.5 sin B

= 9.87 sin[2 · (99.89)] − 7.53 cos(99.89) − 1.5 sin(99.89) = −3.5 min

For Boston at longitude 71.7◦ in the Eastern Time Zone with local time merid-
ian 75◦

CT = ST − 4(min /
◦
)(Local time meridian − Local longitude) − E(min)

CT = 12:00 − 4(75 − 71.1) − (−3.5) = 12:00 − 12.1 min

= 11:47.9 A.M. EST

To adjust for Daylight Savings Time add 1 h, so solar noon will be at about
12:48 P.M. EDT.

7.7 SUNRISE AND SUNSET

A sun path diagram, such as was shown in Fig. 7.12, can be used to locate the
azimuth angles and approximate times of sunrise and sunset. A more careful
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estimate of sunrise/sunset can be found from a simple manipulation of (7.8). At
sunrise and sunset, the altitude angle β is zero, so we can write

sin β = cos L cos δ cos H + sin L sin δ = 0 (7.15)

cos H = − sin L sin δ

cos L cos δ
= − tan L tan δ (7.16)

Solving for the hour angle at sunrise, HSR , gives

HSR = cos−1(− tan L tan δ) (+ for sunrise) (7.17)

Notice in (7.17) that since the inverse cosine allows for both positive and negative
values, we need to use our sign convention, which requires the positive value to
be used for sunrise (and the negative for sunset).

Since the earth rotates 15◦/h, the hour angle can be converted to time of sunrise
or sunset using

Sunrise(geometric) = 12:00 − HSR

15◦/h
(7.18)

Equations (7.15) to (7.18) are geometric relationships based on angles mea-
sured to the center of the sun, hence the designation geometric sunrise in (7.18).
They are perfectly adequate for any kind of normal solar work, but they won’t
give you exactly what you will find in the newspaper for sunrise or sunset. The
difference between weather service sunrise and our geometric sunrise (7.18) is
the result of two factors. The first deviation is caused by atmospheric refrac-
tion; this bends the sun’s rays, making the sun appear to rise about 2.4 min
sooner than geometry would tell us and then set 2.4 min later. The second is
that the weather service definition of sunrise and sunset is the time at which
the upper limb (top) of the sun crosses the horizon, while ours is based on the
center crossing the horizon. This effect is complicated by the fact that at sun-
rise or sunset the sun pops up, or sinks, much quicker around the equinoxes
when it moves more vertically than at the solstices when its motion includes
much more of a sideward component. An adjustment factor Q that accounts
for these complications is given by the following (U.S. Department of Energy,
1978):

Q = 3.467

cos L cos δ sin HSR

(min) (7.19)

Since sunrise is earlier when it is based on the top of the sun rather than
the middle, Q should be subtracted from geometric sunrise. Similarly, since the
upper limb sinks below the horizon later than the middle of the sun, Q should
be added to our geometric sunset. A plot of (7.19) is shown in Fig. 7.17. As
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Figure 7.17 Sunrise/sunset adjustment factor to account for refraction and the
upper-limb definition of sunrise. The range of solar declinations is shown.

can be seen, for mid-latitudes, the correction is typically in the range of about 4
to 6 min.

Example 7.6 Sunrise in Boston. Find the time at which sunrise (geometric
and conventional) will occur in Boston (latitude 42.3◦) on July 1 (n = 182).
Also find conventional sunset.

Solution. From (7.6), the solar declination is

δ = 23.45 sin

[
360

365
(n − 81)

]
= 23.45 sin

[
360

365
(182 − 81)

]
= 23.1◦

From (7.17), the hour angle at sunrise is

HSR = cos−1(− tan L tan δ) = cos−1(− tan 42.3◦ tan 23.1◦
) = 112.86◦

From (7.18) solar time of geometric sunrise is

Sunrise (geometric) = 12:00 − HSR

15◦/h

= 12:00 − 112.86◦

15◦/h
= 12:00 − 7.524 h

= 4:28.6 A.M. (solar time)
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Using (7.19) to adjust for refraction and the upper-limb definition of sunrise gives

Q = 3.467

cos L cos δ sin HSR

(min)

= 3.467

cos 42.3 cos 23.1◦ sin 112.86◦ = 5.5 min

The upper limb will appear 5.5 minutes sooner than our original geometric cal-
culation indicated, so

Sunrise = 4:28.6 A.M. − 5.5 min = 4:23.1 A.M. (solar time)

From Example 7.5, on this date in Boston, local clock time is 12.1 min earlier
than solar time, so sunrise will be at

Sunrise (upper limb) = 4:23.1 − 12.1 = 4:11 A.M. Eastern Standard Time

Similarly, geometric sunset is 7.524 h after solar noon, or 7:31.4 P.M. solar time.
The upper limb will drop below the horizon 5.5 minutes later. Then adjusting
for the 12.1 minutes difference between Boston time and solar time gives

Sunset (upper limb) = 7:31.4 + (5.5 − 12.1) min = 7:24.8 P.M. EST

There is a convenient website for finding sunrise and sunset times on the web
at http://aa.usno.navy.mil/data/docs/RS OneDay.html.

A fun, but fairly useless, application of these equations for sunrise and sunset is
to work them in reverse order to navigate—that is, to find latitude and longitude,
as the following example illustrates.

Example 7.7 Where in the World Are You? With your watch set for Pacific
Standard Time (PST), you travel somewhere and when you arrive you note that
the upper limb sunrise is at 1:11 A.M. (by your watch) and sunset is at 4:25 P.M.
It is July 1st (δ = 23.1◦, E = −3.5 min). Where are you?

Solution. Between 1:11 am and 4:25 P.M. there are 15 h and 14 min of daylight
(15.233 h). With solar noon at the midpoint of that time—that is, 7 h and 37 min
after sunrise—we have

Solar noon = 1:11 A.M. + 7:37 = 8:48 A.M. PST
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Longitude can be determined from (7.14):

Solar Time = Clock Time + 4 min

degree
(Local Time Meridian

− Local longitude)◦ + E(min)

Using the 120◦ Local Time Meridian for Pacific Time gives

12:00 − 8:48 = 192 min = 4(120 − Longitude) + (−3.5) min

Longitude = 480 − 3.5 − 192

4
= 71.1◦

To find latitude, it helps to first ignore the correction factor Q. Doing so, the
daylength is 15.233 h, which makes the hour angle at sunrise equal to

HSR = 15.233 hour

2
· 15◦

/hour = 114.25◦

A first estimate of latitude can now be found from (7.16)

L = tan−1

(
−cos HSR

tan δ

)
= tan−1

(
−cos 114.25◦

tan 23.1◦

)
= 43.9◦

Now we can find Q, from which we can correct our estimate of latitude

Q = 3.467

cos L cos δ sin HSR

= 3.467

cos 43.9◦ cos 23.1◦ sin 114.25◦ = 5.74 min

Geometric daylength is therefore 2 × 5.74 min = 11.48 min = 0.191 h shorter
than daylength based on the upper limb crossing the horizon. The geometric
hour angle at sunrise is therefore

HSR = (15.233 − 0.191)h

2
· 15◦

/h = 112.81◦

Our final estimate of latitude is therefore

L = tan−1

(
−cos HSR

tan δ

)
= tan−1

(
−cos 112.81◦

tan 23.1◦

)
= 42.3◦

Notice we are back in Boston, latitude 42.3◦, longitude 71.1◦. Notice too, our
watch worked fine even though it was set for a different time zone.

With so many angles to keep track of, it may help to summarize the termi-
nology and equations for them all in one spot, which has been done in Box 7.1.
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BOX 7.1 SUMMARY OF SOLAR ANGLES

δ = solar declination
n = day number
L = latitude
β = solar altitude angle, βN = angle at solar noon
H = hour angle
HSR = sunrise hour angle
φS = solar azimuth angle (+ before solar noon, − after)
φC = collector azimuth angle (+ east of south, − west of south)∗
ST = solar time
CT = civil or clock time
E = equation of time
Q = correction for refraction and semidiameter at sunrise/sunset
� = collector tilt angle
θ = incidence angle between sun and collector face

δ = 23.45 sin

[
360

365
(n − 81)

]
βN = 90◦ − L + δ

sin β = cos L cos δ cos H + sin L sin δ

sin φS = cos δ sin H

cos β

If cos H ≥ tan δ

tan L
, then |φS | ≤ 90◦; otherwise |φS | > 90◦

Hour angle H =
(

15◦

hour

)
· (Hours before solar noon)

E = 9.87 sin 2B − 7.53 cos B − 1.5 sin B (min)

B = 360

364
(n − 81)

Solar Time (ST) = Clock Time (CT) + 4 min

degree
(Local Time Meridian

− Local Longitude)◦ + E(min)

HSR = cos−1(− tan L tan δ) (+ for sunrise)

Q = 3.467

cos L cos δ sin HSR

(min)

cos θ = cos β cos(φS − φC) sin � + sin β cos �

∗Opposite signs in Southern Hemisphere.
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7.8 CLEAR SKY DIRECT-BEAM RADIATION

Solar flux striking a collector will be a combination of direct-beam radiation that
passes in a straight line through the atmosphere to the receiver, diffuse radiation
that has been scattered by molecules and aerosols in the atmosphere, and reflected
radiation that has bounced off the ground or other surface in front of the collector
(Fig. 7.18). The preferred units, especially in solar–electric applications, are watts
(or kilowatts) per square meter. Other units involving British Thermal Units,
kilocalories, and langleys may also be encountered. Conversion factors between
these units are given in Table 7.5.

Solar collectors that focus sunlight usually operate on just the beam portion
of the incoming radiation since those rays are the only ones that arrive from
a consistent direction. Most photovoltaic systems, however, don’t use focusing
devices, so all three components—beam, diffuse, and reflected—can contribute
to energy collected. The goal of this section is to be able to estimate the rate
at which just the beam portion of solar radiation passes through the atmosphere

Beam
Diffuse

Collector

IDC

IRC

IBC

Reflected
Σ

Figure 7.18 Solar radiation striking a collector, IC , is a combination of direct beam,
IBC , diffuse, IDC , and reflected, IRC .

TABLE 7.5 Conversion Factors for Various
Insolation Units

1 kW/m2 = 316.95 Btu/h-ft2

= 1.433 langley/min

1 kWh/m2 = 316.95 Btu/ft2

= 85.98 langleys
= 3.60 × 106 joules/m2

1 langley = 1 cal/cm2

= 41.856 kjoules/m2

= 0.01163 kWh/m2

= 3.6878 Btu/ft2
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and arrives at the earth’s surface on a clear day. Later, the diffuse and reflected
radiation will be added to the clear day model. And finally, procedures will
be presented that will enable more realistic average insolation calculations for
specific locations based on empirically derived data for certain given sites.

The starting point for a clear sky radiation calculation is with an estimate
of the extraterrestrial (ET) solar insolation, I0, that passes perpendicularly
through an imaginary surface just outside of the earth’s atmosphere as shown
in Fig. 7.19. This insolation depends on the distance between the earth and the
sun, which varies with the time of year. It also depends on the intensity of the
sun, which rises and falls with a fairly predictable cycle. During peak periods
of magnetic activity on the sun, the surface has large numbers of cooler, darker
regions called sunspots, which in essence block solar radiation, accompanied
by other regions, called faculae, that are brighter than the surrounding surface.
The net effect of sunspots that dim the sun, and faculae that brighten it, is
an increase in solar intensity during periods of increased numbers of sunspots.
Sunspot activity seems to follow an 11-year cycle. During sunspot peaks, the
most recent of which was in 2001, the extraterrestrial insolation is estimated to
be about 1.5% higher than in the valleys (U.S. Department of Energy, 1978).

Ignoring sunspots, one expression that is used to describe the day-to-day vari-
ation in extraterrestrial solar insolation is the following:

I0 = SC ·
[

1 + 0.034 cos

(
360n

365

)]
(W/m2) (7.20)

where SC is called the solar constant and n is the day number. The solar constant
is an estimate of the average annual extraterrestrial insolation. Based on early
NASA measurements, the solar constant was often taken to be 1.353 kW/m2, but
1.377 kW/m2 is now the more commonly accepted value.

As the beam passes through the atmosphere, a good portion of it is absorbed
by various gases in the atmosphere, or scattered by air molecules or particulate
matter. In fact, over a year’s time, less than half of the radiation that hits the
top of the atmosphere reaches the earth’s surface as direct beam. On a clear day,
however, with the sun high in the sky, beam radiation at the surface can exceed
70% of the extraterrestrial flux.

Attenuation of incoming radiation is a function of the distance that the beam
has to travel through the atmosphere, which is easily calculable, as well as factors

I0

Figure 7.19 The extraterrestrial solar flux.
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TABLE 7.6 Optical Depth k , Apparent Extraterrestrial Flux A, and the Sky
Diffuse Factor C for the 21st Day of Each Month

Month: Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
A (W/m2): 1230 1215 1186 1136 1104 1088 1085 1107 1151 1192 1221 1233
k: 0.142 0.144 0.156 0.180 0.196 0.205 0.207 0.201 0.177 0.160 0.149 0.142
C: 0.058 0.060 0.071 0.097 0.121 0.134 0.136 0.122 0.092 0.073 0.063 0.057

Source: ASHRAE (1993).

such as dust, air pollution, atmospheric water vapor, clouds, and turbidity, which
are not so easy to account for. A commonly used model treats attenuation as an
exponential decay function:

IB = Ae−km (7.21)

where IB is the beam portion of the radiation reaching the earth’s surface (normal
to the rays), A is an “apparent” extraterrestrial flux, and k is a dimensionless factor
called the optical depth. The air mass ratio m was introduced earlier as (7.4)

Air mass ratio m = 1

sin β
(7.4)

where β is the altitude angle of the sun.
Table 7.6 gives values of A and k that are used in the American Society of

Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Clear Day
Solar Flux Model. This model is based on empirical data collected by Threlkeld
and Jordan (1958) for a moderately dusty atmosphere with atmospheric water
vapor content equal to the average monthly values in the United States. Also
included is a diffuse factor, C, that will be introduced later.

For computational purposes, it is handy to have an equation to work with
rather than a table of values. Close fits to the values of optical depth k and
apparent extraterrestrial (ET) flux A given in Table 7.6 are as follows:

A = 1160 + 75 sin

[
360

365
(n − 275)

]
(W/m2) (7.22)

k = 0.174 + 0.035 sin

[
360

365
(n − 100)

]
(7.23)

where again n is the day number.

Example 7.8 Direct Beam Radiation at the Surface of the Earth. Find the
direct beam solar radiation normal to the sun’s rays at solar noon on a clear day
in Atlanta (latitude 33.7◦) on May 21. Use (7.22) and (7.23) to see how closely
they approximate Table 7.6.
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Solution. Using Table 7.1 to help, May 21 is day number 141. From (7.22), the
apparent extraterrestrial flux, A, is

A = 1160 + 75 sin

[
360

365
(n − 275)

]
= 1160 + 75 sin

[
360

365
(141 − 275)

]

= 1104 W/m2

(which agrees with Table 7.6).
From (7.23), the optical depth is

k = 0.174 + 0.035 sin

[
360

365
(n − 100)

]

= 0.174 + 0.035 sin

[
360

365
(141 − 100)

]
= 0.197

(which is very close to the value given in Table 7.6).
From Table 7.2, on May 21 solar declination is 20.1◦, so from (7.7) the altitude

angle of the sun at solar noon is

βN = 90◦ − L + δ = 90 − 33.7 + 20.1 = 76.4◦

The air mass ratio (7.4) is

m = 1

sin β
= 1

sin(76.4◦)
= 1.029

Finally, using (7.21) the predicted value of clear sky beam radiation at the earth’s
surface is

IB = Ae−km = 1104 e−0.197×1.029 = 902 W/m2

7.9 TOTAL CLEAR SKY INSOLATION ON A COLLECTING SURFACE

Reasonably accurate estimates of the clear sky, direct beam insolation are easy
enough to work out and the geometry needed to determine how much of that will
strike a collector surface is straightforward. It is not so easy to account for the
diffuse and reflected insolation but since that energy bonus is a relatively small
fraction of the total, even crude models are usually acceptable.

7.9.1 Direct-Beam Radiation

The translation of direct-beam radiation IB (normal to the rays) into beam inso-
lation striking a collector face IBC is a simple function of the angle of incidence



414 THE SOLAR RESOURCE

Incidence angle
q

Σ

Figure 7.20 The incidence angle θ between a normal to the collector face and the
incoming solar beam radiation.

S

N
fS

fC

Σ

b

Figure 7.21 Illustrating the collector azimuth angle φC and tilt angle � along with the
solar azimuth angle φS and altitude angle β. Azimuth angles are positive in the southeast
direction and are negative in the southwest.

θ between a line drawn normal to the collector face and the incoming beam
radiation (Fig. 7.20). It is given by

IBC = IB cos θ (7.24)

For the special case of beam insolation on a horizontal surface IBH ,

IBH = IB cos(90◦ − β) = IB sin β (7.25)

The angle of incidence θ will be a function of the collector orientation and
the altitude and azimuth angles of the sun at any particular time. Figure 7.21
introduces these important angles. The solar collector is tipped up at an angle �

and faces in a direction described by its azimuth angle φC (measured relative to
due south, with positive values in the southeast direction and negative values in
the southwest). The incidence angle is given by

cos θ = cos β cos(φS − φC) sin � + sin β cos � (7.26)
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Example 7.9 Beam Insolation on a Collector. In Example 7.8, at solar noon
in Atlanta (latitude 33.7◦) on May 21 the altitude angle of the sun was found to
be 76.4◦ and the clear-sky beam insolation was found to be 902 W/m2. Find the
beam insolation at that time on a collector that faces 20◦ toward the southeast if
it is tipped up at a 52◦ angle.

Solution. Using (7.26), the cosine of the incidence angle is

cos θ = cos β cos(φS − φC) sin � + sin β cos �

= cos 76.4◦ cos(0 − 20◦
) sin 52◦ + sin 76.4◦ cos 52◦ = 0.7725

From (7.24), the beam radiation on the collector is

IBC = IB cos θ = 902 W/m2 · 0.7725 = 697 W/m2

7.9.2 Diffuse Radiation

The diffuse radiation on a collector is much more difficult to estimate accurately
than it is for the beam. Consider the variety of components that make up diffuse
radiation as shown in Fig. 7.22. Incoming radiation can be scattered from atmo-
spheric particles and moisture, and it can be reflected by clouds. Some is reflected
from the surface back into the sky and scattered again back to the ground. The
simplest models of diffuse radiation assume it arrives at a site with equal inten-
sity from all directions; that is, the sky is considered to be isotropic. Obviously,
on hazy or overcast days the sky is considerably brighter in the vicinity of the
sun, and measurements show a similar phenomenon on clear days as well, but
these complications are often ignored.

The model developed by Threlkeld and Jordan (1958), which is used in the
ASHRAE Clear-Day Solar Flux Model, suggests that diffuse insolation on a

IDH

Figure 7.22 Diffuse radiation can be scattered by atmospheric particles and moisture or
reflected from clouds. Multiple scatterings are possible.
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horizontal surface IDH is proportional to the direct beam radiation IB no matter
where in the sky the sun happens to be:

IDH = C IB (7.27)

where C is a sky diffuse factor. Monthly values of C are given in Table 7.6, and
a convenient approximation is as follows:

C = 0.095 + 0.04 sin

[
360

365
(n − 100)

]
(7.28)

Applying (7.27) to a full day of clear skies typically predicts that about 15% of
the total horizontal insolation on a clear day will be diffuse.

What we would like to know is how much of that horizontal diffuse radiation
strikes a collector so that we can add it to the beam radiation. As a first approx-
imation, it is assumed that diffuse radiation arrives at a site with equal intensity
from all directions. This means that the collector will be exposed to whatever
fraction of the sky the face of the collector points to, as shown in Fig. 7.23.
When the tilt angle of the collector � is zero—that is, the panel is flat on the
ground—the panel sees the full sky and so it receives the full horizontal diffuse
radiation, IDH . When it is a vertical surface, it sees half the sky and is exposed
to half of the horizontal diffuse radiation, and so forth. The following expression
for diffuse radiation on the collector, IDC , is used when the diffuse radiation is
idealized in this way:

IDC = IDH

(
1 + cos �

2

)
= C IB

(
1 + cos �

2

)
(7.29)

Collector

Σ

Figure 7.23 Diffuse radiation on a collector assumed to be proportional to the fraction
of the sky that the collector “sees”.
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Example 7.10 Diffuse Radiation on a Collector. Continue Example 7.9 and
find the diffuse radiation on the panel. Recall that it is solar noon in Atlanta on
May 21 (n = 141), and the collector faces 20◦ toward the southeast and is tipped
up at a 52◦ angle. The clear-sky beam insolation was found to be 902 W/m2.

Solution. Start with (7.28) to find the diffuse sky factor, C:

C = 0.095 + 0.04 sin

[
360

365
(n − 100)

]

C = 0.095 + 0.04 sin

[
360

365
(141 − 100)

]
= 0.121

And from (7.29), the diffuse energy striking the collector is

IDC = CIB

(
1 + cos �

2

)

= 0.121 · 902 W/m2

(
1 + cos 52◦

2

)
= 88 W/m2

Added to the total beam insolation of 697 W/m2 found in Example 7.9, this gives
a total beam plus diffuse on the collector of 785 W/m2.

7.9.3 Reflected Radiation

The final component of insolation striking a collector results from radiation that
is reflected by surfaces in front of the panel. This reflection can provide a consid-
erable boost in performance, as for example on a bright day with snow or water
in front of the collector, or it can be so modest that it might as well be ignored.
The assumptions needed to model reflected radiation are considerable, and the
resulting estimates are very rough indeed. The simplest model assumes a large
horizontal area in front of the collector, with a reflectance ρ that is diffuse, and
it bounces the reflected radiation in equal intensity in all directions, as shown
in Fig. 7.24. Clearly this is a very gross assumption, especially if the surface is
smooth and bright.

Estimates of ground reflectance range from about 0.8 for fresh snow to about
0.1 for a bituminous-and-gravel roof, with a typical default value for ordinary
ground or grass taken to be about 0.2. The amount reflected can be modeled as
the product of the total horizontal radiation (beam IBH , plus diffuse IDH ) times
the ground reflectance ρ. The fraction of that ground-reflected energy that will
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Collector

Σ

Reflectance r

Diffuse

Beam

Figure 7.24 The ground is assumed to reflect radiation with equal intensity in all
directions.

be intercepted by the collector depends on the slope of the panel �, resulting in
the following expression for reflected radiation striking the collector IRC :

IRC = ρ(IBH + IDH )

(
1 − cos �

2

)
(7.30)

For a horizontal collector (� = 0), Eq. (7.30) correctly predicts no reflected
radiation on the collector; for a vertical panel, it predicts that the panel “sees”
half of the reflected radiation, which also is appropriate for the model.

Substituting expressions (7.25) and (7.27) into (7.30) gives the following for
reflected radiation on the collector:

IRC = ρIB(sin β + C)

(
1 − cos �

2

)
(7.31)

Example 7.11 Reflected Radiation Onto a Collector. Continue Examples 7.9
and 7.10 and find the reflected radiation on the panel if the reflectance of the
surfaces in front of the panel is 0.2. Recall that it is solar noon in Atlanta on
May 21, the altitude angle of the sun β is 76.4◦, the collector faces 20◦ toward
the southeast and is tipped up at a 52◦ angle, the diffuse sky factor C is 0.121,
and the clear-sky beam insolation is 902 W/m2.

Solution. From (7.31), the clear-sky reflected insolation on the collector is

IRC = ρIB(sin β + C)

(
1 − cos �

2

)

= 0.2 · 902 W/m2(sin 76.4◦ + 0.121)

(
1 − cos 52◦

2

)
= 38 W/m2
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The total insolation on the collector is therefore

IC = IBC + IDC + IRC = 697 + 88 + 38 = 823 W/m2

Of that total, 84.7% is direct beam, 10.7% is diffuse, and 4.6% is reflected. The
reflected portion is clearly modest and is often ignored.

Combining the equations for the three components of radiation, direct beam,
diffuse and reflected gives the following for total rate at which radiation strikes
a collector on a clear day:

IC = IBC + IDC + IRC (7.32)

IC = Ae−km

[
cos β cos(φS − φC) sin � + sin β cos � + C

(
1 + cos �

2

)

+ρ(sin β + C)

(
1 − cos �

2

)]
(7.33)

Equation (7.33) looks terribly messy, but it is a convenient summary, which can
be handy when setting up a spreadsheet or other computerized calculation of
clear sky insolation.

7.9.4 Tracking Systems

Thus far, the assumption has been that the collector is permanently attached to a
surface that doesn’t move. In many circumstances, however, racks that allow the
collector to track the movement of the sun across the sky are quite cost effective.
Trackers are described as being either two-axis trackers, which track the sun both
in azimuth and altitude angles so the collectors are always pointing directly at
the sun, or single-axis trackers, which track only one angle or the other.

Calculating the beam plus diffuse insolation on a two-axis tracker is quite
straightforward (Fig. 7.25). The beam radiation on the collector is the full inso-
lation IB normal to the rays calculated using (7.21). The diffuse and reflected
radiation are found using (7.29) and (7.31) with a collector tilt angle equal to the
complement of the solar altitude angle, that is, 90◦ −β.

Two-Axis Tracking:

IBC = IB (7.34)

IDC = CIB

[
1 + cos(90◦ − β)

2

]
(7.35)

IRC = ρ(IBH + IDH )

[
1 − cos(90◦ − β)

2

]
(7.36)
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N-S

2-AXIS

IBC = IB

fC = fS

 Σ = 90° − b

Collector
b

Figure 7.25 Two-axis tracking angular relationships.

E-W

S

Σ

Σ

E

W

 = L

S

15°/hr

Polar mount

Axis of rotation

Post

Figure 7.26 A single-axis tracking mount with east–west tracking. A polar mount has
the axis of rotation facing south and tilted at an angle equal to the latitude.

Single-axis tracking for photovoltaics is almost always done with a mount
having a manually adjustable tilt angle along a north-south axis, and a track-
ing mechanism that rotates the collector array from east-to-west, as shown in
Fig. 7.26. When the tilt angle of the mount is set equal to the local latitude
(called a polar mount), not only is that an optimum angle for annual collection,
but the collector geometry and resulting insolation are fairly easy to evaluate
as well.

As shown in Fig. 7.27, if a polar mount rotates about its axis at the same rate
as the earth turns, 15◦/h, then the centerline of the collector will always face
directly into the sun. Under these conditions, the incidence angle θ between a
normal to the collector and the sun’s rays will be equal to the solar declination δ.
That makes the direct-beam insolation on the collector just IB cos δ. To evaluate
diffuse and reflected radiation, we need to know the tilt angle of the collector.
As can be seen in Fig. 7.26, while the axis of rotation has a fixed tilt of � = L,
unless it is solar noon, the collector itself is cocked at an odd angle with respect
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Polaris

L

L

N

N
Solar noon 

p.m.
fC = H = −90°

fc = H = 0°

a.m.
fC = H = 90°

(a) (b)

Collector

d

Figure 7.27 (a) Polar mount for a one-axis tracker showing the impact of a 15◦/h angular
rotation of the collector array. (b) Looking down on North Pole.

to the horizontal plane. The effective tilt, which is the angle between a normal to
the collector and the horizontal plane, is given by

�effective = 90 − β + δ (7.37)

The beam, diffuse, and reflected radiation on a polar mount, one-axis tracker
are given by

One-Axis, Polar Mount:

IBC = IB cos δ (7.38)

IDC = CIB

[
1 + cos(90◦ − β + δ)

2

]
(7.39)

IRC = ρ(IBH + IDH )

[
1 − cos(90◦ − β + δ)

2

]
(7.40)

Example 7.12 One-Axis and Two-Axis Tracker Insolation. Compare the 40◦

latitude, clear-sky insolation on a collector at solar noon on the summer solstice
for a two-axis tracking mount versus a single-axis polar mount. Ignore ground
reflectance.

Solution

1. Two-Axis Tracker: To find the beam insolation from (7.21) IB = Ae−km,
we need the air mass ratio m, the apparent extraterrestrial flux A, and the
optical depth k. To find m, we need the altitude angle of the sun. Using (7.7)
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with a solstice declination of 23.45◦,

βN = 90◦ − L + δ = 90 − 40 + 23.45 = 73.45◦

Air mass ratio m = 1

sin β
= 1

sin 73.45◦ = 1.043

From Table 7.6, or Eqs. (7.22), (7.23) and (7.28), we find A = 1088 W/m2,
k = 0.205, and C = 0.134. The direct beam insolation on the collector
is therefore

IBC = IB = Ae−km = 1088 (W/m2) · e−0.205x1.043 = 879 W/m2

Using (7.35) the diffuse radiation on the collector is

IDC = CIB

[
1 + cos(90◦ − β)

2

]

= 0.134 · 879

[
1 + cos(90◦ − 73.45◦

)

2

]
= 115 W/m2

The total is IC = IBC + IDC = 879 + 115 = 994 W/m2

2. One-Axis Polar Tracker: The beam portion of insolation is given by (7.38)

IBC = IB cos δ = 879 W/m2 cos(23.45◦
) = 806 W/m2

The diffuse portion, using (7.39), is

IDC = CIB

[
1 + cos(90◦ − β + δ)

2

]

= 0.134 · 879 W/m2

[
1 + cos(90 − 73.45 + 23.45)

2

]
= 104 W/m2

The total is IC = IBC + IDC = 806 + 104 = 910 W/m2

The two-axis tracker provides 994 W/m2, which is only 9% higher than the
single-axis mount.

To assist in keeping this whole set of clear-sky insolation relationships straight,
Box 7.2 offers a helpful summary of nomenclature and equations. And, obviously,
working with these equations is tedious until they have been put onto a spread-
sheet. Or, for most purposes it is sufficient to look up values in a table and, if
necessary, do some interpolation. In Appendix C there are tables of hour-by-hour
clear-sky insolation for various tilt angles and latitudes, an example of which is
given here in Table 7.7.
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BOX 7.2 SUMMARY OF CLEAR-SKY SOLAR INSOLATION
EQUATIONS

I0 = extraterrestrial solar insolation
m = air mass ratio
IB = beam insolation at earth’s surface
A = apparent extraterrestrial solar insolation
k = atmospheric optical depth
C = sky diffuse factor
IBC = beam insolation on collector
θ = incidence angle
� = collector tilt angle
IH = insolation on a horizontal surface
IDH = diffuse insolation on a horizontal surface
IDC = diffuse insolation on collector
IRC = reflected insolation on collector
ρ = ground reflectance
IC = insolation on collector
n = day number
β = solar altitude angle
δ = solar declination
φS = solar azimuth angle (+ = AM)
φC = collector azimuth angle (+ = SE)

I0 = 1370

[
1 + 0.034 cos

(
360n

365

)]
(W/m2)

m = 1

sin β

IB = Ae−km

A = 1160 + 75 sin

[
360

365
(n − 275)

]
(W/m2)

k = 0.174 + 0.035 sin

[
360

365
(n − 100)

]
IBC = IB cos θ

cos θ = cos β cos(φS − φC) sin � + sin β cos �

IBH = IB cos(90◦ − β) = IB sin β

IDH = CIB
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C = 0.095 + 0.04 sin

[
360

365
(n − 100)

]

IDC = IDH

(
1 + cos �

2

)
= IBC

(
1 + cos �

2

)

IRC = ρIB(sin β + C)

(
1 − cos �

2

)
IC = IBC + IDC + IRC

IC = Ae−km

[
cos β cos(φS − φC) sin � + sin β cos � + C

(
1 + cos �

2

)

+ρ(sin β + C)

(
1 − cos �

2

)]

Two-Axis Tracking:

IBC = IB

IDC = CIB

[
1 + cos(90◦ − β)

2

]

IRC = ρ(IBH + IDH )

[
1 − cos(90◦ − β)

2

]

One-Axis, Polar Mount:

IBC = IB cos δ

IDC = CIB

[
1 + cos(90◦ − β + δ)

2

]

IRC = ρ(IBH + IDH )

[
1 − cos(90◦ − β + δ)

2

]

7.10 MONTHLY CLEAR-SKY INSOLATION

The instantaneous insolation equations just presented can be tabulated into daily,
monthly and annual values that provide considerable insight into the impact of
collector orientation. For example, Table 7.8 presents monthly and annual clear
sky insolation on collectors with various azimuth and tilt angles, as well as for
one- and two-axis tracking mounts, for latitude 40◦N. They have been computed
as the sum of just the beam plus diffuse radiation, which ignores the usually
modest reflective contribution. Similar tables for other latitudes are given in
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TABLE 7.7 Hour-by-Hour Clear-Sky Insolation in June for Latitude 40◦

Solar Tracking Tilt Angles, Latitude 40◦

Time
One-Axis Two-Axis 0 20 30 40 50 60 90

June 21 (W/m2)
6, 6 471 524 188 128 93 57 53 48 32
7, 5 668 742 386 330 289 240 185 126 45
8, 4 772 855 572 538 498 445 380 305 51
9, 3 835 921 731 722 686 632 560 473 147
10, 2 875 961 853 865 834 780 703 607 233
11, 1 898 982 929 956 928 874 795 693 288
12 906 989 955 987 960 906 826 723 308

kWh/d: 9.94 10.96 8.27 8.06 7.62 6.96 6.18 5.23 1.90

Note: Similar tables for other months and latitudes are given in Appendix C

Appendix D. When plotted, as has been done in Fig. 7.28, it becomes apparent
that annual performance is relatively insensitive to wide variations in collector
orientation for nontracking systems. For this latitude, the annual insolation for
south-facing collectors varies by less than 10% for collectors mounted with tilt
angles ranging anywhere from 10◦ to 60◦. And, only a modest degradation is
noted for panels that don’t face due south. For a 45◦ collector azimuth angle
(southeast, southwest), the annual clear sky insolation available drops by less
than 10% in comparison with south-facing panels at similar tilt angles.

While Fig. 7.28 seems to suggest that orientation isn’t critical, remember that
it has been plotted for annual insolation without regard to monthly distribution.
For a grid-connected photovoltaic system, for example, this may be a valid way to
consider orientation. Deficits in the winter are automatically offset by purchased
utility power, and any extra electricity generated during the summer can simply
go back onto the grid. For a stand-alone PV system, however, where batteries
or a generator provide back-up power, it is quite important to try to smooth out
the month-to-month energy delivered to minimize the size of the back-up system
needed in those low-yield months.

A graph of monthly insolation, instead of the annual plots given in Fig. 7.28,
shows dramatic variations in the pattern of monthly solar energy for different
tilt angles. Such a plot for three different tilt angles at latitude 40◦, each having
nearly the same annual insolation, is shown in Fig. 7.29. As shown, a collector
at the modest tilt angle of 20◦ would do well in the summer, but deliver very
little in the winter, so it wouldn’t be a very good angle for a stand-alone PV
system. At 40◦ or 60◦, the distribution of radiation is more uniform and would
be more appropriate for such systems.

In Fig. 7.30, monthly insolation for a south-facing panel at a fixed tilt angle
equal to its latitude is compared with a one-axis polar mount tracker and also
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Figure 7.28 Annual insolation, assuming all clear days, for collectors with varying
azimuth and tilt angles. Annual amounts vary only slightly over quite a range of collector
tilt and azimuth angles.
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Figure 7.29 Daily clear-sky insolation on south-facing collectors with varying tilt angles.
Even though they all yield roughly the same annual energy, the monthly distribution is
very different.

a two-axis tracker. The performance boost caused by tracking is apparent: Both
trackers are exposed to about one-third more radiation than the fixed collector.
Notice, however, that the two-axis tracker is only a few percent better than the
single-axis version, with almost all of this improvement occurring in the spring
and summer months.
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Figure 7.30 Clear sky insolation on a fixed panel compared with a one-axis, polar mount
tracker and a two-axis tracker.

7.11 SOLAR RADIATION MEASUREMENTS

Creation of solar energy data bases began in earnest in the United States in
the 1970s by the National Oceanic and Atmospheric Administration (NOAA)
and later by the National Renewable Energy Laboratory (NREL). NREL has
established the National Solar Radiation Data Base (NSRDB) for 239 sites in the
United States. Of these, only 56 are primary stations for which long-term solar
measurements have been made, while data for the remaining 183 sites are based
on estimates derived from models incorporating meteorological data such as cloud
cover. Figure 7.31 shows these 239 sites. The World Meteorological Organization
(WMO), through its World Radiation Data Center in Russia, compiles data for
hundreds of other sites around the world. Cloud mapping data taken by satellite
are now a very important complement to the rather sparse global network of
ground monitoring stations.

There are two principal types of devices used to measure solar radiation. The
most widely used instrument, called a pyranometer , measures the total radiation
arriving from all directions, including both direct and diffuse components. That is,
it measures all of the radiation that is of potential use to a solar collecting system.
The other device, called a pyrheliometer, looks at the sun through a narrow
collimating tube, so it measures only the direct beam radiation. Data collected by
pyrheliometers are especially important for focusing collectors since their solar
resource is pretty much restricted to just the beam portion of incident radiation.

Pyranometers and pyrheliometers can be adapted to obtain other useful data.
For example, as shall be seen in the next section, the ability to sort out the direct
from the diffuse is a critical step in the conversion of measured insolation on a
horizontal surface into estimates of radiation on tilted collectors. By temporarily
affixing a shade ring to block the direct beam, a pyranometer can be used to
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measure just diffuse radiation (Fig. 7.32). By subtracting the diffuse from the
total, the beam portion can then be determined. In other circumstances, it is
important to know not only how much radiation the sun provides, but also how
much it provides within certain ranges of wavelengths. For example, newspapers
now routinely report on the ultraviolet (UV) portion of the spectrum to warn us
about skin cancer risks. This sort of data can be obtained by fitting pyranometers
or pyrheliometers with filters to allow only certain wavelengths to be measured.

The most important part of a pyranometer or pyrheliometer is the detector
that responds to incoming radiation. The most accurate detectors use a stack of
thermocouples, called a thermopile, to measure how much hotter a black surface
becomes when exposed to sunlight. The most accurate of these incorporate a
sensor surface that consists of alternating black and white segments (Fig. 7.33).
The thermopile measures the temperature difference between the black segments,
which absorb sunlight, and the white ones, which reflect it, to produce a voltage
that is proportional to insolation. Other thermopile pyranometers have sensors
that are entirely black, and the temperature difference is measured between the
case of the pyranometer, which is close to ambient, and the hotter, black sensor.

The alternative approach uses a photodiode sensor that sends a current through
a calibrated resistance to produce a voltage proportional to insolation. These
pyranometers are less expensive but are also less accurate than those based on
thermopiles. Unlike thermopile sensors, which measure all wavelengths of incom-
ing radiation, photoelectric sensors respond to only a limited portion of the solar
spectrum. The most popular devices use silicon photosensors, which means that
any photons with longer wavelengths than their band gap of 1100 μm don’t
contribute to the output. Photoelectric pyranometers are calibrated to produce
very accurate results under clear skies, but if the solar spectrum is altered, as for

Figure 7.32 Pyranometer with a shade ring to measure diffuse radiation.



AVERAGE MONTHLY INSOLATION 431

(b)(a)

Figure 7.33 (a) A thermopile-type, black-and-white pyranometer and (b) a Li-Cor sili-
con-cell pyranometer.

example when sunlight passes through glass or clouds, they won’t be as accu-
rate as a pyranometer that uses a thermopile sensor. Also, they don’t respond
accurately to artificial light.

7.12 AVERAGE MONTHLY INSOLATION

It is one thing to be able to compute the insolation on a tilted surface when
the skies are clear, but what really is needed is a procedure for estimating the
average insolation that can be expected to strike a collector under real conditions
at a particular site. The starting point is site-specific, long-term radiation data,
which is primarily insolation measured on a horizontal surface. Procedures used
to convert these data into expected radiation on a tilted surface depend on being
able to sort out what portion of the total measured horizontal insolation IH is
diffuse IDH and what portion is direct beam, IBH .

IH = IDH + IBH (7.41)

Once this decomposition has been estimated, adjusting the resulting horizontal
diffuse radiation into diffuse and reflected radiation on a collecting surface is
straightforward and uses equations already presented. Converting horizontal beam
radiation is a little trickier.

Procedures for decomposing total horizontal insolation into its diffuse and
beam components begin by defining a clearness index KT , which is the ratio of
the average horizontal insolation at the site IH to the extraterrestrial insolation
on a horizontal surface above the site and just outside the atmosphere, I 0.

Clearness index KT = IH

I 0
(7.42)
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A high clearness index corresponds to clear skies in which most of the radiation
will be direct beam while a low one indicates overcast conditions having mostly
diffuse insolation.

The average daily extraterrestrial insolation on a horizontal surface I 0

(kWh/m2-day) can be calculated by averaging the product of the normal radiation
(7.20) and the sine of the solar altitude angle (7.8) from sunrise to sunset,
resulting in

I 0 =
(

24

π

)
SC

[
1 + 0.034 cos

(
360n

365

)]
(cos L cos δ sin HSR + HSR sin L sin δ)

(7.43)

where SC is the solar constant and the sunrise hour angle HSR is in radians.
Usually the clearness index is based on a monthly average, and (7.43) can be

computed daily and those values averaged over the month or a day in the middle
of the month can be used to represent the average monthly condition. The solar
constant SC used here will be 1.37 kW/m2.

A number of attempts to correlate clearness index and the fraction of hor-
izontal insolation that is diffuse have been made, including Liu and Jordan
(1961), and Collares-Pereira and Rabl (1979). The Liu and Jordan correlation
is as follows:

IDH

IH

= 1.390 − 4.027KT + 5.531KT
2 − 3.108KT

3 (7.44)

From (7.44), the diffuse portion of horizontal insolation can be estimated. Then,
adjusting (7.29) and (7.30) to indicate average daylong values, the average diffuse
and reflected radiation on a tilted collector surface can be found from

IDC = IDH

(
1 + cos �

2

)
(7.45)

and

IRC = ρIH

(
1 − cos �

2

)
(7.46)

where � is the collector slope with respect to the horizontal. Equations (7.45) and
(7.46) are sufficient for our purposes, but it should be noted that more complex
models that don’t require the assumption of an isotropic sky are available (Perez
et al., 1990).

Average beam radiation on a horizontal surface can be found by subtracting the
diffuse portion IDH from the total IH . To convert the horizontal beam radiation
into beam on the collector IBC , begin by combining (7.25)

IBH = IB sin β (7.25)

with (7.24)
IBC = IB cos θ (7.24)
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to get

IBC = IBH

(
cos θ

sin β

)
= IBHRB (7.47)

where θ is the incidence angle between the collector and beam, and β is the
sun’s altitude angle. The quantity in the parentheses is called the beam tilt factor
RB .

Equation (7.47) is correct on an instantaneous basis, but since we are working
with monthly averages, what is needed is an average value for the beam tilt
factor. In the Liu and Jordan procedure, the beam tilt factor is estimated by
simply averaging the value of cos θ over those hours of the day in which the
sun is in front of the collector and dividing that by the average value of sin β

over those hours of the day when the sun is above the horizon. For south-facing
collectors at tilt angle �, a closed-form solution for those averages can be found
and the resulting average beam tilt factor becomes

RB = cos(L − �) cos δ sin HSRC + HSRC sin(L − �) sin δ

cos L cos δ sin HSR + HSR sin L sin δ
(7.48)

where HSR is the sunrise hour angle (in radians) given in (7.17):

HSR = cos−1(− tan L tan δ) (7.17)

HSRC is the sunrise hour angle for the collector (when the sun first strikes the
collector face, θ = 90◦):

HSRC = min{cos−1(− tan L tan δ), cos−1[− tan(L − �) tan δ]} (7.49)

Recall that L is the latitude, � is the collector tilt angle, and δ is the solar
declination (7.6).

To summarize the approach, once the horizontal insolation has been decom-
posed into beam and diffuse components, it can be recombined into the insolation
striking a collector using the following:

IC = IH

(
1 − IDH

IH

)
· RB + IDH

(
1 + cos �

2

)
+ ρIH

(
1 − cos �

2

)
(7.50)

where RB can be found for south-facing collectors using (7.48).

Example 7.13 Average Monthly Insolation on a Tilted Collector. Average
horizontal insolation in Oakland, California (latitude 37.73◦N) in July is
7.32 kWh/m2-day. Estimate the insolation on a south-facing collector at a tilt
angle of 30◦ with respect to the horizontal. Assume ground reflectivity of 0.2.
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Solution. Begin by finding mid-month declination and sunrise hour angle for
July 16 (n = 197):

δ = 23.45 sin

[
360

365
(n − 81)

]
= 23.45 sin

[
360

365
(197 − 81)

]
= 21.35◦ (7.6)

HSR = cos−1(− tan L tan δ) (7.17)

= cos−1(− tan 37.73◦ tan 21.35◦
) = 107.6◦ = 1.878 radians

Using a solar constant of 1.37 kW/m2, the E.T. horizontal insolation from (7.43) is

I 0 =
(

24

π

)
SC

[
1 + 0.034 cos

(
360n

365

)]
(cos L cos δ sin HSR + HSR sin L sin δ)

=
(

24

π

)
1.37

[
1 + 0.034 cos

(
360 · 197

365

)◦]
(cos 37.73 cos 21.35◦ sin 107.6◦

+ 1.878 sin 37.73◦ sin 21.35◦
)

= 11.34 kWh/m2-day

From (7.42), the clearness index is

KT = IH

I 0
= 7.32 kWh/m2 · day

11.34 kWh/m2 · day
= 0.645

From (7.44) the fraction diffuse is

IDH

IH

= 1.390 − 4.027KT + 5.531KT
2 − 3.108KT

3

= 1.390 − 4.027 (0.645) + 5.531 (0.645)2 − 3.108 (0.645)3 = 0.258

So, the diffuse horizontal radiation is

IDH = 0.258 · 7.32 = 1.89 kWh/m2-day

The diffuse radiation on the collector is given by (7.45)

IDC = IDH

(
1 + cos �

2

)
= 1.89

(
1 + cos 30◦

2

)
= 1.76 kWh/m2-day

The reflected radiation on the collector is given by (7.46)

IRC = ρ IH

(
1 − cos �

2

)
= 0.2 · 7.32

(
1 − cos 30◦

2

)
= 0.10 kWh/m2-day
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From (7.41), the beam radiation on the horizontal surface is

IBH = IH − IDH = 7.32 − 1.89 = 5.43 kWh/m2-day

To adjust this for the collector tilt, first find the sunrise hour angle on the collector
from (7.49)

HSRC = min{cos−1(− tan L tan δ), cos−1[− tan(L − �) tan δ]}
= min{cos−1(−tan 37.73◦ tan 21.35◦

), cos−1[−tan(37.73−30)
◦ tan 21.35◦]}

= min{107.6◦
, 93.0◦} = 93.0◦ = 1.624 radians

The beam tilt factor (7.48) is thus

RB = cos(L − �) cos δ sin HSRC + HSRC sin(L − �) sin δ

cos L cos δ sin HSR + HSR sin L sin δ

= cos(37.73 − 30)
◦ cos 21.35◦ sin 93◦ + 1.624 sin(37.73 − 30)

◦ sin 21.35◦

cos 37.73◦ cos 21.35◦ sin 107.6◦ + 1.878 sin 37.73◦ sin 21.35◦

= 0.893

So the beam insolation on the collector is

IBC = IBHRB = 5.43 · 0.893 = 4.85 kWh/m2-day

Total insolation on the collector is thus

IC = IBC + IDC + IRC = 4.85 + 1.76 + 0.10 = 6.7 kWh/m2-day

Clearly, with calculations that are this tedious it is worth spending the time to
set up a spreadsheet or other computer analysis or, better still, use precomputed
data available on the web or from publications such as the Solar Radiation Data
Manual for Flat-Plate and Concentrating Collectors (NREL, 1994). An example
of the sort of data available from NREL is shown in Table 7.9. Average total
radiation data are given for south-facing collectors with various fixed-tilt angles
as well as for one-axis and two-axis tracking mounts. In addition, the range
of insolations each month is presented, which, along with the figure, gives a
good sense of how variable insolation has been during the period in which the
actual measurements were made. Also included are values for just the direct-
beam portion of radiation for concentrating collectors that can’t focus diffuse
radiation. The direct-beam data are presented for horizontal collectors in which
the tracking rotates about a north–south axis or an east–west axis as well as for
tilted, tracking mounts. Horizontal mounts are common in solar–thermal systems
that focus sunlight using parabolic troughs (Fig. 7.34).
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TABLE 7.9 Average Solar Radiation for Boulder, CO (kWh/m2-day) for
South-Facing, Fixed-Tilt Collectors, Tracking Collectors, and Tracking/Focusing
Collectors that Operate on Just the Beam Portion of Insolation

LATITUDE: 40.02° N
LONGITUDE: 105.25° W
ELEVATION: 1634 meters
MEAN PRESSURE: 836 millibars

Variability of Latitude Fixed-Tilt Radiation
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STATION TYPE: Primary

Solar Radiation for Flat-Plate Collectors Facing South at a Fixed Tilt (kWh/m2 /day), Uncertainty ±9%

Tilt (◦) Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Year

0
Average 2.4 3.3 4.4 5.6 6.2 6.9 6.7 6.0 5.0 3.8 2.6 2.1 4.6
Min/Max 2.1/2.7 2.8/3.5 3.7/5.0 4.8/6.1 5.1/7.2 5.7/7.8 5.6/7.4 5.2/6.6 4.0/5.5 3.1/4.2 2.3/2.8 1.9/2.3 4.3/4.8

Latitude −15
Average 3.8 4.6 5.4 6.1 6.2 6.6 6.6 6.3 5.9 5.1 4.0 3.5 5.4
Min/Max 3.2/4.4 3.8/5.1 4.3/6.2 5.3/6.8 4.9/7.3 5.5/7.6 5.6/7.4 5.3/7.1 4.6/6.7 4.0/5.8 3.4/4.6 2.8/4.1 4.9/5.7

Latitude
Average 4.4 5.1 5.6 6.0 5.9 6.1 6.1 6.1 6.0 5.6 4.6 4.2 5.5
Min/Max 3.6/5.1 4.2/5.7 4.4/6.5 5.2/6.7 4.6/6.8 5.1/6.9 5.2/6.8 5.1/6.8 4.6/6.8 4.2/6.4 3.9/5.2 3.2/4.8 5.0/5.8

Latitude +15
Average 4.8 5.3 5.6 5.6 5.2 5.2 5.3 5.5 5.8 5.7 4.8 4.5 5.3
Min/Max 3.9/5.6 4.3/5.9 4.4/6.5 4.8/6.2 4.1/6.0 4.4/5.9 4.5/5.9 4.6/6.2 4.4/6.6 4.2/6.5 4.1/5.6 3.5/5.3 4.8/5.6

90
Average 4.5 4.6 4.3 3.6 2.8 2.6 2.7 3.2 4.0 4.6 4.4 4.3 3.8
Min/Max 3.6/5.4 3.7/5.2 3.5/5.0 3.0/4.0 2.3/3.1 2.2/2.8 2.3/2.9 2.7/3.6 3.1/4.6 3.4/5.3 3.7/5.1 3.4/5.2 3.4/4.1

Solar Radiation for 1-Axis Tracking Flat-Plate Collectors with a North–South Axis (kWh/m2 /day), Uncertainty ±9%

Axis Tilt (◦) Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Year

0
Average 3.7 4.9 6.2 7.6 8.2 9.1 9.0 8.2 7.1 5.7 4.0 3.3 6.4
Min/Max 3.0/4.4 4.1/5.5 4.6/7.4 6.2/8.7 6.2/10.0 7.4/10.9 7.1/10.2 6.7/9.3 5.3/8.3 4.2/6.6 3.4/4.4 2.6/3.9 5.7/6.9

Latitude −15
Average 4.8 5.9 7.0 8.1 8.4 9.1 9.1 8.6 7.9 6.7 5.0 4.4 7.1
Min/Max 3.8/5.6 4.8/6.7 5.1/8.4 6.6/9.2 6.3/10.2 7.4/10.9 7.1/10.3 7.0/9.8 5.8/9.2 4.8/7.8 4.2/5.7 3.3/5.2 6.2/7.6

Latitude
Average 5.2 6.2 7.2 8.0 8.1 8.8 8.7 8.4 7.9 7.1 5.5 4.9 7.2
Min/Max 4.2/6.2 5.1/7.1 5.2/8.6 6.6/9.2 6.1/9.9 7.1/10.4 6.8/10.0 6.8/9.6 5.8/9.3 5.0/8.2 4.6/6.3 3.6/5.8 6.3/7.8

Latitude +15
Average 5.5 6.4 7.1 7.7 7.7 8.2 8.2 8.0 7.8 7.1 5.7 5.2 7.1
Min/Max 4.4/6.6 5.2/7.3 5.2/8.6 6.3/8.9 5.8/9.4 6.6/9.8 6.4/9.3 6.5/9.2 5.6/9.1 5.0/8.3 4.8/6.6 3.8/6.2 6.1/7.6

Solar Radiation for 2-Axis Tracking Flat-Plate Collectors (kWh/m2 /day), Uncertainty ±9%

Tracker Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Year

2-Axis
Average 5.6 6.4 7.2 8.1 8.5 9.4 9.2 8.6 8.0 7.1 5.7 5.3 7.4
Min/Max 4.5/6.7 5.2/7.3 5.2/8.6 6.7/9.3 6.4/10.4 7.6/11.1 7.2/10.5 7.0/9.8 5.8/9.3 5.1/8.3 4.8/6.6 3.9/6.3 6.5/8.0

Direct Beam Solar Radiation for Concentrating Collectors (kWh/m2 /day), Uncertainty ±8%

Tracker Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Year

1-Axis, E–W Average 3.5 3.7 3.7 4.0 4.2 5.0 4.9 4.5 4.4 4.3 3.6 3.4 4.1
Horiz Axis Min/Max 2.3/4.6 2.8/4.5 2.1/4.8 2.9/5.0 2.9/5.7 3.5/6.4 3.8/6.1 3.4/5.4 2.8/5.5 2.5/5.2 2.7/4.7 2.0/4.3 3.4/4.5
1-Axis, N–S Average 2.6 3.4 4.2 5.3 5.6 6.6 6.5 6.0 5.4 4.3 2.8 2.3 4.6
Horiz Axis Min/Max 1.6/3.4 2.5/4.2 2.2/5.7 3.6/6.4 3.8/7.6 4.8/8.5 4.8/8.1 4.5/7.1 3.4/6.7 2.4/5.3 2.2/3.6 1.3/3.0 3.7/5.1
1-Axis, N–S Average 3.9 4.5 5.0 5.6 5.5 6.2 6.2 6.1 6.0 5.5 4.1 3.6 5.2
Tilt = Latitude Min/Max 2.5/5.1 3.4/5.5 2.7/6.6 3.8/6.8 3.7/7.5 4.5/8.0 4.6/7.7 4.6/7.3 3.8/7.6 3.1/6.7 3.1/5.3 2.0/4.6 4.2/5.7

2-Axis
Average 4.1 4.6 5.0 5.7 5.8 6.8 6.7 6.3 6.1 5.6 4.3 4.0 5.4
Min/Max 2.7/5.4 3.5/5.7 2.7/6.6 3.9/6.9 4.0/7.9 4.9/8.7 4.9/8.3 4.8/7.5 3.8/7.6 3.2/6.8 3.3/5.6 2.2/5.0 4.3/6.0

Note: Additional tables are in Appendix E.
Source: NREL (1994).
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Figure 7.34 One-axis tracking parabolic troughs with horizontal axis oriented east–west
or north–south. Most are oriented north–south.

TABLE 7.10 Sample of the Solar Data from Appendix E

Los Angeles, CA: Latitude 33.93◦N

Tilt Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec Year

Lat − 15 3.8 4.5 5.5 6.4 6.4 6.4 7.1 6.8 5.9 5.0 4.2 3.6 5.5
Lat 4.4 5.0 5.7 6.3 6.1 6.0 6.6 6.6 6.0 5.4 4.7 4.2 5.6
Lat + 15 4.7 5.1 5.6 5.9 5.4 5.2 5.8 6.0 5.7 5.5 5.0 4.5 5.4
90 4.1 4.1 3.8 3.3 2.5 2.2 2.4 3.0 3.6 4.2 4.3 4.1 3.5
1-Axis (Lat) 5.1 6.0 7.1 8.2 7.8 7.7 8.7 8.4 7.4 6.6 5.6 4.9 7.0

Temp (◦C) 18.7 18.8 18.6 19.7 20.6 22.2 24.1 24.8 24.8 23.6 21.3 18.8 21.3

Solar data from the NREL Solar Radiation Manual have been reproduced in
Appendix E, a sample of which is shown in Table 7.10.

Radiation data for Boulder are plotted in Fig. 7.35. As was the case for clear-
sky graphs presented earlier, there is little difference in annual insolation for
fixed, south-facing collectors over a wide range of tilt angles, but the seasonal
variation is significant. The boost associated with single-axis tracking is large,
about 30%.

Maps of the seasonal variation in insolation, such as that shown in Fig. 7.36,
provides a rough indication of the solar resource and are useful when more
specific local data are not conveniently available. Analogous figures for the entire
globe are included in Appendix F. The units in these figures are average kWh/m2-
day of insolation, but there is another way to interpret them. On a bright, sunny
day with the sun high in the sky, the insolation at the earth’s surface is roughly
1 kW/m2. In fact, that convenient value, 1 kW/m2, is defined to be 1-sun of
insolation. That means, for example, that an average daily insolation of say
5.5 kWh/m2 is equivalent to 1 kW/m2 (1-sun) for 5.5 h; that is, it is the same as
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Figure 7.35 Insolation on south-facing collectors in Boulder, CO, at tilt angles equal to
the latitude and latitude ±15◦. Values in parentheses are annual averages (kWh/m2-day).
The one-axis tracker with tilt equal to the latitude delivers about 30% more annual energy.
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5.5 h of full sun. The units on these radiation maps can therefore be thought of
as “hours of full sun.” As will be seen in the next chapters on photovoltaics, the
hours-of-full-sun approach is central to the analysis and design of PV systems.
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PROBLEMS

7.1 Using (7.5), determine the following:
a. The date on which the earth will be a maximum distance from the sun.
b. The date on which it will be a minimum distance from the sun.

7.2 What does (7.6) predict for the date of the following:
a. The two equinox dates
b. The two solstice dates

7.3 At what angle should a South-facing collector at 36◦ latitude be tipped up
to in order to have it be normal to the sun’s rays at solar noon on the
following dates:
a. March 21
b. January 1
c. April 1
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7.4 Consider June 21st (the solstice) in Seattle (latitude 47◦).
a. Use (7.11) to help find the time of day (solar time) at which the sun will

be due West.
b. At that time, what will the altitude angle of the sun be?
c. As a check on the validity of (7.11), use your answers from (a) and (b)

in (7.8) and (7.9) to be sure they yield an azimuth angle of 90◦.

7.5 Find the altitude angle and azimuth angle of the sun at the following (solar)
times and places:
a. March 1st at 10:00 A.M. in New Orleans, latitude 30◦N.
b. July 1st at 5:00 P.M. in San Francisco, latitude 38◦

c. December 21st at 11 A.M. at latitude 68◦

7.6 Suppose you are concerned about how much shading a tree will cause for a
proposed photovoltaic system. Standing at the site with your compass and
plumb bob, you estimate the altitude angle of the top of the tree to be about
30◦ and the width of the tree to have azimuth angles that range from about
30◦ to 45◦ West of South. Your site is at latitude 32◦.
Using a sun path diagram (Appendix B), describe the shading problem the
tree will pose (approximate shaded times each month).

7.7 Suppose you are concerned about a tall thin tree located 100 ft from a
proposed PV site. You don’t have a compass or protractor and plumb bob,
but you do notice that an hour before solar noon on June 21, it casts a 30-ft
shadow directly toward your site. Your latitude is 32◦N.
a. How tall is the tree?
b. What is its azimuth angle with respect to your site?
c. What are the first and last days in the year when the shadow will land

on the site?

7.8 Using Figure 7.16, what is the greatest difference between local standard
time for the following locations and solar time? At approximately what date
would that occur?
a. San Francisco, CA (longitude 122◦, Pacific Time Zone)
b. Boston, MA (longitude 71.1◦, Eastern Time Zone)
c. Boulder, CO (longitude 105.3◦, Mountain Time Zone)
d. Greenwich, England (longitude 0◦, Local time meridian 0◦)

7.9 Using Figure 7.16, roughly what date(s) would local time be the same as
solar time in the cities described in Problem 7.8?

7.10 Find the local Daylight Savings Time for geometric sunrise in Seattle (lat-
itude 47◦, longitude 123 ◦W) on the summer solstice (n = 172).

7.11 Find the local Daylight Savings time at which the upper limb of the sun
will emerge at sunrise in Seattle (latitude 47◦, longitude 123◦) on the sum-
mer solstice.
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7.12 Equations for solar angles, along with a few simple measurements and an
accurate clock, can be used for rough navigation purposes. Suppose you
know it is June 22 (n = 172, the solstice), your watch, which is set for
Pacific Standard Time tells you that (geometric) sunrise occurred at 4:23
A.M. and sunset was 15 hs 42 min later. Ignoring refraction and assuming
you measured geometric sunrise and sunset (mid-point in the sun), do the
following calculations to find your latitude and longitude.

a. Knowing that solar noon occurs midway between sunrise and sunset, at
what time would your watch tell you it is solar noon?

b. Use (7.14) to determine your longitude.
c. Use (7.17) to determine your latitude.

7.13 Following the procedure outlined in Example 7.7, you are to determine your
location if on January 1, the newspaper says sunrise is 7:50 A.M. and sunset
is at 3:50 P.M. (both Central Standard Time). Solar declination δ = −23.0◦

and Figure 7.16 (or by calculation) E = −3.6 minutes.

a. What clock time is solar noon?
b. Use (7.14) to determine your longitude.
c. Using (7.16), estimate the latitude without using the Q correction
d. Estimate Q and from that find the clock time at which geometric sun-

rise occurs.
e. Use (7.17) to determine your latitude.

7.14 A south-facing collector at latitude 40◦ is tipped up at an angle equal to its
latitude. Compute the following insolations for January 1st at solar noon:

a. The direct beam insolation normal to the sun’s rays.
b. Beam insolation on the collector.
c. Diffuse radiation on the collector.
d. Reflected radiation on the collector with ground reflectivity 0.2.

7.15 Create a “Clear Sky Insolation Calculator” for direct and diffuse radiation
using the following spreadsheet as a guide. In this example, the insolation
has been computed to be 964 W/m2 for a South-facing collector tipped up
at 45◦ at noon on November 7 at latitude 37.5◦. Note the third column
simply adjusts angles measured in degrees to radians.
Use the calculator to compute clear sky insolation under the following
conditions:

a. January 1, latitude 40◦, horizontal insolation, solar noon
b. March 21, latitude 20◦, South-facing collector with tilt 20◦, 11:00 A.M.

(solar time)
c. July 1, latitude 48◦, South-East facing collector (azimuth 45◦), tilt 20◦,

2 P.M. (solar time)
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7.16 Air Mass AM1.5 is supposedly the basis for a standard 1-sun insolation of
1 kW/m2. To see whether this is reasonable, compute the following for a
clear day on March 21st:
a. What solar altitude angle gives AM1.5?
b. What would be the direct beam radiation normal to the sun’s rays?
c. What would be the diffuse radiation on a collector normal to the rays?
d. What would be the reflected radiation on a collector normal to the rays

with ρ = 0.2?
e. What would be the total insolation normal to the rays?

7.17 Consider a comparison between a south-facing photovoltaic (PV) array
with a tilt equal to its latitude located in Los Angeles versus one with
a polar-mount, single-axis tracker. Assuming the PVs are 10% efficient at
converting sunlight into electricity:

Fixed mount, tilt = L Polar mount, 1-axis tracker

Figure P7.17

a. For a house that needs 4000-kWh per year, how large would each array
need to be?

b. If the PVs cost $400/m2 and everything else in the two systems has the
same cost except for the extra cost of the tracker, how much can the
tracker cost ($) to make the systems cost the same amount? How much
per unit area of tracker ($/m2)?

c. Derive a general expression for the justifiable extra cost of a tracker per
unit area ($/m2) as a function of the PV cost ($/m2) and the ratio of
tracker insolation IT to fixed insolation IF .


