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FROM THE EDITOR
Min Wu  |  Editor-in-Chief  |  minwu@umd.edu

Signal Processing: The Expected and the Unexpected

I t will be the start of another new year 
when you receive this issue of IEEE 
Signal Processing Magazine (SPM). 

Happy 2017 to all our readers, editors, and 
reviewers! 

Not long before I began writing this 
editorial, the 2016 edition of the IEEE 
International Conference on Image Pro-
cessing (ICIP) was successfully held in 
Phoenix, Arizona. In addition to the rich 
and timely technical sessions that ICIP is 
well known for, the ICIP 2016 team—led 
by General Chair Prof. Lina Karam, who 
is also serving on SPM’s senior edito-
rial board, and Industrial Program Chair 
Dr. Haohong Wang—spearheaded the 
first Visual Innovation Award. Going 
over the finalists’ roster, you may very 
well find yourself having been a user of 
some of these technologies: the YouTube 
video streaming service, the Lytro light-
field camera, the Intel RealSense camera 
technology, the CUDA high-performance 
computing by NVIDIA, the Netflix movie 
streaming service, the Oculus virtual real-
ity technology, and the Microsoft Kinect. 

For many signal processing profes-
sionals, including those who regularly 
attend ICIP—a flagship conference of 
the IEEE Signal Processing Society 
(SPS)—it might almost have been taken 
for granted that signal processing plays 
a key role behind these visual innova-
tions. Whether it is image formation, 
sensing, compression, or communica-
tions, signal processing provides the 
underlying technical foundation. 

Right after ICIP, I briefly stopped in 
the San Francisco Bay area, where I gave 
a keynote speech at a North American 
alumni forum of my college alma mater,
Tsinghua University, in Beijing, China. 
Different from ICIP, I did not expect 
this forum to be a venue to see so much 
signal processing other than the talk on 
microsignals for media security that I 
would be giving. I did my undergraduate 
study in the Department of Automation 
at Tsinghua University. “Automation” as 
an engineering major covers a combina-
tion of control and robotics, electronic 
sensing and diagnosis, signal process-
ing, and pattern recognition; within the 
department, different specialty direc-
tions were rather compartmentalized 
historically. Perhaps it was due to the 
difficulty to find an exact matching 
department in North American uni-
versities that college alumni from the 
department went in different ways when 
pursuing their graduate studies in North 
America. Among them, you will find 
experts on securing  sensors and sensor 
network, on  supply chain management 
behind some of the most wanted con-
sumer products, on designing the next-
generation mass spectrometry analyzer, 
and on international finance and policy 
making, just to name a few. 

Yet through this stimulating day-long 
event, I learned a great deal about many 
broad applications of signal processing. 
For example, a keynote speech given 
before mine provided an overview on 
designing and analyzing sensing signals 
for fault-tolerant operations in such com-
plex systems as the quality control and 

enhancement in steel manufacturing and 
the signaling in China’s high-speed train 
systems. As it turned out, many chal-
lenging issues addressed by the keynote 
speech have benefited from signal pro-
cessing theories and techniques. Two 
panel discussions on the recent hype of 
artificial intelligence and the Internet of 
Things also touched on such issues as 
sensing, denoising, and statistical learn-
ing from signals and data. In addition, 
several alumni who are successful in ven-
ture capital investment highlighted the 
important roles of data and data analytics 
that they saw in developing sustainable 
new businesses.

Most speakers at the alumni forum 
would not consider themselves to be pro-
fessionals in signal processing, and not 
many have read our magazine. It remind-
ed me of “Signal Processing Inside,” a 
notion coined in SPM’s September 2004 
editorial by then Editor-in-Chief Prof. 
K.J. Ray Liu, and the blurred boundaries 
between disciplines discussed in my Sep-
tember 2016 editorial. Inspired by those 
expected and unexpected venues where 
signal processing shines, I am working 
with our magazine editors to develop leads 
on informative articles for our readers in 
the coming months. We welcome your 
suggestions on topics that you would like 
to read about. 

Best wishes to you all for a prosperous 
new year ahead—another year filled with 
exciting signal processing!
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PRESIDENT’S MESSAGEPRESIDENT’S MESSAGE

Volunteerism Makes a Positive Difference

Happy New Year! The onset of a new 
year is an exciting time filled with 
renewal, opportunity, and possibility. 

As we close the book on 2016, it’s only 
natural to reflect on our progress, cele-
brate our successes, and learn from our 
failures. But the beginning of a new year 
is also empowering—it reignites your 
fire to try something new, to set goals, to 
be open to change and embrace new 
challenges. The IEEE Signal Processing 
Society (SPS) hopes to invoke these 
principles and nimbleness into 2017 and 
for many years to come. We hope that 
you’ll continue to work with us through 
this exciting time!

I would be remiss to not mention 
that 2017 marks the expiration of a 
valued member of the SPS Executive 
Committee’s term. In 2013, the SPS Ex-
ecutive Committee divided the role of 
vice president, Awards and Membership, 
establishing a newly individualized 
role of vice president, Membership, 
to better examine, understand, and 
serve SPS’s growing and diverse 
membership. Dr. Kostas Plataniotis 
was chosen as to fill this position. 
His vision and innovation were es-
sential to not only proving the role’s 
necessity but to driving its purpose 
and setting the course for future mem-
ber services and activities. We thank 
him for his effective and incredible 
service and are excited to welcome 

Dr. Nikos Sidiropoulos to his new posi-
tion at SPS vice president, Membership.

This past year brought about a lot of 
exciting changes—in June, we launched 
the new SPS website, accompanied 
by the SPS Resource Center; http://rc 
.signalprocessingsociety.org. With these, 
a new era began for the Society, looking 
toward and acting on a rapidly changing 
future. Our organization is changing. 
Our Society is changing. And, most no-
tably, our membership is changing, and 
we have to find new and effective ways 
to keep members of all ages, career stag-
es, professions, and fields engaged and 
involved with the SPS and its activities. 
Volunteerism is a great way to encour-
age early involvement, building loy-
alty across a diverse member body with 
varying interests, availability, needs, and 
expertise. Volunteerism has evolved in 
itself, and SPS is working toward build-
ing a strong volunteer base, with roles to 
suit the growing needs for the Society 
and its members alike.

The nature of “volunteering” used 
to be immersive and intimidating, with 
excessive time commitments that made 
volunteerism seem like too much to jug-
gle among other activities. Now, with 
the help of technology and the evolu-
tion of workplaces, a volunteer has new 
flexibility and freedom to choose his/
her level of involvement, from demand-
ing high-profile leadership roles to 
“microvolunteering” opportunities that 
spark interest and action without con-
suming as much from our already busy 

schedules. Over the past couple of years, 
the SPS has expanded its volunteer 
roles to encourage diverse involvement 
opportunities. You can choose a posi-
tion that best fits your lifestyle whether 
you’re a student, young professional, in 
the middle of your career, or your career 
is winding down —or even if you are 
retired but want to stay active. 

The SPS relies on its dedicated vol-
unteer base—more than 1,000 members 
strong—to develop and manage Society 
activities, products, and services. Deci-
sion makers who sit on our boards and 
committees play an integral role in the 
Society and its operations. These high-
level roles cover a wide array of Society 
needs in the areas of conferences, pub-
lications, membership, education, and 
more. Sitting on boards and committees, 
while time- consuming, can be incred-
ibly rewarding and prestigious. Many 
high-ranking board members move on 
to become decision makers in broader-
scale positions within the IEEE.

Even among publications, conferenc-
es, education, and membership, there 
are a multitude of opportunities of vary-
ing levels of involvement. You can be a 
reviewer or editor of one of our Society 
publications, form a committee to pro-
pose and host a conference or a meeting 
in a desired area, or propose a seasonal 
school workshop near you. Want to get 
involved locally? Form an SPS Chapter, 
or attend an event of an existing local 
Chapter to strengthen connections with 
other signal processing professionals 

Rabab Ward  |  SPS President |  rababw@ece.ubc.ca 
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near you. Why not host a networking 
event or technical talk in conjunction 
with a local Chapter and involve local 
industry partners?

The SPS has several technical com-
mittees (TCs) and special interest 
groups (SIGs) that help steer the techni-
cal direction of the Society, contributing 
their expertise in regards to SPS confer-
ences, awards, publications, and educa-
tional activities. Anyone can become an 
affiliate member of a TC or SIG—both 
are a great way to not only get involved 
with important Society activities but to 
build relationships with other SPS mem-
bers who share similar technical inter-
ests to you.

Many of us don’t have time to dedi-
cate to planning events, serving on 
boards, or reviewing papers. Maybe 
you’re new to the Society and want 

to get more involved but don’t really 
know where you can step in. The SPS 
is always looking for volunteers to help 
with our ongoing visibility efforts. This 
can entail something as simple as send-
ing out a quick Tweet to promote the 
SPS or share signal processing news, or  it 
can be as involved as writing a post for our 
new SPS blog; http://signalprocessing 
society.org/publications-resources/blog. 
We even have a group of volunteers on 
call when signal processing sources are 
needed for external media stories. Social 
media ambassadorship and blog contri-
butions are both great ways for younger 
members to get involved early without yet 
committing to more serious roles.

Volunteering for the SPS in any 
capacity—whether for a couple of hours 
a month to several days a year—is a great 
way to get involved, build your resume, 

make connections within the field, and 
expand your career options. These are just 
a sampling of the many ways SPS mem-
bers can have a hand in Society activities 
and another way the SPS strives to help 
its members reach their goals—whether 
the goals are only the new year or beyond.

The SPS wishes you a happy, healthy, 
and prosperous new year. For full infor-
mation about volunteering with the 
SPS, visit our website at http://signal 
processingsociety.org. If you have ques-
tions or need guidance, please feel free 
to contact me or our SPS Membership 
and Content Administrator Jessica Perry 
at jessica.perry@ieee.org.

SP
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SOCIETY NEWS

2017 Class of Distinguished Lecturers

The IEEE Signal Processing Society’s 
(SPS’s) Distinguished Lecturer Pro-
gram provides the means for Chapters 

to have access to well-known educators 
and authors in the fields of signal process-
ing to lecture at Chapter meetings. While 
many IEEE Societies have similar pro-
grams, the SPS provides financial support 
for the Chapters to take advantage of this 
service. Chapters interested in arranging 
lectures by the Distinguished Lecturers can 
obtain information from the Society’s web 
page (http://signalprocessingsociety.org/
professional-development/distinguished-
lecturer-program) or by sending an e-mail 
to sp.info@ieee.org.

Candidates for the Distinguished 
Lecturer Program are solicited from the 
Society technical committees, editorial 
boards, Chapters, and other boards and 
committees by the Awards Board. The 
Awards Board vets the nominations, and 
the Board of Governors approves the 
final selection. Distinguished Lecturers 
are appointed for a term of two calendar 
years. Distinguished Lecturers named 
for 2017 are as follows. 

Vivek K. Goyal 
Vivek K.  Goyal 
obtained his B.S. 
degree in mathemat-
ics (1993) and his 
B.S.E. degree in elec-
trical engineering 

(1993) from the University of Iowa, 
where he received the John Briggs 
Memorial Award for the top undergrad-
uate across all colleges. He obtained the 
M.S. degree (1995) 
and Ph.D. degree 
(1998) in electrical 
engineering from the 
University of Califor-
nia, Berkeley, where 
he received the Elia-
hu Jury Award for 
outstanding achieve-
ment in systems, 
communicat ions , 
control, or signal processing.

Dr. Goyal was a member of techni-
cal staff in the Mathematics of Commu-
nications Research Department, Bell 
Laboratories, Lucent Technologies, 
(1998–2001) and a senior research 
engineer for Digital Fountain, Inc. 
(2001–2003). He was the Esther and 
Harold E. Edgerton Associate Professor 
of Electrical Engineering, Massachu-
setts Institute of Technology (2004–
2013), adviser, 3dim Tech, Inc. (winner 
of the 2013 MIT $100K Entrepreneur-
ship Competition Launch Contest 
Grand Prize and 2013 MassChallenge 
Accelerator Gold), and was subsequent-
ly with Nest, an Alphabet company 
(2014–2016). He is now with the 
Department of Electrical and Computer 
Engineering of Boston University.

He is an IEEE Fellow and was award-
ed the IEEE SPS Magazine Award 
(2002), the IEEE SPS Best Paper Award 

(2014), and a National Science Founda-
tion (NSF) CAREER Award. The work 
he supervised won student best paper 
awards at the IEEE Data Compression 

Conference in 2006 
and 2011 and the 
IEEE Sensor Array 
and Multichannel 
Signal Processing 
Workshop in 2012 
as well as five MIT 
thesis awards. He is 
a coauthor of Foun-
dations of Signal 
Processing (Cam-

bridge University Press, 2014).
Dr. Goyal served on the IEEE Image 

and Multidimensional Signal Processing 
Technical Committee (2003–2009); IEEE 
Image, Video, and Multidimensional Sig-
nal Processing Technical Committee 
(2014); and the steering committee of 
IEEE Transactions on Multimedia
(2013). He has served as editorial board 
member, Foundations and Trends and 
Signal Processing (2006–present); sci-
entific advisory board of the Banff 
International Research Station for Math-
ematical Innovation and Discovery 
(2011–present); the IEEE SPS Compu-
tational Imaging SIG (2015–present); 
the IEEE Standing Committee on 
Industry DSP Technology (2016–pres-
ent); technical program cochair, Inter-
national Conference on Sampling 
Theory and Application (2015); and 
conference cochair, SPIE Wavelets and 
Sparsity conference series (2006–2016).

Digital Object Identifier 10.1109/MSP.2016.2622958
Date of publication: 11 January 2017

Chapters interested in 
arranging lectures by the 
Distinguished Lecturers 
can obtain information 
by sending an e-mail to 
sp.info@ieee.org.
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Dr. Goyal’s research interests include 
computational imaging, human percep-
tion, decision making, sampling, quan-
tization, and source coding theory. His 
lecture topics include first-photon imag-
ing and other extreme optical imaging, 
social learning in decision-making 
groups, teaching signal processing 
with geometry, and the optimistic 
Bayesian: replica method analysis of 
compressed sensing.

Christine Guillemot 
Christine Guillemot  
holds a Ph.D. degree 
from Ecole Nationale 
Superieure des Tele-
communications Paris. 
She was with FRANCE 
TELECOM, where she 

was involved in various projects in the 
area of coding for TV, high-definition 
TV, and multimedia (November 1985 to 
October 1997) and she worked at Bell-
core, New Jersey, as a visiting scientist 
(January 1990 to mid-1991). Since 
November 1997, she has been the direc-
tor of research at INRIA, as the head of 
a research team dedicated to the design 
of algorithms for the image and video 
processing chain, with a focus on anal-
ysis, representation, compression, and 
editing, including for emerging modali-
ties such as high dynamic range imag-
ing and light fields.

Dr. Guillemot has coauthored nine 
book chapters, 65 publications in peer-
reviewed international journals (IEEE 
Transactions on Signal Processing, 
IEEE Transactions on Image Process-
ing, IEEE Transactions on Information 
Theory, and IEEE Transactions on Cir-
cuits and Systems for Video Technology), 
162 publications in international con-
ferences [IEEE International Conference 
on Acoustics, Speech, and Signal Pro-
cessing (ICASSP), IEEE International 
Conference on Image Processing, IEEE 
International Workshop on Multimedia 
Signal Processing (MMSP), and Euro-
pean Signal Processing Conference 
(EUSIPCO)], and 24 granted patents.

Dr. Guillemot is an IEEE Fellow. 
She has served as associate editor, 
IEEE Transactions on Image Pro-
cessing (2000–2003 and 2014–2016); 

associate editor, IEEE Transactions on 
Circuits and Systems for Video Technol-
ogy (2004–2006); associate editor, 
IEEE Transactions on Signal Process-
ing (2007–2009); associate editor, IEEE 
Journal on Selected Topics in Signal 
Processing (2013–2015); member, 
IEEE Image and Multidimensional Sig-
nal Processing Technical Committee 
(2001-2006); member, IEEE Multime-
dia Signal Processing Technical Com-
mittee (2005–2008); member, IEEE 
Image, Video, and Multidimensional 
Signal Processing Technical Committee 
(2013–present); senior area editor, 
IEEE Transactions on Image Process-
ing (2016–2017); and steering commit-
tee member, IEEE Transactions on 
Multimedia (2016).

Over the past 20 years, Dr. Guille-
mot’s research has focused on numerous 
aspects of image and video processing: 
modeling, representation, compression, 
and communication. Her contributions 
concern algorithms for image and video 
analysis, representation, coding, commu-
nication, and for inverse problems such 
as superresolution, inpainting, and resto-
ration. Her lecture topics include sparsity 
and dimensionality reduction in image 
compression and superresolution; multi-
view and light fields processing: from 
analysis, representation, compression to 
rendering; and from image to video and 
multiview inpainting.

Petros Maragos 
Pe t ro s  Maragos 
received the M.Eng. 
diploma in electrical 
engineering from the 
National Technical 
University of Athens 
(NTUA) in 1980 and 

the M.Sc. and Ph.D. degrees from 
Georgia Tech, Atlanta, in 1982 and 
1985. In 1985, he joined the faculty of 
the Division of Applied Sciences at 
Harvard University, Cambridge, Massa-
chusetts, where he worked for eight 
years as professor of electrical engi-
neering, affiliated with the Harvard 
Robotics Lab. In 1993, he joined the 
faculty of the School of Electrical and 
Computer Engineering (ECE) at Geor-
gia Tech, affiliated with its Center for 

Signal and Image Processing. From 
1996 to 1998, he had a joint appoint-
ment as director of research at the Insti-
tute  of  Language and Speech 
Processing in Athens. Since 1999, he 
has been working as a professor at the 
NTUA School of ECE, where he is cur-
rently the director of the Intelligent 
Robotics and Automation Lab. He has 
held visiting scientist positions at the 
Massachusetts Institute of Technology 
in the fall of 2012 and at the University 
of Pennsylvania in the fall of 2016.

Prof. Maragos served as associate 
editor, IEEE Transactions on Acoustics, 
Speech, and Signal Processing (1989–
1990); and IEEE Transactions on Pat-
tern Analysis and Machine Intelligence;
general chair, IEEE International Con-
ference on Visual Communications and 
Image Processing (1992); general chair, 
International Symposium on Mathe-
matical Morphology and Its Applica-
tions to Image/Signal Processing 
(1996); general chair, MMSP (2007); 
program chair, European Conference 
on Computer Vision (2010); ECCV 
Workshop on Sign, Gesture, and Activi-
ty (2010); Dagstuhl Symposia on Shape 
(2011 and 2014); Intelligent Robots 
and Systems Workshop on Cognitive 
Mobility Assistance Robots (2015); 
general chair, EUSIPCO (2017); mem-
ber, SPS Digital Signal Processing 
Technical Committee (1992–1998); 
IEEE SPS Image and Multidimensional 
Signal Processing Technical Commit-
tee (1995–1999); IEEE SPS Multime-
dia Signal Processing Technical 
Committee (2009–2012); and member, 
Greek National Council for Research 
and Technology.

He is the recipient or corecipient of 
several awards for his academic work, 
including: U.S. NSF Presidential Young 
Investigator Award (1987–1992); IEEE 
SPS Young Author Best Paper Award 
(1988), IEEE SPS Best Paper Award 
(1994), IEEE W.R.G. Baker Prize 
Award for the most outstanding original 
paper (1995), Pattern Recognition Soci-
ety’s Honorable Mention Best Paper 
Award (1996), and Best Paper Award, 
Conference on Computer Vision and 
Pattern Recognition-2011 Workshop on 
Gesture Recognition.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


8 IEEE SIGNAL PROCESSING MAGAZINE | January 2017 |

Prof. Maragos was elected IEEE 
Fellow for his research contributions in 
1995 and received the 2007 EURASIP 
Technical Achievements Award for 
contributions to nonlinear signal pro-
cessing, systems theory, image, and 
speech processing. In 2010, he was 
elected fellow of EURASIP for his 
research contributions. He has been 
elected IEEE SPS Distinguished Lec-
turer for 2017–2018.

Prof. Maragos’ research and teach-
ing interests include signal processing, 
systems theory, machine learning, 
image processing and computer vision, 
audio and speech/language processing, 
cognitive systems, and robotics. In the 
aforementioned areas he has published 
numerous papers, book chapters, and 
has also coedited three Springer 
research books, one on multimodal pro-
cessing and two on shape analysis.

Prof. Maragos’ lecture topics in-
clude multimodal spatiotemporal signal 
processing and audio-visual perception, 
nonlinear signal processing and dynam-
ical systems on lattices, morphological 
and variational methods in image analy-
sis and computer vision, graph-based 
methods for clustering and segmenta-
tion, and multimodal gesture and 
spoken command recognition in human-
robot interaction.

Athina P. Petropulu 
Athina P. Petropulu 
received her under-
graduate degree from 
the National Techni-
cal University of 
Athens, Greece, in 
1986, and the M.Sc. 

and Ph.D. degrees from Northeastern 
University, Boston, Massachusetts, in 
1988 and 1991, respectively, all in elec-
trical and computer engineering (ECE). 
Since 2010, she has been a professor in 
the ECE Department at Rutgers Univer-
sity, New Brunswick, New Jersey, having 
served as chair of the department during 
2010–2016. Before that she was a mem-
ber of faculty at Drexel University, Phila-
delphia, Pennsylvania.

Dr. Petropulu is an IEEE Fellow 
(2008) and the recipient of the 1995 Presi-
dential Faculty Fellow Award given by 
NSF and the White House. She has served 
as editor-in-chief, IEEE Transactions on 
Signal Processing (2009–2011); IEEE 
SPS vice president, conferences (2006–
2008); member-at-large, IEEE SPS Board 
of Governors (2004–2005); general chair, 
ICASSP 2005; recipient, IEEE Signal 
Processing Magazine Best Paper Award 
(2005); recipient, IEEE SPS Meritorious 
Service Award (2012); member, IEEE 
SPS Fellow Reference Committee (2012–
2014); and was selected as an IEEE 
Distinguished Lecturer for the SPS 
(2017–2018).

Dr. Petropulu’s research interests 
span the area of statistical signal pro-
cessing, wireless communications, sig-
nal processing in networking, physical 
layer security, and radar signal process-
ing. Her research has been funded by 
various government industry sponsors 
including the NSF, the Office of Naval 
research, the U.S. Army, the National 
Institutes of Health, the Whitaker Foun-
dation, and Lockheed Martin. Her lec-
ture topics include sparse sensing-based 
multiple-input, multiple-output radars; 
the coexistence of radar and communi-
cation systems; cooperative approaches 
for physical layer security; cooperative 
approaches for improving the perfor-
mance of wireless networks; mobile 
beamforming; and localization of brain 
activations based on electroencephalo-
gram recordings and sparse signal 
recovery theory.

Brian M. Sadler
Brian M. Sadler is the 
U.S. Army senior 
research scientist for 
Intelligent Systems, at 
the Army Research 
Laboratory (ARL) 
in  Maryland. He 

received his undergraduate and master’s 
education in electrical engineering from 
the University of Maryland in 1984 and 
the Ph.D. degree in electrical engineering 
from the University of Virginia in 1993.

He was an associate editor of IEEE 
Transactions on Signal Processing
(1999–2001, 2008–2009, 2015–pres-
ent), EURASIP Signal Processing, and 
IEEE Signal Processing Letters (2006–
2007). He has been a guest editor of sev-
eral journals including IEEE Journal of 
Selected Topics for Signal Processing,
IEEE Journal on Selected Areas in Com-
munications, and IEEE Signal Process-
ing Magazine; lead guest editor, 
International Journal of Robotics 
Research special issue on networked 
robotics; general cochair, IEEE Global 
Conference on Signal and Information 
Processing (GlobalSIP 2016); member, 
SPS Sensor Array and Multichannel 
Technical Committee (2006–2011 and 
2015–present); member, Signal Process-
ing for Communications Technical Com-
mittee (1999–2005); and cochair, IEEE 
Robotics and Automation Society Tech-
nical Committee on Networked Robotics.

Dr. Sadler received the IEEE SPS 
Best Paper Award in 2006 and 2010, sev-
eral ARL awards, three Army R&D 
Achievement awards, as well as the Out-
standing Invention of the Year Award 
from the University of Maryland in 2008.

Dr. Sadler is a Fellow of the IEEE and 
ARL, and he has lectured at the Johns 
Hopkins University Whiting School of 
Engineering for 14 years.

Dr. Sadler’s research interests span 
intelligent systems, with an emphasis 
on distributed collaborative operation, 
including multiagent autonomy, cogni-
tive networking, distributed sensing and 
signal processing, and mixed-signal cir-
cuit architectures for low power sensing 
and cognition. His recent work focuses 
on collaborative physical agents in 
stressful and complex environments; 
“20-questions” strategies for machines 
to query humans; and the combination 
of distributed computation, control, and 
cognitive networking. His lecture top-
ics include distributed collaborative in-
telligent systems, human-autonomy 
querying and interaction, and auton-
omous networking.
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Data networks are extending their 
reach into virtually every corner of 
life. The rapidly emerging Internet 

of Things (IoT), for instance, promises 
to bring connectivity to just about every-
thing. Technology analysis firm Gartner 
(http://www.gartner.com/newsroom/
id/3165317) predicts that by 2020 there 
will be over 20 billion connected devices.

Signal processing is helping the IoT 
and other network technologies to operate 
faster, more efficiently, and very reliably. 
Advanced research also promises to open 
new opportunities in key areas, such as 
highly secure communication and various 
types of wireless networks.

Seeking quantum communication
At Stanford University, researchers are 
examining quantum communication as a 
potential way to quickly and reliably secure 
Internet traffic. Yet before this goal can be 
reached, they will have to overcome sev-
eral major technical challenges, including 
developing devices that can actually send 
and receive quantum data. An important 
step in creating such devices is to develop 
a quantum light source that might some-
day serve as the basis for secure quantum 
data transfers.

Ordinary lasers can’t be used for secure 
communication since they emit a “classi-
cal” light that would enable unauthorized 
parties to extract data without detection. 
A secure quantum network, on the other 
hand, would be based on quantum light in 

which a single unit of light—a lone pho-
ton—could not even be measured without 
being destroyed. Therefore, an efficient 
quantum light source would allow com-
pletely secure communication.

A research team led by Jelena 
Vuckovic, a Stanford professor of elec-
trical engineering, has spent the past 
several years working toward the devel-
opment of nanoscale lasers and quan-
tum technologies that might someday 
enable conventional computers to com-
municate faster and more securely using 
light instead of electricity. Vuckovic 
and her team, including Kevin Fischer, 
a doctoral candidate and lead author of 
a paper describing the project, believe 
that a modified nanoscale laser can be 
used to efficiently generate quantum 
light for fully protected quantum com-
munication. “Quantum networks have 
the potential for secure end-to-end com-
munication wherein the information 
channel is secured by the laws of quan-
tum physics,” Fischer says.

“Our quantum light source produces 
single photons, one at a time, on 
demand,” Fischer continues. “Our tech-
nology also poses the potential for two 
or three photon sources as well.” Such 
light sources will be critical for future 
quantum networking and computation 
applications. “They serve as the signal 
that goes into the input of any quantum 
processor,” Fischer notes.

Optical signal processing is handled 
by the optical elements themselves 
at the speed of light. Quantum light, 
Fischer says, is effectively the study of 

signals that are represented by continu-
ous random variables. “Thus, in order 
to characterize our quantum signals, 
we borrow a variety of techniques from 
classical signal processing,” he notes. 
“Some examples … are Fourier analy-
sis to analyze the spectral content of our 
signals and frequency filtering to exam-
ine specific spectral content.”

The biggest challenge the researchers 
have faced so far is dealing with the fact 
that quantum light is far weaker than the 
rest of the light emitted by a modified 
laser, making it difficult to detect. Ad-
dressing this obstacle, the team devel-
oped a method to filter out the unwanted 
light, enabling the quantum signal to be 
read much better. “Some of the light 
coming back from the modified laser is 
like noise, preventing us from seeing the 
quantum light,” Fischer says. “We can-
celed it out to reveal and emphasize the 
quantum signal hidden beneath.”

To deal with the noise issue, the re-
searchers turned to self-homodyning—
an interferometric technique that was 
originally invented as a method for de-
tecting radio-frequency signals, mixing 
the signal in question with a strong lo-
cal oscillator. “We used an optical ana-
log of this technique to isolate quantum 
as opposed to classical signals. By care-
fully adjusting how the canceling light 
and the classical light overlap, the un-
wanted light is canceled and the once-
hidden quantum light is revealed,” he 
says (Figure 1).

Self-homodyning and interferomet-
ric techniques generally require precise 
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phase-locking of the signal and oscil-
lator fields, which is challenging to 
achieve with light compared to radio fre-
quency fields. “This is challenging with 
light, because the wavelength is much 
smaller—on the order of microns as op-
posed to meters—which then necessar-
ily requires greater precision,” Fischer 
says. “Therefore, our advance was to 
find a device structure that generated 
both the local oscillator field and the 
quantum signal, which were then inher-
ently aligned to one another.”

The biggest technical challenge still 
facing the researchers is scaling the 
optical light devices down to a size that 
will allow for integration into quantum 
networks. “We are working toward 
demonstrating adapting this technique 
in an on-chip quantum network, where 
light propagates down a waveguide as 
opposed to through free-space,” Fisch-
er comments.

Using state-of-the-art nanofabrication 
technology, the team is currently engi-
neering its first quantum light devices. 

Building such devices with the required 
low tolerances challenges even the most 
advanced fabrication techniques. “Our 
interferometer’s largest critical dimension 
is microns and smallest critical dimen-
sion is nanometers,” Fischer says.

Creating a practical and cost-effec-
tive approach to integrating optical light 
devices into standard complementary 
metal–oxide–semiconductor (CMO) 
fabrication processes is yet another chal-
lenge facing the researchers. “Therefore, 
we’re also investigating CMOS-compat-
ible material platforms that can support 
our technology,” Fischer says.

As the researchers turn their atten-
tion toward developing a functional pro-
totype, commercial applications exist 
as only a distant possibility. “Not yet,” 
Fischer says. “We first need to demon-
strate that our device works in a wave-
guide-based system.”

Simpler sensor networks
Ioannis Schizas, an assistant professor 
of electrical engineering at the Univer-
sity of Texas at Arlington, is developing 
a sensing environment that would use 
multiple simple devices to collect and 
process data that currently requires the 
power of a supercomputer (Figure 2). 
“Sensors provide huge amounts of data, 
but using and applying the data they col-
lect requires a very powerful computer,” 
Schizas says. “I hope to eliminate that 
need through simplicity of design.”

As he creates the new sensing envi-
ronment, Schizas is using several dif-
ferent types of commonly available 
sensors to collaborate with each other 
and gather various types of data that 
can be either sorted or ignored. He 
hopes to eliminate the need for super-
computing by using optimization tech-
niques to determine the best placement 
of sensors, including thermometers, 
accelerometers, pressure sensors, and 
acoustic sensors equipped with digital 
signal processors (DSPs) and wireless 
communications support. Schizas says 
his research relies on the development 
of novel signal processing techniques. 
“It is fair to say this is a signal process-
ing research project,” he states.

Schizas says his research is currently 
focused on the development of general 

FIGURE 1. An enlarged artist’s rendering showing a gallium arsenide chip. The pink vector (at the 
bottom) depicts “classical” or laser light entering the chip. The blue structure in the center is indium 
arsenide. This material acts like a special filter that allows classical light to pass through while also 
generating quantum light (shown in blue) that provides a secure way to transmit data. 
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FIGURE 2. A network of sensors observing a field. Ioannis Schizas, an assistant professor of electrical 
engineering at the University of Texas at Arlington, is developing a sensing environment that would use 
multiple simple devices to collect and process data that currently requires the power of a supercomputer. 
(Photo courtesy of the University of Texas at Arlington.)
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algorithms with learning capabilities 
that can identify different informative 
portions within various types of sen-
sor data that may adhere to different 
data models. “Heterogeneous sensing 
systems consist of sensors with differ-
ent types of sensing and communication 
capabilities,” he explains. “The main 
challenge is that the often large amount 
of acquired raw sensed data doesn’t pro-
vide any clue of what lies beneath the 
sensed field.”

One of the project’s major goals is 
to cluster data into groups containing 
specific information about different 
sources or entities of interest. “Distrib-
uted processing techniques that do not 
require a central processing center are 
also being developed,” Schizas says.

Schizas is using canonical correla-
tion analysis (CCA) to reveal correlated 
data that contains similar information 
content. “Further, norm-one regulariza-
tion is combined with CCA to identify 
the specific entries that have similar 
information content and perform clus-
tering,” he says. The proposed frame-
work is solved using a block coordinate 
descent approach; principal component 
analysis is employed to determine the 
number of underlying sources/objects 
of interest. “Further, moving averag-
ing and least-mean squares filtering are 
employed to perform denoising and sig-
nal reconstruction,” he notes.

The project promises to open new 
ways for data-driven data clustering 
where there is no need to rely on avail-
able statistical data models. Learn-
ing algorithms are being developed 
that solely rely on the available data to 
perform information clustering. “The 
proposed framework is pretty flexible, 
and it is expected to create benefits in 
many areas, including target tracking, 
machine learning, and image process-
ing,” Schizas says.

Schizas hopes that the project will 
eventually lead to self-organizing sen-
sor networks incorporating a variety 
of positive attributes, including low 
energy demands, robust architectures, 
and prolonged life expectancies, de-
ployed in fields such as health care, de-
fense, and structural and other types of 
monitoring. “Especially in applications 

involving environmental monitoring 
and the processing of ecological and 
climatic data, the project will introduce 
beneficial data mining solutions to deal 
with the heterogeneous and high volume 
data,” he notes.

“Most, if not all, of the challenges 
encountered so far relate to signal pro-
cessing issues,” Schizas says. A current 
concern is finding a way to deal with 
sensor data that contains information 
for multiple objects of interest. “This 
gives rise to overlapping information 
clusters that are well known to chal-
lenge all existing clustering techniques,” 
Schizas says.

Schizas is satisfied with the progress 
made to date. “So far, we have developed 
a novel combination of CCA with princi-
pal component analysis to identify sensor 
data that contains information about mul-
tiple sources and determine in that way 
the overlapping information clusters,” 
he says. Yet the current approach works 
only for linear models, not for nonlinear 
data models. “Our goal is to generalize 
our framework to address the nonlin-
ear case,” Schizas says. “Further, the 
presence of nonstationary and time-
varying statistics is another challenge that 
we are currently trying to address, relying 
on online and adaptive learning.”

Schizas notes that the project is 
still relatively new and that much work 
still remains to be done. “There is no 
commercial interest yet, but as we 
improve upon computational complex-
ity and generalize the applicability of 
the proposed algorithms we expect to 
permeate benefits in existing sensing 
systems and raise commercial interest,” 
he says.

Collision-free Wi-Fi
Researchers in the Massachusetts 
Instute of Technology’s (MIT’s) Com-
puter Science and Artificial Intelligence 
Lab (CSAIL) have developed a wireless 
technology that promises to triple the 
speed of data transfers while also dou-
bling signal range.

The researchers, led by Dina Katabi, 
an MIT professor of electrical engi-
neering and computer science, recent-
ly demonstrated MegaMIMO 2.0, a 
new multiple-input, multiple-output 

(MIMO) technology that can coordinate 
several Wi-Fi routers at once, enabling 
the devices to triangulate data faster and 
more consistently. The new approach, 
joint multiuser beamforming (JMB), 
enables independent access points (APs) 
to beamform their signals and com-
municate with their clients on the same 
channel as if the APs were a single large 
MIMO transmitter.

In conventional wireless networks, 
multiple nearby transmitters cannot trans-
mit simultaneously on the same frequency, 
since the signals would collide and be-
come unreadable. MegaMIMO, however, 
is designed to enable multiple independent 
transmitters to transmit to multiple receiv-
ers at the same time and on the same fre-
quency and still allow receivers to decode 
their signals.

“Of course, the signals collide, which 
is unavoidable,” says Hariharan Rahul, 
a former research team member and 
currently a visiting researcher with the 
project. “But MegaMIMO access points 
modify the transmitted signals so that 
at each receiver, after collision, only the 
desired signal to that receiver survives.”

MegaMIMO promises a several-fold 
increase in wireless network throughput 
compared to existing wireless networks, 
says Rahul. “Further, MegaMIMO can 
do this simply by replacing the access 
points, and without requiring any hard-
ware or software modifications to end 
user devices,” he notes.

The key enabling technology behind 
JMB is a new low-overhead technique 
for synchronizing the phase of multiple 
transmitters in a distributed manner. 
The design allows a wireless LAN to 
scale its throughput by continually add-
ing more APs on the same channel.

The researchers recently tested JMB 
with both software radio clients and 
off-the-shelf 802.11n cards in a deploy-
ment that simulated a densely congested 
conference room (Figure 3). Results from 
the ten-access point software-radio test 
bed showed a linear increase in network 
throughput with a median gain of 8.1 to 
9.4×. The results also showed that JMB can 
provide throughput gains with standard, un-
modified 802.11n cards.

MegaMIMO uses a variety of signal 
processing algorithms and techniques, 
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including various properties of orthogo-
nal frequency-division multiplexing sig-
nals, Fourier transforms and translation 
between time and frequency domains, as 
well as the efficient application of linear 
time-invariant filters to signals.

As they developed the technology, the 
researchers faced a challenge in coordi-
nating time and phase synchronization. 

“The Wi-Fi transmitters have to be syn-
chronized in time very tightly,” Katabi 
says. Such synchronization must occur 
on a nanosecond scale. Also, since Wi-Fi 
signals are waves, two waves can combine 
to cancel each other out or, on the other 
hand, enforce each other. “If you are not 
careful about phase synchronization, the 
wave can combine to create the opposite 

of the intended effect,” Katabi explains. 
MegaMIMO uses signal processing to 
enable access points to process signals in 
a synchronized manner, providing a light-
weight, distributed approach that requires 
only minimal changes to the existing 
Wi-Fi wireless processing pipeline.

In real-world applications, MegaMIMO 
promises to dramatically improve through-
put in the dense wireless networks—both 
Wi-Fi and cellular—commonly deployed 
in large, public places, such as sports sta-
diums, convention centers, hotels, airports, 
and shopping malls.

The researchers are now focused 
on scaling up the prototype system into 
larger deployments consisting of scores of 
Wi-Fi access points. “We have had inter-
est from a variety of players in the wire-
less space, as well as end users that are 
currently facing challenges with dense 
wireless scenarios,” Katabi says.

Author
John Edwards ( jedwa rds@john
edwardsmedia.com) is a technology writ-
er based in the Phoenix, Arizona, area.

SP

FIGURE 3. MegaMIMO 2.0 research team members doctoral student Ezzeldin Hamed, visiting re-
searcher Hariharan Rahul and Prof. Dina Katab with a prototype of their technology, which promises 
to transfer wireless data over three times faster than existing systems. 
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FROM THE GUEST EDITORS
Hana Godrich, Arye Nehorai, Ali Tajer, 
Maria Sabrina Greco, and Changshui Zhang

s professionals in the signal and 
information processing field, we 
build on the tools and theories we 

learned in our undergraduate studies, 
adding knowledge and skills over the 
years. For many of us, it has been a while 
since our undergraduate studies, yet we 
can probably recall some of these “Ah-
ha” moments when a full meaning of 
some fundamental theory sank in. As 
educators and mentors, we seize on these 
moments and our own experiences to 
implement new successful teaching 
methods that advance effective learning 
and skill development.

In an era of unprecedented technology 
refresh rate, the challenge of providing a 
high-quality engineering experience is 
compounded by the required theoreti-
cal background, the increasing multidis-
ciplinary applications, and a growing 
demand from the industry for engineers 
with “know-how” skills. Schools need to 
constantly assess and restructure the man-
ner in which they prepare students to meet 
these growing demands from the engi-
neering workforce. Educators are faced 
with the greater challenge of preparing 
their undergraduate students to deal with 
real-life engineering problems as early 
as possible in their education while not 
compromising on the required theoreti-
cal knowledge base. Engineering pro-
grams need to find an effective way to 
incorporate application aspects into the 

teaching of the fundamental concept. At 
the same time, they are required to develop 
teamworking skills, research and develop-
ment experience, and innovative thinking, 
which is achievable through full-scale 
engineering design projects. For the latter, 
students need to collaborate on more com-
plex engineering problems that integrate a 
larger set of tools and disciplines to solve 
and work under realistic constraints. The 
diversity in engineering applications that 
utilize signal and information processing 
opens many possibilities when it comes 
to the choice of experiments and projects 
that will keep students engaged in learn-
ing. The implementation of such practices 
becomes feasible with the availability of 
affordable hardware platforms that incor-
porate significant on-board computation 
capabilities alongside access to sensors, 
actuators, and open-source software tools.

There are few opportunities to share 
progresses and innovation made through 
undergraduate engineering design proj-
ects. An overview of the state-of-the-art 
methods used in providing students with 
practical engineering education is of 
high interest to educators, researchers, 
and professionals. A discussion on what 
is done around the world to advance stu-
dents’ hands-on experience will provide 
valuable tools and practices to educators 
and will offer professionals in the indus-
try with a clearer image of the efforts 
made to increase engineering skills dur-
ing undergraduate studies.

Integrating more hands-on experi-
ences into formal engineering education 

is mainstream, and significant efforts are 
being made in this direction. An insight 
into the implementation challenges of 
design projects and experimental plat-
forms from students in their freshmen 
through senior years and solutions adopt-
ed to address them are offered in this 
issue of IEEE Signal Processing Maga-
zine (SPM) through a series of article con-
tributions from around the world.

Schäck, Muma, and Zoubir’s article, 
“Signal Processing Projects at Technische 
Universität Darmstadt,” details year-by-
year practices implemented throughout 
undergraduate and graduate studies to 
support students’ hands-on experience. 
The curriculum builds up theoretical 
knowledge alongside laboratories and 
engineering projects that advance profes-
sional proficiency. Interdisciplinary as-
pects, laboratories infrastructure, and the 
role of competitions in this process are 
discussed. This overview offers the read-
er an insight into use practices, detailing 
their advantages and challenges.

Focusing on engineering projects 
and competitions, Zhuo, Ren, Jiang, 
and Zhang’s, article, “Hands-On Learn-
ing Through Racing,” on the National 
Collegiate Intelligent Model Car Com-
petition in China, introduces an educa-
tion-through-challenge approach. In an 
annual competition, participating teams 
need to design and build cars that will be 
racing against other teams. The stu-
dents learn a multitude of engineering 
skills while developing teamwork capa-
bilities and collaboration skills. The article 

Special Article Series on Signal Processing Education 
via Hands-On and Design Projects
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offers extensive details on the structure of 
these competitions and the skill sets devel-
oped through it, enabling the adoption of 
this competition-based approach by others.

A focus on communications-related 
practices is given in the article, “Teach-
ing the Principles of Massive MIMO” by 
Larsson, Danev, Olofsson, and Sörman. 
This contribution details the development 
of a course targeting students’ exposure 
to cutting-edge technology and emerging 
concepts. The course is designed around 
building system-level understanding and 
expanding the classical curriculum to inte-
grate a project-like approach. A student 
perspective is given throughout the article 
along with lessons learned. It demonstrates 
the students’ experience and how students’ 
feedback has been used to further develop 
the course impact.

Complementing this issue
Complementing these three feature arti-
cles are two articles published in SPM’s 
“SP Education” columns in the July 
and November 2016 issues, which 
paved the way for us to introduce the 
readers to this effort of sharing best 
practices on hands-on training in signal 
processing. In SPM’s July issue, Simoni 
and Aburdene [1] shared their eight-
year experience and lessons learned in 
developing application-oriented activi-
ties to help students better understand 
signal processing theory and connect 
the theory to real-world applications. 

In the November 2016 “SP Educa-
tion” column, Richter and Nehorai intro-
duced the incorporation of undergraduate 
research projects as a key component in 
the Electrical and Systems Engineering 
program at Washington University, St. 
Louis, Missouri [2]. Thanks to the active 
involvement of signal processing faculty 
members, many of the successful proj-
ects were related to signal processing, 
and these experiences substantially 
boosted the undergraduate enrollment 
and retention rate and attracted students 
to pursue a career in engineering.

Undergraduate engineering design 
projects, commonly introduced in a stu-
dents’ junior and senior years, allow 
them to work on real-life problems while 
applying their acquired knowledge and 
creativity. Some of these projects provide 

an opportunity to work in collaboration 
with others on more complex tasks, train-
ing students to learn teamwork skills and 
project management. These collabora-
tions frequently entail a multidisciplinary 
effort. Signal and information processing 
plays an important role in many of these 
engineering projects.

While there are some channels in 
which students can share and publish 
their engineering projects, there is a need 
for a more focused review on engineering 
projects that offer great opportunities for the 
implementation of signal and information 
processing techniques. With the rapid 
advancement in technology and plat-
forms available for project development, 
there is high value is sharing the knowledge 
and results stemming from these efforts to 
advance the general community. An over-
view of practical educational tools, appli-
cation challenges, and keys to successful 
implementation of these programs is of high 
interest to both academia and the industry.

To address this need, as part of 
this article series, SPM has opened a 
SigPort-based submission and archival 
platform for sharing students’ projects con-
tributions. This issue’s “SP Education” col-
umn is the first to detail these highlighted 
projects. Through the SigPort repository, 
a number of undergraduate students and 
their advisors shared information on rel-
evant engineering projects. Overall, the 
submitted projects had more than 400 
downloads within a two-month period, 
showcasing the keen interest in the com-
munity for such information. Contribu-
tions from around the world cover diverse 
fields and projects reflecting signal and 
information processing opportunities and 
applications range.

It is encouraging to learn that SPM and 
its monthly eNewsletter will be working 
with the IEEE Signal Processing Society’s 
Education Committee and SigPort Com-
mittee to continue accepting student proj-
ect submissions and theses in the broad 
areas of signal and information processing 
to archive through the SigPort platform. 
Summaries of the projects selected from 
these submissions will be periodically 
highlighted in Inside Signal Processing 
eNewsletter; and, if space allows, some of 
these projects may be showcased in SPM’s 
“SP Education” column.

We hope that the introduction of this 
series of articles dedicated to signal and 
information processing in engineering 
projects will promote communication and 
discussion on undergraduate studies, capa-
bilities development, and increase interest 
and involvement from the engineering 
community. We look forward to bringing 
you the next set of informative articles in 
upcoming issues of the magazine.
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SIGNAL PROCESSING EDUCATION  
VIA HANDS-ON AND DESIGN PROJECTS

1053-5888/17©2017IEEE

Tim Schäck, Michael Muma, and Abdelhak M. Zoubir

T
his article is meant to share our experience on integrating 
signal processing hands-on opportunities into formal 
engineering education at Technische Universität (TU) 
Darmstadt, Germany. As many universities face the chal-

lenge of how best to provide hands-on experience to under-
graduate students, we hope to inspire our colleagues and 
perhaps trigger new hands-on projects by sharing our insights. 
At TU Darmstadt, we believe that it is essential to provide 
undergraduate students with hands-on signal processing 
opportunities right from the starting point of their studies 
through graduation. 

Introduction
Hands-on education in signal processing has a long-stand-
ing tradition (e.g., [1]–[5]), and its importance, given the 
complexity of today’s engineering problems, is undisputed. 
At TU, we hope that we can—in one way or another—
inspire some of our colleagues who are involved in educat-
ing the next generation of signal processing researchers 
and practitioners.

We will briefly explain the format of the projects and 
highlight some important challenges in the implementa-
tion as well as successful strategies and pitfalls that we 
encountered. The time line of the curriculum, as shown 
in Figure 1,  serves as a structure to present material in 
an ordered fashion. However, all sections can be read 
independently. We also illustrate how we utilize student 
competitions, such as the IEEE Signal Processing Cup, to 
stimulate innovation and collaboration between graduate 
and undergraduate students. Special attention is given to 
the many possibilities that collaborations with industry 
partners offer for students. The involvement of students 
in interdisciplinary research, which has a long-standing 
tradition at TU Darmstadt, is illustrated by the example of 
a cooperation between the signal processing group and the 
psychology group.

Laboratories are central to our hands-on education for fresh-
men to senior-year students. By promoting and extending our 
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labs, we increase the exposure to state-of-the-art research 
and advanced equipment to our undergraduate students. For 
this reason, a separate section is devoted to presenting our 
diverse signal processing laboratories and the opportunities 
they offer our students. Some of the laboratories are purely 
educative, while others additionally pro-
vide the advanced students with hands-
on research opportunities. The real-data 
experiments include fascinating topics, 
such as real-time audio signal process-
ing, multiantenna receive beamforming, 
biomedical signal processing, geolocation, 
and tracking, to mention a few. Our new-
est laboratory considers the cutting-edge 
research topic of bioinspired communi-
cation. Here, students can generate their 
own data by performing single-cell exper-
iments involving fluorescence microscopy and microfluid-
ics. Based on their own data sets, the students can develop 
advanced signal and image-processing algorithms, e.g., 
for segmentation and tracking of single cells. We conclude 
with some practical general remarks on some fundamental 
aspects that we have found to be important for successful 
design projects. Short interviews as well as photos and fig-
ures are used to make the article an enjoyable and informa-
tive read after a hard day inside signal processing.

Signal processing within the curriculum of electrical 
engineering and information technology at 
TU Darmstadt
In Germany, the format of undergraduate education in 
electrical engineering and information technology (ETiT) 

was traditionally the diploma degree with 
a duration of five years. More recently, 
due to changes relating to the Bologna 
Declaration, a more internationally 
acknowledged system has been installed. 
It includes a three-year bachelor’s degree 
followed by a two-year master’s degree 
as new course structures. In this section, 
we describe how hands-on signal pro-
cessing projects are integrated into the 
curriculum of ETiT at TU Darmstadt. At 
the end of each project, we list the posi-

tive aspects with 5 , pitfalls with K , and additional hints 
with 9 .

First year
At TU Darmstadt, we believe that it is essential to provide 
undergraduate students with hands-on opportunities right 
from the starting point of their studies. During this phase, 
freshmen are especially motivated and highly curious. The 
lack of fundamental knowledge in engineering and science is 

At TU Darmstadt, we 
believe that it is essential 
to provide undergraduate 
students with hands-
on signal processing 
opportunities right from 
the starting point of their 
studies through graduation.

Technical Complexity of Problems,
Knowledge, Skills, and Independence of Students

Year 1 Year 2 Year 3 Year 4 Year 5

Education Research

Engineering
Introductory Project

Engineering Practicals

Pro-/Project
Seminar

Bachelor’s
Project

DSP
Practical

Advanced
Signal

Processing
Seminars

Master’s Project

CSS

RBL DSP Labs

Audio

Bio

SPG

FIGURE 1. An overview of the hands-on activities in signal processing within the curriculum of electrical engineering and information technology at TU Darm-
stadt. We offer a variety of Digital Signal Processing (DSP) Labs: the Communication and Sensor Systems (CSS) Lab, the Receive Beamforming Lab (RBL), 
the Bioinspired Communication Systems (Bio) Lab, the Advanced Real-Time Audio Processing (Audio) Lab, and the Signal Processing Group (SPG) Lab.
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often compensated by common sense coupled with creativity. 
Taking all of this into account, the Department of Electrical 
Engineering and Information Technology created an intro-
ductory project for freshmen in 2007.

Engineering Introductory Project
In the Engineering Introductory Project, 
interdisciplinary groups of approximately 
ten students work together on a technical 
solution to a timely, practical, complex, and 
socially relevant problem (Figure 2). The 
project takes place when students are only 
one to two months into their first semester, 
and it is a welcome contrast to the funda-
mental coursework that is usually offered in 
this early phase of the curriculum. The over-
all number of participating students is 
approximately 500.

The focus of the Engineering Introductory Project does 
not rely on technical details. Rather, the first insights into 
today’s engineering work in an interdisciplinary environ-
ment is provided. The project also gives the opportunity to 
make friends with classmates and to establish a first contact 
with the research associates (RAs) who serve as supervi-
sors. RAs in Germany are appointed to assist professors with 
teaching, research projects, and, at the same time, to pursue a 
doctoral degree (Dr.-Ing.). This path excludes formal classes, 
thus, the term research associates. The peers in the group 
learn together and make practical experiences, which creates 
a pleasant and inspiring environment, an inevitable require-
ment for creativity.

The topic of the Engineering Introductory Project is not 
announced before the start of the project. Each team has one 
week to jointly develop an innovative solution. The team’s 
final results are formally presented in front of a jury that is 
composed of professors. Starting in 2007, the topics of the 
Engineering Introductory Projects were as diverse as devel-
oping a power supply package for outdoor holidays (2008), 

to a cookie-baking machine (2010), to contributing to future 
living (2013).

During the project, two RAs serve as advisers for each 
group. On one hand, the soft skills adviser, i.e., an RA from 

the Department of Humanities, assists in 
creating an encouraging group dynamic 
and helps the team in reflecting their 
teamwork and interactions. On the other 
hand, the technical adviser, i.e., an RA of 
the Department of Electrical Engineer-
ing and Information Technology, answers 
questions regarding the technical aspects 
and encourages the group to use engineer-
ing tools. Members of the SPG participate 
as technical advisers to guide and moti-
vate the freshmen with a special focus on 
signal processing.

Through the interdisciplinary exchange, 
students are given the opportunity not only to improve their 
technical skills but also to develop soft skills, such as team-
work and self-organization. In this way, the students get an 
impression of what awaits them later as professional engineers. 
Also, students begin to network at an early stage, even between 
different disciplines.

This project not only fosters didactic and technical learn-
ing in a team with other students of different interests but the 
freshmen also receive expert guidance from the professors of 
ETiT in dedicated consultation hours. Here, they are given 
the opportunity to discuss their ideas and ask questions relat-
ed to their project with a specialist in this particular area. For 
example, Prof. Abdelhak Zoubir offers a consultation hour 
in which freshmen ask questions about challenges related to 
the field of signal processing that they have identified within 
their project.

One challenge in implementing this design project is the 
choice of an appealing and trendsetting topic. Its technical 
complexity must be adjusted to the students’ knowledge and 
the given time frame. To test and evaluate possible solutions 
and to discover potential pitfalls throughout the project, the 
soft skills and technical advisers simulate the Engineer-
ing Introductory Project task beforehand within a period 
of three days. Their experience flows back into the project 
description and enhances the quality of the design project.
■ 5  Freshmen practice working independently in interdisci-

plinary teams
■ 5  a first exposure to signal processing problems
■ K  limited prior knowledge is assumed
■ 9 the choice of topic is essential.

Second year
Before students in electrical engineering can be exposed to 
real-world problems in signal processing, they have to study 
the fundamentals of signal processing. In the second year, 
our students learn the basic concepts of signal processing 
by taking the course, “Deterministic Signals and Systems”
and “Fundamentals of Signal Processing.” 

FIGURE 2. An interdisciplinary group of freshmen working together on their 
Engineering Introductory Project. (Photo courtesy of Paul Glogowski/TU 
Darmstadt.)

Through the 
interdisciplinary exchange, 
students are given the 
opportunity not only to 
improve their technical 
skills but also to develop 
soft skills, such as 
teamwork and
self-organization.
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Fundamentals of the signal processing unit 
The course, “Deterministic Signals and Systems,” teaches 
undergraduate students the principles of deterministic signals 
and system theory. It starts with the Fourier series and the Fou-
rier transform, treats linear time-invariant systems and convo-
lution, and gives an overview of other signal transformations, 
such as the Laplace transform, the z-transform, and the dis-
crete-time Fourier transform. Students apply these transforma-
tions to solve tasks related to physical problems that are 
modeled by linear differential equations.

Subsequently, the course, “Fundamentals of Signal Process-
ing,” covers basic concepts in signal processing, such as random 
variables, stochastic processes, random signals and linear time-
invariant systems, optimal linear systems such as the matched 
filter and the Wiener filter, and the method of least-squares. 
Practical experiments with real-world data are shown in the 
lecture to help the students grasp the basic ideas in an intuitive 
fashion. The aim of the lecture is, furthermore, to serve as an 
introductory course for more advanced lectures in DSP, adaptive 
filtering, communications, and control theory.

As for many other fundamental courses in ETiT at TU 
Darmstadt, the lectures are complemented by tutorials that 
are held by selected undergraduate teaching assistants (UTAs) 
of higher semesters. The advantage of having students do the 
teaching instead of RAs or professors is that higher-semester 
students are aware of the difficulties from their own recent 
experience and can adequately support the more junior stu-
dents. By recruiting good students as UTAs, signal process-
ing can also be effectively advertised to more junior students. 
The UTAs who run the tutorials strengthen their knowledge 
in signal processing and integrate more into our research 
group. They usually conduct their bachelor’s or master’s the-
sis project with us and participate in other research projects 
or competitions.
■ 5 Practical experiments with real-world data in the lec-

tures help students grasp basic ideas in an intuitive way
■ K the involvement of UTAs as a means of integration
■ 9 the basic knowledge of signal processing is still missing 

at this point.

Third year
In the third year, we offer a variety of hands-on opportuni-
ties ranging from practical signal processing experiments in 
laboratories to small-scale research projects (Proseminar/
Project Seminar) and the bachelor’s thesis project. Students 
also can find their first exposure to interdisciplinary 
research projects in the Forum for Interdisciplinary Research 
Project (see “The Forum for Interdisciplinary Research 
Project”). In this section, we briefly explain the format of 
the third-year projects, highlight the most important chal-
lenges in their implementation, and discuss our own suc-
cesses and pitfalls.

Communication and sensor systems laboratory
This practical consists of eight fundamental hands-on experi-
ments from the field of communication engineering and sig-

nal processing: 1) the localization of acoustical sources, 2) 
digital modulation, 3) multiple-input, multiple-output 
communication, 4) software-defined radio, 5) parasitic effects 
in passive radio-frequency (RF) devices, 6) polarization of 
light, 7) RF field-effect transistor amplifier, and 8) the fields 
and impedance of antennas. The students are guided to 
acquaint themselves with each topic and are required to write 
reports about the conducted experiments.

To illustrate the hands-on signal processing opportunities 
offered to the students, consider the localization of an acous-
tical sources experiment. Here, students are given the oppor-
tunity to localize acoustical sources in our laboratory. To this 
end, the third-year students estimate the time-differences 
of arrival and angles of arrival (AOA) using correlation and 
generalized correlation functions. For the final audio source 
localization, the students fuse multiple AOA measurements 
from distributed microphone arrays, as shown in Figure 3. The 
eight microphones are divided into pairs that are mounted on 
the four walls of the laboratory (see Figure 4). The positions 
of the microphone arrays are given by p1, …, p4, whereas the 
sound source is located at some unknown position in the center 
of the room. The measurements are recorded with eight stan-
dard Behringer B-5 condenser microphones and a Behringer 
Ultragain Pro-8 digital device, which is an eight-channel 
analog/digital and digital/analog converter. All calculations 
are performed in MATLAB.

In this laboratory, third-year students experience their first 
hands-on experiment. They can apply the freshly learned fun-
damentals of signal processing and have to submit their results 
in a written report. This lab also fosters the ability to work in 
teams. There exist some pitfalls regarding teamwork for hands-
on signal processing. First, it might occur that teams do not 
distribute the work load evenly between the team members. 
Second, the team members sometimes split up the work such 
that only some members run the hands-on experiments while 
others write the report. In such cases, the laboratory adviser 
needs to remind the students to participate in the hands-on 
experiments at every stage.
■ 5 The first hands-on experience in a DSP laboratory
■ 5 the fundamentals of signal processing are practiced 

using real experiments
■ 5 fosters the ability to work in teams
■ K sometimes weaker team members are less active during 

the experiments
■ 9 workload should be evenly distributed among team 

members.
As preparation for larger undergraduate research proj-

ects, such as the bachelor’s thesis project, TU Darmstadt has 
introduced the Proseminar and Project Seminar. These are 
described in the following sections.

Proseminar
Scientific work always starts with understanding the state of the 
art. The students are expected to be informed about the research 
that has already been conducted in the field of interest, first, 
before reimplementing successful methods or even examining 
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Clearly, the most obvious way to provide students with 
hands-on experience in signal processing is to let them 
solve real-world problems. Interdisciplinarity naturally 
comes into play when dealing with hands-on research 
projects that solve real-world problems, and it requires dif-
ferent types of expertise to be combined. TU Darmstadt 
has a long-standing culture of cooperation across depart-
ment boundaries. In this way, we supplement the classical 
department structure through flexible cooperation forms for 
research and teaching. The Forum for Interdisciplinary 
Research (FiF) builds on the successful interdisciplinary 
work at TU Darmstadt. The FiF was founded as a result of 
a senate decision in December 2008.

For example, in 2012, FiF funded a research coopera-
tion between Prof. Abdelhak M. Zoubir (signal processing) 
and Prof. Augustin Kelava (psychology). The joint research 
topic was to investigate the synchronization of physiologi-
cal signals in emotional situations. Emotion-eliciting situa-
tions are accompanied by changes of multiple variables 
associated with subjective, physiological, and behavioral 
responses. The quantification of the overall simultaneous 
synchrony of psychophysiological reactions plays a major 
role in emotion theories and has received increased atten-
tion in recent years. From a psychometric perspective, the 
reactions represent multivariate nonstationary intraindividu-
al time series.

Undergraduate signal processing and psychology stu-
dents, supervised by research associates (RAs) and profes-
sors, cooperated to robustly determine the synchrony of 
psychophysiological reactions. Within the FiF project, 
bachelor’s and master’s thesis projects were undertaken in 
both departments. The cooperation quickly revealed that 

processing psychophysiological data is challenging. Often 
motion artifacts affect physiological time series. However, 
the data also offers the hands-on possibility to study many 
fundamental concepts, such as filter design, time-frequency 
and wavelet analysis, adaptive filtering, robust statistics for 
dependent data, parameter and signal estimation, detec-
tion, and classification.

One of the signal processing projects, which we conduct-
ed during a master’s thesis project within the FiF, focused 
on motion artifact removal in electrocardiographic (ECG) 
signals. The developed method had to provide satisfactory 
results for a large range of data and also be computation-
ally efficient. Further, it had to be programmed in a way 
such that psychology students who did not have any signal 
processing background would be able to use it. All of 
these requirements together provided a realistic hands-on 
framework to conduct a master’s thesis project, which 
resulted in a publication at the European Signal Processing 
Conference 2012 [7].

We observed that the interdisciplinarity of the FiF project, 
as well as the feeling of being able to solve real problems, 
created a unique team spirit among the students. Even 
today, signal processing students use the databases that 
were established to develop and evaluate new methods. 
Also, psychologists use the signal processing methods to 
study the synchronization of psychophysiological signals in 
the body in many different emotion-eliciting situations 
(Figure S1). New challenges and opportunities arise from 
the possibility to integrate wireless body-worn sensors into 
the psychological experiments. This allows the psychologists 
to undertake more realistic experiments and provides the 
signal processing students with new and even more chal-
lenging data sets.
5 Psychophysiological data is challenging and requires 
the study of fundamental concepts
5 databases, once established, can be reused by other 
signal processing students
5 the interdisciplinary nature of the project requires 
explaining fundamental concepts without using 
equations
5 excellent results could be obtained, and publications 
as well as bachelor’s and master’s thesis projects were 
produced
K it takes a long time until students from both research 
fields speak the same language
K student projects are of a short duration and tend to 
conclude when a student has reached his/her peak in 
productivity
9 documentation of the methods and datasets is essen-
tial in interdisciplinary research. 

The Forum for Interdisciplinary Research Project <A

FIGURE S1. An undergraduate student at TU Darmstadt records physiologi-
cal signals while watching an emotion-inducing video clip.
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new approaches. This literature survey is the subject of the 
Proseminar that, as a first step toward scientific work, lays the 
foundation for performing hands-on research projects later on. It 
takes about four weeks to accomplish the Proseminar.

During the Proseminar, students read books, papers, or 
complementary work on a given subject in signal processing. 
The topics are not limited to fundamentals but may also cover 
very recent papers and approaches. To finalize the Prosemi-
nar, the third-year students summarize their results in a written 
report that is checked by the supervising RA.

Through the intensive literature survey, the students learn 
to understand, analyze, and summarize scientific papers. 
However, the papers must be carefully selected. They are usu-
ally aligned with the doctoral research of the supervising RA. 
Another challenge is to define a project such that it can be com-
pleted within four weeks while also considering the students’ 
prior knowledge.

Project Seminar
After having reviewed the literature in the Proseminar, stu-
dents investigate and solve a specific signal processing prob-
lem by reproducing an already existing approach. They 
typically reimplement an algorithm from a published paper 
and try to reproduce its results. During the project, students 
are allowed to suggest their own modifications and extend 
the methods to improve the results. Such creative contribu-
tions yield a bonus when it comes to grading. However, their 
own contributions are not required and are primarily the aim 
of the subsequent bachelor’s thesis project. The reproducibil-
ity of the publications is essential, and the paper content and 
quality must be checked by the supervising RA beforehand.

In addition to the reimplementation, students search for and 
analyze scientific reference publications and, in the end, sum-
marize the obtained results and their conclusions in a written 
report. The outcomes of the Project Seminar are defended in 
front of the research group and students in an oral presentation. 
The duration of the Project Seminar is about two months.

For the students, the Project Seminar is one of the first 
opportunities to develop skills in MATLAB, Latex, and Bib-
TeX, which are necessary tools for scientific work in signal 
processing and the basis for subsequent hands-on projects. The 
aim of the Project Seminar is to practice applying methods 
of signal processing to practical problems and to gain some 
knowledge in a particular research area, which can be built 
upon in later projects. As for the Proseminar, the challenge is 
to define the project such that it can be completed on time. 
Often, the workload for the RA who supervises the projects is 
high, as regular meetings with students are essential to ensure 
a high quality of work. Also, the corrections of the report often 
include tedious linguistic corrections, since the students are 
not yet acquainted with scientific English.
■ 5 Develop skills in MATLAB, Latex, and BibTeX
■ 5 apply signal processing methods to practical problems
■ 5 deepen knowledge in a particular field
■ K the workload for the RA who supervises the projects is 

high in relation to the outcome.

Bachelor’s thesis project
The third year concludes with the bachelor’s thesis project, 
which usually builds upon the Proseminar and Project Semi-
nar. The bachelor’s thesis project is designed to last three 
months. The length of the bachelor thesis is typically 40–80 
pages. Approximately 100 students in ETiT finish their bache-
lor thesis each year. Similar to the Project Seminar, the stu-
dents have to give a 20-minute presentation and defend their 
work in front of an audience. The bachelor’s thesis project 
offers the possibility for students to be creative and to develop 
new ideas and algorithms. Students can either explore new 
ways of solving a specific problem, compare different meth-
ods and their performance, or improve an existing approach 
by extending or enhancing particular aspects. In general, the 
bachelor’s thesis project is based on research questions pro-
vided by the RA. In our group, we offer hands-on experi-
ments using, e.g., biomedical, audio, or ultrasound data, which 
can be acquired by the students in our signal processing lab. 
Outstanding bachelor’s thesis projects can lead to publications 
and visits to conferences such as the IEEE Workshop on Sta-
tistical Signal Processing, the European Signal Processing 
Conference (EUSIPCO), or the International Conference on 
Acoustics, Speech, and Signal Processing (ICASSP).

FIGURE 3. The setup of the Localization of Acoustic Sources experiment 
that is part of the Communication and Sensor Systems Laboratory offered 
to third-year students.
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FIGURE 4. A microphone pair of the Localization of Acoustic Sources 
experiment that is attached to one of the walls of the Signal Processing 
Laboratory.
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One of our undergraduate students who was published at 
ICASSP’14 was Jack Dagdagan (see Figure 5). In his paper 
[6], he developed a robust method for testing stationarity in the 
presence of outliers. Jack recollects, “In my bachelor’s thesis 
project, I evaluated my algorithm first with simulated data 
and assumed a certain outlier model. I was not sure whether 
the method would still perform reasonably well when using 
real data. So I was very excited when I started recording real 
data. I noticed that the computational complexity was much 
higher with real data, since the simulated data had a sample 
size of only 1,024 and I recorded some seconds of audio with 
a 48,000-Hz sample rate. I realized that the outliers were 
completely different to the outliers in the simulations. But 
I was very happy that the performance of my method was 
still very good. If you develop an algorithm 
and evaluate with simulations, you could 
optimize by tweaking your parameters such 
that your algorithm fits the model perfect-
ly. However, if your model is very special, 
your method won’t work in reality. But if 
you test your algorithm on real data and still 
achieve good results, it shows that either 
your model was very diverse or that your 
algorithm runs very well independently of 
the model you are using.”

Another lesson that Jack learned from his hands-on expe-
rience is the difference between theory and practice. “In 
theory, you learn the definitions of stationarity, such as wide-
sense stationarity (WSS),” he says. “However, in practice, you 
realize that you can never have perfect WSS. Thus, you need 
to set a threshold above which you determine the signal not 
to be stationary anymore. Before my hands-on experience in 
this bachelor’s thesis project, I would not have thought of sta-
tionarity in this way.”
■ 5 Outstanding bachelor’s thesis projects that use real-

world data can lead to publications and conference visits

■ 5 students can build upon the work they did in the 
Proseminar and Project Seminar

■ 9 acquiring real data and working with it must be well 
planned, otherwise it would exceed the three-months nomi-
nal length

■ 9 all of the aforementioned projects, i.e., Proseminar, 
Project Seminar, and the bachelor’s thesis project, are grad-
ed after the seminar by the professor.

Fourth and fifth year
The following programs and activities are part of the mas-
ter’s program of ETiT, which forms the final two-year stage 
of the undergraduate education at TU Darmstadt.

DSP Practical
Fourth-year students can attend the DSP 
Practical, either in parallel to or after the 
course “Digital Signal Processing.” It 
offers the chance to further familiarize 
onself with signal processing programs, 
such as MATLAB, and put theory into 
practice. Students participating in this lab 
are able to apply the concepts from the 
lectures. This covers mainly the design of 

finite impulse response and infinite impulse response filters 
as well as parametric and nonparametric spectrum estima-
tion; examples of the latter are shown in Figure 6. Real-world 
signals, such as speech and audio signals, touch-tone tele-
phone dialing signals, temperature recordings, or biomedical 
measurements, are either provided to or recorded by the stu-
dents. UTAs help to supervise the undergraduate students 
during the experiments. For example, the biomedical experi-
ment, where students record each others electrocardiogram 
(ECG) signal and perform spectrum estimation, was designed 
with the help of a UTA. The experiments are conducted in the 
SPG Lab, which is described in the “Laboratories” section.

The DSP Practical is composed of eight practicals and two 
real-data acquisition sessions. Approximately ten groups of 
two to three students work together to solve signal processing 
tasks. As an introductory part for every experiment, students 
receive handouts with the underlying theory and some prepa-
ratory questions. The students’ understanding of the theory is 
checked by the supervisor at the beginning of each experiment. 
In this way, we ensure the students’ adequate preparation for 
the practicals. Furthermore, for every experiment, each group 
writes a report in which they wrap-up their results, answer all 
questions, and include plots and code from the experiment. At 
the end of the semester, a final exam is held.
■ 5 Students are able to apply concepts learned in the DSP 

course using real-world data
■ 5 students can further familiarize themselves with signal 

processing tools, such as MATLAB
■ 5 students can acquire their own measurements
■ K the time slot per experiment is tight
■ K tasks are explicitly predefined, and the time for trial and 

error is very limited.

FIGURE 5. Jack Dagdagan, an undergraduate student at TU Darmstadt, 
presenting the results of his bachelor’s thesis project at ICASSP’14 in 
Florence, Italy. 

In their fourth and fifth 
years, signal processing 
students at TU Darmstadt 
are ready to tackle some 
more challenging and 
realistic problems.
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Advanced seminars in signal processing
In their fourth and fifth years, signal processing students at 
TU Darmstadt are ready to tackle some more challenging and 
realistic problems. At this time, they have acquired sufficient 
fundamental knowledge, and they are also used for reading 
and reproducing results from papers. The SPG offers an 
advanced seminar in which master’s students tackle small-
scale real-world problems to prepare students for their mas-
ter’s thesis project, as well as to provide the opportunity to get 
to know the RAs and practice working in teams. The seminar, 
“Advanced Topics in Statistical Signal Processing,” is aimed 
at students who have an interest in signal processing and a 
desire to extend their knowledge of signal processing in prep-
aration for future project work, e.g., their master’s thesis proj-
ect and their working careers. The seminar consists of a short 
series of lectures (i.e., four to five), followed by student group 
projects (six to eight weeks), a presentation of the achieved 
results, and a final exam. Usually, up to 20 students partici-
pate in the seminars. The topics of the lectures and the stu-
dent projects are different every year. The RAs are free to 
propose students’ projects, and the students make their choice 
based on their own interest. In this way, both the students and 
their supervisors are highly motivated.

Students often use the SPG Lab to investigate topics such as 
direction-of-arrival estimation or localization of sound sourc-
es in impulsive noise environments. In many cases, students 
become creative in the experiments. For example, one group 
used their mobile phones to play sound files (both signal and 
noise) in combination with a miniature train to create audio 
sources that moved on a fixed trajectory.
■ 5 Deepen the knowledge in signal processing
■ 5 preparation for final year master’s thesis project
■ 5 groups work on a common research topic and present 

results
■ 5 contact with RAs is intensified
■ K time is often too short for the students to gain a deep 

insight.

Final year master’s thesis project
The four-semester master’s program in ETiT consists of com-
pulsory core courses, compulsory elective courses, and elec-
tive courses as well as the master’s thesis project. In their 
master’s thesis project, the students work independently for a 
duration of six months on a scientific project under the super-
vision of one of the RAs. The research topics are larger and 
more complex compared to the bachelor’s thesis project.

For many students, the master’s thesis project offers the 
possibility to conduct research on real-world data. From our 
experience, the best results are obtained when the students are 
involved in collecting their own data. In this way, they acquire 
hands-on contextual information and can better understand 
the data, e.g., in terms of the signal quality, the measurement 
principle or the assumptions on the noise distributions. Fur-
ther, when the master’s thesis project solves a real-world prob-
lem, the students take more care that the developed algorithms 
are designed in accordance with practical requirements. The 

latter include, e.g., computational efficiency of the algorithm, 
communicational load between sensors, memory restrictions, 
or real-time requirements. In our experience, the students 
enjoy incorporating such realistic requirements into their 
algorithm design.

It is not uncommon that the projects are carried out in 
cooperation with a selected industry partner or a research cen-
ter. In case of such cooperation, it must be emphasized that 
we take special care to make sure that the master’s students 
perform real-world signal processing research tasks under the 
supervision of a qualified supervisor. For this reason, coop-
erations for master’s thesis projects are only possible with 
trusted institutions with which a solid research partnership 
has been established.

At TU Darmstadt, the students have the unique possibility 
to choose between a broad range of hands-on topics at national 
and international locations. Examples of past SPG master’s 
thesis projects of Prof. Zoubir in cooperation with research or 
industry partners are as diverse as
■ signal processing for photometric glucose measurement in 

hand-held devices at a German pharmaceuticals and diag-
nostics company
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FIGURE 6. Examples of (a) a parametric power spectral density estimate 
and (b) a nonparametric power spectral density estimate. Both estimates 
were computed during the DSP Practical with data collected by the under-
graduate students.
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■ room shape estimation in through-the-wall radar imaging in 
cooperation with the Center for Advanced Communications, 
Villanova University, United States

■ directional integration of wirelessly transmitted audio sig-
nals into hearing aid processing, and many more. 

Clearly, each of these applications has its own challenges.
“When I was a master’s student at TU 

Darmstadt,” remembers Dr.-Ing. Michael 
Muma, now a postdoctoral researcher with 
the SPG, “I was walking through the cor-
ridor and saw a notice that immediately 
caught my attention. The notice literally 
opened my eyes to an exciting application 
of signal processing: the research of human 
vision. Doing my master’s thesis project 
in the Contact Lens and Visual Optics 
Laboratory (CLVOL), which is part of the 
School of Optometry and Vision Science 
at Queensland University of Technology, 
Brisbane, Australia, was an amazing experience. The CLVOL 
has a sophisticated range of unique measurement and analysis 
techniques. These include methods to investigate the shape of 
the cornea, the optical characteristics of the eye, visual per-
formance of contact lenses, and the biometric properties of 
the eye. After all the coursework, I really wanted to test my 
skills in a practical environment, and I also wanted to see how 
research was organized outside the university. While I was at 
the CLVOL, I took all the measurements myself. This involved 
the synchronous measurement of the eye’s wavefront aberra-
tions, cardiac function, blood pulse and respiration signals. We 
were among the first ones to analyze the role of cardiopulmo-
nary signals in the dynamics of wavefront aberrations [8]. My 
master’s thesis project was under the supervision of Dr. Robert 
Iskander, who is now a professor at Wroclaw University of 

Technology.” A schematic sketch of the relation between the 
eye’s wavefront aberration and the ECG, the BP, and respira-
tion signals is shown in Figure 7.

“Prof. Iskander has his own teaching philosophy [9], and, 
after the master’s thesis project, it was clear to me that I 
wanted to continue with signal processing research. Work-

ing with real data in a team consisting of 
engineers and eye researchers allowed me 
to grasp the importance of signal process-
ing. Today’s measurement devices and 
data analysis are too complex to be han-
dled without a rigorous understanding of 
signals and systems theory. At the SPG, 
it is important that students are given the 
opportunity to work hands-on from the 
start. I am very grateful that I could do my 
master’s thesis project in such an inspir-
ing environment full of high-tech custom 
equipment,” says Dr. Muma. 

■ 5 Students are ready to undertake larger projects and to 
work independently

■ 5 cooperation with selected industry and research partners 
provides hands-on experiences

■ 5 outstanding projects that use real-world data can lead to 
publications and conference visits

■ 5  recruitment of RAs
■ K master’s students often stop at the height of their 

productivity.

Laboratories
Central to our hands-on education, from freshmen to senior-
year students, are the signal processing laboratories at TU 
Darmstadt. This section presents our diverse signal processing 
laboratories and the opportunities they offer for our students. 

For the development 
of DSP algorithms that 
show good and robust 
performance
in real product 
applications, real-time 
tests with typical signals 
in realistic environments 
are essential.
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FIGURE 7. An example of a hands-on master’s thesis project undertaken in cooperation with the CLVOL at Queensland University of Technology, Brisbane, 
Australia. The picture shows a schematic sketch of the defocus component of an eye’s wavefront aberration ( )Z t2

0 , the respiration signal Re(t), the blood 
pulse BP(t), and the ECG(t).
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As detailed next, some of the laboratories are mainly educa-
tive in nature, while others additionally provide the advanced 
students with hands-on research opportunities and expose 
them to state-of-the art research and advanced equipment.

The SPG Lab
In our group, we offer hands-on experience to the undergradu-
ate students in the SPG Lab, consisting of a biomedical sensor 
lab, a basic audio signal processing lab, and a synthetic aper-
ture sonar lab. It is mainly funded by the so-called  resources 
for quality assurance of study and teaching (QSL)—essential-
ly, a fund for enhancing hands-on experiences—in teaching. 
In the biomedical sensor lab, a variety of sensors offer the 
opportunity to acquire own measurements, such as ECG, pho-
toplethysmogram (PPG), and blood pressure. The data is 
recorded using ADInstrument devices that are originally 
designed for research and teaching at universities.
■ 5 Students can use the SPG Lab for their bachelor’s or 

master’s thesis projects
■ 5 students can collect their measurements
■ 5 undergraduate students can jointly carry out research 

with RAs
■ 5 even patented technologies have been developed in this lab
■ 9 keeping the lab up-to-date and providing GUIs and help 

to students is time consuming.

Advanced real-time Audio Processing Lab
For the development of DSP algorithms that show good and 
robust performance in real product applications, real-time tests 
with typical signals in realistic environments are essential. 

Those real-time tests show a variety of natural setups  that 
cannot be covered by data simulations. Prof. Henning Puder’s 
research group, Adaptive Systems for Speech and Audio Sig-
nal Processing, provides such a system for the development of 
audio processing algorithms in students’ projects. The core 
component is a real-time DSP system, Speedgoat [10], with 
12 analog audio input and eight output signals (see Figure 8).
The signals are processed with low latency (<1 millisecond). 
Algorithms can be implemented in high-level programming 
languages such as MATLAB/Simulink. To this end, a com-
piler converts the Simulink code to C-code, which can be 
run natively on the Speedgoat system.

The development of algorithms for hearing devices, 
such as hearing aids or hearing-aid glasses with a focus on 
feedback cancellation and beamforming, is one research 
focus of Prof. Puder’s Audio Signal Processing Group. For 
beamforming, the two microphones in each of the left- and 
right-worn hearing aids are combined to a four-microphone 
beamformer system; whereas, in hearing-aid glasses, several 
microphones can be integrated in the ear pieces. Here, even 
narrower beams can be realized due to larger microphone 
distances and a higher number of microphones.

Such hearing systems need to be evaluated under realis-
tic conditions, i.e., worn on the head and not in a free field. 
We use the Knowles Electronics Manikin for Acoustic 
Research (KEMAR) [11] as a well-established head model. 
The KEMAR is shown in Figure 9. This allows us to model 
the head with respect to head shading as well as to model the 
ear channel, which is necessary for realistic feedback tests of 
hearing-aid devices.

FIGURE 8. The real-time Speedgoat system (left) and KEMAR (right) at the Audio Processing Lab.
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Several loudspeakers positioned at different AOA serve 
as sound sources. The real-time system is built in a typi-
cal office room, showing a rather high reverberation time. 
Acoustic curtains, which can be opened and closed, allow 
tests of the systems within different reverberant acoustic 
environments.

The Bioinspired Communication Systems Lab
The Bioinspired Communication Systems Lab of Prof. 
Heinz Koeppl conducts research in statistical signal pro-
cessing and machine learning in the context of biomolecu-
lar systems. Due to the availability of wet-lab facilities in 
the group (see Figure 10), students can generate their own 
data by performing single-cell experiments involving fluo-
rescence microscopy and microfluidics, which is shown in 
Figure 11. The microfluidic chips used for student projects 
are further optimized and fabricated in-house. The hands-
on work also involves the processing of raw imaging data 
to obtain accurate segmentation and temporal tracking of 
single cells.

The Receive Beamforming Lab
Prof. Marius Pesavento’s Communication Systems Group 
offers a student experiment in the field of multiantenna 
receive beamforming. The experiment is based on the WARP 
v3 Kit by Mango Communications [12] (see Figure 12), which 
includes an easy access MATLAB interface. The main idea of 
the experiment is to give students insight into the application 
of receive beamforming as part of a complete transmitter-
receiver chain, starting from the antennas that were designed 
at TU Darmstadt specifically for the experiment and ending 
with digital baseband signal processing algorithms imple-
mented in MATLAB. A main challenge in the design of the 
experiment was to find the best tradeoff between performance 
and complexity on the one hand, and comprehensibility of the 
exercise on the other.

In the student experiment, an antenna array is used that 
consists of eight patch antennas designed for the 2.4-GHz 
industrial, scientific, and medical (ISM) band on the receiver side 
(see Figure 13). The antenna array is connected to two WARP v3 
boards with four RF ports per board. On the transmitter side, 

FIGURE 10. The wet-lab facilities at the Bioinspired Communication 
Systems Lab.

FIGURE 9. A hearing-aid dummy worn on the ear model of the KEMAR. The 
dummy is connected via cables to the real-time system.

FIGURE 11. Single-cell recording and tracking in a swarming assay of bacteria 
Bacillus subtilis taken at the Bioinspired Communication Systems Lab.

FIGURE 12. The WARP v3 test bed by Mango Communications.
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two independent and freely movable patch antennas, also 
designed for the 2.4-GHz ISM band, are employed. Both patch 
antennas are connected to a third WARP v3 board and can be 
operated independently to model two independent transmit-
ters. For simplicity, all boards are synchronized in RF and 
sampling frequency by external cables and the boards are con-
nected to a MATLAB server via Ethernet, which is used for 
offline baseband processing.

The goal of the experiment is to provide user data sepa-
ration by means of receive beamforming. Two different con-
cepts are implemented and tested by the students. In the first 
approach, receive beamformers are designed based on chan-
nel state information acquired from pilots; while, in the sec-
ond approach, a line-of-sight model is employed to model the 
channels parametrically. For ease of implementation, a simple 
MATLAB interface is provided that students can use to per-
form all the required signal processing, i.e., pulse-shaping, 
sampling, timing synchronization, and channel estimation. As 
a result, students can directly focus on the 
beamforming implementation.

A particular challenge in carrying 
out student experiments on the wireless 
test bed is to visualize and evaluate the 
effects of different procedures and meth-
ods. Therefore, the experiment is divided 
into different tasks. For example, display-
ing the quadrature phase-shift keying 
(QPSK) signal constellations before and 
after demodulation or displaying a spa-
tial power spectrum to estimate the user locations. During the 
experiment, students can directly see, e.g., the effects of the 
antenna orientation on the quality of the demodulated QPSK 
or the variation of the spatial spectrum as the user locations 
are changed.

In summary, during the course and in the course evalua-
tion, very good feedback was received from the students. The 
implementation of a complete transmitter-receiver chain helps 
students to better understand and link the individual opera-
tions in wireless communications while the experiments help 
to visualize the effects of different operations.

Competitions
The SPG seeks to participate in student competitions, as we 
believe this is one of the best ways to provide undergraduate 
students with the opportunity to have hands-on experience 
and to put their signal processing knowledge into practice in a 
real-world project. Furthermore, students again learn to coop-
erate within a team and develop their interest in signal pro-
cessing research. From our experience, the students who took 
part in competitions show not only higher technical under-
standing but also higher motivation and enthusiasm. They are 
inspired by their hands-on experience and their voluntary and 
ungraded achievements, which can also lead to better overall 
performance in their studies.

One important aspect to mention again is teamwork. If 
the team works harmoniously and everyone enjoys their time, 

creativity skyrockets. When there is a successful competition 
outcome, students gain additional benefits by having the pos-

sibility of visiting a conference, receiving a 
prize, or gaining prestige. Next, two examples 
of successful participation in students’ com-
petitions are given.

Case study competition
by Rohde & Schwarz
Together with the German Association for 
Electrical, Electronic, & Information Tech-
nologies (VDE), Rohde & Schwarz organiz-
es an international case study competition 

for undergraduate students [13] in the field of mobile com-
munications. Its aim is to offer students the opportunity to 
expand their scientific knowledge and solve real-life techni-
cal problems. It is the organizer’s intention that students not 
only deploy specific theoretical knowledge but also enhance 
their teamwork and creativity skills. The first round of the 
competition takes place at universities, where participants 
work on a technical problem in the area of mobile commu-
nications. A jury consisting of one professor and several 
company employees decides on the best solution. The win-
ning team members are then invited to the finals at the 
company’s headquarters in Munich. In the final competi-
tion, teams from different universities compete against each 
other in finding the best solution to a complex problem. 
The winning team receives a prize as well as €2,000 for 
their university.

In 2012, the student team, Shannon’s Hounds, of the SPG 
took part in the case study competition whose theme was 
“Engineer the future! The future of mobile communications 
is on you” (see Figure 14). In the competition in which 220 
students from Germany and Singapore participated, students 
had to solve complex tasks concerning the ISO/OSI-layers of 
the LTE cellular network. At the finals in Munich, modern 
measurement equipment provided by Rohde & Schwarz had 
to be used to find solutions. “We were excited to work with 
real modern measurement devices and have hands-on experi-
ence at the finals in Munich,” said Mark Ryan Balthasar from 

FIGURE 13. The antenna array consisting of eight patch antennas designed 
for the 2.4-GHz ISM band.

From our experience, 
students who took part 
in competitions show 
not only higher technical 
understanding but 
also higher motivation 
and enthusiasm.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


28 IEEE SIGNAL PROCESSING MAGAZINE | January 2017 |

the team representing TU Darmstadt. Shannons’s Hounds per-
formed outstandingly well and won the competition against 
ten teams from Germany and Singapore. Each team member 
received an Apple iPad and EUR€2,000 for the university. The 
team decided that the prize money would be spent on hands-on 
experiments for teaching purposes. Two out of the five mem-
bers of the team are now RAs with the SPG, and one is with the 
Communications Engineering Group.

The IEEE Signal Processing Cup
The IEEE Signal Processing Cup was initiated in 2013 by 
the IEEE Signal Processing Society to increase students’ 
interest in signal processing and to raise their awareness of its 
applications in real life [14]. Undergraduate students are pro-
vided with an opportunity to form teams and work together 
to solve a challenging and interesting real-world problem 
using signal processing techniques and methods. In 2014, 
approximately 100 undergraduate students from all over the 
world took part in 25 different teams. The theme for the first 
competition was “Image Restoration/Super-Resolution for 
Single Particle Analysis.”

After the release of the new competition theme for 2015, 
the SPG decided to take part in the second edition of this pres-
tigious competition with its student team, Signal Processing 
Crew Darmstadt. The task of the competition was to estimate 

the heart rate using PPG signals recorded from subjects’ wrists 
during physical exercise. See [15] for more information on the 
competition. RAs Michael Muma and Tim Schäck recruited 
seven students with interest and motivation in signal process-
ing in August 2014. In total, approximately 270 undergraduate 
students split among 66 teams registered for the competition.

“For the next months, we arranged regular meetings where 
we discussed and developed different approaches,” remembers 
Tim Schäck. “We built a biomedical laboratory with our own 
PPG sensors to be able to take measurements and collect addi-
tional data. For this, we employed a student with the necessary 
hardware skills as an undergraduate research assistant whose 
task was to develop a framework for the collection of measure-
ments. Hence, the team members also had the option to gain 
hands-on experience in our lab, which was much help to the 
students in the competition. 

“After submitting our algorithm and results in February 
2015, we were more than happy to find out one month later 
that our team was among the best three teams and that we were 
invited to take part in the final competition at ICASSP 2015 
in Brisbane, Australia. Fortunately, we managed to get five 
students to fly to Brisbane and present the work at the finals. 
As if this was not enough excitement for the students, their 
presentation convinced the jury of the new method and Signal 
Processing Crew Darmstadt won the IEEE Signal Processing 

FIGURE 14. Thomas Rösner (far left) and Stefan Diebenbusch (far right) from Rohde & Schwarz stand with team Shannon’s Hounds members: (from left) 
Lisa Hesse, Patricia Binder, Mark Balthasar, Fabio Nikolay, and Cevin Sehrt at the ceremony in Munich, 2012. (Photo courtesy of Rohde & Schwarz.)
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Cup 2015 against tough competitors from Bangladesh Univer-
sity of Engineering and Technology and Soongsil University in 
South Korea,” says Schäck. Figure 15 shows the members of 
the team at the ceremony in Brisbane. The competition topic 
and results have been published in [14].

“After a slow start, we managed to sit together as a team 
and were able to formulate subproblems, which were assigned 
among the team members. We discussed several approaches 
and often ideas that seemed right in the 
beginning were dismissed or modified 
to produce even better results,” reports 
team member Maximilian Huettenrauch. 
“I think the SP Cup can be very helpful 
in the sense that one can work on close-
to-real-world problems. The problem was 
not as contrived as university tasks often 
are, and the data was collected from real experiments. It also 
showed that, often, it is not the most complex and sophisti-
cated concepts that lead to good results, but rather starting 
out with a basic idea and adding bits and pieces to this ini-
tial idea,” Huettenrauch continues. Additional feedback from 
participating students and supervisors have been published 
in [15]. The main part of our prize-winning algorithm [16]
was published at EUSIPCO 2015 in Nice, France, by the two 
supervisors and one of the undergraduate students, who also 
continued working on heart rate estimation in his master’s 
thesis project.

Practical remarks for successful design projects
We conclude this article by briefly sharing our experience on 
some fundamental aspects that we have found to be important 
for the success of signal processing design projects.

Interculturality
Special emphasis should be given to integrating students from 
other cultures. In [17], Prof. Zoubir describes challenges in 
having intercultural groups in research. For example, indepen-
dence in research has a high priority at TU Darmstadt, but 
some researchers are not used to such kinds of freedom. Thus, 
misunderstandings can occur among the team members. Sim-
ilarly, in engineering design projects, students often work in 

intercultural teams in which not everyone 
shares the same work attitudes or values. 
Here, honest and direct communication is 
very important.

Gender equality
Gender equality is always a central topic 
for the success of our design projects. 

Thankfully, we are supported by gender equality representa-
tives who act on behalf of all female students and staff mem-
bers in the department in all matters relating to research or 
teaching and also provide other services. Currently, at the 
SPG, more than half of our RAs are female, which helps 
attract female undergraduate students to signal processing 
hands-on projects.

Social activities
Integrating students into social activities of the research group 
helps to recruit good students. These activities may include 
events such as an end-of-year party and visits to collaboration 
partners in research or industry. During such visits, under-
graduate students see signal processing in action and often the 
participants ask for hands-on topics and wish to perform 
research projects within our group.

FIGURE 15. Members of Signal Processing Crew Darmstadt at the final presentation at ICASSP 2015 in Brisbane, Australia.

Integrating students into 
social activities of the 
research group helps to 
recruit good students.
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Mentorship
From the beginning of their academic studies, our students are 
mentored by the professors who provide guidance throughout 
the entire duration of study and offer one-on-one meetings. 
These meetings also offer the possibility to inform the inter-
ested students about the hands-on projects that we offer.

Evaluation
We constantly try to improve our courses, labs, and seminars. 
For this to happen, we run evaluations by means of detailed 
questionnaires. Some of the questions explicitly concern 
hands-on experiences. In this way, we receive and are able to 
take into account feedback from the students on how to 
increase the number and quality of hands-on projects.
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T
he Intelligent Model Car Competition (IMCC) of 
China is an annual collegiate contest where student 
teams design, build, and race a model car around a 
track, and the fastest car that completes the track 

without failure wins [1]. The IMCC is in collaboration with 
the global NXP Cup Challenge, which was formerly 
known as the Freescale Cup Challenge until the acquisition 
of Freescale Semiconductor Inc. by NXP Semiconductors 
[2]. Creating this smart, autonomous car requires students 
to develop the hardware and software of motor control to 
propel and steer their model cars. It provides a collabora-
tive, competitive, and hands-on way for students to learn 
about and make a synergistic use of theories and tech-
niques from undergraduate engineering studies, such as 
sensing and control, circuit design and implementation, 
and embedded system and software programming. The 
first competition, formerly known as the Smart Car Race, 
began in 2003 in South Korea with 80 student teams. Since 
then, the NXP Cup has expanded to China, India, Malay-
sia, Latin America, North America, and Europe, engaging 
hundreds of schools and tens of thousands of students a 
year [2], [3].

China started its nationwide college-level smart car race 
in 2006. It has undergone a rapid growth since then and 
has just celebrated its tenth anniversary. The challenges 
and ingenuity posed by this competition has attracted an 
increasing number of students year by year. As shown in 
Figure 1, participation has risen from about 112 teams of 
57 colleges in 2006 to over 2,000 teams of more than 400 
colleges in recent years. For the past five years, more than 
30,000 students have attended the contest annually; and so 
far this decade-long race has engaged more than 150,000 
students in total, providing them a valuable hands-on edu-
cational experience of engineering.

As members of the organizing committee of the IMCC, in 
this article we provide an overview and highlights of the com-
petition tasks and rules, the role that signal processing plays, and 
the curricula that is built on the competition.

Digital Object Identifier 10.1109/MSP.2016.2619985
Date of publication: 11 January 2017

Hands-On Learning Through Racing
Signal processing and engineering education 

through the China National Collegiate Intelligent Model Car Competition
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Motivation of a nationwide engineering competition
The launch of the IMCC was supported by the Ministry of Edu-
cation of China and its Committee of Education Instruction of 
Automation Specialty. A main motivation to launching the 
competition was that the engineering curri-
cula at the college level were too theoretical 
and generally too slow to catch up to the fast 
pace of the contemporary technological 
development. As a result, students tended to 
focus more on test-oriented skills, and did 
not pay enough attention nor had enough 
hands-on opportunities to solve real-world 
engineering problems in a team setting; they 
would lack curiosity and interest and were 
not sufficiently motivated to learn and inno-
vate. These problems are not unique in China, as the higher edu-
cation in engineering in many other countries around the world 
have faced similar challenges.

The NXP-sponsored model car competition helps address this 
problem and bring hands-on engineering education to many col-
lege campuses around the world. The IMCC in China has sev-
eral notable characteristics, including the competition setup, the 
rules, and the evaluation criteria that will be discussed later in this 

article. It has attracted an overwhelm-
ing number of students over the past 
decade, and its scale is now the largest 
in the world. What initially began as one 
competition category has now expanded 
to six, and the competition tasks have 
been diversified. Each category has chal-
lenges that are suitable for students at a 
different stage in their college study, so 
that students ranging from freshmen to 
seniors can all participate. Along with 
the IMCC, a large number of microcon-
troller unit (MCU) teaching labs, text-
books, and innovation training centers 
have been developed in many universi-
ties. The development of such educa-
tional material and infrastructure have 
enabled and expanded hands-on training 
for engineering students nationwide.

Tasks and rules of the model car competition
All racing teams use a standard kit of model car designated 
by the organizing committee. Team members are required to 
design and develop their own hardware and software for their 

cars [4], [5]. As mentioned previously, each 
finished model car must be capable of self-
navigating along a challenging racetrack as 
fast as it can. The teams will be ranked 
according to the time taken by the model 
car to complete one round of the racetrack.

Only undergraduate students are permit-
ted to participate in this nationwide com-
petition in China. Each team is allowed to 
have up to three students and no more than 
two faculty advisors. Typically, as shown in 

Figure 2, an annual competition lasts ten months as an extra-
curricular activity, from launching in the previous November to 
the division competition in July, and to the final race in August.

Early rounds of the competition are carried out in eight 
racing divisions covering different geographic areas in China. 
The top teams from each race division are qualified for the 
final race. During the final race, speed-based race sessions are 
held in which the time for each finalist car to complete one 
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FIGURE 1. The number of participating teams and colleges of the IMCC from 2006 to 2014.
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FIGURE 2. The time line of the annual IMCC.

China started its 
nationwide college-level 
smart car race in 2006. 
It has undergone a rapid 
growth since then and 
has just celebrated its 
tenth anniversary.
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round of the racetrack is used to rank the teams; in addition, an 
open-ended competition is held concurrently, with innovation 
themes related to future industrial intelligent cars to encourage 
students to develop creative ideas and implementations.

Basic elements of the racetrack
With the exception of a beacon-based sensing category to 
be discussed later in this section, the racetracks are com-
posed of several kinds of elements: straight sections, curved 
sections, crossroads, hills, and roadblocks 
(see Figure 3). The characteristics of the 
racetrack and its elements are given in the 
rules released at the launch of the compe-
tition. A detailed graph of the racetrack 
is revealed to the teams onsite right 
before the start of the competition. The 
sensing and control algorithms embed-
ded in the race cars are expected to work 
with all these elements and different combinations of them.

Competition categories
To enable self-navigation of model cars, different kinds of 
sensors are explored to capture position signals for further 
processing. Based on the sensor types and race tasks, the 
competition is divided into several categories that have dif-
ferent levels of technical challenge, as illustrated in 
Figure 4. The basic categories only require some elementa-
ry knowledge of signal processing, control, and circuits, 
thus allowing younger undergraduate students to partici-
pate; on the other hand, the advanced and creative catego-
ries may use the technical knowledge and skills from 
students’ design training or capstone projects. The wide 
variety of categories gives students an opportunity to par-
ticipate in several competitions during their college career, 
as they grow in knowledge, experience, and maturity. In 
what follows, we briefly review the characteristics of each 
competition category.

Photoelectric sensing
In this competition category, a model car can be equipped 
with photoelectric sensors, such as an infrared (IR) light-
emitting diode sensor and linear charge-coupled device 
(CCD) sensors, to detect the racetrack. Figure 5 shows a 
model car equipped with photoelectric sensors. The signals 

acquired by such sensors are typically binary or one-dimen-
sional. Thus, the algorithms for signal processing and control 
decisions can be relatively simple compared to the other cate-
gories. This category is suitable for younger students with pri-
mary engineering knowledge.

Camera sensing
Planar-array CCD or complementary metal–oxide–semi-
conductor (CMOS) cameras are used to pilot the car in this 

category. A model car equipped with a 
camera is shown in Figure 6. Two-dimen-
sional image acquisition and processing 
requires more computing capabilities 
than for the other sensing categories. Stu-
dent teams in this category often equip 
their model cars with a high-perfor-
mance 32-bit MCU with larger random 
access memory (RAM) storage and high-

er million instructions/second in computing power.
Using image processing and computer vision algorithms, it 

is possible for a model car to deal with a more complex track 
layout, predict the direction of the road, and plan for its motion 
on the racetrack. As a camera can capture images farther ahead 
of the racetrack, camera cars are usually the fastest among all 
of the cars in the competition categories.

FIGURE 3. The different elements in a racetrack. 

Level of Challenge

High Chasing

Energy SavingTwo Wheel Beacon
Mediu Camera
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Metal
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Basic Advanced Innovative
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FIGURE 4. The different categories in the competition.

MCU Board

Steering Servo

IR LED
Sensor

FIGURE 5. A model car with photoelectric sensors.

What initially began as 
one competition category 
has now expanded to six, 
and the competition tasks 
have been diversified.
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Two-wheel car
There are two specific characteristics and challenges in this 
competition category. First, the model car only has a total of 
two wheels, left and right. To propel the car to move upright, 
sensors such as the gyroscope and accelerometer need to be 
employed, and the signals from these sensors must be 
acquired and processed properly in real time. Second, instead 
of putting visible black edge lines on the racetrack as in the 
other competition categories, one enameled wire with a diam-
eter of 0.5 mm is laid along the center of the racetrack to 
guide the movement of the model car. Alternating current (ac) 
(100 mA, 20 kHz) flows along the wire, which generates an 
oscillating magnetic field on the racetrack. With such a race-
track design, one way to guide the model car is to use two 
inductor coils to sense the varying magnetic field.

To sense the racetrack, detection coils can be mounted to 
the car on a well-designed extending bracket. The battery can 

also be located low to deliberately lower the center of gravity of 
the car. As shown in Figure 7, these arrangements can increase 
the stability and the racing speed of the car.

Compared to the other competition categories, the signal 
processing and control methods applied in this category are 
generally more sophisticated for the race car to maintain its 
balance while moving smoothly on the racetrack. The Kal-
man filter algorithm is often used by participating teams to 
calculate the angle of the car position, and a double closed-loop 
speed control is implemented to drive the wheels.

Metal racetrack
For the metal racetrack competition category, the racetrack is 
laid with two parallel strips of aluminum foil, and a direct 
current (dc) power of 12 V 5 A is applied to the two alumi-
num strips. A model car participating in this competition cat-
egory is required to guide itself by detecting the metal foils, 
and is also allowed to pick up electricity through the alumi-
num foils to drive its motor. The racetrack components are 
shown in Figure 8. The main competition goal of this catego-
ry is to design a highly power-efficient intelligent model car. 
The judging criteria is not only by the speed of the car, but 
also by the total energy consumed during the competition.

To sense the guiding metal strips, several coils may be 
mounted in front of the race car, and a high-frequency ac signal 
from an oscillator circuit may be applied on the coils. The alter-
nating electromagnetic field generated by the coils will induce 
the eddy current on the surface of the metal strips. In turn, the 
eddy current will change the amplitude and frequency of the 
ac in the coils. The specific variation depends on the related 
distance between the detecting coils and the metal strips. By 
using the amplitude demodulation or frequency demodulation, 
the car can detect its deviation from the guiding strips. Such 
sensing and signal processing methods may be implemented 
by circuit or by software.

Two-car chasing
Sensors used in this competition category are similar to the 
one for camera sensing. Here, each team is required to design 
two model cars to run one after another on the racetrack. 
Figure 9 shows two students preparing their chasing cars on 
the racetrack.

The final score (T) contains two portions: the total time 
(T1) for the two cars to complete a round, and the lag (T2) 

between them as they cross the finish-
ing line. The formula for calculating the 
total score is T T T1 5= + 2.

To perform well in this competition, 
the two race cars should coordinate 
well by wireless communication. They 
must avoid colliding with each other 
while at the same time avoid being too 
far apart. This is the most challenging 
among all the competition categories.

Detecting the distance between the 
two cars is crucial in this competition. 

Camera
Sensor

Car Chasis

Road Edge

Race Track

FIGURE 6. A model car with a CMOS camera.

Control Board Battery Sensor
Mounting Bracket

Two-Wheel Chassis

FIGURE 7. A two-wheel car with a long sensor bracket.
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Track Side

Track Side

dc
Power
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FIGURE 8. A racetrack option with a metal strip.
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Usually, an ultrasonic signal and an IR signal are sent back 
simultaneously from the leading car. The second car can 
determine the distance by detecting the time-lag between the 
receiving ultrasonic and IR signals.

Beacon-based racing
Unlike the other competition categories, there is no visible 
racetrack in this competition. Several beacons are distributed 
on the competition field and can be turned on by a referee 
system in a random sequence. Model cars should move to 
approach the lighting beacons. As long as a car moves inside 
the detection region of a beacon, the referee system will turn 
on the light of the next beacon. The arrangement of the bea-
con group field is illustrated in Figure 10.

The challenges of this competition include detecting targets 
that may be located relatively farther away from the race car, 
avoiding collision onto the beacon during the navigation, and 
planning a motion path for the race car.

Many participating teams have used a camera to search for 
the beacon. To differentiate from the surrounding light sourc-
es, the beacon flashes at about 10 Hz. This flash pattern is used 
to locate the beacon in the middle of ambient light. Participants 
have shown that target detection based on the frame difference 
image is a robust approach to locate the beacon in most types 
of environments.

Forward-looking innovation category
To foster creative thinking, the IMCC also has an open-ended 
category inviting teams to contribute innovative ideas and 
designs. Different themes are set up for each year. The most 
recent competition’s theme, for instance, was innovative 
designs on energy saving and a future smart city. Teams are 
required to submit a detailed technical report as well as a video 
of their work. The top teams are invited to the final race each 
August to showcase their work. Figure 11 shows a winning 
entry of a recent competition, where the student team designed 
and prototyped a parking facility in a futuristic community.

Signal processing techniques used in the competition
There are many different technologies used in a model car to 
compete in the respective category [6], and signal processing 
is one of the key components. Students receive hands-on 
training and strengthen their understanding of signal process-
ing through the competition.

Signal sensing and sampling
As the model car is controlled by the MCU, almost all sig-
nals coming from the sensors would be sampled and convert-
ed into digital. Some of these signals are already digitized by 
the sensor module themselves so that they can be passed 
directly from the sensor to the data transfer port of the MCU. 
Some other sensing signals are obtained in an analog form, 
for example, the photoelectric sensor signal and induction 
coils signals. These signals need to be sampled after condi-
tioning circuits by an analog-to-digital converter (ADC) 
module on the MCU.

As students learned from fundamental signal processing 
courses, the sampling frequency need to be properly deter-
mined according to the property of the signal. For example, 
the signal that comes from the induction coils in the two-wheel 
competition has an alternate voltage with a fixed frequency of 
20 kHz. It is a narrow-band signal, and thus with proper pro-
cessing, it could be sampled at a frequency that is far lower 

FIGURE 9. Students preparing two chasing cars on the racetrack.
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FIGURE 10. The beacon group competition field.

FIGURE 11. An exhibit of the creative design category of the IMCC.
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than the nominal Nyquist frequency. Based on these sampled 
data, the amplitude of the signals can be determined.

Another example of sampling is to detect the center of 
the racetrack. In the photoelectric sensing competition, the 
sensors sample the light intensity of the racetrack surface 
spatially at several isolate spots. As the 
number of the sensors is confined to no 
more than 16 by the competition rules, the 
arrangement of the sensors must be well 
designed to increase sampling range and 
accuracy. Figure 12 shows a common lay-
out of photoelectric sensors in the competi-
tion, whereby the sensors are arranged in one line in front of 
the car with different spacing between them, and the space in 
the middle is smaller than the outer ones. This kind of non-
uniform sampling was shown to perform better than the uni-
form spatial sampling in the competition.

Denoising and parameter estimation
An important task of the competition is to take the sensing 
signals that are often noisy or distorted and process them to 
extract important parameters or other useful information and 
pass it on to the control and decision mechanism to race the 
model car.

Student teams have employed a variety of filters in the 
model car control systems to deal with the interference coming 
from external sources or onboard circuits. They have used both 

analog filters to condition the sensing 
signals, and digital filters implemented 
by embedded software for linear, non-
linear, or adaptive signal processing.

The main source of interference on 
board comes from the motor driver cir-
cuit with high peak currents up to 
20 A. The noise sparks travel through 
the power supply line into the control 
circuitry, causing erratic behaviors. 
Most of the noise can be reduced by 

using analog filters in the sensing and power circuits. However, 
some noise is still left in the sensing signal and is sampled into 
the MCU. This remaining noise can be dealt with by digital 
signal processing.

Other noise sources may also be seen in each specific com-
petition setup. For example, we previously 
mentioned that in the two-wheel competi-
tion, a model car must keep an upright pose 
while running along the racetrack. An iner-
tial measurement unit (IMU) is mounted on 
the chassis to measure the inclination of the 
model car. The IMU outputs two signals: 

the gyroscope signal that gives the angular speed, and the 
accelerometer signal that provides information on the “down” 
direction. Although the dip angle of the car can be calculated 
according to the accelerometer signal alone, the movement of 
the car produces much noise mixed with the angular position. 
To address this problem, student teams have employed Kal-
man filters when computing the angular position (shown in 
Figure 13), combining the gyroscope and accelerometer sig-
nals in a denoised fashion. Some student teams have simplified 
the filtering algorithm to allow for more efficient estimation of 
the attitude angle of a two-wheel race car. In addition, one of 
the teams in the two-wheel competition carefully studied the 
noise levels in the IMU data when the pulse-width modulation 
(PWM) voltage with different duty ratio is applied to drive the 
motors. They incorporated this into a Kalman filter implemen-
tation to further reduce the noise when estimating the pose of 
the model car.

Image processing and computer vision
Thanks to the power of visual sensing, student teams prefer 
using cameras to guide their model cars in the competition 
categories of camera sensing, chasing, and beacon-based rac-
ing. By using a camera to continuously capture images of the 
racetrack, a wide range of information about the car’s current 
state and potential future situation can be inferred.

Detection range is a key factor affecting the achievable 
speed of a self-navigating race car. Because there exists a 
constant delay when a servo changes the direction of the front 
wheels of a race car, detection in advance can compensate this 
delay. The sooner the detection of the curve on the racetrack 
is, the higher speed the race car can run without going out of 
the bounds of the racetrack. Image processing from camera 
data also enables the extraction of more detailed information 

16.5 16.5 11.5 10 10 10 10 10 10 10 11.5 16.5 16.5

FIGURE 12. The layout of the photoelectric sensor placement.
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FIGURE 13. Using a Kalman filter to determine the angular position of a car. 
Curve 1: accelerometer signal; curve 2: gyroscope signal; and curve 3: the 
Kalman filter output signal.

Two-car chasing is 
the most challenging 
among all the competition 
categories.
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of the racetrack. For example, detecting the obstacles on the 
racetrack, including hills and roadblocks, is generally easier 
and more accurate by a camera than by other types of sensors.

Despite the aforementioned advantages, 
there are challenges in performing image 
processing on a low-cost embedded plat-
form. The main limitation comes from the 
shortage of RAM memory capacity and the 
limited computing power of the MCU. To 
strike a good tradeoff between the process-
ing speed and accuracy, it is desirable for 
the MCU to subsample the image into a lower resolution to 
work with, and such low-resolution low-quality image poses a 
challenge for student teams to reliably detect the racetrack and 
other elements on the track.

Figure 14 shows an example scene of a model car on 
the racetrack. Inset (a) is the binary image captured in the 
MCU’s RAM. Inset (b) shows the center line of the race-
track extracted from the image above by the image process-
ing algorithm.

The image captured by the camera on board of a race car 
also has a large distortion caused by the low viewing angle of 
the camera. To obtain more accurate information of the road, a 
perspective transformation is applied upon the image to correct 
such distortion. Figure 15 shows the effect of perspective trans-
formation. Figure 15(a) reveals the original grayscale image; 
(b) shows the center line of the racetrack extracted from the 
gray image; and (c) gives the correct center line after the per-
spective transformation.

In summary, signal processing techniques are applied 
extensively on various aspects of the race cars. This compe-
tition allows students to practice their knowledge of signal 
processing in task-oriented training scenarios, which com-
plements the traditional classroom learning to better prepare 
students for future real-world R&D.

Curricula development based on the competition
An important goal of the IMCC is to integrate the learning of 
multidisciplinary knowledge and the training of comprehensive 

abilities important to engineering profession-
als through the process of building and racing 
model cars. As mentioned earlier, the respec-
tive expertise involved include analog/digital 
electronics, embedded system, electronic 
design automation, control engineering, signal 
processing, pattern recognition, and more. 
Figure 16 illustrates the overall process for 

students to attend the competition, together with the respective 
disciplines supporting the different tasks in the competition.

FIGURE 14. A model car with a camera mounted on the top of the pole in 
the middle of the car. The inset (a) shows the binary image captured in 
the RAM; (b) shows the center line of the racetrack. 
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FIGURE 15. (a) The origin image of the S-shape curved racetrack. (b) The center line of the racetrack. (c) The center line after the perspective transformation.

Detection range is a 
key factor affecting the 
achievable speed of a
self-navigating race car.
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After a decade of annual intelligent car competitions in 
China, a total of 176 practical training centers have been 
set up in 132 colleges across the country, and 115 courses 
have been developed or redesigned in Chinese universities. 
More than 36 textbooks have been 
published with different focuses and 
scopes, providing guidance on the core 
knowledge and skills to students who are 
interested in participating in the race car 
competition, or simply for a fun hands-
on extracurricular practice. In addition, 
a large number of technical reports on 
the successful approaches in the previous competitions 
have been archived, from which new students can gain 
insights on the essential functional blocks and the associ-
ated circuitries.

Furthermore, an excellent group of faculty members 
and instructors nationwide have served as mentors to 
guide student teams. They provide guidance and technical 
resources to students, while leaving students room to think 

independently, make design decisions, and implement 
the designs. When students encounter problems in hard-
ware or software design and testing, mentors can guide 
them to troubleshoot the problems. They can also advise 

students to evaluate the possible out-
comes of a design decision. With help 
from these mentors, students can learn 
how to balance analysis and experi-
mentation, which helps enhance their 
theoretical understanding and practical 
execution capabilities. Also, mentors 
usually discuss and summarize with 

their students the experiences and lessons learned after 
each competition.

Closing remarks
The IMCC in China has received many awards and recog-
nitions in recent years. By providing college students and 
programs with an engaging way to learn/teach, this annual 
competition has built a strong reputation and fostered 
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More than 150,000 
students have
attended the competition 
and flourished because 
of it.
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interactions and collaborations with 
many organizations. The industrial spon-
sor, Freescale Semiconductor, which 
merged with NXP, has enthusiastically 
supported the competition since 2006. 
More than 150,000 students have attend-
ed the competition and flourished be -
cause of it. An overwhelming amount of 
positive feedback from student participants has been 
received. The IMCC has provided students with an oppor-
tunity to learn multiple engineering disciplines, most nota-
bly electrical and computer engineering and mechanical 
engineering, and put them into a synergistic use. The 
IMCC helps students strengthen communication and team-
work skills and inspires them to pursue engineering careers 
and become future innovators. 

The competition has successfully met the educational 
goals originally set by the administrators and sponsors. To 
ensure its continued success, we are working on addressing 
several newly emerging issues. For example, several competi-
tion categories that use optic sensors to detect the road have 
seen a nontrivial amount of requirements for the competition 
conditions for the model cars to work well, and this added 
an extra burden to the onsite event organization. Also, as the 
number of teams increases significantly, the cost of organiz-
ing the race also increases. To overcome these difficulties, 
the competition tasks and rules need to be revised periodi-
cally. Another new trend with the help of the Internet is the 
possibility to build some standard competition platforms, 
which allow students to download their software into their 
model car remotely, facilitating their participation of the pri-
mary competition.

The contents and formats of the IMCC should adapt with 
new technological advancement. The state-of-the-art tech-
nologies and the advanced educational concepts rejuvenate the 
competition, supporting engineering students to develop their 
interests and embark on their professional careers.
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M
assive multiple-input, multiple-output (MIMO) is cur-
rently the most compelling wireless physical layer tech-
nology and a key component of fifth-generation (5G) 
systems. The understanding of its core principles has 

emerged during the last five years, and material is becoming 
available that is rigorously refined to focus on timeless funda-
mentals [1], facilitating the instruction of the topic to both 
master- and doctoral-level students [2]. Meaningful laboratory 
work that exposes the operational principles of massive MIMO 
is more difficult to accomplish. At Linköping University, Swe-
den, this was achieved through a project course, based on the 
conceive-design-implement-operate (CDIO) concept [3], and 
through the creation of a specially designed experimental 
setup using acoustic signals. The course was developed with 
the following three objectives in mind:
■ Exposure of students to emerging concepts and to the tech-

nology of the future, not of the past. This target was inher-
ently met via the focus on massive MIMO.

■ Promotion of a systems view of thinking, requiring the 
synthesis of knowledge acquired through the classical cur-
riculum. This goal was achieved through the development 
of a unique acoustic, reciprocity-based massive MIMO 
laboratory setup (Figure 1), with students taking the lead 
both in its development and evaluation and, subsequently, 
its refinement.

■ Fosterage of genuine teamwork, preparing students for a 
dynamic work environment. This was efficiently facilitated 
through the adoption of the CDIO project concept, which 
integrates technical work with the instruction of project 
management and entrepreneurial skills.

Massive MIMO: The scalable 5G wireless 
access technology
Massive MIMO exploits the use of large antenna arrays at 
wireless base stations to simultaneously serve a large number 
of autonomous terminals through spatial multiplexing. The 
multiplexing takes the form of beamforming, also known as 
multiuser precoding, effectively creating transmitted signals 
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Teaching the Principles of Massive MIMO
Exploring reciprocity-based multiuser MIMO beamforming
using acoustic waves
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that add up constructively on the spots where the terminals are 
located and destructively almost everywhere else (Figure 2).

As the ultimately most useful and scalable form of multiuser 
MIMO, massive MIMO departs from conventional MIMO 
technology in several ways:
■ The acquisition of accurate instantaneous channel state 

information (CSI) at the base station is facilitated through 
time-division duplexing operation and the transmission of 
pilot waveforms by the terminals. On uplink, terminals 
transmit pilots and payload; subsequently on downlink, 
the base station beamforms to the terminals. Reciprocity 
of uplink-downlink propagation is essential to the use 
of uplink CSI for downlink precoding, and it is achieved 
in practice through calibration of the 
radio-frequency (RF) chains [4]. The 
reliance on reciprocity permits accurate 
channel training even in highway-speed 
mobility scenarios.

■ Extraordinary spectral efficiencies are 
achieved [5], although no attempt is made 
to operate at the Shannon limit. The base 
station uses linear signal processing, and 
the terminal uses almost no signal pro-
cessing at all. CSI is acquired only at the 
base station, obviating the need for 
downlink pilots. This renders massive MIMO entirely scal-
able with respect to the number of base station antennas.

■ Each terminal is assigned the full bandwidth. Thanks 
to channel hardening, the effective channel gain for each 

terminal is deterministic and frequency- (subcarrier-) inde-
pendent, which greatly simplifies resource allocation 
problems, and facilitates simple closed-form solutions for 
power control.

■ Different base stations do not cooperate, other than for 
“slow” tasks such as power control and pilot sequence 
assignment. Macrodiversity against shadow fading is 
accomplished by appropriate terminal-to-base station asso-
ciation; the large number of spatial degrees of freedom 
guarantees that every base station has room to accommo-
date additional terminals with very high probability.

■ By virtue of the large array gain and the ability to null out 
interference, max-min fairness power control is feasible and 

can be exploited to yield uniform quality of 
service within each cell.

Communications laboratory exercises: 
RF versus acoustic
Laboratory work that uses communications 
over RF in general requires substantial 
equipment investments: the availability of a 
sufficiently interference-free environment 
(alternatively spectrum licenses for experi-
mental operation); the use of high sampling 
rates, which, in turn, generates large quanti-

ties of baseband data; and the access to high-performance 
measurement equipment for calibration and debugging pur-
poses. Owing to precise requirements on the phase reference 
distribution, these difficulties are significantly accentuated 

FIGURE 1. The massive MIMO laboratory setup at Linköping University. (Photo courtesy of Mikael Olofsson.)

Massive multiple-input, 
multiple-output (MIMO)
is currently the most 
compelling wireless 
physical layer technology, 
and a key component  
of fifth-generation
(5G) systems.
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when going from single-antenna to multiple-antenna setups. 
Consequently, experimental activities on massive MIMO are 
concentrated to research-grade test beds that require the 
investment of many person-years to build, and permanent 
engineering staff to maintain—thus inherently unsuitable for 
instructional purposes. Worldwide, only few such test beds, 
operational and under construction, are known [5]–[10].

The basic physics of wave propagation is substantially 
the same for electromagnetic wave propagation and for 
acoustic wave propagation, disregard-
ing polarization aspects. Consequently, 
wireless communications course labora-
tory work may use sound waves instead 
of RF, which for point-to-point commu-
nications requires only a loudspeaker 
as a transmitter and a microphone as a 
receiver. The wavelength of sound in the 
audible regime is comparable to the wave-
length of radio in the gigahertz regime; 
hence, the channel coherence time for 
acoustic communication indoors is suf-
ficiently long to easily permit real-time experimentation 
over a time-invariant channel. Additionally, many phe-
nomena, such as small-scale fading, can be observed with 
an acoustic setup as well. The low bandwidth of audible 
sound results in low sampling rates, modest requirements on 
clock synchronization, and manageable amounts of base-
band data. These features are routinely exploited in many 
university course laboratory exercises.

Teaching MIMO and massive MIMO principles 
in the lab
Laboratory work on point-to-point wireless communications 
is straightforward. In contrast, serious experimentation with 
massive MIMO concepts is a less obvious task, owing to the 
need for many simultaneously operating transceivers and 
the uplink-downlink reciprocity requirement. The experi-
mental setup developed in our course addressed this diffi-
culty as follows:
■ A loudspeaker element natively functions as a sound trans-

mitter when fed with an amplified input signal. It was 
experimentally revealed that oppositely, it also can func-
tion well as a receiver (microphone), by connecting it to a 
high-input-impedance amplifier and measuring the result-
ing signal.

■ A set of off-the-shelf loudspeaker elements was acquired 
and redesigned as follows:
1) the built-in amplifier chain was retained, yielding the 

transmit branch.
2) an amplifier was installed to use the loudspeaker ele-

ment as microphone, yielding the receive branch.
3) a relay that galvanically isolates the transmit and receive 

branches was installed.
The required additional electronics was fitted inside of the 

loudspeaker element casing (Figure 1). The rebuilt loudspeaker 
element, now functioning reciprocally in both the transmit and 

receive directions, is referred to as a transceiver device in 
the following.
■ Fourteen transceiver devices were used to form a base 

station array and two were used to form two independent 
terminals. All devices were connected to a personal com-
puter equipped with multichannel digital-to-analog (D/A) 
and analog-to-digital (A/D) cards. At a 6.25-kHz sam-
pling rate per channel, the aggregate baseband data rate 
from all channels combined equaled 1,200 kilobits/second, 

facilitating real-time processing in a 
MATLAB environment.

For further technical details, see 
“Detailed Description of the Transceiver 
Device Design.” A live demonstration may 
be found at [11].

Promoting a systems view of thinking
University education traditionally is rather 
modularized, consisting of courses with a 
well-defined but often very specific scope. 
In contrast, practicing engineers must be 

able to solve problems by synthesis of knowledge received 
both in formal training and courses, and acquired from experi-
ence. The traditional curriculum in communications is no 
exception: while much time in class is spent on proving capaci-
ty theorems and computing error probabilities, most laboratory 
time (and most engineering efforts) tends to be spent on “mak-
ing it work”: solving practical problems, and integrating com-
ponents together into systems. Formal training and knowledge 
of textbook material is indispensable, but real problem solving 
requires both trial-and-error, and the sourcing of information 
from books, colleagues, and the Internet.

The experimental setup and its development trained students 
in every aspect of communications, ranging from the under-
standing of wave propagation, fundamental massive MIMO 
theory, hands-on design and soldering of electronics, software 
programming, and algorithm design. This substantially took 
the students’ understanding of a “system” from the input-output 
box typically taught in signals-and-systems courses, to a “sys-
tem” meaning a large set of connected, diverse components. 
Answers were not given to the students but had to be sought 
through consultation with faculty and senior graduate students. 
In fact, as the project was previously untested, in many cases 
instructors did not know the answers to all of the questions. A 
minor risk was taken that the course would not work out, in 
which case a backup plan was to only perform certain measure-
ments, so that reporting of a minimum level of requirements for 
the course could be adequately completed.

Providing true teamwork experience 
through a CDIO project
The CDIO concept [3] was developed by the Massachusetts 
Institute of Technology in the United States and Chalmers 
Institute of Technology, Linköping University, and Royal 
Institute of Technology, all in Sweden, in the late 1990s and 
the early 2000s. The initial efforts were supported by the 

Spoofing is accomplished
using fake biometric  
samples expressly
synthesized or
manipulated to
provoke artificially high 
comparator scores.
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Knut and Alice Wallenberg Foundation. 
Since then more than 120 schools and uni-
versities worldwide have joined the CDIO 
initiative. One of the reasons for the prolif-
eration and success of the concept is that it 
profoundly facilitates teamwork training 
for students.

The CDIO framework focuses on the 
teaching of engineering fundamentals from 
the perspective of real-world systems and products. Through 
constant input from students, faculty, and engineers, the con-
cept has evolved over the years. It currently represents the 
state of the art in project course organization in engineering 
schools, preparing the students for the challenges of profes-
sional life in industry.

As one of the founders of the CDIO 
concept, Linköping University has adopted 
and implemented the idea from its incep-
tion. All engineering master’s programs 
include a mandatory CDIO course in the 
curriculum. In collaboration with several 
global companies that have local offices in 
Linköping, notably Ericsson and SAAB, 
a specific project model, Linköping Inter-

active Project Steering (LIPS) [12], has been developed to 
support the project management process. The LIPS model 
introduces a set of documents that the students are required 
to write during the project, as well as a set of milestones and 
tollgates that underpin the planning of the project work. In 
the beginning of the course, students usually express doubts 
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FIGURE 2. Massive MIMO.

The CDIO framework 
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about the necessity of the documentation and the extent of the 
planning required, but most of them usually appreciate the 
LIPS model once the course is finished.

The project team normally consists of four to seven stu-
dents. Generally, these students have not previously worked 
together, and an immediate task at the start of the project is to 

get to know each other and decide on the different roles that 
they will have in the project group. In addition to the crucial 
role of project manager, the group members usually assign a 
person responsible for documentation, quality, testing, design,  
and customer contact, respectively. The project task is deter-
mined in detail by the customer through the definition of a 

The setup consists of a general-purpose computer, digital-to-
analog (D/A) and analog-to-digital (A/D) converter cards, 
modified active loudspeakers, and signal distribution hard-
ware. An overview of this setup is given in Figure S1. 
Sixteen channels are used from each of the A/D- and D/A-
cards (DA12-16 [S1], [S2] and AD12-64 [S3], [S4] from 
Contec), one A/D- and D/A-channel per speaker. The 
speakers are used both as speakers and as microphones. 
We used small active off-the-shelf speakers (Maxxtro 
MX-US-08 [S5]), where the original power amplifiers are 
used as such.

The speakers come in pairs, where one serves as the mas-
ter and contains all the electronics, while the other serves as 
the slave and contains only a speaker element. The master 
speaker was modified to facilitate the selection between two 
modes: either both the master and the slave operate as loud-
speakers, or they operate as microphones. This modification 
is illustrated in Figure S2. On the detection board, relays are 
used to switch between two operation modes: 1) using the 
speaker elements of a loudspeaker pair as transmitters, by 
connecting them to the outputs of the power amplifiers, or 2) 
using the speaker elements as microphones, by connecting 
them to the inputs of the receive chain. This way, the hard-
ware supports half-duplex communication.

The receive chain for a single speaker is essentially a tradi-
tional instrumentation amplifier that usually is built around 
three OP-amps and seven resistors to determine the voltage 
gain, as illustrated in Figure S3. In our implementation 
(Figure S2), we use five OP-amps. The first two OP-amps 
were placed on the circuit board in the master speaker and 

form a differential-in and differential-out amplifier with a lin-
ear voltage gain of 200 (46 dB).

The signal is then sent via a cable to a distribution box 
where signals from all speaker pairs are further amplified 
before they are sent to the A/D-converter card. The signals 
travel differentially from the speakers to the distribution box 
to counteract capacitively coupled noise. The last three 
OP-amps in the detection signal chain were placed on the 
collection board in this distribution box together with the cor-
responding circuits for the other seven speaker pairs. The first 
two of those OP-amps are used as voltage followers, and 
their main task is to remove inductively coupled noise by 
breaking the closed circuit that otherwise would have 
formed. They are also accompanied by Resistor-Capacitor-
links that form first-order high-pass filters to remove any offset 
voltage introduced by the OP-amps in the speaker. These are 
the two extra OP-amps compared to a standard instrumenta-
tion amplifier. The fifth and final OP-amp in this signal chain 
is a differential-in single-ended-out amplifier that provides an 
additional linear voltage gain of 10 (20 dB).

This setup poses special demands on the OP-amps of the 
detection board in the master speaker box. We amplify weak 
signals, which means that we need low-noise amplifiers on 
the detection board. Also, the fairly large initial voltage gain 
(200) demands that the input offset voltage of these first 
OP-amps is low. Finally, these OP-amps must be able to oper-
ate at supply voltage 5 V, since that is what is available in 
the master speaker box. We use MCP6024 I/P [S6], which 
is a quad low-noise OP-amp that accepts supply voltage 
from 2.5 V to 5.5 V and delivers full output swing. Its input 
offset voltage is in the range ±500 μV. With voltage gain 
200, this limits the output offset voltage to be in the range 
±100 mV. The gain-bandwidth product of this OP-amp is 
10 MHz, so with voltage gain 200, we end up with a band-
width of 50 kHz.

The sampling frequency is determined by the A/D- and 
D/A-cards. They operate at a maximum of 100 ksam-
ples/second, which is distributed between the used chan-
nels. Thus, with 16 channels, the sampling frequency 
used is 6,250 samples/second. The bandwidth 50 kHz 
of the analog part of the detection signal chain is there-
fore well sufficient.

While our experience from the particular choice of 
hardware has been positive, future generations of the 
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FIGURE S1. An overview of the setup.

Detailed Description of the Transceiver Device Design
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experimental setup may use other components, in particu-
lar, eliminating the master–slave configuration inherited 
from the choice of the Maxxtro loudspeaker pairs, for 
which there is no natural need in our application.
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FIGURE S2. A schematic of the hardware, illustrating the circuitry for one speaker pair. A1 is the original power amplifier for one speaker. A2 is 1⁄4 
of a TL074 [S7] quad OP-amp. A3 is 1⁄4 of a MCP6024 [S6] quad low-noise OP-amp. Discrete component values: R1 = 1 kΩ, R2 = 10 kΩ, R3 = 
100 kΩ, C = 1 μF.

set of requirements that the final product should fulfill. These 
tasks are usually renegotiated with the project group until a 
final set of requirements is agreed upon, a few weeks after 
the start of the project. The role of the customer is taken by 
a faculty member, and the course director can also assume 
this role. The university also provides support to the students 

in the form of a supervisor (normally a senior Ph.D. student 
or teaching assistant) as well as topic expertise (from other 
junior faculty members and Ph.D. students). Figure 3 depicts 
the various roles and the interactions, with solid lines indicat-
ing formal contacts (documents, official meetings) and dashed 
lines representing informal contacts (advice, meetings). Since 
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the project group members work together continuously, the 
everyday informal contacts between the group members are 
not shown in the figure.

Our general experience is that all students involved in these 
projects have been enthusiastic and have contributed accord-
ingly to their tasks. The group dynamic has varied during the 
years and has been somewhat dependent 
on the interests and ambition levels of the 
participants. Many original ideas from stu-
dents have been implemented. Usually, the 
desired results have been achieved. Since 
the time scope for the course is strictly 
limited to one semester, there is no room 
for delays. This sometimes has resulted in 
products that do not reach full functionality. However, in those 
cases the well-documented work has helped subsequent proj-
ect groups to continue the development and further extend the 
capabilities of the product.

The purpose of our course, in general, is to provide a 
genuine teamwork learning experience in the field of tele-
communications. Building an audio test bed for demonstra-
tion of the massive MIMO concept specifically was a vehicle 
for bringing the research frontiers to the students and has 
ignited their interest for the field, as well as prepared them 
for an industrial career. The combination of hardware and 
software development is a unique aspect of our course. The 
challenges of handling hardware imperfections has stimu-
lated the creative skills of the involved students. Combining 
all of the components and implementing the desired algo-
rithms required solid teamwork and devotion to the task. The 
product created so far has shown useful capabilities and is 
also scalable.

The course project was conducted 
according to a project model, which 
rather precisely defines rules and sup-
port for the students’ work process. This 
helps the students organize their work 
in an efficient manner and make a care-
fully considered system design before 
implementing it. The project thus gives 
the students the opportunity to work in 
a fashion that is similar to how projects 
are conducted in industry.

In this course, we let the students 
work independently, without offering 
any initial pointers on how to solve 
the problem at hand. Instead, we give 
encouragement to invent and research 
potential solutions based on knowledge 
from previous courses, and provide 
access to expert supervisors who can 
answer questions and discuss ideas. 
Our general experience is that students 
are very successful in forming a work-
ing project group, and they enjoy the 
opportunity to design a system mostly 

on their own, learning by acquiring hands-on experience.

Lessons learned and future directions
The experimental acoustic massive MIMO setup that we have 
developed is inexpensive and scalable, and the learning curve 
for the equipment has been appropriate for the course. The 

project has been well-received by students in 
that they can apply their knowledge of com-
munications theory to build a complete work-
ing system from scratch. They appreciate the 
structure of the project in that they get to try 
out their own ideas in solving a complex prob-
lem defined on a relatively high level. They 
also appreciate the access to expertise when 

help is needed. The students have expressed that they enjoy that 
the course gives them a basic understanding of the concept of 
massive MIMO, as an early insight into the main cutting-edge 
technology component of next-generation wireless networks.

Some of the students’ feedback is as follows:
■ We could have been more thorough in the research 

of equipment that was chosen for the course, since there 
were some compatibility issues (drivers for the A/D and 
D/A cards).

■ The system should be expanded with more units to allow 
for a larger scale test system. Sixteen units is borderline 
“massive,” and with 16 units it is difficult to get good 
results with four units as terminals and the remaining 12 
constituting the massive MIMO array. This certainly makes 
for good future projects in the coming years.

■ Many students would like to see how the different parts of a 
communication system go together in real-world systems, 
given more in detail in earlier courses, to be better prepared 

Project Group of Students

Project Manager

Project Members

Customer Contact Responsible

Documentation Leader

Test Manager

Quality Assurance Manager

Main Designer Topic Experts

Supervisor

Customer

Reference Group
(Junior Faculty Members

and Ph.D. Students)

Course Director

Faculty Members

Formal Contact (Official Meetings, Documentation)

Informal Contacts (Meetings, Advice)

FIGURE 3. The roles of the students and faculty members in our implementation of the CDIO project 
course concept.

The purpose of our course, 
in general, is to provide a 
genuine teamwork learning 
experience in the field of 
telecommunications.
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for this kind of task. As in most universities, the majority of 
the regular coursework focuses on “theory,” more than prac-
tical implementation aspects.
According to the students, the most 

important experience from the project was 
to create an actual, complete communication 
system, with real hardware. This enabled 
the students to use much of their knowledge 
from courses, while also encountering the 
problems that are always present with physi-
cal systems and real hardware. Solving these 
kinds of problems is an excellent way for 
the students to enhance their general skills 
in engineering. At the same time, they are 
introduced to the next-generation communication technology.

Another aspect that the students benefit from during the 
project course is the opportunity to work in groups with 
mixed nationalities. Since the course is on the master level, 
typically exchange students from different countries take the 
course, in addition to Swedish engineering students. Thus, 
the students are able to work in a somewhat international 
environment, which is a good preparation for future employ-
ment as engineers.

Taken together, the students appreciated the opportunity 
to work practically with a physical system that implements 
the basic principles of a cutting-edge technology, massive 
MIMO. They also enjoy working in a very structured manner, 
following a project model which sets up a well-defined, logi-
cal framework for their work. This project is still relatively 
new, and leaves continued opportunities for improvements in 
the education and preparation of students for future engineer-
ing work.
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B ig data has become a hot topic dur-
ing the last few years. But at times, 
its meaning has been quite confus-

ing. I hope that through sharing my 
thoughts in this article, we can have a 
better understanding of what big data is.

Whenever you see data, you may 
think that it is related to numbers and 
counting. In fact, today, data is more 
general than numbers. However, when 
data are input in computers, they be-
come bits and/or numbers. 

So, what is big data? When was 
it started? Where will it lead? These 
questions may have different answers 
to different readers. To me, trained in 
mathematics as a signal processing pro-
fessor in an electrical engineering de-
partment, data is quite natural, and so in 
this article, I provide my answers to the 
aforementioned questions.

First of all, what is big data? Unfor-
tunately, there is no precise mathemati-
cal definition for this concept. Big data 
or small data is relative. To see what big 
data is, let us first look at what small 
data is. Each person in my family, which 
consists of four people, eats two apples 
per day. Therefore, my family eats eight 
apples per day. This is small data and is 
accurate. What is next? For example, my 
whole family, including all relatives, eats 
400 apples per day. My neighbor’s whole 
family, including all of their relatives, 
eats 500 apples per day. Then, the total 
number of apples these two families 

eat will be no more than 900 apples per 
day. You might want to ask why it is not 
exactly the sum, i.e., 900, of the 400 and 
500 apples. The reason is that these two 
families may have some members in 
common and some of them from one 
family may be married to another in the 
other family. In this case, the total count 
may not be accurate, but you can have an 
accurate upper bound. Is this small data 
or something else? I would like to think 
of it as mid data. 

Next, it comes to the number of apples 
consumed in the world. How many 
apples do the people 
on the earth eat per 
day? To find out, one 
might say, let us make 
a table of the numbers 
of apples eaten per day 
for every country. It is 
approximately 300 
million for the United 
States, 300  million 
for Japan, etc. Oops, 
how many apples do 
the people eat in North 
Korea per day? Unfor-
tunately, there is no trustworthy data avail-
able. So, what do we do? Can we still count 
the numbers of apples consumed per day 
for the whole world? No, but we may use 
some colors to mark the levels of the num-
bers for all of the countries on a map. In this 
case, I would consider it big data, i.e., it is so 
big that no one can even estimate its volume 
but can only get some high-level indices.

In mathematics, there are mainly 
three subjects: algebra, e.g., high school 

algebra and abstract algebra; analysis, 
e.g., real analysis and functional analysis; 
and topology and geometry, e.g., alge-
braic topology and differential geometry. 
In my opinion, all of these subjects are 
about counting and calculation, which is, 
of course, all that mathematics is about. 
In algebra, you can count exactly. In 
analysis, you may not be able to count 
exactly but roughly or just estimate. You 
might want to ask, where are probability 
and statistics? They belong to analysis 
since they belong to measure theory, 
which belongs to real analysis. In topol-

ogy, you are not able 
to count the whole 
thing, but one still 
wants to count. In 
this case, what can 
be done? You can 
think of the whole 
thing as consisting 
of several pieces and 
then just count for the 
number of pieces. The 
real question is: what 
is a piece, and what is 
topology and geom-

etry about? It is a kind of index that you 
may get in the limiting case. If I am asked 
to make an analogy between mathematics 
and data classification, I would say that 
algebra corresponds to small data, analy-
sis corresponds to mid data, and topology/
geometry corresponds to big data.

Small data and algebra
As discussed previously, mathematics 
is about counting and calculation. In Date of publication: 11 January 2017

Digital Object Identifier 10.1109/MSP.2016.2607319

Small Data, Mid Data, and Big Data Versus 
Algebra, Analysis, and Topology

In mathematics, there are 
mainly three subjects: 
algebra, e.g., high school 
algebra and abstract 
algebra; analysis, 
e.g., real analysis and 
functional analysis; and 
topology and geometry, 
e.g., algebraic topology 
and differential geometry. 
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fact, calculation is a type of counting. In 
many calculations, finding the solutions 
of equations is always one of the most 
important tasks. Among finding the 
solutions of equations, finding the roots 
of polynomials is probably the most 
important. The fundamental theorem 
of algebra tells us that any nonconstant 
single-variable polynomial has at least 
one complex root, which means that any 
single-variable polynomial equation can 
be solved with possibly complex num-
bers as solutions/roots. We know that 
roots of a polynomial of a degree lower 
than five have closed forms in terms 
of the coefficients of the polynomial. 
However, for a polynomial of a degree 
of five or higher, its roots may not have 
closed forms in terms of its coefficients, 
which was first mathematically proven 
by Galois and is, therefore, called the 
Galois theory. To do so, Galois invented 
the concepts of group, ring, and field, 
which led to modern mathematics. The 
smallest field is the binary field {0, 1}, 
and the largest is the complex field C 
that is the set of all complex numbers. 
The reason why C is the largest field is 
because every polynomial equation over 
the complex field can be solved already 
by the fundamental theorem of alge-
bra. There are many kinds of subfields 
and extended fields, such as algebraic 
number fields, by including, e.g., some 
roots of unity, i.e., ( ),exp 2 j/mr-  for 
some positive integer m, in the middle 
of {0, 1} and C. After the complex field, 
mathematicians generalized C to qua-
ternionic numbers that form, in fact, a 
domain as well as octonionic numbers. 

For example, a quaternionic number 
can be equivalently written as

,
x
y

y
x- ) )c m

where x  and y  are two complex num-
bers. With these generalizations, mathe-
maticians found that the most important 
property from all of these structures is 
the norm identity

x y x y: := (1)

for any two elements x  and y  in the 
domain of interest, where the dot stands 
for the multiplication in the domain or 

the real multiplication, and  stands 
for the norm used in the domain. In 
other words, the norm of the product of 
any two elements is equal to the product 
of the norms of the two elements. This 
is clear when x  and y  are two complex 
numbers but is less obvious for other 
cases. A general design satisfying (1), 
as generalizations of complex numbers, 
quaternionic numbers, and octonionic 
numbers, is called compositions of qua-
dratic forms [1]. A , ,k n p6 @ Hermitian 
composition formula is

x x y y

z z

k n

p

1
2 2

1
2 2

1
2 2

g g

g

+ + + +

= + +

^ ^h h

(2)

where | | stands for the absolute value,  
, ,X x xk1 f= ^ h and , ,Y y yn1 f= ^ h

are systems of indeterminates, and 
( , )z z X Yi i=  is a bilinear form of X  and 

.Y  As an example, let k n p 2= = =  and 
, .z x y x y z x y x y1 1 1 2 2 2 1 2 2 1= - = +

This corresponds to the following case. 
The product of the absolute values of 
two complex numbers is equal to the 
absolute value of the product of the two 
complex numbers, i.e., if jx x x1 2= +

and jy y y1 2= +  for real-valued  
, , ,x x y y1 2 1 2  and ,jz z z xy1 2= + =

then .z xy x y= =  More designs 
on the compositions of quadratic forms 
can be found in [2], which has found 
applications as space-time coding in 
wireless communications with multiple 
transmit antennas.

With this in mind, I would say that 
algebra is with the norm identity, where 
you are able to count precisely (the same 
as the first apple example mentioned pre-
viously), where 2 4 8 2 4$ $= =  and  

,500 400 500 400+ = +  when the 
dot sign in (1) is the real multiplication 
and the real addition, respectively. This, 
in my opinion, corresponds to small data.

Mid data and analysis
In most cases, the norm identity (1) does 
not hold. Instead, it is the following 
inequality:

x y x y: :# (3)

for any two elements x  and y  in a set 
called space. This leads to the concept 

of a norm space, i.e., if there is an opera-
tion  on a set that satisfies (3) for any 
two elements x  and y  in the set, this set 
with some additional scaling property 
is called a norm space. It is the key for 
functional analysis or analysis, includ-
ing measure theory and/or probability 
theory and statistics. In this case, in (3), 
the dot sign is the addition +, and (3) 
is correspondingly called the triangular 
inequality. In my opinion, the differ-
ence between algebra and analysis is the 
difference between the norm equality 
and the norm inequality shown in (1) 
and (3), respectively. It is the same as the 
second apple example mentioned previ-
ously, where

{ }

{ }

{ }

{ }

,

400

500

400

500

400 500 900

apples in one family

apples in another family

apples in one family

apples in another family

,

#

+

= + =

where the dot sign in (3) corresponds to 
the union of two sets and the real addi-
tion, respectively. I feel that this corre-
sponds to mid data.

Another observation about the above 
norm inequality is that the dot opera-
tion in (3) for two elements x  and y  can 
be thought of as a general operation as 
we have seen above for different cases 
of the dot sign. The norm inequality (3) 
becomes the triangular inequality when 
the dot is +, as mentioned previously. 
When the dot is a true product of two 
elements, such as the matrix multiplica-
tion of two matrices, the inequality (3) 
is the conventional norm inequality. The 
norm inequality (3) becomes the Cau-
chy–Schwarz inequality when the dot is 
the inner product

( ) ( )

( ) ( ) ,

f t g t dt

f t dt g t dt
/ /

a

b

a

b

a

b2 1 2 2 1 2
# 8 8B B
#

# #
(4)

where the equality holds if, and only 
if, functions ( )f t  and ( )g t  are lin-
early dependent, i.e., ( ) ( )f t cg t=  or  

( ) ( )g t cf t=  for some constant .c  From 
this observation, almost all inequalities 
can be derived from the norm inequality 
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(3). Many fundamental results are 
derived by the Cauchy–Schwarz 
inequality (4), i.e., the norm inequal-
ity. For example, the Cauchy–Schwarz 
inequality leads to the conclusion that 
the optimal linear time-invariant fil-
ter to maximize the output signal-to-
noise ratio is, and only is, the filter that 
matches to the signal, i.e., the matched 
filter. It  has been extensively used in 
radar and communications. Another 
application of the Cauchy–Schwarz 
inequality is the proof of the Heisen-
berg uncertainty principle (HUP). It 
says that the product of the time width 
and the bandwidth is lower bounded 
by one half, and the lower bound is 
reached if, and only if, the signal is 
Gaussian, i.e., ( )expa b t2-  for some 
constant a  and some positive constant 

.b  As a simple consequence of the 
HUP, one is not able to design a signal 
that has an infinitely small time width 
and infinitely small bandwidth simul-
taneously. Otherwise, a person would 
be able to design as many orthogonal 
signals as possible in any finitely lim-
ited area of time and frequency, i.e., it 
would have infinite capacity for com-
munications over any finite bandwidth 
channel. One can see that both results 
have played key roles in science and 
engineering in recent history.

Big data and topology
When a person sees several large 
groups of fish moving in the ocean (see 

h t t p : / /c i r . i n s t i t u t e /c o l l e c t ive -
intelligence) or large groups of birds 
flying in the sky (see http://becausebirds
.com/2014/07/29/how-do-bird-f locks-
work), he or she may not be able to 
count exactly or estimate approxi-
mately how many fish or birds are 
there. One may just 
count how many 
disconnected groups 
of fish. If a person 
treats each group as 
a visible hole of the 
ocean, it is the con-
cept of genus, i.e., 
one of the key concepts in topology, 
where the number of holes (or fish 
groups in this case) in an object (i.e., the 
ocean) is the genus of the object. More 
precisely, the genus of a connected, ori-
entable surface is an integer represent-
ing the maximum number of cuttings 
along nonintersecting, closed simple curves 
without rendering the resultant mani-
fold disconnected [4]. In the aforemen-
tioned definition, cutting is understood as 
the conventional cutting by a knife. Some 
simple examples are shown in Figure 1.
Another simple, but more mathemati-
cal, way to understand it is as follows. 
If any loop (i.e., a simple closed curve) 
on a surface (a solid object, such as a 
solid ball), such as the sphere shown 
in Figure 1(a), can be continuously (on 
the surface or inside the solid object) 
contracted/tightened (also called con-
tinuously transformed) to a point on the 

surface, then the surface has genus 0. 
For the torus shown in Figure 1(b), it is 
impossible to do so because, if one picks 
up a simple loop around the hole, this 
loop cannot be continuously contracted 
to any point on the surface. However, if 
the torus is cut in the middle with one 
cut, as shown in Figure 1(b) [note that 
there are two cuts total shown in Fig-
ure 1(b)], then it is not possible to have a 
loop around any hole; thus, any simple 
loop can be continuously contracted on 
the surface to a point. In this case, the 
torus has genus 1, i.e., one and only one 
cut is used/needed to do so. As shown 
in Figure 1, genus is a topologically 
invariant variable in the sense that 
two shapes may look totally different, 
but they have the same genus, where 
the objects in the first row have zero, 
one, and two holes, and are topologi-
cally equivalent to those in the second 
row, respectively.

A possible application of the afore-
mentioned concept of genus in topology 
would be in the current investigations of 

big data representa-
tion that plays an 
important role in big 
data analysis. One 
efficient way to repre-
sent big data is to use 
a proper tensor [5]. 
When big data is too 

big and its tensor representation is prop-
erly used, it may be treated as a multidi-
mensional massive object. In this case, its 
topological properties, such as genus, may 
become simple but is an important feature.

As we have discussed previously, 
when an object is too complicated or 
too massive, the indices and/or the 
topologically invariant variables such 
as the genus, i.e., the number of holes 
and/or disconnected pieces, come to 
the picture. These topologically invari-
ant variables may be obtained by tak-
ing a limit when some parameters go to 
infinity, which may smooth out all the 
uncertainties or unknowns caused by 
the massiveness and make the calcu-
lations possible. In other words, tak-
ing a limit may simplify the calculation. 
One simple example is the calculation of 
the integration of a Gaussian function. 
For any finite real values a  and b  and 

(b) (c)(a)

FIGURE 1. The genus of an object; (a) genus 0, (b) genus 1, and (c) genus 2.

What is big data? There is 
no precise mathematical 
definition for this concept. 
Big data or small data 
is relative.
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a positive constant , e dtt

a

b 2

a a-#  does 
not have a simple closed form while 

e dtt2

3

3 a-

-
#  does. Another example is 

the diversity and multiplexing tradeoff 
(DMT) obtained by Zheng and Tse 
[3] for multiple-input, multiple-output 
(MIMO) antenna systems in wireless 
communications, which becomes a nec-
essary parameter in 
designing a MIMO 
wireless communi-
cation system. Let
R be the transmis-
sion rate in bits/sec-
ond/hertz. Let r  be 
the normalized rate  

/ ( ),logr R SNR=

where SNR stands for signal-to-noise 
ratio and is the channel SNR. When 
SNR  is huge, one may expect that R  is 
huge as well by Shannon’s channel capac-
ity formula that is about ( ),log SNR  i.e., 
massive data (or big data) can be trans-
mitted through the channel. In this case, 
counting R  may be not possible, while 
counting r  becomes more reasonable, 
where r  is called the multiplexing gain.
Let Pe  be the error probability at the 
receiver of a MIMO modulation scheme 
with transmission rate .R  Let

( )
( )

( )
.lim

log
log

d r
P

SNR
e

SNR
= -

"3
(5)

Then, ( )d r  is the index of the negative 
exponential of the error probability Pe

and called the diversity gain.

,P SNR ( )
e

d r. - (6)

when SNR is large enough. Zheng and 
Tse [3] obtained the following well-
known DMT:

) ( )( ),(d r m r n r= - -

where m  and n are the numbers of trans-
mit and receive antennas, respectively. 

One can see that both 
r  and ( )d r  are sort 
of indices, and they 
are only meaningful 
when SNR approach-
es infinity, i.e., in a 
massive transmission 
rate case or big data 
case. This is the case 

when it is impossible to count one ele-
ment by one element for a massive data, 
and one needs to sort out its index, such as 
exponentials and/or genus, in some way 
to describe and/or extract features from 
the massive/big data. I think this belongs 
to topology in mathematics. Thus, in my 
opinion, topology in mathematics corre-
sponds to big data, where it is impossible 
or not necessary to count one element by 
one element.

Summary and discussion
In summary, I consider that small data 
corresponds to algebra, mid data corre-
sponds to analysis, and big data corre-
sponds to topology in mathematics. Was 
big data started when it was named? 
Of course not. Big data has existed for 
a long time, as massive groups of fish 
move in the ocean, massive groups of 

birds fly in the sky, and/or a massive 
number of people on the ground travel 
around the world. Today, massive bits 
are transmitted through both wired and 
wireless channels called the Internet.
The key is how to get some indices, 
trends, or patterns from these massive 
data and/or how to find a needle in the 
ocean. What will big data lead to tomor-
row? Or, how deep can we go toward 
infinity tomorrow? Or, how fast will a 
computer be tomorrow?
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I consider that small data 
corresponds to algebra, 
mid data corresponds to 
analysis, and big data 
corresponds to topology 
in mathematics.
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Reference [8] in the “SP Education” 
column of the November 2016 issue 
of IEEE Signal Processing Maga-

zine [1] was published missing a URL. 

We apologize for any confusion this may 
have caused. The corrected reference is 
shown in [2]. 
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T
he design of conventional sensors is based primarily on the 
Shannon–Nyquist sampling theorem, which states that a 
signal of bandwidth W Hz is fully determined by its dis-
crete time samples provided the sampling rate exceeds 2 W

samples per second. For discrete time signals, the Shannon–
Nyquist theorem has a very simple interpretation: the number of 
data samples must be at least as large as the dimensionality of 
the signal being sampled and recovered. This important result 
enables signal processing in the discrete time domain without 
any loss of information. However, in an increasing number of 
applications, the Shannon–Nyquist sampling theorem dictates 
an unnecessary and often prohibitively high sampling rate (see 
“What Is the Nyquist Rate of a Video Signal?”). As a motivating 
example, the high resolution of the image sensor hardware in 
modern cameras reflects the large amount of data sensed to cap-
ture an image. A 10-megapixel camera, in effect, takes 

10 million measurements of the scene. Yet, almost immediately 
after acquisition, redundancies in the image are exploited to 
compress the acquired data significantly, often at compression 
ratios of 100:1 for visualization and even higher for detection 
and classification tasks. This example suggests immense wast-
age in the overall design of conventional cameras. 

Compressive sensing (CS) (see “CS 101” and [6], [14], [16],
and [24]) is a powerful sensing paradigm that seeks to allevi-
ate the daunting sampling rate requirements imposed by the 
Shannon–Nyquist principle. CS exploits the inherent structure 
(or redundancy) within the acquired signal to enable sampling 
and reconstruction at sub-Nyquist rates. The signal structure 
most commonly associated with CS is that of sparsity in a 
transform basis. This is the same structure exploited by image 
compression algorithms, which transform images into a basis 
[e.g., using a wavelet or discrete cosine transform (DCT)] 
where they are (approximately) sparse. In a typical scenario, 
a CS still-image camera takes a small number of coded, linear 
measurements of the scene—far fewer measurements than the 

Digital Object Identifier 10.1109/MSP.2016.2602099
Date of publication: 11 January 2017

Richard G. Baraniuk, Tom Goldstein, 
Aswin C. Sankaranarayanan, Christoph Studer, 
Ashok Veeraraghavan, and Michael B. Wakin

Algorithms, architectures, and applications

 Compressive Video Sensing

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


53IEEE SIGNAL PROCESSING MAGAZINE |   January 2017 |

number of pixels being reconstructed. Given these measure-
ments, an image is recovered by searching for the image that 
is sparsest in some transform basis (wavelets, DCT, or other) 
while being consistent with the measurements. 

In essence, CS provides a framework to sense signals with 
far fewer measurements than their ambient dimensionality (i.e., 
Nyquist rate), which translates to practical benefits including 
decreased sensor cost, bandwidth, and time of acquisition. These 
benefits are most compelling for imaging modalities where sens-
ing is expensive; examples include imaging in the nonvisible 
spectrum (where sensors are costly), imaging at high spatial and 
temporal resolutions (where the high bandwidth of sensed data 
requires costly electronics), and medical imaging (where the time 
of acquisition translates to costs or where existing equipment is 
too slow to acquire certain dynamic events). In this context, archi-
tectures like the single-pixel camera (SPC) [27] provide a prom-
ising proof of concept that still images can be acquired using a 
small number of coded measurements with inexpensive sensors.

There are numerous applications where it is desirable to 
extend the CS imaging framework beyond still images to incor-
porate video. After all, motion is ubiquitous in the real world, 
and capturing the dynamics of a scene requires us to go beyond 
static images. A hidden benefit of video is that it offers tremen-
dous opportunities for more dramatic undersampling (the ratio 
of signal dimensionality to measurement dimensionality). That 

is, we can exploit the rich temporal redundancies in a video to 
reconstruct frames from far fewer measurements than is pos-
sible with still images. Yet the demands of video CS in terms 
of the complexity of imaging architectures, signal models, and 
reconstruction algorithms are significantly greater than those of 
compressive still-frame imaging.

There are three major reasons that the design and imple-
mentation of CS video systems are significantly more difficult 
than those of CS still-imaging systems. The first challenge is 
the gap between compression and CS. State-of-the-art video 
models rely on two powerful ideas: first, motion fields enable 
the accurate prediction of image frames by propagating inten-
sities across frames; second, motion fields are inherently more 
compressible than the video itself. This observation has led 
to today’s state-of-the-art video compression algorithms (not 
to be confused with CS of videos) that exploit motion infor-
mation in one of many ways, including block-based motion 
estimation (MPEG-1), per-pixel optical flow (H.265), and 
wavelet lifting (LIMAT). Motion fields enable models that 
can be tuned to the specific video that is being sensed/pro-
cessed. This is a powerful premise that typically provides an 
order of magnitude improvement in video compression over 
image compression.

The use of motion fields for video CS raises an important 
challenge. Unlike the standard video compression problem, 

Conventional videos, sampled at 24–60 frames/second 
(fps), may, in fact, be highly undersampled in time—
objects in the scene can move multiple pixels between 
adjacent frames. Some compressive sensing (CS) architec-
tures, however, measure a video at a much higher tempo-
ral rate. For example, the single-pixel camera (SPC) may 
take tens of thousands of serial measurements per second. 
In such cases, the scene may change very little between 
adjacent measurements. This raises some interesting ques-
tions: what is the Nyquist rate of a video signal, and how 
does it compare to CS measurement rates?

One can gain insight into these questions by considering 
the three-dimensional analog video signal that arrives at a 
camera lens; both conventional and CS imaging systems 
can be viewed as blurring this signal spatially (due to the 
optics and the pixelated sensors) and sampling or measuring 
it digitally. If a video consists of moving objects with sharp 
edges, then the analog video will actually have infinite band-
width in both the spatial and temporal dimensions. However, 
it can be argued that the support of the video’s spectrum will 
tend to be localized into a certain bowtie shape, as shown 
in blue in Figure S1. The salient feature of this shape is that 
high temporal frequencies coincide only with high spatial 
frequencies. Thus, because of the limited spatial resolution of 

both the camera optics and the pixel sensors, when the spa-
tial bandwidth of the video is limited, so too is its temporal 
bandwidth, as illustrated by the black rectangle in the figure. 
This suggests that the video sensed by architectures such as 
the SPC may in fact have a finite temporal bandwidth, and 
this fact can be used to reduce the computational complexity 
of sensing and reconstructing the video. In particular, it is not 
necessary to reconstruct at a rate of thousands of fps. 
Additional details are provided in [62].

What Is the Nyquist Rate of a Video Signal?

Spectral Support
of Analog Video

Temporal Frequency

Spatial Frequency

Spatial
Resolution
of Optics

Temporal
Bandwidth
of Sampled

Video

FIGURE S1. The limited spatial resolution of an imaging system may 
also limit its temporal bandwidth.
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where the frames of the video are explicitly available to per-
form motion estimation, in CS, we have access only to coded 
and undersampled measurements of the video. We are thus 
faced with a chicken-or-egg problem. Given high-quality video 
frames, we could precisely estimate the motion fields; but 
we need precise motion estimates in the first place to obtain 
high-quality video frames. The second challenge is the laws of 
causality and imaging architectures. Time waits for no one. A 
distinguishing property of the video sensing problem over still 
imaging is the fundamental difference between space and time. 
The ephemeral nature of time poses significant limitations on 
the measurement process—clearly, we cannot obtain additional 
measurements of an event after it has occurred. As a conse-
quence, it is entirely possible that a compressive camera does 
not capture a sufficient number of measurements to recover the 
frames of the video. Overcoming this challenge requires both 
an understanding of the spatial-temporal resolution tradeoffs 
associated with video CS and development of novel compressive 

imaging architectures that can deliver very high measurement 
rates or reconstruct at different resolutions depending on the 
available data. The third challenge is computational complex-
ity. Even moderate resolution videos result in high bandwidth 
streaming measurements. Typical CS video recovery algorithms 
are highly nonlinear and often involve expensive iterative opti-
mization routines. Fast (or even real-time) reconstruction of CS 
video is challenging because it requires a data measurement sys-
tem, fast iterative algorithms, and high-performance hardware 
jointly designed to enable sufficiently high throughout.

The goal of this article is to overview the current approach-
es to video CS and demonstrate that significant gains can be 
obtained using carefully designed CS video architectures and 
algorithms. However, these gains can only be realized when 
there is cohesive progress across three distinct fields: video 
models, compressive video sensing architectures, and video 
reconstruction algorithms. This article reviews progress that 
has been made in advancing and bringing these fields together. 

Compressive sensing (CS) exploits the fact that a small and 
carefully selected set of nonadaptive linear measurements of a 
compressible signal, image, or video carries enough informa-
tion for reconstruction and processing [16], [24]; for a tutorial 
treatment see [6], [14].

The traditional digital data acquisition approach uniformly 
samples the three-dimensional analog signal corresponding 
to the time variations of a scene; the resulting samples 

[ , , ]V x y t  in space ( ,x y) and time (t) are sufficient to perfectly 
recover a bandlimited approximation to the scene at the 
Nyquist rate. Let the abstract vector s represent the Nyquist-
rate samples of the scene [ , , ];V x y t  see “What Is the Nyquist 
Rate of a Video Signal?” for a discussion of the Nyquist rate 
of a time-varying scene. Because the number of samples 
required for real-world scenes, ,N  is often very large, for 
example, in the billions for today’s consumer digital video 
cameras, the raw image data is typically reduced via data 
compression methods that typically rely on transform coding.

As an alternative, CS bypasses the Nyquist sampling 
process and directly acquires a compressed signal 
representation using M N1  linear measurements 
between s and a collection of linear codes { [ ]}m m

M
1z =  as 

in [ ] , [ ]y m s mG Hz= . Stacking the measurements [ ]y m  into 
the M -dimensional vector y  and the transpose of the 
codes [ ]m Tz  as rows into an M N#  sensing matrix ,U
we can write .y sU=

The transformation from s to y  is a dimensionality reduction
and does not, in general, preserve information. In particular, 
because ,M N1  there are infinitely many vectors sl that sat-
isfy .y sU= l  The magic of CS is that U can be designed 
such that sparse or compressible signals s can be recovered 
exactly or approximately from the measurements .y   

By sparse, we mean that only K N%  of the entries in s are 
nonzero, or that there exists a sparsifying transform W such 
that most of the coefficients of : sa W=  are zero. By compress-
ible, we mean that s or a  is approximately sparse. Let 

: [ , , ], N
1

1 2f} } }W =-  represent the inverse of the NN #
basis matrix; then, s 1aW= -  and y s 1aU UW= = - .

Typically in CS, the sparse signal s  or its sparse coeffi-
cients a  is recovered by solving an optimization problem 
of the form (1), where f  measures the fidelity of the recov-
ery (e.g., using the squared error y 1

2
2

aUW- - ) and g is 
a regularization penalty (e.g., the 1, -norm ,1a  which 
promotes sparsity of a ). In these cases, the resulting prob-
lem is convex, which guarantees a single global minimizer 
that can be found using a range of algorithms.

While the design of the sensing matrix U is beyond the 
scope of this review, typical CS approaches employ a ran-
dom matrix. For example, we can draw the entries of U as 
independent and identically distributed !1 random vari-
ables from a uniform Bernoulli distribution [8]. Then, the 
measurements y  are merely M different sign-permuted linear 
combinations of the elements of .s  Other choices for U
exist in the literature, such as randomly subsampled Fourier 
or Hadamard bases. In this case, multiplication by U can be 
accomplished using fast transform algorithms, which enables 
faster reconstruction than is possible with random matrices.

It is important to emphasize that CS is not a panacea for 
all the world’s sampling problems [7]. In particular, to 
apply the concept profitably, it is critical that the signal s
possess a lower inherent dimensionality than its ambient 
dimensionality (e.g., sparse structure) and that the degree 
of undersampling /N M  be balanced with respect to the 
signal’s signal-to-noise ratio [22].

CS 101
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We discuss some of the landmark results in video CS and high-
light their key properties and the rich interplay among models, 
architectures, and algorithms that enable them. We also lay out 
a research agenda to attack the key open research problems and 
practical challenges to be resolved in video CS.

Video sensing systems
In this section, we discuss the current compressive imaging 
architectures that have been proposed for CS video. The archi-
tectures can be broken down into three categories (see Table 1).
■ Spatial multiplexing cameras (SMCs): SMCs optically 

superresolve a low-resolution sensor to boost spatial resolu-
tion. SMCs are invaluable in regimes where high-resolution 
sensors are unavailable, as in terahertz/millimeter-wave and 
magnetic resonance imaging (MRI), or extremely costly, 
as in short or medium wavelength infrared (SWIR and 
MWIR) sensing.

■ Temporal multiplexing cameras (TMCs): TMCs optically 
superresolve a low-frame-rate camera to boost temporal 
resolution. TMCs are mainly used to overcome the limita-
tions imposed on the measurement rate by the analog-to-
digital converter (ADC) and are optimized to produce a 
high-frame-rate video at high spatial resolution with low-
frame-rate sensors.

■ Spectral and angular multiplexing cameras (SAMCs):
SAMCs boost resolution in the spectral domain, which 
can be useful for hyperspectral and light-field video sens-
ing. As with TMCs, the bottleneck of these architectures is 
also the measurement rate constraint imposed by the ADC.
Each of these flavors of a CS system aims to break the 

Nyquist barrier to obtain either higher spatial, temporal, or 
spectral resolution. In the following sections we discuss the 
key design considerations and existing implementations of 
these three camera types.

SMCs
SMCs apply CS multiplexing in space to boost the spatial 
resolution of images and videos obtained from sensor arrays 
with low spatial resolution. The use of a low-resolution sen-
sor enables SMCs to operate at wavelengths where corre-
sponding full-frame sensors are too expensive, such as at 
SWIR, MWIR, terahertz, and millimeter wavelengths. SMCs 
employ a spatial light modulator, such as a digital micro-
mirror device (DMD) or liquid crystal on silicon (LCoS), to 
optically compute a series of coded inner products with the 
rasterized scene s; these linear inner products determine 
the rows of the sensing matrix U  (recall the notation from 
“CS 101”). It is worth mentioning that the SMC approach 

Table 1. The key architectures for CS video and their properties. 

Type Name Application Modulator Best-known capabilities Limitations

SMC SPC Infrared 
imaging

DMD Spatial resolution 128 × 128
Time resolution 64 fps 
Result [27]

Operational speed of DMD

LiSens/FPA-CS Infrared 
imaging

DMD Spatial resolution 1,024 × 768
Time resolution 10 fps 
Result [19], [78]

Need for precise optical 
alignment/calibration

TMCs Coded strobing High-speed 
imaging

Mechanical/
ferroelectric shutter

Spatial resolution (sensor)
Time resolution 2,000 fps
Result [75]

Periodic scenes

Flutter shutter High-speed 
imaging

Mechanical/
ferroelectric shutter

Spatial resolution (sensor)
Time resolution 4 × sensor fps
Result [64]

Locally linear motion 

P2C2 High-speed 
imaging

LCoS Spatial resolution (sensor)
Time resolution 16 × sensor fps
Result [65]

Dynamic range of sensor

Per-pixel shutter High-speed 
imaging

LCoS/electronic 
shutter

Spatial resolution (sensor)
Time resolution 16 × sensor fps
Result [39]

Light loss

CACTI High-speed 
imaging

Translating mask Spatial resolution (sensor)
Time resolution 100 × sensor fps
Result [51]

Mechanical motion

Light-field video Dynamic 
refocusing

LCoS, used as
programmable 
coded aperture

Time resolution sensor fps
Result [71]

Loss of spatial resolution can 
be severe for high spectral/
angular resolutions

Hyperspectral 
video

CASSI Spectroscopy Static mask Time resolution sensor fps
Result [76]

fps: frames/second; FPA: focal plane array; P2C2: programmable pixel compressive camera; CACTI: coded aperture compressive temporal imaging; CASSI: coded aperture 
snapshot spectral imaging.
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is equally applicable to modalities outside 
the scope of this article, such as MRI [52],
where the physics of image formation pro-
duces a measurement system that can be 
interpreted as subsampling the Fourier 
transform of the sensed image.

SPC
The SPC [27] acquires images using only a 
single sensor element (i.e., a single pixel) 
and taking significantly fewer multiplexed 
measurements than the number of scene 
pixels. In the SPC, light from the scene is 
focused onto a programmable DMD, which directs light from 
a subset of activated micromirrors onto the single photodetec-
tor. The programmable nature of the DMD’s micromirror ori-
entation enables one to direct light either toward or away from 
the photodetector. As a consequence, the voltage measured at 
the photodetector corresponds to an inner product of the 
image focused on the DMD and the micromirrors directed 
toward the sensor (see Figure 1). Specifically, at time ,t  if the 
DMD pattern is represented by [ ]tz  and the time-varying 
scene by [ , , ]V x y t  (where x  and y  are the two spatial dimen-
sions and t  is the temporal dimension), then the photodetector 
measures a scalar value [ ] [ ], [·, ·, ] [ ]y t t V t e tG Hz= + , where 

·, ·G H denotes the inner product between the vectors and [ ]e t
accounts for the measurement noise. If the scene is static, that 
is, [ , , ] [ , ],V x y t V x y0=  then the measurement vectors can be 
stacked as columns into a measurement matrix, with 

[ , , , ]M
T

1 2 fz z zU = . The SPC leverages the relatively high 
pattern rate of the DMD, which is defined as the number of 
unique micromirror configurations that can be obtained in 
unit time. This pattern rate, typically 10–20 kHz for commer-
cially available devices, defines the measurement bandwidth 
(i.e., the number of measurements per second) and is one of 
the key factors that defines the achievable spatial and tempo-
ral resolutions. Because SPCs rely on the DMD to modulate 

images onto a single sensor, the spatial res-
olution is limited by the density of mirrors 
on the DMD.

Since the proposal of the original SPC in 
[27], numerous authors have developed alter-
native SPC architectures that do not require a 
DMD for spatial light modulation. In [41], a 
liquid-crystal display panel is used for spatial 
light modulation; the use of a transmissive 
light modulator enables a lensless architec-
ture. Sen and Darabi [70] use a camera-pro-
jector system to construct an SPC exploiting 
a concept referred to as dual photography

[69]; the hallmark of this system is its use of active and coded 
illumination that can be beneficial in certain applications, par-
ticularly microscopy.

Beyond SPCs—Multipixel detectors
As mentioned previously, the measurement rate of an SPC 
is limited by the pattern rate of its DMD, which is typically 
in the tens of kilohertz. This measurement rate can be insuf-
ficient for scenes with very high spatial and temporal reso-
lutions. This issue can be combatted using an SMC with 
F  sensor pixels (photodetectors), each capturing light from 
a nonoverlapping region of the DMD. The measurement 
rate of the SMC increases linearly with the number of pho-
todetectors. Taking into account that the maximum mea-
surement rate is capped by the sampling rate of the ADC, 
we can write the measurement rate for an SMC with F   
photodetectors as 

, ,min F R RDMD ADC#" ,
where RDMD  is the pattern rate of the DMD and RADC is the 
sampling rate of the ADC. Hence, the smallest number of pho-
todetectors for which the measurement rate is maximized is

.(minimum number of sensor pixels) /F R Rmin ADC DMD=

DMD

Photodetector

Main Lens 

Relay Lens ,

Image
Focused on

the DMD

A/D

Binary
Pattern on
the DMD 

A/D

FIGURE 1. The operation principle of the SPC. Each measurement corresponds to an inner product between the binary mirror–mirror orientation pattern on 
the DMD and the scene to be acquired. (Figure courtesy of [67].)

Fast (or even real-time) 
reconstruction of CS 
video is challenging 
because it requires a data 
measurement system, 
fast iterative algorithms, 
and high-performance 
hardware jointly designed 
to enable sufficiently
high throughout.
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In essence, at F Fmin= we can obtain the measurement rate of 
a full-frame sensor but using a device with potentially a frac-
tion of the number of photodetectors. This can be invaluable 
for sensing in many wavebands, for example, SWIR.

As a case study, consider an SMC with a DMD pat-
tern rate R 10DMD =  kHz and an ADC with a sampling rate 
R 10ADC =  MHz. Then, for a sensor with ,F 1 000min =  pixels, 
we can acquire 10 million measurements per second. An SPC, in 
comparison, would acquire only 10,000 measurements per sec-
ond. Consequently, multipixel SMCs can acquire videos at sig-
nificantly higher spatial and temporal resolutions than an SPC.

There have been many multipixel extensions to the SPC 
concept. The simplest approach [46] maps the DMD to a 
low-resolution sensor array, as opposed to a single photodetec-
tor, such that each pixel on the sensor observes a nonoverlapping 
patch or a block of micromirrors on the DMD. SMCs based on 
this design have been proposed for sensing in the visible [78],
SWIR [19], and MWIR [54]. Figure 2 shows an example of 
the increased measurement rates offered by the LiSens camera 
[78], which uses a linear array of 1,024 photodetectors. More 

recently, there have also emerged multipixel multiplexing-based 
cameras that completely get rid of the lens and replace the lens 
with a mask and computational reconstruction algorithms [2].

TMCs
TMCs apply CS multiplexing in time to boost the temporal res-
olution of videos obtained from sensor arrays with low tempo-
ral resolution. Again, let [ , , ]V x y t  be a three-dimensional (3-D) 
signal representing a time-varying scene. Due to the assumed 
low frame rate of the sensor, we obtain a scene measurement 
once every T  seconds, where T  is too large. If the SLM has an 
operational speed of one pattern every TSLM seconds, then each 
measurement of a TMC takes the form of a coded image:

[ , , ] [ , , ] [ , , ],y x y t x y j V x y t jT
j

C

0
0

1

0 SLMz= +
=

-

/

where [ , , ]x y jz  is the attenuation pattern on the SLM at spatial 
location ( , )x y  and time jTSLM. Here, each coded image mea-
sured by the TMC multiplexes C frames of the high-speed 
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FIGURE 2. The multipixel SMCs support significantly higher sensing rates than an SPC. (a) The measurement rate as a function of the number of sensor 
pixels. An optimized SMC with Fmin  pixels delivers the highest possible measurement rate. (b) Lab prototypes of the SPC and LiSens cameras, each placed 
on the one arm of a single DMD. The measurement rate of the LiSens camera is nearly 1 MHz, while that of the SPC is 20 kHz. (c) Comparisons between 
LiSens, which uses 1,024 sensor pixels, and an SPC for a static scene. Each row corresponds to a different capture duration, defined as the total amount 
of time that the cameras have for acquiring compressive measurements. The larger measurement rate of the LiSens camera enables it to sense scenes 
with very high spatial resolution even for small capture durations. (Photos courtesy of [78].) 
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video, and hence, we obtain one coded 
image every CTSLM seconds. Our goal is to 
recover the frames of the high-speed video 

[ , , ]V x y kTSLM  from a single or a sequence 
of coded images/measurements.

Global shutters
The simplest instance of a TMC uses a glob-
al shutter together with a conventional cam-
era. In a global shutter, the SLM code 

[ , , ] [ ]x y j jU U=  is spatially invariant, which can be imple-
mented by using a programmable shutter or by using the image 
sensor’s built-in electronic shutter. Veeraraghavan et al. [75]
showed that periodic scenes can be imaged at very high tempo-
ral resolutions using a global shutter [64]. This idea has been 
extended to nonperiodic scenes in [40], where a union-of-sub-
space model was used to temporally superresolve the captured 
scene. However, global shutters are fundamentally limited to 
providing only spatially invariant coding of the video; this can 
be insufficient to provide a rich-enough encoding of a high-
speed video. Hence, in spite of their simplicity, global shutters 
fail for scenes with complex motion patterns.

Per-pixel shutters
Reddy et al. [65] proposed the programmable pixel compressive 
camera (P2C2), which extends the global shutter idea with per-
pixel shuttering. Here, each pixel has its own unique code that is 
typically binary valued and pseudorandom. The P2C2 architec-
ture uses an LCoS SLM placed optically at the sensor plane and 
carefully aligned to a high-resolution two-dimensional (2-D) 
sensor. The P2C2 prototype achieves 16 # temporal superreso-
lution, even for complex motion patterns. Hitomi et al. [39]
extended the P2C2 camera using a per-pixel coding that is more 
amenable to implementation in modern image sensors with per-
pixel electronic shutters. Here, [ , , ] [ ( , )]x y j j j x y0dU = - ; that 
is, each pixel observes the in  tensity at one of the subframes of 
the high-speed video, and the selection of this subframe varies 
spatially. Llull et al. [51] and Koller et al. [47] proposed a TMC 
that achieves temporal multiplexing via a translating mask in 
the sensor plane. This approach avoids the hardware complexity 
involved with DMD and LCoS SLMs and enjoys other benefits, 
including low operational power consumption at the cost of 
having a mechanical component (the translating mask).

Additional TMC designs
Gu et al. [36] used the rolling shutter of a complementary metal–
oxide–semiconductor (CMOS) sensor to enable higher temporal 
resolution. The key idea is to stagger the exposures of each row 
randomly and use image/video models to recover a high-frame-
rate video. Harmany et al. [37] extended coded aperture systems 
by incorporating a global shutter; the resulting TMC provides 
immense flexibility in the choice of the measurement matrix U.

SAMCs
SAMCs apply CS multiplexing to sense variations of light in a 
scene beyond the spatial and temporal dimensions. Two specific 

examples include hyperspectral CS video 
cameras that sense spatial, spectral, and 
temporal variations of light in a scene and 
light-field video cameras that sense spatial, 
angular, and temporal variations. In both 
cases, imaging at high resolution across all 
modalities simultaneously requires that we 
handle both high measurement rates (this is 
typically limited by the ADC sampling rate) 
and low light levels (due to scene light 

being resolved into various modalities). CS techniques, more 
specifically, signal models, can address both bottlenecks. 
Examples of compressive cameras include the coded aperture 
snapshot spectral imaging architecture [76] and compressive 
hyperspectral imaging using spectrometers [50] for spectral 
multiplexing and the work of Marwah et al. [58] and Tambe 
et al. [71] for angular multiplexing.

Models for video structure
Recovering a video from compressive linear measurements 
requires one to extract the video signal s  from the measure-
ments y sU=  (recall “CS 101”). Here, s  might represent a 
certain block of pixels, an entire video frame, or an ensemble 
of frames, depending on the sensing architecture and the spe-
cific recovery algorithm employed. All of these are functions 
of the underlying time-varying scene [ , , ]V x y t . Because the 
number of measurements M  is less than the video signal’s 
ambient dimensionality ,N  infinitely many vectors sl may sat-
isfy .y sU= l  Hence, to recover s  from y, a model that cap-
tures the scene structure (or a priori information) of s  with a 
small number of degrees of freedom is required; the model can 
then be included in the recovery algorithm. This section sur-
veys several popular models for characterizing low-dimension-
al structure in videos.

Single-frame structure
The structure of a single video frame can be characterized 
using standard models for conventional 2-D images. Natural 
images have been shown to exhibit sparse representations in 
the 2-D DCT, 2-D wavelet, and curvelet domains [15], [56].
Images have also been shown to have sparse gradients. The 
total variation (TV) seminorm promotes such gradient spar-
sity simply by minimizing the 1,  norm of an image’s 2-D 
gradient [52]. To fully exploit the structure in a 3-D video, 
one needs to characterize the spatial and temporal dimen-
sions simultaneously, rather than reconstructing each frame 
independently and only accounting for spatial structure. 
Hence, the spatial 2-D regularizers described previously 
often appear as building blocks of more sophisticated 3-D 
video models.

Sparse innovation models
One of the simplest possible models accounting for multi-
frame structure assumes that a video can be reduced into a 
static and a dynamic component. This model—while restric-
tive—is applicable, for example, in surveillance applications, 

SMCs apply CS
multiplexing in space 
to boost the spatial 
resolution of images
and videos obtained from 
sensor arrays with
low spatial resolution. 
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where a scene is observed from a distant 
static camera. We can decompose each 
frame of such a video into a static back-
ground frame and a number of small 
(sparse) foreground objects that may 
change location from frame to frame. A 
natural way of modeling such structure is 
to assume that the differences between 
consecutive frames have a sparse represen-
tation in some transform basis. That is, for 
two consecutive video frames [ , , ]V x y t1  and [ , , ]V x y t2 , one 
may assume that the difference frame [ , , ] [ , , ]V x y t V x y t2 1-

has a sparse representation in a basis such as a 2-D wavelet 
basis. Such models have been explored in detail in the con-
text of CS [17], [57], [74] and can be viewed as special cases 
of the more advanced motion-compensation techniques 
described below.

Low-rank matrix models
An alternative approach to scene modeling involves reorganiz-
ing a 3-D video signal into a 2-D matrix, where each column 
of the matrix contains a rasterized ordering of the pixels of one 
video frame. A variety of popular concise models for matrix 
structure can then be interpreted as models for video structure. 
One of the most prominent models asserts that the matrix is 
low rank; this is equivalent to assuming that the columns of the 
data matrix live in a common, low-dimensional subspace. In 
the context of video modeling, a seminal result by Basri and 
Jacobs [9] showed that collections of images of a Lambertian 
object under varying lighting often cluster close to a nine-
dimensional subspace. This property can be useful for model-
ing videos of stationary scenes where the illumination 
conditions change over time.

To account for both variations in background illumination 
and for sparse foreground objects that move with time, one can 
extend the low-rank matrix model to a low-rank-plus-sparse 
model [79], [80]. A sparse matrix, added to the original low-
rank matrix, accounts for sparse foreground innovations, such 
as small moving objects. Again, such models are particularly 
suitable for surveillance applications.

TV minimization and sparse dictionaries
Sparsifying transforms such as wavelets, curvelets, and the 
DCT have natural extensions to 3-D [56], [77], [82] and can be 
employed for jointly reconstructing an ensemble of video 
frames. TV minimization can also be extended to 3-D [35], [49];
minimizing the 3-D TV seminorm of a video promotes frames 
with sparse gradients across spatial and temporal dimensions.

It is also possible to learn specialized (possibly overcom-
plete) bases that enable sparse representations of patches, 
frames, and videos from training data. A variety of so-called 
dictionary learning algorithms have been proposed that learn 
sparsifying frames W  (see, e.g., [1] and “CS 101”). Dictionary 
learning algorithms can be used not only to generate diction-
aries that sparsify images but also to sparsify videos in both 
the spatial and temporal dimensions. This approach has been 

successfully employed for CS video recon-
struction in [39].

Linear dynamical systems
Linear dynamical systems (LDSs) model 
the dynamics in a video using linear sub-
space models. Such models have been 
used extensively in the context of activity 
analysis and dynamic textures. Video CS 
using LDS reduces to the estimation of the 

LDS parameters, including the observation matrix and the 
state transition matrix, from compressive measurements. 
Approaches for parameter estimation have included recur-
sive [73] as well as batch methods [66]. Furthermore, [66]
demonstrates the use of the recovered LDS parameters for 
activity classification.

Motion compensation
While regularizers such as 3-D wavelets and 3-D TV minimi-
zation can be used for CS video reconstruction, it is worth not-
ing that conventional video compression algorithms (such as 
H.264) do not employ such simple techniques. Rather, 
because objects in a video may move (or translate) several 
pixels between adjacent frames, it is typical to employ block-
based motion compensation and prediction, where each video 
frame is partitioned into blocks, the location of each block is 
predicted in the next frame, and only the residual of this pre-
diction is encoded.

Some CS video architectures may require reconstructions 
of video sequences with high temporal frame rates. In these 
cases, there may be relatively little object motion between 
consecutive frames. Consequently, motion compensation may 
not be required, and techniques such as 3-D TV may result in 
high-quality scene recovery.

In other cases, however, it may be necessary to predict and 
compensate for the motion of objects between consecutive 
frames. This presents an interesting chicken-or-egg problem: 
motion compensation can help in reconstructing a video, but 
the motion predictions themselves cannot be made until (at 
least part of) the video is reconstructed. One iterative, multi-
scale technique has been proposed [62] that alternates between 
motion estimation and video reconstruction: the recovered 
video at coarse scales (low spatial resolution) is used to esti-
mate motion, which is then used to boost the recovery at finer 
scales (high spatial resolution). Given the estimated motion 
vectors, a motion-compensated 3-D wavelet transform can be 
defined using the LIMAT technique [68]. Another approach 
initially reconstructs frames individually, estimates the motion 
between the frames, and then attempts to reconstruct any resid-
ual not accounted for by the motion prediction [30]; see also  
[45] for a related technique. The logistics of block-based video 
sensing and reconstruction are discussed in detail in [30].

Optical flow
A more general approach to motion compensation involves the 
optical flow field. Given two frames of a video, [ , , ]V x y t1  and 

One of the simplest 
possible models 
accounting for multiframe 
structure assumes that
a video can be reduced 
into a static and a
dynamic component.
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[ , , ]V x y t2 , optical flow refers to the flow field { ( , ), ( , )}u x y v x y
such that [ ( , ), ( , ), ]V x u x y y v x y t1+ + = [ , , ]V x y t2 . Optical flow 
enables one to represent the frames of a video using a small 
collection of key frames plus optical flow fields that synthesize 
(extrapolate) the video from the key frames. Optical flow fields 
are often significantly more compressible than images. Such an 
approach is closely related to the block-based motion compen-
sation models described earlier but is distinguished by its 
explicit attempt to model motion on a per-pixel basis.

A key challenge in the use of optical flow models for video 
CS is—once again—that, in the context of sensing, we do 
not have access to the flow fields nor do we have access to 
high-quality images from which to estimate the flow fields. 
Reddy et al. [65] resolve this chicken-or-egg problem by first 
recovering a video with simple image-based priors, estimat-
ing the optical flow field on the initial reconstruction, and 
subsequently recovering the video again while simultaneously 
enforcing the brightness constancy constraints derived using 
optical flow. They show that a 30-frames/second (fps) sensor 
can be superresolved to a 240–480-fps sensor by temporal 
modulation using an LCoS device. In the context of SMCs, 
Sankaranarayanan et al. [67] use a specialized dual-scale sens-
ing (DSS) matrix that provides robust and computationally 
inexpensive initial scene estimates at a lower spatial resolution. 
This enables this approach to robustly estimate optical flow 
fields on a low-resolution video. Optical flow-based video CS 
has also been applied for the dynamic MRI problem, where 
carefully selected Fourier measurements provide robust initial 
scene estimates [3]. The concept of DSS sensing matrices has 
been improved recently by the sum-to-one (STOne) transform 
[35], which enables the fast recovery of low-resolution scene 
estimates at multiple resolutions.

Video recovery techniques
While the mathematical formulations of video CS recovery 
problems resemble other canonical sparse recovery problems, 
three important factors set video recovery apart from other 
types of sparse coding. First, video recovery problems are 
extremely large and have high memory requirements. 
Methods for high-resolution video recovery must scale to hun-
dreds of millions of unknowns. Second, sparse representations 
of videos with complex structures may contain tens of thou-
sands (or more) of nonzero entries. Consequently, algorithm 
implementations that require large dense matrix systems are 
intractable, and methods must exploit fast transforms. Third, 
high-quality video recovery often involves noninvertible spar-
sity transforms, and so reconstruction methods that handle 
cosparsity models are desirable. Some recovery problems 
require more sophisticated (or unstructured) models, such as 
optical flow constraints, that cannot be handled efficiently by 
simple algorithms. All of these factors impact algorithm per-
formance on different reconstruction applications.

This section overviews the range of existing recovery tech-
niques and investigates the tradeoffs between reconstruction 
quality and computational complexity. For simplicity, we focus 
on two categories of reconstruction methods, variational and 

greedy. Note that there are algorithms that do not fit well into 
these categories (such as iterative hard thresholding [12], which 
has features of both); a discussion of such methods is beyond 
the scope of this article.

Variational methods
Variational methods for CS video recovery perform scene 
reconstruction by solving optimization problems using itera-
tive algorithms. Most variational methods suitable for high-
dimensional problems can be classified into two categories, 
constrained and unconstrained, as detailed next.

Constrained problems
The first category solves constrained problems of the form

,s z
( | ) ( )  .argmins f s y g z z ssubject toU W= + =t (1)

Here, the function f  models the video acquisition process 
(optics, modulation, and sampling), and g  is a regularizer that 
promotes sparsity under the transformation defined by W .
For example, basic frame-by-frame recovery with 2-D wavelet 
sparsity can be formulated as an unconstrained problem with 

( )f s y y s 2
2U U= -  and ( )g z z 1c= , where s  contains a 

vectorized image frame, U is the sensing matrix, W  is a 2-D 
wavelet transform, and 02c  is a regularization parameter. 
Under a TV scene model, the matrix W  is a discrete gradient 
operator that computes differences between adjacent pixels. 
3-D TV video recovery can be achieved by stacking multiple 
vectorized video frames into s  and defining W  to be the 3-D 
discrete gradient across both spatial dimensions and time. 
Optical flow constraints can be included by forming a sparse 
matrix W  that differences pixels in one frame with pixels that 
lie along its flow trajectory in other frames.

It can be shown that the solution to (1) corresponds to a 
saddle point of the so-called augmented Lagrangian function

( , , ) ( ) ( ) ,s z f s y g z z s
2

L 2
2m

b
mU W= + + - - (2)

where m  is a vector of Lagrange multipliers. Constrained 
problems of the form (1) for CS video can be solved efficient-
ly using the alternating direction method of multipliers 
(ADMM) [13], [28], [31] or the primal-dual hybrid gradient 
(PDHG) method [18], [29]. The ADMM and PDHG methods 
alternate between minimization steps for s  and z  and maxi-
mization steps for m  until convergence is reached. Such meth-
ods have the key advantage that they enable the inclusion of 
powerful, noninvertible video models such as 3-D TV or opti-
cal flow. This advantage, however, comes at the cost of higher 
memory requirements and somewhat more complicated itera-
tions. To improve the convergence rates of solvers for con-
strained problems, accelerated algorithm variants have been 
developed [18], [32], [33].

Unconstrained problems
If the sparsity transform W  is invertible, then the constraint in 
(1) can be removed by replacing the vector s  with .z1W-  This 
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leads to the second category of recovery methods that solve 
unconstrained problems of the following simpler form:

z
( ) ( ) .argminz f z y g zU= +t t (3)

Here, the matrix 1U UW= -t  and z  contains the representation of 
a single frame or the entire video in the sparsity transform domain. 
For example, in the case of wavelet sparsity, solving (3) recovers 
the video’s wavelet coefficients; the final video is obtained by 
applying the inverse wavelet transform to the solution.

Unconstrained problems of the form (3) can be solved 
efficiently using forward–backward splitting (FBS) [20],
fast iterative shrinkage/thresholding (FISTA) [10], fast adap-
tive shrinkage/thresholding algorithm (FASTA) [34], sparse 
reconstruction by separable approximation (SpaRSA) [81], or 
approximate message passing (AMP) [25], [55]. FBS is the 
most basic variant for solving unconstrained problems and 
performs the following two steps for the iterations , ,k 1 2 f=

until reaching convergence:

( | )z z f z y*k k k k1 dx U U= ++t t t  and (4)

z
( ) ,argminz g z z z

2
1k k1 1

2
2

= + -+ +t (5)

where { }kx  is some step size sequence. FBS finds a global 
minimum of the objective function (3) by alternating between 
the explicit gradient-descent step (4) in the function f  and the 
proximal (or implicit gradient) step (5) in the function .g
The key operations of the gradient step (4) are matrix–vector 
multiplications with Ut  and .*Ut  These multiplications can be 
carried out efficiently when Ut  is a composition of fast trans-
forms, such as subsampled Hadamard/Fourier matrices and 
wavelet or DCT operators. When g  is a simple sparsity-pro-
moting regularizer, such as the 1,  norm, the proximal step (5) 
is easy to compute in closed form using wavelet shrinkage. 
The computational complexity of FBS can be reduced signifi-
cantly using adaptive step-size rules for selecting { }kx , accel-
eration schemes, restart rules, momentum (or memory) terms, 
and so forth, as is the case for FISTA, FASTA, SpaRSA, and 
AMP. See the review article [34] for more details.

Greedy pursuit algorithms
Greedy pursuit algorithms are generally used for uncon-
strained problems and iteratively construct a sparse set of 
nonzero transform coefficients. Each iteration begins by 
identifying a candidate sparsity pattern for the unknown vec-
tor z. Then, a least-squares problem is solved to minimize 

z y 2
2

U -t , where z  is constrained to have the prescribed 
sparsity pattern.

Existing greedy pursuit algorithms can be classified into 
sequential greedy pursuit algorithms and parallel greedy pur-
suit algorithms. Sequential methods include orthogonal match-
ing pursuit (OMP), regularized OMP (ROMP), and stagewise 
OMP (StOMP) [26], [61], [72]. These methods successively 
add more and more indices to the support set until a maximum 
sparsity K is reached. Parallel methods, such as compressive 

sampling matching pursuit (CoSaMP) and subspace pursuit 
[21], [60], constantly maintain a full support set of K nonzero 
entries but add strong and replace weak entries in an iterative 
fashion. Parallel greedy pursuit algorithms have the advantage 
that they can enforce structured models on the support set, 
such as a wavelet tree structure [5].

The main drawbacks of greedy algorithms, however, are 
that 1) they are typically unable to handle noninvertible spar-
sity transforms used for video reconstruction such as TV, opti-
cal flow, or overcomplete wavelet frames; 2) accurate solutions 
are guaranteed only when the measurement operator satisfies 
stringent conditions (such as the restricted isometry property or 
similar incoherence conditions [60], [72]); and 3) they require 
solving large linear systems on every iteration. For small num-
bers of unknowns (<10,000), the factorization of these systems 
can be explicitly represented and updated cheaply using rank-
one updates. For the large video CS problems considered here, 
iterative (conjugate gradient) methods are recommended. These 
methods require only matrix multiplications (which can exploit 
fast transforms) and have lower memory requirements because 
they do not require the storage of large and dense matrices.

Reconstruction quality versus computational complexity
There are many choices to make when building a compressive 
video pipeline, including measurement operators, video mod-
els, and reconstruction algorithms. Most reconstruction algo-
rithms are restricted as to what measurement operators and 
sparsity models they can support. To achieve the best perfor-
mance, the reconstruction algorithms, video models, and data 
acquisition pipelines must be designed jointly; this implies 
that there are tradeoffs to be made among reconstruction 
speed, algorithm simplicity, and video quality.

The classical approach to CS video recovery is to search for 
the video that is compatible with the observed measurements 
while being as sparse as possible in the wavelet domain. When 
an invertible wavelet transform is used, the reconstruction 
problem can be transformed into an unconstrained problem of 
the form (3), which can be solved efficiently using variational 
methods such as FBS. If we further assume that the wavelet 
transform is orthogonal, then we can use off-the-shelf greedy 
pursuit algorithms, such as CoSaMP. Unfortunately, while 
unconstrained optimization is simple to implement and highly 
efficient, wavelet-based scene priors generally result in lower 
reconstruction quality than noninvertible/redundant sparsity 
models like TV. For this reason, we are often interested in con-
strained solvers that interface with TV-based video models and 
optical flow constraints.

To examine the associated performance/complexity trad-
eoffs, we compare a variety of reconstruction methods using 
the same measurement operator. A stream of 65,536 STOne 
measurements [35] was acquired from a 256 × 256 pixel 
video having 16 frames. Videos were reconstructed separately 
using various models and solvers that were implemented in 
MATLAB. We consider unconstrained recovery using CoS-
aMP and FBS, which are restricted to using invertible regular-
izers. In the wavelet case, we consider 1) 2-D frame-by-frame 
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recovery that does not exploit correlations across time, and 
2) 3-D wavelet recovery that performs a 3-D wavelet transform 
across space and time. We also consider sparsity under the 
3-D DCT, which is invertible and enjoys extensive use in 
image and video compression. We furthermore consider solv-
ers for constrained problems that handle more sophisticated 
sparsity models. In particular, we compare 3-D TV models 
with PDHG and optical flow constraints with ADMM (as in 
CS-MUVI [67]). As a baseline, we perform CS video recovery 
without scene priors by simply computing ,yTU  the product 
of the adjoint of the measurement operator with the vector 
of measurements. Because the measurement operator is a 
subsampled orthogonal matrix, this corresponds to a least-
squares recovery using the pseudoinverse. All experiments 
are carried out on an off-the-shelf laptop with 16 GB memory 
and a 2.6 GHz i5 central processing unit (CPU) with two 
physical cores (no parallelism was used for reconstruction).

Sample frames from our experiments together with the 
required runtime are shown in Figure 3. We observe that TV 
regularization and optical flow models dramatically outperform 
wavelet-based recovery in terms of video quality. Furthermore, 
3-D models lead to significantly improved image quality with 
fewer artifacts than 2-D models, despite the fact that both recon-
structions see the same amount of data. This demonstrates the 

efficacy of exploiting correlations across time. The key advantage 
of 2-D models is that they enable parallel frame-by-frame recon-
struction, for example, by dispatching different recovery prob-
lems on separate CPU cores. Finally, we see that for these types of 
large-scale reconstruction problems, variational methods require 
substantially lower runtimes than greedy pursuit algorithms. The 
CoSaMP result in Figure 3 is for frame-by-frame reconstructions 
with a sparsity level of K 256=  nonzero wavelet coefficients 
per image. CoSaMP’s runtime increases dramatically for larger 
K or when 3-D regularizers are used. This is because each itera-
tion requires the solution to a large least-squares problem using 
multiple iterative (conjugate gradient) steps. Hence, such greedy 
pursuit algorithms turn out to be efficient only for highly sparse 
signals and not for general CS video problems.

Perspectives and open research questions
The video CS problem has spawned a growing body of 
research that spans signal representations and models, com-
putational sensing architectures, and efficient optimization 
techniques. This has led to a vibrant ecosystem of methodol-
ogies that have transitioned the theoretical ideas of CS into 
concrete application-specific concepts. We conclude by 
highlighting some of the important open questions and 
future research directions.

Original Video
2-D Wavelet (CoSaMP)

752 Seconds
2-D Wavelet (FBS)

45 Seconds
3-D DCT (FBS)
332 Seconds

Adjoint
0.001 Second

3-D Wavelet (FBS)
134 Seconds

Optical Flow (SPGL1)
415 Seconds

3-D TV (PDHG)
29 Seconds

FIGURE 3. A CS video recovery comparison with different video models. For each model, we recover a 16-frame video with 256 # 256 pixel resolution 
from 216  STOne transform measurements, corresponding to a 16:1 compression ratio. Sparsity models include 2-D (across space) and 3-D (across 
space and time) wavelet sparsity using the Haar wavelet, the 3-D DCT, optical flow constraints, and 3-D TV. For each experiment, we also provide the 
total runtime for recovering 16 frames.
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Real-time CS video recovery with today’s hardware
High-quality CS video recovery requires complex algorithms 
that include powerful video models. While offline video 
recovery is always feasible, reconstruction using more sophis-
ticated scene models (e.g., using optical flow) can easily take 
several seconds to minutes even for only a few low-resolution 
frames. As a consequence, applications that necessitate real-
time video recovery face extreme implementation challenges. 
From our experiments in Figure 3, we see that even the fastest 
algorithms with basic video models are more than 20 # to 
200 # below real time when executed in MATLAB on 
off-the-shelf CPUs.

Quite surprisingly, when counting the number of floating-
point operations (FLOPs) required for the main transforms of 
these methods, we observe that real-time CS video recovery 
with variational methods is within reach of existing hardware. 
In fact, variational-based scene recovery of a 256 × 256 pixel 
scene at 12 fps requires only about 20 GFLOPs, which is well 
below that of programmable processing hardware, such as 
CPUs, graphics-processing units (GPUs), and field-program-
mable gate arrays (FPGAs) that achieve peak throughputs 
of a few TFLOPs. Similarly, existing application specific 
integrated circuit (ASIC) designs that target CS recovery 
problems [11], [53] are able to solve variational problems 
with more than 200 GOPS (the computations are typically 
carried out with fixed-point arithmetic instead of floating 
point) using low silicon area and low power when imple-
mented in modern CMOS technology nodes. In Figure 4,
we compare the complexity versus the resolution of vari-
ous CS video recovery methods. One can observe that even 
higher resolutions like 1080p HD are feasible in real time 
with computationally efficient algorithms. Nevertheless, no 
real-time CS video recovery implementation has been pro-
posed in the open literature, which can mainly be attributed 
to the lack of highly optimized and massively parallel CS 
video recovery pipelines for programmable hardware (CPUs, 
GPUs, or FPGAs) as well as dedicated integrated circuits 
(ASICs). This is definitely a fruitful area for future work.

Compressive inference rather than recovery
The main results of CS are directed toward providing novel 
sampling theorems that determine the feasibility of signal 
reconstruction from an underdetermined set of linear measure-
ments. However, reconstruction is often not the eventual goal 
in most applications, which range from detection and classifi-
cation to tracking and parameter estimation. While these tasks 
can all be performed postreconstruction (on the output of a 
reconstruction procedure), there are important benefits to be 
gained by performing them directly on the compressive mea-
surements. First, tasks like detection, classification, and track-
ing are inherently simpler than reconstruction—hence, there is 
hope that we can perform them with fewer measurements. 
Second, CS reconstruction is intrinsically tied to the signal 
models used for the unknown signal, and these signal models 
prioritize features that deal with visual perception, which often 
is not the most relevant for the subsequent processing tasks. 

Third, as previously discussed at length, CS reconstruction 
algorithms have high computational complexity, and hence 
avoiding a reconstruction step in the overall processing pipe-
line can be beneficial.

There has been some limited work on inference from 
linear compressive measurements. Davenport et al. [23]
perform compressive classification and detection by using a 
matched filter in the compressive domain. Their key obser-
vation is that random projections preserve distances as well 
as inner products between sparse vectors; thus, inference 
tasks like hypothesis testing and certain filtering opera-
tions can be performed directly in the compressive domain. 
Hegde et al. [38] show that manifold learning (or nonlinear 
dimensionality reduction) can be performed just as well on 
the compressive measurements as on the original data, pro-
vided the data arises from a manifold with certain smooth-
ness properties. Sankaranarayanan et al. [66] demonstrate 
that for time-varying systems well approximated as linear 
dynamical systems, the parameters of the dynamical sys-
tem can be directly estimated given compressive measure-
ments. Recently, Kulkarni and Turaga [44] proposed a novel 
method based on recurrence textures for action recognition 
from compressive cameras especially for self-similar fea-
ture sequences [43]. Apart from these early attempts, there 
is very little in the literature exploring high-level inference 
from compressive imagers.
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FIGURE 4. The complexity (in FLOPs per pixel) versus resolution (in pixels 
per second) for greedy algorithms, variational methods, and optical-flow 
models for the video scene in Figure 3. Variational methods (including 
3-D TV and 3-D/2-D wavelets) require the lowest complexity and enable 
real-time CS video recovery with existing hardware (the diagonal dotted 
line shows the FLOPs limit of current reprogrammable hardware). Optical 
flow models exceed the capabilities of current hardware and require the 
development of more efficient computational methods and faster process-
ing architectures.
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A major hurdle to successful compressive inference in the 
video context is the mismatch between part-based models, used 
in computer vision, and global random embeddings, the corner-
stone of the CS theory. Part-based models have had remarkable 
success over the past decade in object detection and classifica-
tion problems. The key enabler of part-based inference is a local 
feature description that helps isolate objects from background 
clutter and provides robustness against object variations. How-
ever, the conventional CS measurements are dense random 
projections that are not conducive to local feature extraction 
without reconstructing the signal first. Hence, there is an urgent 
need for CS measurement operator designs that enable local 
feature extraction.

From measurements to bits—Toward nonlinear  
sensing architectures
One of the important distinctions between video CS and video 
compression is the nature of representing the compressed data. 
Compression aims to reduce the number of bits used to repre-
sent the video. In contrast, CS measurements are typically rep-
resented in terms of real values with infinite (or arbitrarily 
large) precision; here, the number of actual measurements is 
the criterion to reduce/optimize. The focus on reducing the 
number of measurements is often misplaced in many sensing 
scenarios; for example, in high-speed video CS, the bottleneck 
is solely due to the operating speed of the ADC, whose perfor-
mance is measured in the number of bits acquired per second. 
Hence, compressively sensing while respecting the bottlenecks 
imposed by the ADC sampling frequency requires us to con-
sider measurements in terms of bits. While there has been 
some effort in the area of 1-bit CS [4], [42], [63] and the trad-
eoff between measurement bits and measurement rate [48],
this aspect is still largely unexplored in literature. In particular, 
there is a need for new kinds of nonlinear sensing architectures 
that optimize system performance in the context of the practi-
cal realities of sensing (quantization, saturation, etc.). Some 
initial progress in this direction for CS has been made in [59],
but the area remains wide open for research.

Acknowledgments
We thank David Robert Jones for his invaluable suggestions 
and Doug Jones for the JAM. Richard G. Baraniuk was sup-
ported by National Science Foundation (NSF) grants CCF-
1527501 and CCF-1502875, Defense Advanced Research 
Projects Agency (DARPA) Revolutionary Enhancement of 
Visibility by Exploiting Active Light-fields grant HR0011-
16-C-0028, and Office of Naval Research (ONR) grant 
N00014-15-1-2735. Tom Goldstein was supported by NSF 
grant CCF-1535902 and ONR grant N00014-15-1-2676. Aswin 
C. Sankaranarayanan was supported by NSF grant IIS-1618823 
and Army Research Office grant W911NF-16-1-0441. 
Christoph Studer was supported in part by Xilinx Inc. and by 
NSF grants ECCS-1408006 and CCF-1535897. Ashok 
Veeraraghavan was supported by NSF grant CCF-1527501. 
Michael B. Wakin was supported by NSF CAREER grant CCF-
1149225 and grant CCF-1409258.

Authors
Richard G. Baraniuk (richb@rice.edu) received his B.S. 
degree from the University of Manitoba, Canada, in 1987; 
his M.S. degree from the University of Wisconsin-Madison 
in 1988; and his Ph.D. degree from the University of 
Illinois at Urbana-Champaign in 1992. He is the Victor E. 
Cameron Professor of Electrical and Computer Engineering 
at Rice University, Houston, Texas, and the founder and 
director of OpenStax (openstax.org). His research interests 
include new theory, algorithms, and hardware for sensing, 
signal processing, and machine learning. He is a Fellow of 
the IEEE and the American Association for the 
Advancement of Science and has received national young 
investigator awards from the National Science Foundation 
and the Office of Naval Research; the Rosenbaum 
Fellowship from the Isaac Newton Institute of Cambridge 
University, United Kingdom; the Electrical and Computer 
Engineering Young Alumni Achievement Award from the 
University of Illinois at Urbana–Champaign; the IEEE 
Signal Processing Society Best Paper, Best Column, 
Education, and Technical Achievement Awards; and the 
IEEE James H. Mulligan, Jr. Medal.

Tom Goldstein (tomg@cs.umd.edu) received his B.A. 
degree in mathematics from Washington University, St. 
Louis, Missouri, in 2006 and his Ph.D. degree in mathematics 
from the University of California, Los Angeles, in 2010. He 
has been a visiting research scientist with Stanford 
University, California, and Rice University, Houston, Texas. 
He is currently an assistant professor of computer science at 
the University of Maryland, College Park. His research inter-
ests include numerical optimization, distributed computing, 
image processing, and machine learning.

Aswin C. Sankaranarayanan (saswin@andrew.cmu.edu)
received his B.S. degree in electrical engineering from the 
Indian Institute of Technology, Madras, in 2003 and his Ph.D. 
degree from the University of Maryland, College Park, where 
he was awarded the distinguished dissertation fellowship by 
the Department of Electrical and Computer Engineering (ECE) 
in 2009. He was a postdoctoral researcher in the Digital Signal 
Processing group at Rice University, Houston, Texas. He is 
currently an assistant professor in the ECE Department at 
Carnegie Mellon University, Pittsburgh, Pennsylvania. His 
research encompasses problems in compressive sensing and 
computational imaging. He has received best paper awards at 
the Computer Vision and Pattern Recognition Workshops on 
Computational Cameras and Displays (2015) and Analysis and 
Modeling of Faces and Gestures (2010).

Christoph Studer (studer@cornell.edu) received his M.S. 
and Ph.D. degrees from ETH Zurich, Switzerland, in 2005 and 
2009, respectively. He has been a postdoctoral student and 
research scientist at ETH Zurich and Rice University, Houston, 
Texas, and is currently an assistant professor in the School of 
Electrical and Computer Engineering, Cornell University, 
Ithaca, New York. His research interests are at the intersection 
of digital VLSI circuit and system design, signal and image 
processing, and wireless communication.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

____________

________________

____________

__________

________

mailto:richb@rice.edu
http://www.openstax.org
mailto:tomg@cs.umd.edu
mailto:saswin@andrew.cmu.edu
mailto:studer@cornell.edu
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


65IEEE SIGNAL PROCESSING MAGAZINE |   January 2017 |

Ashok Veeraraghavan (vashok@rice.edu) received his 
B.S. degree in electrical engineering from the Indian Institute 
of Technology, Madras, in 2002 and his M.S. and Ph.D. 
degrees from the Department of Electrical and Computer 
Engineering, University of Maryland, College Park, in 2004 
and 2008, respectively. He is an assistant professor of electri-
cal and computer engineering at Rice University, Houston, 
Texas, where he directs the Computational Imaging and 
Vision Lab. His research interests are broadly in the areas of 
computational imaging, computer vision, and robotics. 
Before joining Rice University, he spent three years as a 
research scientist at Mitsubishi Electric Research Labs in 
Cambridge, Massachusetts. His work has received numerous 
awards, including the doctoral dissertation award from the 
Department of Electrical and Computer Engineering at the 
University of Maryland, the Hershel M. Rich Invention 
Award from Rice University, and the Best Poster Runner-Up 
Award from the 2014 International Conference on 
Computational Photography.

Michael B. Wakin (mwakin@mines.edu) received his 
B.S. degree in electrical engineering and his B.A. degree in 
mathematics in 2000, his M.S. degree in electrical engineer-
ing in 2002, and his Ph.D. degree in electrical engineering 
in 2007 from Rice University, Houston, Texas. He is the 
Ben L. Fryrear associate professor in the Department of 
Electrical Engineering and Computer Science at the 
Colorado School of Mines (CSM), Golden. He was a 
National Science Foundation (NSF) mathematical sciences 
postdoctoral research fellow at the California Institute of 
Technology, Pasadena, in 2006–2007 and an assistant pro-
fessor at the University of Michigan, Ann Arbor, in 2007–
2008. His research interests include sparse, geometric, and 
manifold-based models for signal processing and compres-
sive sensing. He has received the NSF CAREER Award, the 
Defense Advanced Research Projects Agency Young Faculty 
Award, and the CSM Excellence in Research Award for his 
research as a junior faculty member.

References
[1] M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: An algorithm for designing 
overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process.,
vol. 54, no. 11, pp. 4311–4322, 2006.

[2] M. S. Asif, A. Ayremlou, A. Sankaranarayanan, A. Veeraraghavan, and R. 
Baraniuk, “Flatcam: Thin, lensless cameras using coded aperture and computation,”
IEEE Trans. Comput. Imag., to be published. DOI: 10.1109/TCI.2016.2593662

[3] M. S. Asif, L. Hamilton, M. Brummer, and J. Romberg, “Motion-adaptive spa-
tio-temporal regularization for accelerated dynamic MRI,” Magn. Reson. Medicine, 
vol. 70, no. 3, pp. 800–812, 2013.

[4] R. Baraniuk, S. Foucart, D. Needell, Y. Plan, and M. Wootters, “Exponential 
decay of reconstruction error from binary measurements of sparse signals,” arXiv 
preprint arXiv:1407.8246, 2014.

[5] R. G. Baraniuk, “Optimal tree approximation with wavelets,” Proc. SPIE, vol. 
3813, pp. 196–207, 1999.

[6] R. G. Baraniuk, “Compressive sensing,” IEEE Signal Process. Mag., vol. 24, 
no. 4, pp. 118–121, 2007.

[7] R. G. Baraniuk. (2015). Compressive nonsensing, Norbert Weiner Lecture, Univ. 
of Maryland. [Online]. Available: http://www.norbertwiener.umd.edu/
FFT/2015/15-TAs/baraniuk.html

[8] R. G. Baraniuk, M. Davenport, R. DeVore, and M. Wakin. “A simple proof of 
the restricted isometry property for random matrices,” Constr. Approx., vol. 28, no. 
3, pp. 253–263, Dec. 2008.

[9] R. Basri and D. W. Jacobs, “Lambertian reflectance and linear subspaces,” IEEE 
Trans. Pattern Anal. Mach. Intell., vol. 25, no. 2, pp. 218–233, 2003.

[10] A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total 
variation image denoising and deblurring problems,” IEEE Trans. Image Process., 
vol. 18, no. 11, pp. 2419–2434, 2009.

[11] D. E. Bellasi, L. Bettini, C. Benkeser, T. Burger, Q. Huang, and C. Studer, 
“VLSI design of a monolithic compressive-sensing wideband analog-to-informa-
tion converter,” IEEE Trans. Emerg. Sel. Topics Circuits Syst., vol. 3, no. 4, pp. 
552–565, 2013.

[12] T. Blumensath and M. E. Davies, “Iterative hard thresholding for compressed 
sensing,” Appl. Comput. Harmon. Anal., vol. 27, no. 3, pp. 265–274, 2009.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers,”
Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122, 2011.

[14] E. Candès and M. Wakin, “An introduction to compressive sampling,” IEEE 
Signal Process. Mag., vol. 25, no. 2, pp. 21–30, Mar. 2008.

[15] E. J. Candès and D. L. Donoho, “New tight frames of curvelets and optimal 
representations of objects with piecewise c2 singularities,” Commun. Pure Appl. 
Math., vol. 57, no. 2, pp. 219–266, 2004.

[16] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: Exact 
signal reconstruction from highly incomplete frequency information,” IEEE Trans. 
Inf. Theory, vol. 52, no. 2, pp. 489–509, Feb. 2006.

[17] V. Cevher, A. C. Sankaranarayanan, M. F. Duarte, D. Reddy, R. G. Baraniuk, 
and R. Chellappa, “Compressive sensing for background subtraction,” in Proc. 
European Conf. Computer Vision, Marseille, France, 2008, pp. 155–168.

[18] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex 
problems with applications to imaging,” J. Mathematical Imaging Vision, vol. 40, 
no. 1, pp. 120–145, 2011.

[19] H. Chen, S. Asif, A. C. Sankaranarayanan, and A. Veeraraghavan, “FPA-CS: 
Focal plane array-based compressive imaging in short-wave infrared,” in Proc. 
IEEE Conf. Computer Vision and Pattern Recognition, Boston, MA, 2015,
pp. 2358–2366.

[20] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal pro-
cessing,” in Fixed-Point Algorithms for Inverse Problems in Science and 
Engineering. New York: Springer-Verlag, 2011, pp. 185–212.

[21] W. Dai and O. Milenkovic, “Subspace pursuit for compressive sensing recon-
struction,” IEEE Trans. Inf. Theory, vol. 55, no. 5, pp. 2230–2249, 2009.

[22] M. Davenport, J. Laska, J. R. Treichler, and R. G. Baraniuk, “The pros and 
cons of compressive sensing for wideband signal acquisition: Noise folding versus 
dynamic range,” IEEE Trans. Signal Process., vol. 60, no. 9, pp. 4628–4642,
2012.

[23] M. A. Davenport, P. T. Boufounos, M. B. Wakin, and R. G. Baraniuk, “Signal 
processing with compressive measurements,” IEEE J. Sel. Topics Signal Process., 
vol. 4, no. 2, pp. 445–460, 2010.

[24] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4,
pp. 1289–1306, Apr. 2006.

[25] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for 
compressed sensing,” Proc. Natl. Acad. Sci. U.S.A., vol. 106, no. 45, pp. 18914–
18919, 2009.

[26] D. L. Donoho, Y. Tsaig, I. Drori, and J.-L. Starck, “Sparse solution of underde-
termined systems of linear equations by stagewise orthogonal matching pursuit,”
IEEE Trans. Inf. Theory, vol. 58, no. 2, pp. 1094–1121, 2012.

[27] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly,
and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal 
Process. Mag., vol. 25, no. 2, pp. 83–91, Mar. 2008.

[28] J. Eckstein and D. P. Bertsekas, “On the Douglas–Rachford splitting method 
and the proximal point algorithm for maximal monotone operators,” Mathematical 
Programming, vol. 55, nos. 1–3, pp. 293–318, 1992.

[29] E. Esser, X. Zhang, and T. F. Chan, “A general framework for a class of first 
order primal-dual algorithms for convex optimization in imaging science,” SIAM J. 
Imag. Sci., vol. 3, no. 4, pp. 1015–1046, 2010.

[30] J. E. Fowler, S. Mun, E. W. Tramel, M. R. Gupta, Y. Chen, T. Wiegand, and H. 
Schwarz, “Block-based compressed sensing of images and video,” Found. Trends 
Signal Processing, vol. 4, no. 4, pp. 297–416, 2010.

[31] R. Glowinski and P. Le Tallec, Augmented Lagrangian and Operator-Splitting 
Methods in Nonlinear Mechanics. Philadelphia, PA: SIAM, 1989.

[32] T. Goldstein, M. Li, and X. Yuan, “Adaptive primal-dual splitting methods for 
statistical learning and image processing,” in Advances in Neural Information 
Processing Systems 28, C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, R. Garnett,
and R. Garnett, Eds. Red Hook, NY: Curran Associates, Inc., 2015, pp. 2080–2088.

[33] T. Goldstein, B. O’Donoghue, S. Setzer, and R. Baraniuk, “Fast alternating direc-
tion optimization methods,” SIAM J. Imag. Sci., vol. 7, no. 3, pp. 1588–1623, 2014.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

___________

_____________

___________________
________________

mailto:vashok@rice.edu
mailto:mwakin@mines.edu
http://www.norbertwiener.umd.edu/FFT/2015/15-TAs/baraniuk.html
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


66 IEEE SIGNAL PROCESSING MAGAZINE |   January 2017 |

[34] T. Goldstein, C. Studer, and R. Baraniuk, “A field guide to forward–backward 
splitting with a fasta implementation,” arXiv preprint arXiv:1411.3406, 2014.

[35] T. Goldstein, L. Xu, K. F. Kelly, and R. G. Baraniuk, “The STOne transform: 
Multi-resolution image enhancement and real-time compressive video,” arXiv pre-
print arXiv:1311.3405, 2013.

[36] J. Gu, Y. Hitomi, T. Mitsunaga, and S. Nayar, “Coded rolling shutter photogra-
phy: Flexible space-time sampling,” in Proc. 2010 IEEE Int. Conf. Computational 
Photography, Cambridge, MA, pp. 1–8.

[37] Z. T. Harmany, R. F. Marcia, and R. M. Willett, “Compressive coded aperture 
keyed exposure imaging with optical flow reconstruction,” arXiv preprint 
arXiv:1306.6281, 2013.

[38] C. Hegde, M. Wakin, and R. Baraniuk, “Random projections for manifold 
learning,” in Proc. 22nd Annu. Conf. Neural Information Processing Systems,
Vancouver, Canada, 2008, pp. 641–648.

[39] Y. Hitomi, J. Gu, M. Gupta, T. Mitsunaga, and S. K. Nayar, “Video from a sin-
gle coded exposure photograph using a learned over-complete dictionary,” in Proc. 
2011 Int. Conf. Computer Vision, Barcelona, Spain, pp. 287–294.

[40] J. Holloway, A. C. Sankaranarayanan, A. Veeraraghavan, and S. Tambe, 
“Flutter shutter video camera for compressive sensing of videos,” in Proc. 2012 
IEEE Int. Conf. Computational Photography, Seattle, WA, pp. 1–9.

[41] G. Huang, H. Jiang, K. Matthews, and P. Wilford, “Lenless imaging by com-
pressive sensing,” in Proc. Int. Conf. Image Processing, Melbourne, Australia,
2013, pp. 2101–2105.

[42] L. Jacques, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk, “Robust 1-bit 
compressive sensing via binary stable embeddings of sparse vectors,” IEEE Trans. 
Inf. Theory, vol. 59, no. 4, pp. 2082–2102, 2013.

[43] I. Junejo, E. Dexter, I. Laptev, and P. Perez, “View-independent action recogni-
tion from temporal self-similarities,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 
33, no. 1, pp. 172 –185, 2011.

[44] K. Kulkarni and P. Turaga, “Recurrence textures for activity recognition using 
compressive cameras,” in Proc. 2012 19th IEEE Int. Conf. Image Processing, Lake 
Buena Vista, FL, pp. 1417–1420.

[45] L.-W. Kang and C.-S. Lu, “Distributed compressive video sensing,” in Proc. 
IEEE Int. Conf. Acoustics, Speech and Signal Processing, Taiwan, China, 2009, 
pp. 1169–1172.

[46] K. Kelly, R. Baraniuk, L. McMackin, R. Bridge, S. Chatterjee, and T. Weston, 
“Decreasing image acquisition time for compressive imaging devices,” U.S. Patent 
8,860,835, Oct. 14, 2014.

[47] R. Koller, L. Schmid, N. Matsuda, T. Niederberger, L. Spinoulas, O. 
Cossairt, G. Schuster, and A. K. Katsaggelos, “High spatio-temporal resolution 
video with compressed sensing,” Opt. Express, vol. 23, no. 12, pp. 15992–16007,
2015.

[48] J. Laska and R. G. Baraniuk, “Regime change: Bit-depth versus measurement-
rate in compressive sensing,” IEEE Trans. Signal Process., vol. 60, no. 7, pp. 3496–
3505, 2012.

[49] Y. Le Montagner, E. Angelini, and J.-C. Olivo-Marin, “Video reconstruction 
using compressed sensing measurements and 3d total variation regularization for 
bio-imaging applications,” in Proc. 2012 19th IEEE Int. Conf. Image Processing,
Lake Buena Vista, FL, pp. 917–920.

[50] C. Li, T. Sun, K. F. Kelly, and Y. Zhang, “A compressive sensing and unmixing 
scheme for hyperspectral data processing,” IEEE Trans. Image Process., vol. 21, no. 
3, pp. 1200–1210, 2012.

[51] P. Llull, X. Liao, X. Yuan, J. Yang, D. Kittle, L. Carin, G. Sapiro, and D. J. 
Brady, “Coded aperture compressive temporal imaging,” Opt. exp., vol. 21, no. 9,
pp. 10526–10545, 2013.

[52] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing 
MRI,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72–82, 2008.

[53] P. Maechler, C. Studer, D. E. Bellasi, A. Maleki, A. Burg, N. Felber, H. 
Kaeslin, and R. G. Baraniuk, “VLSI design of approximate message passing for 
signal restoration and compressive sensing,” IEEE J. Emerg. Sel. Topics Circuits 
Syst., vol. 2, no. 3, pp. 579–590, 2012.

[54] A. Mahalanobis, R. Shilling, R. Murphy, an d R. Muise, “Recent results of 
medium wave infrared compressive sensing,” Appl. Opt., vol. 53, no. 34, pp. 8060–
8070, 2014.

[55] M. A. Maleki, “Approximate message passing algorithms for compressed sens-
ing,” Ph.D. dissertation, Stanford Univ., Stanford, CA, 2010.

[56] S. Mallat, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed. New 
York: Academic Press, 2008.

[57] R. Marcia and R. M. Willett, “Compressive coded aperture video reconstruc-
tion,” in Proc. 2008 16th European Signal Processing Conf., Lausanne, 
Switzerland, pp. 1–5.

[58] K. Marwah, G. Wetzstein, Y. Bando, and R. Raskar, “Compressive light field 
photography using overcomplete dictionaries and optimized projections,” ACM 
Trans. Graph., vol. 32, no. 4, p. 46, 2013.

[59] A. Mousavi, A. Patel, and R. G. Baraniuk, “A deep learning approach to struc-
tured signal recovery,” in Proc. 53rd Annu. Allerton Conf. Communication, 
Control, and Computing, Monticello, IL, 2015.

[60] D. Needell and J. A. Tropp, “CoSaMP: Iterative signal recovery from incom-
plete and inaccurate samples,”. Appl. Comput. Harmon. Anal., vol. 26, no. 3, pp. 
301–321, Aug. 2009.

[61] D. Needell and R. Vershynin, “Uniform uncertainty principle and signal recov-
ery via regularized orthogonal matching pursuit,” Found. Comp. Math., vol. 9, no. 
3, pp. 317–334, 2009.

[62] J. Y. Park and M. B. Wakin, “Multiscale algorithm for reconstructing videos 
from streaming compressive measurements,” J. Electronic Imaging, vol. 22, no. 2,
p. 021001, 2013.

[63] R. Saab, R. Wang, and O. Yilmaz, “From compressed sensing to compressed 
bit-streams: Practical encoders, tractable decoders,” arXiv preprint 
arXiv:1604.00700, 2016.

[64] R. Raskar, A. Agrawal, and J. Tumblin, “Coded exposure photography: Motion 
deblurring using fluttered shutter,” ACM Trans. Graph., vol. 25, no. 3, pp. 795–804,
2006.

[65] D. Reddy, A. Veeraraghavan, and R. Chellappa, “P2C2: Programmable pixel 
compressive camera for high speed imaging,” in Proc. 2011 IEEE Conf. Computer 
Vision and Pattern Recognition, Colorado Springs, CO, pp. 329–336.

[66] A. C. Sankaranarayanan, P. K. Turaga, R. Chellappa, and R. G. Baraniuk, 
“Compressive acquisition of linear dynamical systems,” SIAM J. Imag. Sci., vol 6,
no. 4, pp. 2109–2133, 2013.

[67] A. C. Sankaranarayanan, L. Xu, C. Studer, Y. Li, K. F. Kelly, and R. G. 
Baraniuk, “Video compressive sensing for spatial multiplexing cameras using 
motion-flow models,” SIAM J. Imag. Sci., vol. 8, no. 3, pp. 1489–1518, 2015.

[68] A. Secker and D. Taubman, “Lifting-based invertible motion adaptive trans-
form (LIMAT) framework for highly scalable video compression,” IEEE Trans. 
Image Process., vol. 12, no. 12, pp. 1530–1542, 2003.

[69] P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. 
Lensch, “Dual photography,” ACM Trans. Graph., vol. 24, no. 3, pp. 745–755, 2005.

[70] P. Sen and S. Darabi, “Compressive dual photography,” Comput. Graphics 
Forum, vol. 28, no. 2, pp. 609–618, 2009.

[71] S. Tambe, A. Veeraraghavan, and A. Agrawal, “Towards motion aware light 
field video for dynamic scenes,” in Proc. 2013 Int. Conf. Computer Vision, Sydney, 
Australia, pp. 1009–1016.

[72] J. Tropp et al., “Greed is good: Algorithmic results for sparse approximation,”
IEEE Trans. Inf. Theory, vol. 50, no. 10, pp. 2231–2242, 2004.

[73] N. Vaswani, “Kalman filtered compressed sensing,” in Proc. 15th IEEE Int. 
Conf. Image Processing, San Diego, CA, 2008, pp. 893–896.

[74] N. Vaswani and W. Lu, “Modified-cs: Modifying compressive sensing for 
problems with partially known support,” IEEE Trans. Signal Process., vol. 58, no. 
9, pp. 4595–4607, 2010.

[75] A. Veeraraghavan, D. Reddy, and R. Raskar, “Coded strobing photography: 
Compressive sensing of high speed periodic events,” IEEE Trans. Pattern Anal. 
Mach. Intell., 33(4):671–686, Apr. 2011.

[76] A. Wagadarikar, R. John, R. Willett, and D. Brady, “Single disperser design 
for coded aperture snapshot spectral imaging,” Appl. Opt., vol. 47, no. 10, pp. 
44–51, 2008.

[77] M. Wakin, J. Laska, M. Duarte, D. Baron, S. Sarvotham, D. Takhar, K. Kelly, 
and R. G. Baraniuk, “Compressive imaging for video representation and coding,” in 
Proc. Picture Coding Symposium, Beijing, China, 2006.

[78] J. Wang, M. Gupta, and A. C. Sankaranarayanan, “LiSens—a scalable archi-
tecture for video compressive sensing,” in Proc. 2015 IEEE Int. Conf. 
Computational Photography, Houston, TX, pp. 1–9.

[79] A. E. Waters, A. C. Sankaranarayanan, and R. G. Baraniuk, “SpaRCS: 
Recovering low-rank and sparse matrices from compressive measurements,” in Proc. 
Neural Information Processing Systems, Granada, Spain, 2011, pp. 1089–1097.

[80] J. Wright, A. Ganesh, K. Min, and Y. Ma, “Compressive principal component 
pursuit,” Information and Inference, vol. 2, no. 1, pp. 32–68, 2013.

[81] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, “Sparse reconstruction 
by separable approximation,” IEEE Trans. Signal Process., vol. 57, no. 7,
pp. 2479–2493, 2009.

[82] L. Ying, L. Demanet, and E. Candes, “3D discrete curvelet transform,” Proc. 
SPIE, vol. 5914, p. 591413, 2005.

SP

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


67IEEE SIGNAL PROCESSING MAGAZINE | January 2017 |1053-5888/17©2017IEEE

e have long envisioned that one day computers will 
understand natural language and anticipate what we 
need, when and where we need it, and proactively 
complete tasks on our behalf. As computers get small-

er and more pervasive, how humans interact with them is 
becoming a crucial issue. Despite numerous attempts over the 
past 30 years to make language understanding (LU) an effec-
tive and robust natural user interface for computer interaction, 
success has been limited and scoped to applications that were 
not particularly central to everyday use. However, speech rec-
ognition and machine learning have continued to be refined, 

and structured data served by applications and content provid-
ers has emerged. These advances, along with increased com-
putational power, have broadened the application of natural 
LU to a wide spectrum of everyday tasks that are central to a 
user’s productivity. We believe that as computers become 
smaller and more ubiquitous [e.g., wearables and Internet of 
Things (IoT)], and the number of applications increases, both 
system-initiated and user-initiated task completion across vari-
ous applications and web services will become indispensable 
for personal life management and work productivity. In this 
article, we give an overview of personal digital assistants 
(PDAs); describe the system architecture, key components, 
and technology behind them; and discuss their future 
potential to fully redefine human–computer interaction.

Ruhi Sarikaya
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Introduction
We are living in the mobile Internet computing cycle. During 
the past decade, mobile devices have experienced unprece-
dented growth. According to Statista [65], there are currently 
more than 4.6 billion mobile phone users in the world, and 
the number is expected to grow even more moving forward. 
With this phenomenal increase in volume came technical 
sophistication and improved capabilities of mobile devices 
(both on the hardware and software sides), particularly 
around applications and web services where users can com-
plete a wide array of tasks. As the need and expectation to do 
more grew, despite improvements, a limited natural user 
interface has remained as one of the major bottlenecks in 
interacting with these devices. PDAs (also known as virtual 
assistants) precisely target this problem and have the promise 
of enhancing a user’s productivity by either proactively pro-
viding the information the user needs in the right context 
(i.e., time and place) or reactively answering a user’s ques-
tions and completing tasks through natural language. Tasks 
can be related to device functionality, 
applications, or web services.

Research on PDA technology, how-
ever, started much earlier than the 
emergence of mobile devices. Over the 
last 20 years, researchers have investi-
gated personalized virtual assistant agents 
targeting specific domains, including 
tourism, elder care, device control, and 
home and office applications [1]–[5]. 
However, attempts at bringing them to 
market earlier have failed because of 
their limited utility.

Over the past five years, there has 
been tremendous investment in PDA 
technology by both small and big tech-
nology companies. Siri [17], [66], Google Now [67], Cor-
tana [68], and Alexa [69] are the major personal assistants 
in the market today, and they provide proactive and/or reac-
tive assistance to the user. Proactive assistance refers to the 
agent taking an action to assist the user without the user’s 
explicit request. Reactive assistance refers to the agent 
responding to the user’s voice or typed command to assist 
him or her. The number of smartphone users using PDAs 
increased from 30% in 2013 to 65% in 2015 [70], indicating 
increased adoption.

PDAs have become a key capability in most smartphones. 
They are now also deployed in tablets, laptops, desktop PCs, 
and headless devices (e.g., Amazon Echo), and some are also 
even integrated into operating systems. These agents are 
designed to be personal; they know their user’s profile, where-
abouts, schedules, and so forth. They can proactively start 
interactions with their user through notifications and system-
initiated questions or reactively respond to user requests. User–
PDA interactions typically take place via natural language, 
where the user speaks to the agent as if he or she were speaking 
to a real human assistant.

PDAs

What is a PDA?
A PDA is a metalayer of intelligence that sits on top of other 
services and applications and performs actions using these ser-
vices and applications to fulfill the user’s intent. A user’s intent 
could be explicit, where the user commands the system to per-
form an action, or it could be inferred, where the agent notifies 
or makes suggestions upon evaluation of one or more trigger-
ing conditions it has been tracking. PDAs make use of some 
core set of technologies, such as machine learning, speech rec-
ognition, LU, question answering (QA), dialog management 
(DM), language generation (LG), text-to-speech (TTS) synthe-
sis, data mining, analytics, inference, and personalization.

Why do we need PDAs?
PDAs are built to help the user get things done (e.g., setting up 
an alarm/reminder/meeting, taking notes, creating lists) and pro-
vide easy access to personal/external structured data, web ser-

vices, and applications (e.g., finding the 
user’s documents, locating a place, making 
reservations, playing music). They also 
assist the user in his or her daily schedule 
and routine by serving notifications and 
alerts based on contextual information, 
such as time, user location, and feeds/infor-
mation produced by various web services, 
given the user’s interests (e.g., commute 
alerts to/from work, meeting reminders, 
concert suggestions). Collectively, these 
functionalities are expected to make the 
user more productive in managing his or 
her work and personal life.

For example, airline travel is a com-
monly supported scenario by most PDAs. 

If the user has booked a flight and received a confirmation 
e-mail along with an itinerary, the PDA scans the e-mail, 
extracts the flight information, and stores it on the service. On the 
day of travel, the PDA computes the user’s current location using 
the global positioning system (GPS) on the device, checks the 
traffic conditions to the airport, and tells the user when to leave 
for the airport. It also checks the flight status and updates the 
user if there is a delay, using a flight card as shown in Figure 1.
Additionally, it provides weather forecasts for the destination as 
well as currency conversion rates. Typically, a user has to use 
multiple applications to go through each of these steps to find out 
the needed information that is listed on the cards for the travel. 
None of these atomic steps is significant in isolation, but stitch-
ing them together can potentially mark a breakthrough in use-
fulness to the user. This is the key promise of PDAs.

What is personal about PDAs?
PDAs are expected to be personal. Ideally, the PDA is expect-
ed to know who its user is, what its user does, its user’s inter-
ests, what its user needs, and when and where its user needs 
it. Despite numerous efforts over the past 20 years to make 

PDAs have the promise 
of enhancing a user’s 
productivity by either 
proactively providing 
the information the 
user needs in the 
right context or 
reactively answering a 
user’s questions and 
completing tasks through 
natural language.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


69IEEE SIGNAL PROCESSING MAGAZINE | January 2017 |

human–computer interaction personal (particularly around 
web search), personalization has remained largely broken 
until recently, not only for PDAs but also for general human–
computer interaction due to the four main gaps.
1) Data: The system had a limited amount of data to properly 

model the user and his or her interests. It understands the 
user based on the experience it provides and the feedback 
loop it uses.

2) Computing: The limited computing power and machine 
learning were not adequate for modeling the complexity of 
user behavior.

3) Interest: There has been conflict of interest between the 
user, the platform, and those who pay for the user’s atten-
tion. The system has not been necessarily prioritizing the 
user’s interests over these other actors.

4) Content/action: The system does not support the actions 
the user wants to perform or does not have the content to 
serve the user’s interests.
During the past seven years, two primary changes have 

occurred that allowed PDAs to be personal: 1) the increased 
number of device sensors on mobile phones and 2) the quality 
and quantity of the user data and digital artifacts (on the device 
and/or in the cloud) coming from the web services and applica-
tions the user accesses. As a result of these changes, it is now 
possible to represent a user along four axes:
1) user profile: user’s name, age, gender, parental status, pro-

fession, employer, home, work, people in his or her close 
circle (people graph), favorite places, files, documents, 
music, photos, and interests explicitly provided by the user

2) digital activity: digital artifacts (e.g., calendar, e-mail, 
social media activity, web searches) on applications and 
web services

3) space: physical location of the user
4) time: time at which a specific digital or physical activity 

takes place.
These four dimensions, when considered together, blend the 

physical with the digital world and open up new possibilities for 
powerful inferences and deep user understanding. Inevitably, 
managing and protecting privacy and security of the user data 
and information is a major concern, and what has been done 
in that space is critical, but it is outside the scope of this article.

Mobile device sensors
The computational power and capabilities of mobile phones 
are increasing every year. The number of built-in sensors on 
smartphones (e.g., Samsung Galaxy) more than tripled during 
the past five years [71]. Smartphone sensors measure motion/
orientation, GPS coordinates, and many other user and envi-
ronmental conditions. For example, a device’s gravity sensor 
provides data to infer complex user gestures and motions, 
such as shake, swing, or rotation. The rich high-precision data 
coming out of these sensors are made available through appli-
cation programming interfaces (APIs) and are used in numer-
ous applications and scenarios. The information is sensitive, 
as it is personal and contextual. Making it available opens up 
new research areas like fitness and health applications or 

opens up new solutions to already existing problems [6]. User 
experiences that currently exist can also be enhanced by the 
available data. For example, using activity detection, the PDA 
can hold the incoming call or send a short message service 
(SMS) text message to the caller if the user is biking or it can 
turn up the volume if the user is climbing stairs/walking.

The three main mobile platforms (Android, iPhone operat-
ing system, Windows) support four broad categories of sensors 
on mobile devices.
1) Motion: This sensor set includes accelerometers, gravity 

sensors, gyroscopes, and rotational vector sensors. They 
measure acceleration and rotational forces along three axes. 
They measure movement and orientation of the device.

2) Environmental: These sensors measure various environmental 
conditions, such as ambient air temperature and pressure, illu-
mination, and humidity. This category includes barometers, 
photometers, magnetometers, and thermometers.

3) Position and location: These sensors measure the physical 
position and location of a device. This category includes 
orientation sensors and magnetometers. The magnetometer 
can determine the rotation of the device relative to magnet-
ic north. It can also detect magnetic fields around the 
device. GPS and Wi-Fi (not really a sensor in the tradition-
al sense) determine the location of the device.

4) Proximity: This sensor detects whether the phone is brought 
near the face during a phone call. This functionality disables 
the touch screen, preventing inadvertent input to the phone 
from the user’s face and can also save battery power.

System architecture
The scenarios that the PDAs support can be divided into two 
main categories: 1) proactive and 2) reactive assistance. The 
conceptual agent architecture designed to support these two 
modes of assistance is shown in Figure 2. The system 

(a) (b)

FIGURE 1. The proactive flight cards. (a) Summary and suggestions for the 
trip. (b) Flight details for the first leg.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


70 IEEE SIGNAL PROCESSING MAGAZINE | January 2017 |

architecture depicts proactive and reactive user experiences, 
data, and service end points. Reactive assistance is shown in 
Figure 2(a), where the user issues an explicit natural language 
command (e.g., “book me a taxi”) to the agent. The user request 
is handled through a set of reactive assistance components, 
such as speech recognition, LU, and DM. The data coming 
from various back ends, and applications are served to the user 
according to the constraints specified in the natural language 
query. The experience (reactive and/or proactive) can be served 
in one or more of the different device or service end points.

Proactive assistance [Figure 2(b)] involves anticipatory 
computing, where the personal digital agent does things in 
a contextual manner (i.e., at the right time and place) that it 
expects is valuable to the user without an explicit user request. 
Proactive assistance makes use of inference, user modeling, 
and ranking to power experiences. Back-
end data, device, applications, and web 
services signals are leveraged for proactive 
inference and triggering.

Even though proactive and reactive parts 
of the current PDA architectures are built in 
isolation, in principle they can use a single 
architecture to enable both types of experi-
ences. In fact, most proactive scenarios have 
reactive extensions and vice versa. For exam-
ple, if the user makes a restaurant reservation 
(reactively), the agent may (proactively) sug-
gest a movie after the dinner or may offer to book a cab to 
take the user to the restaurant. Data and context are shared 
between the two assistance modes. Next, we focus on the pro-
active system architecture and the components that power 
proactive scenarios.

Proactive assistance
Proactive assistance is based on the theory of proactivity that 
describes user desires and a model of helpfulness [7]. The goal 

is to provide assistance to automate 
tasks or further the user’s interests for 
things he or she cares about, all within 
context, without explicit user request [8]. 
To achieve that, the agent is designed to 
possess a set of attributes; it should be 
valuable in that it advances the user’s 
interests and tasks, while not interfering 
with the user’s own activities or atten-
tion unless it has the user’s explicit 
approval. It should be unimposing. The 
agent should be transparent in what it 
knows about the user. It should be antic-
ipatory and know the future needs of the 
user and bring opportunities to the sur-
face. The agent should also continuously 
learn and refine its decisions from the 
feedback signals it receives regarding 
the actions it takes. These principles put 
the user at the center, and the agent’s 

actions are considered valuable only if they ultimately add value 
for the user. Proactive assistance operates on the proactivity 
continuum [31], which ranges from zero to full automation, 
allowing for the following scenarios: 
■ do it yourself (no help from the agent)
■ user tells the agent what to pay attention to (notifications/

alerts)
■ agent infers user’s habits/patterns and makes suggestions 

(inference/suggestions)
■ agent makes decisions and takes actions (full autonomy on 

task decisions/executions).
Most of the currently supported proactive scenarios are 

notifications/alerts and suggestions. Even though there is some 
preliminary work, none of the agents in production supports 
autonomous decision making and action taking on behalf of 

the user without confirmation.
The proactive agent system architecture 

is shown in Figure 3. Signals coming from 
web services, device sensors, and the user’s 
profile are processed, where processing 
includes parsing, enriching, and filtering 
to merge device and service data. The next 
step is aggregation, which joins the pro-
cessed data streams through time and space 
(i.e., location) about the user’s whereabouts 
and actions/tasks done at specific times and 
places. This step blends the physical and 

digital worlds and allows for powerful inferences that capture 
repetitive behavior and events in both worlds. The signals are 
used to make inferences and train machine-learned models 
for modeling the user and his or her interests. The same set 
of signals is also used to set rules for notifications and alerts 
the user wants the agent to serve. The models and rule reci-
pes are deployed to a run time environment. Once proactive 
scenarios are deployed in production, capturing and feeding 
back user behavior signals regarding notifications, alerts, and 

Reactive Assistance Proactive Assistance

“Book_ Taxi” User Experience “Restaurant Suggestions”

Reactive Assistance

ASR, LU, Dialog,
LG, TTS

Data

Back-End Databases,
Services, and Client

Signals

Proactive Assistance

Inferences, User
Modeling, Suggestions

Device/Service End Points
(Phone, PC, Xbox, Web Browser, Messaging Applications)

(a) (b)

FIGURE 2. The personal digital agent architecture for (a) reactive assistance and (b) anticipatory computing. 

Even though proactive 
and reactive parts of the 
current PDA architectures 
are built in isolation, in 
principle they can use 
a single architecture 
to enable both types of 
experiences.
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Personal Profile Data
Device Sensor Signals
Web Services Signals

Collect and
Process

Aggregate

Offline Inference and Rule Recipe Authoring

Inference and
Learn

Rule Recipe
Authoring

Deploy and
Publish

User

Suggestion, Notifications,
and Alerts Run Time

FIGURE 3. The proactive assistance system architecture.

suggestions are essential for the proactive agent to learn and 
adapt to the user.

Notifications and alerts
In the notifications/alerts category, the system allows the user 
to set rules to define the triggers for certain actions. If the trig-
gering condition evaluates to TRUE, the action is executed. 
The rules are defined over a set of signals. These signals are 
produced by an information channel that can be evaluated by 
the proactive agent. These channels represent many types of 
information, such as date/time and location, as well as con-
stantly updated data feeds generated by various web services, 
which include weather, sports, news, finance, and entertain-
ment. For example, one can create rules to obtain an alert when 
the Seattle Seahawks score a touchdown. A user can set a rule 
to be reminded of his or her mother’s birthday. It is also possi-
ble to combine these signals to formulate more complex trig-
gering rules. For example, a specific flight departure time, a 
user’s physical location, and a commute time to the airport can 
all be used to trigger an alert that reminds the user that it is 
time to leave for the airport. Once the trigger rule is set, the 
agent monitors the signals from the corresponding information 
channels to evaluate the rule. If the rule evaluates to TRUE, the 
agent takes an action. The actions are communicated to the 
user in a target device-specific manner, which could be a pro-
active entity card, SMS, or even a phone call. This type of pro-
active agent programming falls under the if-then recipes [60], 
in which simple rules allow users to control many aspects of 
their digital life.

Inference and suggestions
In the suggestions category, the agent infers the user’s habits 
and routines by reasoning over his or her past behavior and 
makes a personalized recommendation to the user with the 
goal of furthering the user’s interest. For example, knowing 
that the user watched comedy movies featuring a particular 
actor in the past, the agent may suggest a new comedy movie 
featuring that same actor in the future. The agent can also 
suggest new experiences based on the logical sequencing of 

different yet related (through time or location) events. For 
instance, if the user made a restaurant reservation in a metro-
politan city downtown, the agent may suggest nearby parking 
places. Through inference, the agent can learn certain facts 
about the user, by reasoning over the user’s whereabouts and 
movement patterns through time and location. For example, 
the user’s home and work location could be inferred by join-
ing GPS data with time over several weeks. If the user is 
spending most or all of his or her time between 9 a.m. and 
5 p.m. during weekdays at a specific location over several 
weeks, that is likely to be the user’s work location. Likewise, 
the user’s commute hours between home and work could also 
be inferred from combining home and work location with the 
GPS data during the likely morning and evening commute 
hours over several weeks. This inference is used to proactive-
ly show the traffic commute cards around the time the user 
typically commutes to/from work (or home).

The key questions here are determining the type of sugges-
tion and when to do it, because there is an associated cost with 
the suggestion (if the action, relevance, or timing is wrong). To 
get around the cold start problem (if the agent does not have 
access to the user’s past activity through a feedback loop or the 
user is accessing the PDA for the first time), the user is also 
given the ability to teach the agent his or her interests from a 
precompiled list of topics, including news, sports, finance, tech-
nology, dining, and entertainment. The decision for taking a 
proactive action is driven by a machine-learned model, given the 
costs and benefits as constraints. The machine-learned model 
combines a set of information in the user’s profile, demographic 
and content-based profiles, and online user behavior signals 
(such as click through, dwell time, and dismissal), along with 
the user’s recent relevant activity (e.g., similar content searches), 
which are captured in the history variable h  in (1). This is used 
to model whether a specific user u will like the specific sug-
gested entity .e  Standard machine-learning techniques, such as 
maximum entropy models [35], gradient boosted decision trees 
[55], and deep learning techniques [48], are used to incorporate 
both user-specific online and offline signals to estimate the 
probability that the user is expected to like the suggested entity 
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(i.e., content). Within the maximum entropy model-
ing framework, the probability is computed using

( , , ) .
e

P o e u h e
( , , , )f o e u h

o

( , , , )

j jj J

f o e u hi i
i

= m
!

m

l
l
/ /

/
(1)

Here, o  denotes outcome (e.g., like or dislike). 
Notice that the denominator includes a sum over all 
possible outcomes, ,ol  which is essentially a nor-
malization factor for probabilities to sum to 1. The 
functions fi  are usually referred to as feature func-
tions, or simply features. These binary feature 
functions are given as

( , , , )
,
,

( , , )
,f o e u h

o o q e u h1
0

1if and
otherwisei

i i
=

= =' (2)

where oi  is the outcome associated with feature fi

and ( , , )q e u hi  is an indicator function on the user, 
suggestion, and history. The model parameters im

are learned on labeled data, which capture the 
user’s response (e.g., like or dislike) for the suggest-
ed content in the past.

The specific features of the suggested entity (e)
include the estimated value of suggestion type, value 
of suggestion instance, timing of the suggestion, cost 
of mistake, cost of interruption, and urgency (time 
sensitivity) of the suggestion. Learned thresholds on 
the model outputs govern the number of suggestions of 
each type that can be displayed concurrently, the max-
imum frequency for suggestions of each type, and the 
permitted or prohibited modalities of each suggestion 
type. The thresholds for acting, asking, suggesting, or 
doing nothing are established from a range of default 
values according to user-stated advice and elicited ini-
tial preferences from the configuration wizard.

Reactive assistance
Reactive assistance is traditionally known as the 
conversational understanding system. The conver-
sational understanding system for PDAs spans a 
wide spectrum of domains, including goal-/task-
oriented dialogs [53], [16], chitchat, QA [37], and 
classical web search answers. The conversational 
understanding system also handles additional input 
modalities besides speech, such as typing and/or 
touch. Each of these domains is commonly referred 
to as an answer (A). Some of the domains involve 
device functionality (e.g., alarm, SMS, calling, 
note, reminder), while others may involve web ser-
vices and applications (e.g., directions to a particu-
lar location, movie hours at a theater, factoids, stock 
prices, weather).

The reactive assistance system architecture is 
shown in Figure 4. The user submits a request to the 
PDA to perform a task or seek information using one 
of the modalities, and the agent interprets the request 
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and generates a response. For voice queries, the first step is to 
recognize the spoken words [9], [10]. The LU component takes 
the speech transcription (or the text input if the user types) and 
performs a semantic analysis to determine the underlying user 
intent [11]–[14], [17]. The user’s intent could be related to infor-
mation search, QA, chitchat, or task-oriented specialist dialogs. 
Because PDAs support multidomain and multiturn interactions, 
multiple alternate semantic analyses (typically at least one for 
each domain) are generated in parallel for late binding on the 
user’s intent [15]. These semantic analyses are sent to the dialog 
state update component, which includes slot carryover (SCO) 
[38], flexible item selection from a list [39], knowledge fetch 
from the service providers, and dialog hypothesis generation 
[15], [16]. Note that in this framework, we consider chitchat, 
QA, and web search as an additional set of LU domains. All the 
dialog hypotheses are ranked by the hypothesis ranking (HR) 
module. The top hypothesis is selected by the hypothesis selec-
tion (HS) module by taking the provider responses (i.e., knowl-
edge results) into account [18]. The top dialog hypothesis (along 
with the ranked dialog hypothesis distribution) is the input to 
the dialog policy component, which determines the system 
response based on the scenario and business logic constraints. 
Typically, for voice input, the agent speaks the natural language 
response via the TTS synthesis engine [19].

The reactive assistance behavior is governed by (3). The goal 
of the reactive agent is to provide the best system response Rt

to a given user query, .Q  The system response, ,R  consists of a 
dialog act, which includes system action (e.g., information to be 
displayed, question to be asked, or action to be executed), natural 
language prompt, and a card in which the response is displayed

( , , , , ) ,argmaxR P R Q B B BA A
R

N1 f=t r" , (3)

where BA1  denotes the current belief about the dialog state of 
the answer A1 (e.g., weather, alarm, places, reminder, sports, 
etc.) after processing query ,Q  and Br  shows the system’s 
belief about the state of the interaction across all answers for 
the current session. In practice, it is hard to solve (3). Instead, a 
suboptimal solution can be achieved with the assumption that, 
given the query Q  and the beliefs for the dialog states of the 
individual answers A1 through ,AN  the per answer response is 
conditionally independent

{ ( , , ), , ( , , )} .argmaxR P R Q B B P R Q B BA A
,...,R R R

N1
N1

f=
!

t r r (4)

Here, ( , , )P R Q B BAi
r  denotes the probability the system 

assigns to response (R) generated by answer ,Ai  given the 
answer’s belief about its dialog state and the system’s belief, 

.Br  This formulation allows the individual answers to manage 
their own dialog state and generate their own responses in par-
allel. Therefore, it is possible to scale to many domains and 
answers without substantially increasing the overall system 
response latency. The HR component operates as a metalayer, 
arbitrating between different answer responses, given its belief 
(i.e., )Br  about the state of the overall interaction [15]. Next, we 
will briefly describe the key components in Figure 4.

Speech recognition
The speech recognition component maps the human speech rep-
resented in acoustic signals to a sequence of words represented in 
text. Let X  denote the acoustic observations in the form of fea-
ture vector sequence and Q be the corresponding word sequence 
(i.e., query). The speech recognition decoder chooses the word 
sequence, ,Qt  with the maximum a posteriori probability accord-
ing to the fundamental equation of speech recognition [9]:

Q
( ) ( )argmaxQ P X Q P Q=t , (5)

where ( )P X Q  and ( )P Q  are the probabilities generated by 
the acoustic and language models, respectively. Traditionally, 
speech recognition systems are trained to optimize the lexical 
form. However, displaying the grammatically and semantically 
correct version of the output (i.e., display form) has become an 
important requirement for PDAs, because it makes it easy for 
the user to infer whether the system correctly heard and recog-
nized the spoken query. For example, the following two speech 
recognition outputs are lexically equivalent:
■ how is the traffic on u s one oh one (lexical form)
■ how is the traffic on US 101 (display form).

However, proper tokenization in the second hypothesis pro-
vides a valuable hint that the agent understood what the user 
meant. Typically, the tokenization is applied as a separate post-
processing module after running the speech recognition decoder.

In recent years, advances in deep learning and its applica-
tion to speech recognition have dramatically improved state-
of-the-art speech recognition accuracy [9], [10], [20], [21]. 
Deep learning allows computational models that are composed 
of multiple processing layers to learn representations of data 
with multiple levels of abstraction. These advances played a 
key role in the adoption of PDAs by a large number of users 
making it a mainstream product.

LU
The problem of LU for PDAs is a multidomain, multiturn, 
contextual query understanding [17], [22]–[25], subject to the 
constraints of the back-end data sources and the applications 
in terms of the filters they support and actions they execute. 
These constraints are represented in a schema. In practice, 
while LU semantically parses and analyzes the query, it does 
not do so according to a natural LU theory [26]; rather, pars-
ing and analysis are done according to the specific user 
experience and scenarios to be supported. This is where the 
semantic schema comes into play, as it captures the con-
straints of the back-end knowledge sources and service APIs, 
while allowing free form of natural language expression to 
represent different user intents in an unambiguous manner.

There are two main approaches to LU: rule based and 
machine learned [11], [32]. The rule-based approach is about 
hand authoring a set of rules to semantically parse the query 
[27]. It can also be used for addressing the errors and dis-
fluencies introduced by a speech recognizer [28], [49]. 
State-of-the-art systems use machine-learned models for LU 
[12], [17], [23], [24]. In a commonly used LU architecture, 
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a query is first classified into one of the supported domains 
(or a catch-all domain such as web). Typically, support vector 
machines, boosted decision trees, maximum entropy models 
[35], or neural networks [13], [33], [34] are used for model-
ing. These classifiers are trained in either binary or multi-
class mode depending on the design choices [12], [23], [24]. 
Under each domain, there are a domain-specific intent and 
slot model. Intents and slots can be shared across different 
domains. A domain can be considered as a collection of 
related intents, which do not have any conflict. For example, 
a weather domain contains check_weather and get_weather_
stats intents. Intent detection uses the same machine-learning 
techniques listed previously, and it is framed as a multi-
class classification problem. Slot tagging is considered as a 
sequence classification problem. Conditional random fields, 
maximum entropy Markov models [35], and, more recently, 
deep learning techniques [12], [24] are used for slot tagging. 
LU models are trained in a supervised fashion using labeled 
data and properly weighted lexicons [36]. When a user issues 
a query, domain and intent classifiers are run to determine 
the domain and intent of the query, and the slot tagger tags 
semantic slots. Tagged slots are resolved into canonical val-
ues, and in some cases multiple slots are combined into a 
parameter. Parameters are used either to fetch results from 
the knowledge back end or to invoke an application API.

The goal of the LU component (for answer )Ai  is to convert 
each input query into a set of semantic frames, ,FAi  given the 
context represented in the current beliefs about the dialog state 

,BAi  that is, we seek

( , )argmaxF P F Q BA Ai
F

i=t t" ,. (6)

Semantic frame, ,FAi  for answer Ai  encapsulates the 
semantic meaning of a query with a tuple of domain, intent, 
and slot list:

GDOMAIN, INTENT, SLOTS .H

The slots are a list of key-value pairs:

GSLOT_NAME, SLOT_VALUEH.

The data structure for semantic frame, shown in Figure 5,
is used to combine the different pieces of semantic analysis 

generated by the domain, intent, and slot models to represent 
the complete semantic understanding of the query.

Some of the key PDA experiences that are handled are 
multiturn in nature. Without using contextual information, the 
queries could be ambiguous and potentially interpreted differ-
ently. For example:
■ (turn 1) how is the weather in New York (weather)
■ (turn 2) what about the weekend (weather).

Here is another scenario, where we observe the exact same 
query in the second turn:
■ (turn 1) how is my schedule (calendar)
■ (turn 2) what about the weekend (calendar).

Interpreting the follow-up queries in isolation is difficult, as 
they are ambiguous and require context for proper interpreta-
tion. LU models are built in a contextual manner to solve this 
problem [15], [22]–[24]. To handle multiturn interactions, in 
addition to basic domain, intent, and slot models, one needs to 
build context carryover models to help with state tracking [38]
and on-screen selection models [39], as shown in Figure 4, for 
selecting items from a list of results presented to the user in 
follow-up turns.

QA
Because users are expecting PDAs to answer any question, 
open-domain QA [56] is another scenario that is handled by 
all PDAs to differing degrees. Examples of open-domain 
factoid QA include the following questions:
■ How old is Bill Gates?
■ How tall is Mount Everest?
■ Who directed Avatar?

The answers to these questions are precise short phrases.
■ Bill Gates is 60 years old.
■ Mount Everest is 8,848 meters high.
■ James Cameron directed the movie Avatar.

QA has had a long history [29] and has seen rapid advance-
ment in the past decade, spurred by government-funded pro-
grams that required system building, experimentation, and 
evaluation of systems [30]. Advancements in search engine 
technology, such as query formulation and query-document 
analysis through click logs, have also contributed to innovation 
in QA [52].

The system architecture for a typical QA system is shown 
in Figure 6. For a given query directed at a PDA, the QA 
system first classifies the query into one of the question types 
(typically ten to 15). Note that the query may not be a ques-
tion. Even if it is a question, it may not be supported by the 
QA system. These categories are also included as part of 
the question classification step. The answer-candidate gen-
eration step processes the question, generates various alter-
nate formulations of it, and queries the knowledge sources, 
which include a knowledge graph, web documents, Wikipe-
dia, and search engines. The answer-candidate ranking step 
extracts a number of features for each question/answer pair 
and applies a ranking model to rank and assign confidences 
to each answer candidate [56]. The overarching principles of 
QA systems are massive parallelism, confidence estimation, 

<Domain score=“0.8956”>reminder</Domain>
<Intent score=“0.7949”>create_single_reminder</intent>

<Slots>
<reminder_text =“call my mom” />
<start_time <RawValue=“9 am”>

<PropertyGroup Name=“timex3”>
<Property Name=“value” Value=”am” />
<Property Name=“comment” Value=“am” />

</PropertyGroup>
</start_time>

</Slots>

FIGURE 5. The semantic frame for the query: “remind me to call my mom 
at 9 a.m.”
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and integration of shallow and deep knowledge from many 
knowledge sources [37].

Knowledge back ends
A significant part of PDA scenarios is about accessing 
knowledge and entities. For example, when a user asks for a 
factoid regarding a movie or director, LU models tag such 
slots (i.e., facets) as movie name, release date, actors, and 
directors. Slots are used to build a query sent to these knowl-
edge bases to fetch the relevant entity and relationships for 
which the user is looking. These knowledge bases store fac-
tual information in the form of entities and their relation-
ships, covering many domains (people, places, sports, 
business, etc.) [57]. The entities and their relationships are 
organized using the World Wide Web Consortium Resource 
Description Framework (RDF) [40]. An RDF semantic 
knowledge base (also known as a semantic knowledge graph)
represents information using triples of the form subject-pred-
icate-object, where in graph form, the predicate is an edge 
linking an entity (the subject) to its attributes or another relat-
ed entity, as seen in Figure 7. A popular open-source RDF 
semantic knowledge base is Freebase [46]. Other RDF 
semantic knowledge bases that are much larger in size are 
Facebook’s Open Graph, Google‘s Knowledge Graph, and 
Microsoft’s Satori. Both Google’s 
Knowledge Graph and Microsoft’s 
Satori knowledge graph have over 1 
billion entities and many more entity 
relationships. They power entity-relat-
ed results that are generated by 
Google’s and Microsoft Bing’s search 
engines. Recently, there has been a 
surge of interest in exploiting these 
knowledge sources, especially the 
RDF semantic knowledge bases, to 
reduce the manual work required for 
expanding conversational systems to 

cover new domains, intents, or slots [41]–[43], [51] or improv-
ing existing experiences [44], [45].

DM and policy
Many of the reactive scenarios enabled in PDAs require spoken 
DM to handle a wide range of tasks and domains. DM is at the 
bottom of the reactive stack, where all the information from 
upstream components is consolidated and the final decision about 
the system response is made and communicated to the user.

Much of the research on spoken dialog systems in academia 
has targeted single-domain applications [47], [50], where the 
problem of accurately tracking the user’s goal (e.g., finding res-
taurants that satisfy a number of user constraints) has received 
considerable attention in the literature [53]. The primary line 
of research has been the statistical modeling of uncertainties 
and ambiguities encountered by dialog managers due to speech 
recognition and LU errors along with ambiguity in natural lan-
guage expressions. Included among the most successful statis-
tical approaches are graphical models that are concerned with 
decision making with delayed rewards [53]. However, large-
scale production systems such as PDAs pose a different set of 
problems. The large number of supported domains, integration 
of task-oriented dialogs, QA, chitchat, and web answers and 
managing conversation in a coherent way pose new challenges 

Question Question
Classification

Answer-Candidate
Generation

Answer-Candidate
Ranking

Ranked
Answer

Search
Engine

Web DocumentsWikipedia

Knowledge Resources

Knowledge
Graph

FIGURE 6. The QA system architecture.

Name

e1 e2

Avatar

Type

Film/Film

source_url born_in

Director

Name

James
Cameron

Kapuskasing
http://www.imdb.com/title/tt0499549

FIGURE 7. An example of part of a semantic knowledge graph representing the relationships, described as RDF triples, between the entities James 
Cameron (e1) and the film Avatar (e2).
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[25]. Mixing different modalities to complete the tasks is 
another challenging area for PDAs.

In PDAs, a dialog manager supports execution of a variable 
number of goal-oriented tasks [16], [54]. Tasks are defined in 
terms of information to be collected from the user, correspond-
ing LG prompts, and interfaces to resources (such as data hosted 
in external services and applications) that will execute actions 
on behalf of the user. As shown in Figure 4, at each turn, the 
dialog state is updated, taking into consideration the multiple 
LU results across different turns. SCO [38] does contextual 
carry over of slots from previous turns, using a combination of 
rules and machine-learned models with lexical and structural 
features from the current and previous turn utterances. Flexible 
item selection uses task-independent, machine-learned models 
[39] to handle disambiguation turns where the user is asked to 
select between a number of possible items. The task updater 
module is responsible for applying both task-
independent and task-specific dialog state 
updates. Task-dependent processing is driven 
by a set of configuration files, or task forms, 
with each form encapsulating the definition 
of one task. Using the task forms, this mod-
ule initiates new tasks, retrieves information 
from knowledge sources, and applies data 
transformations (e.g., canonicalization). Data 
transformations and knowledge source lookups are performed 
using resolvers [16], [54]. Dialog policy execution is split into 
task-specific and global policy. The per-task policy consists of 
analyzing the state of each task currently in progress and sug-
gesting a dialog act to execute. The dialog acts include show 
results, disambiguation, prompt for missing value, prompt for no 
results found, start over, go back, cancel, confirm, complete the 
task, and so forth, in accordance with the ranked semantic frame 
output. The output of the task updater module is a set of dialog 
hypotheses representing alternative states or dialog actions for 
each task in progress. The dialog hypotheses are ranked using 
HR [15], [18], which generates a ranked order and score for each 
hypothesis. This acts as a pseudobelief distribution over the pos-
sible dialog/task states. HS policy selects a top hypothesis based 
on contextual signals, such as the previous turn task, rank order, 
and scores as well as business logic.

HR uses an implementation of LambdaMart [55] to rank 
hypotheses. Previously, various approaches have also been 
presented for reranking for spoken LU [58] but have focused 
on single-domain applications.

LG
Once the system response is determined by the dialog manag-
er, it is communicated to the user in a natural way. If the 
query is a speech query, a spoken system response is returned. 
If the query is typed, there is no spoken system response but 
rather a natural language system response that the user sees 
on the screen as a card. In either case, the natural LG compo-
nent receives the dialog output in the form of a system 
response along with the dialog state, which encapsulates the 
state of the interaction between the user and system (e.g., 

current turn identification, whether the user has prompted for 
the same information before) and generates a natural and 
grammatical utterance to convey the system response. There 
are a number of factors that feed into the LG design, such as 
information presentation, presenting enough information (to 
give a good overview of the state of the task) versus keeping 
the utterances short and understandable, handling error states, 
and repeated tries [59].

There are three main approaches to LG: 1) template-based, 2) 
rule-based (linguistic), and 3) corpus-based approaches [59], [61]. 
Most of the PDAs use the template-based approach, because com-
paratively less effort is needed to develop and maintain the tem-
plates. The template-based LG module typically starts out from a 
semantic representation (e.g., semantic frame), generating “QFC 
in Redmond is open from 7:00 a.m. to 10:00 p.m.” in response to 
the user query, “Is QFC in Redmond open today?” For example, 

STOREHOURS: [PLACENAME(“QFC”), 
LOCATION(“REDMOND”)] associates 
it directly with a template, such as [PLACE-
NAME] in [LOCATION] is open from 
[TIMEBEGIN] to [TIMEEND], where 
the gaps represented by [PLACENAME],
[LOCATION], [TIMEBEGIN], and [TIME-
END] are filled by looking up the relevant 
information in the dialog state. The TTS 

engine consumes the LG output and synthesizes the text into 
speech [19].

Metrics and measurement for PDAs
It is generally difficult to empirically evaluate the quality of 
proactive and reactive user experiences for PDAs. PDAs are 
complex systems with many components in the system stack, 
spanning client and multiple cloud services, and it is hard to 
separate any one component from the rest. Each component 
has its own functional and quality metrics. Metrics could be 
offline, measured with sampled data sets, or online, measured 
with actual user traffic of the live system.

Component metrics
The following are the offline component metrics tracked individ-
ually to improve the quality of each component. They are com-
puted using a set of ground truths generated by human judgments:
■ speech recognition: word error rate (WER), sentence error 

rate, slot WER, keyword WER, semantic WER (for non-
search tasks)

■ LU: domain accuracy, intent accuracy, precision/recall, slot 
F1 measure, semantic frame accuracy

■ dialog: dialog state tracking accuracy—in a distribution 
(e.g., N-best list) of dialog state hypotheses, percent accu-
racy of the top-ranked hypothesis, selection accuracy, SCO 
accuracy

■ LG: mean opinion score (MOS) of the LG quality, bilin-
gual evaluation understudy score

■ knowledge: knowledge relevance, coverage, precision/
recall

■ TTS synthesis: MOS, intelligibility, expressiveness

It is generally difficult to 
empirically evaluate the 
quality of proactive and 
reactive user experiences 
for PDAs.
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■ proactive suggestions/notifications:
precision/recall.
In Figure 8, we show LU accuracy 

for domain, intent, slot tagging (F1 
measure), and semantic frame for some 
of the reactive experiences supported in 
Cortana for a sample training and test 
data set [25], [45]. The domain, intent, 
and slot accuracy is around 90% across 
domains. The average semantic frame 
accuracy is 82%. Note that semantic 
frame combines domain, intent, and 
slots; therefore, errors in these compo-
nents contribute to the semantic frame 
error rate.

In Figure 9, we show the impact 
of HR in picking the right hypoth-
esis over the LU model confidences. 
HR improves in picking the correct 
semantic frame by 2%. HR has the 
full view of all the LU analyses 
coming from different domains, and 
so it can arbitrate between compet-
ing hypotheses.

End-to-end quality metrics
The fact that individual component 
accuracies are high may not mean that 
the PDA, as a product, has high accu-
racy. There are several factors contri-
buting to this. For example, speech 
recognition may not be accurate even 
if LU is accurate, and knowledge 
results may not be relevant. There may 
be operational service reliability 
issues, back-end availability, network communication issues, 
robustness of wake-up word detection, and so forth, which 
all contribute toward quality of the user experience with the 
product. Moreover, a user’s intent could be understood by the 
LU component, but the underlying application or service 
may not support that intent. Integrating different client and 
service components is a challenging software engineering 
problem, as it uncovers numerous scenario, design, service, 
and client shortcomings, which take the most time in 
improving the system. Therefore, end-to-end (E2E) product 
quality metrics are critical for the success of the product, as 
they correlate well with the actual user experience. They 
are also used for evaluating the contribution of the individu-
al components to the overall product experience based on 
the analysis of how much each component contributes to the 
E2E error rates. Some of these metrics are as follows.
■ E2E accuracy is measured through human judgment of 

query–response pairs on a five-point scale, where the user 
is shown a screenshot containing the system response, 
similar to the ones in Figure 10. Human judges assign a 
score between 1 (terrible) and 5 (perfect) to each 
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FIGURE 9. The semantic frame accuracy for LU versus HR.
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(a) (b)

FIGURE 10. The system responses for the query “Chinese food near my 
location.” (a) The correct result from the places domain and (b) the web 
search result.
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query response pair. Success includes the ratings of 3 (okay), 
4 (pretty good), and 5 (perfect).

■ Side-by-side (SBS) compares system A with system B, 
where the two systems could be the same system (or com-
petitive systems) at different points in time differing in 
updates and improvements. SBS is an A/B test on a five- 
or seven-point scale, where human judges pick one system 
over the other based on the results shown to the judge. For 
example, in Figure 10, we show two PDA system respons-
es for the query “Chinese food near my location.” In an 
SBS evaluation, the human judges compare the two 
responses as to whether the left/right response is better 
than the other on a scale of 3+  to ,3-  where 0 shows that 
they are equal. SBS is a more sensitive metric compared to 
E2E accuracy.

■ Online user/system behavior-based metric measures the 
user satisfaction and dissatisfaction with the PDA experi-
ences. It is a model that uses a set of feedback signals from 
the user and the system that correlates with the quality of 
the user experience. The signals include actions executed, 
query reformulation, total elapsed time for task comple-
tion, landing page dwell time, click through, start over, 
cancel, click back rates, and latency.
It is quite challenging to evaluate PDAs, as they provide a 

wide range of experiences, including voice commands, task 
completion, chitchat, QA, and web search. Therefore, success/
failure signals for online measurement could be quite different 
[62]. An instance where no click has occurred on the screen (i.e., 
abandonment) in one experience may mean user satisfaction (e.g., 
showing a correct weather card), but it may mean dissatisfaction 
in another domain (e.g., showing a list of restaurants and prompt-
ing the user to select), where the user leaves satisfied in the for-
mer but dissatisfied in the latter. There are also additional metrics 
used for business and overall product success, including user 
count, daily/monthly average users, sessions per user, query vol-
ume, unique query count, and number of proactive page views.

In Figure 11, we show the E2E query–response pair accu-
racy. In the figure, E2E Success* denotes the accuracy after 
leaving out the use cases the scenario is not designed to handle 
in the first place. For example, the user wants to delete an alarm 
on the PDA, but the scenario is not supported by design. Instead, 
the PDA shows either an irrelevant web search result or invokes 
the alarm application.

In Figure 12, we show the distribution of user dissatisfaction 
with regard to the sources of error across different components 
of the system. The numbers are based on feedback of about 
10,000 real users. LU along with unsupported system action 
(e.g., user wants to delete an alarm but system does not sup-
port that action) are the biggest sources of user dissatisfaction. 
Frequent fallback to web search (i.e., text links in search results) 
when the system does not a have precise answer, a lack of LG 
(for scenarios where the user expects the system to talk), and 
speech recognition errors are the main buckets of user dissatis-
faction with PDAs.

Technology and user experience challenges
While the functionality and types of tasks a PDA can perform 
are quite diverse and users find great value in using them, 
there are still a number of user experience and technical chal-
lenges that have yet to be addressed properly. We categorize 
these challenges into the following groups.

User experience challenges
User experience challenges include the challenges in the fol-
lowing list.
■ Operation errors: There is a discrepancy between the 

user’s mental model of the PDA’s functionality and scenario 
coverage versus the actual PDA functionality. Users are 
often unaware of the total extent of the operations a PDA 
can perform. Users may not understand how to use the 
PDA application or what they need to say to get the result 
they desire. Current user interfaces lack the ability to 
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FIGURE 11. The E2E query–response accuracy. E2E Success* denotes the accuracy after leav-
ing out the use cases that the scenario is not designed to handle in the first place.
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FIGURE 12. The E2E overall user dissatisfaction distribution over different 
components.

provide sufficient information about how to use the system 
and intuitive sequence of operations to complete a task. 
PDAs are also not able to adapt to different user profiles 
and their way of operations.

■ Lack of competence: PDAs are not at a level to reliably 
decide when to help the user, what to help the user with, 
and how to help him or her. This also creates a trust issue 
between the user and the agent, and the user may not feel 
comfortable delegating a task to the agent.

■ Privacy and security: Privacy and security of the user’s 
data and profile are a concern for users. Questions such as 
how much a PDA can/should know about its user and what 
the control mechanisms are remain open.

Technical challenges
Technical challenges include
■ Experience scaling: It is critical to integrate third-party 

applications and services into PDAs to scale both reactive 
and proactive experiences that can be handled by PDAs. 
Building the right tools and infrastructure to easily enable 
such integration is an open problem. User feedback 
shows that unsupported experiences are one of the single 
biggest sources of user dissatisfaction. For example, a 
user wants to be able book a taxi or calculate the mort-
gage payments for a house using speech with his or her 
PDA, but these, and many more scenarios, may not be 
supported by the PDA.

■ Speech recognition challenges: Despite all the recent prog-
ress in speech recognition with the application of deep 
learning techniques, issues such as background noise, 
speaker accent, Bluetooth, side speech, pocket dial, and 
unintentional wake up remain to be addressed [9]. To truly 
fulfill its promise, a PDA should recognize all the personal 
words that the user cares about. This includes any name 
(not just English), any place, and any thing (e.g., user’s 
contact list), essentially leading to an open-domain, unlim-
ited vocabulary speech recognition problem.

■ LU challenges: Domain scaling to cover many more 
domains, high-quality LU model development, and contin-
ual refinement with feedback loop data are the main chal-
lenges. Building reusable models across different tasks is 
an important problem to solve as well.

■ DM: Heterogeneous knowledge back ends and application 
interfaces are a bottleneck for expanding the domains and 
tasks a PDA can cover. The APIs for different applications/
services for the actions they perform as well as data/knowl-
edge back ends are not standardized and require custom 
interface work and query building.

■ Locale/market expansion: Building a proactive or reactive 
experience, not for English but for other languages and 
markets, is another open problem. This requires reusing or 
building all the resources (e.g., data, content, and models) 
and capabilities for new locales and markets.

■ Different device/end points: Even though smartphones 
were the initial target device for deploying PDAs, soon it 
became evident that the underlying intelligence and agent 

capability should be highlighted in other devices and end 
points. For example, Cortana started with the phone, but it 
is now made available in PCs and tablets and even on 
Xbox. This in turn creates another problem; not all experi-
ences make sense for a given device, or the same query 
may be interpreted differently on different devices. For 
example, users cannot send SMS from a PC or Xbox 
using PDAs, but they can do it on a phone. The query “go 
home” could mean “get driving directions to home” on the 
phone experience, but it may mean “go to shell” on the 
Xbox device.

■ Service challenges: PDAs use numerous services to enable 
a given scenario. There are also software engineering and 
service challenges that impact the overall user experience. 
For example, if the latency for handling a user request is too 
high, it reflects negatively on the user experience. In fact, 
instability may even stop users from using the scenario alto-
gether. Likewise, users expect high reliability and availabili-
ty (e.g., > 99.9%) from the services handling the requests. 
All of these are requirements and constraints that influence 

the system design.

Moving forward
Research on human work habits and task management [3], 
[63], [64] shows that people usually complete all their impor-
tant tasks yet may fail to successfully complete tasks with soft 
deadlines or may forget less-critical details. In the short term, 
PDAs can provide great utility by becoming the digital mem-
ory that users can depend on for help with completion of 
everyday tasks. In fact, it is these scenarios that are used most 
by the users (e.g., reminders, meetings, and some proactive 
notifications and alerts).

Because time is a critical asset, improving personalized 
time management and utility through proactive and reac-
tive task delegation and completion seems to be a plausible 
and desirable long-term goal for PDAs. In the future, it is 
the scalable and seamless third-party integration that can 
substantially increase the scenario and experience coverage 
and determine whether PDAs will fulfill the promise of a 
true personal assistant that users can depend upon to manage 
their personal and work life, effectively making them more 
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productive. The walls between applications may start to break 
down if PDAs achieve app/service composition to complete 
new tasks in a scalable way.

PDAs will surface on many different devices and envi-
ronments. This will create new signal processing challenges, 
such as accurate speaker separation and tracking in multi-
speaker environments (e.g., home, car), robustness with 
respect to different device types, and robust speech recogni-
tion across age, gender, and accent. Advances in algorithms, 
signal processing, and machine learning would be needed to 
solve these problems.

On the industry front, the investment and competition in 
PDA technology will keep increasing over the next decade. 
It is seen by some that PDAs may set the balance of power 
in the next phase of the Internet, if it becomes the gateway 
to applications and services with the proliferation of IoT 
devices. It is too early to call it an inflection point for PDA 
technology. It is likely that true natural language human–
computer interaction with gadgets may take another decade 
to be second nature.
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SP EDUCATION
Hana Godrich

Students’ Design Project Series: Sharing Experiences

The fast pace of technology refresh 
offers new opportunities in engineer-
ing training and education. Under-

graduate engineering programs are 
seeking the right balance between theory 
and practice, as students are increasingly 
expected to have more knowledge of 
cutting-edge technologies along with the 
fundamental understanding of engineer-
ing concepts and modeling tools. 
Instructors constantly look for opportu-
nities to enrich the learning experience 
through demonstrations and hands-on 
experience to address a growing demand 
from the industry for engineers with 
“know‐how” skills. This can be accom-
plished through traditional channels such 
as instructional laboratories, independent 
study, and research activities or, alterna-
tively, through student design project 
programs. In the United States, many 
universities and colleges have programs 
for senior design projects in place, also 
referred to as capstone projects. These 
engineering projects are an assimilation 
of knowledge and capabilities built over 
the first three years in undergraduate 
studies and, in many cases, are deeply 
reliant on signal and information pro-
cessing expertise.

A background in signal and infor-
mation processing is fundamental to 
many engineering applications, yet it 
is gradually built through a sequence 
of engineering courses that bring stu-

dents in their senior year to a position 
where it can be applied successfully. 
Low-cost, multifeature computer plat-
forms, being developed at an out-
standing rate, alongside open-source 
software, offer implementation capa-
bilities like never before. The avail-
ability of high-performance, low-cost, 
and small footprint single-board com-
puters and microcontrollers systems 
presents versatile building blocks that 
can be used by the students based on 
their individual interests and applied 
in multidisciplinary projects. As an 
example, Raspberry Pi [1] was intro-
duced to the market in 2012 and has 
since gone through three generations 
with the latest being Raspberry Pi 
3B. In a mere 8.56 # 5.65-cm pack-
age, a weight of 45 g, and a price tag 
of US$35, Raspberry Pi 3B offers a 
1.2-GHz 64-bit Quad Core ARM Cor-
tex-A53 central processing unit (CPU) 
with 1 GB of memory, on-board net-
work Ethernet, wireless and Bluetooth, 
17 GPIO general-purpose input/output 
(GPIO) and more. A smaller version of 
it was introduced in May 2016 in the 
form of Raspberry Pi Zero, offering a 
1-GHz CPU with 512 MB of memory 
and 40 GPIO for US$5 in a 6.5 cm 
# 3 cm package and a weight of 9 g. 
Intel’s Edison computer module [2], a 
wide range of Arduino products [3], and 
Texas Instruments [4] introduce similar 
opportunities, to name a few. These pop-
ular products are accompanied by large 
selection of add-ons, built-in libraries, 

interplatform computability, and open 
source software that support the devel-
opment of diverse, signal and information 
processing-based applications in the In-
ternet of things, wearables, three-dimen-
sional printing, autonomous vehicles, 
drones, biomedical devices, and more.

Embedded systems such as smart-
phones, smart watches, and health-
tracking wristbands, are part of our 
daily lives and, at times, offer a more nar-
row application use and limited resourc-
es. They are commonly used in telecom/
datacom, automation, military, medi-
cal, and automotive applications. Some 
companies open their systems to the re-
search and development of new applica-
tions. Google released the source code 
for Google Glass [5], declaring it as an 
open-to-hackers platform. Apple pro-
vides access to its sensory system and 
enables turning an iPhone into a medi-
cal diagnostic device through Apple 
Research Kit [6]. iRobot released the 
Create 2 Programmable robot [7], an 
open-sourced electronics prototyping 
platform that enables integration of 
sensory systems and microcomputers. 
These are a few examples in a growing 
trend with exciting possibilities for stu-
dents and developers by gaining access 
to hardware and software tools that can 
be manipulated for varies applications 
in computer vision, robotics, machine 
learning, cybersecurity, biomedical, and 
biometrics, to name a few.

This progress in affordable and ac-
cessible hardware and software tools can 
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be instrumental in enhancing students’ 
hands‐on experience during undergradu-
ate studies while building solid theoreti-
cal foundations. A new article series and 
contributions platform has been devel-
oped by a team of guest editors for IEEE 
Signal Processing Magazine who wish 
to promote the sharing of experiences 
and best practices with undergraduate 
studies, engineering projects, research, 
and innovation in diverse signal and in-
formation processing applications. Stu-
dents and advisers have been invited to 
contribute information and practices in 
engineering design projects in SigPort 
(https://sigport.org/events/spm-student-
design-project-series#citation-ieee). The 
goal of this initiative is to start a dis-
cussion on the role of experimental and 
project-based practices in modern sig-
nal and data processing education and 
support fast-track progress by sharing 
“know-how” experience. The SigPort 
submissions give a first glimpse into the 
potential of this idea. With more than 
400 downloads within a time span of 
just a few weeks, it seems that there is a 
need within the signal and information 
processing community that should be 
further explored and advanced.

The projects submitted as the first 
wave of response to the call for contri-
butions articulate the field’s diversity 
and the multitude of applications, meth-
ods, and hardware and software tools 
explored by students and faculty.

One of these projects, “Graph Fre-
quency Analysis of Brain Signals,” by 
Leah Goldsberry, Weiyu Huang, and Dr. 
Alejandro Ribeiro with the Department 
of Electrical and Systems Engineering in 
the University of Pennsylvania, Philadel-
phia (http://arxiv.org/pdf/1512.00037v2
.pdf), is evaluating the practice of graph 
signal processing methods in neurosci-
ence. Motivated by the need to identify 

effective means to introduce the rela-
tionship between data and information, 
commonly achieved through the use of 
alternative representation of data, the 
project is designed to explore the re-
lationship between neuroscience and 
graph Fourier transform (GFT). The no-
tion of the GFT and graph filters is pre-
sented to decompose a given subject’s 
brain signal into sections that represent 
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FIGURE 1. (a) A brain network representation using average functional coherence values. (b) A brain 
graph signal using regional fMRI data for each time point t. See the original figure and report at 
https://sigport.org/documents/graph-frequency-analysis-brain-signals.
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FIGURE 2. An example distribution of decomposed signals across all brain regions for the first experiment. Average energy with respect to (a) xL, (b) xM, and 
(c) xH. A thresholding is applied.
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various modes of variability. The student 
may then autonomously explore differ-
ent frequencies or temporal variability. 
Functional magnetic resonance imag-
ing (fMRI)-based experiments studied 
the response to visual cues over a train-
ing period, aiding in the modeling of 
average connectivity in brain networks. 
Filtering is then used to decompose the 
graph signals to look for a correlation 
between the decomposed signals and a 
subject’s performance when learning a 
task (see Figures 1 and 2).

Hand prosthesis controls, based on 
electromyography (EMG) signals, are 

addressed in a separate project, “Real-
Time Control of Hand Prosthesis Using 
EMG,” by Or Dicker, Aviv Peleg, Dr. 
Tal Shnitzer, Dr. Oscar Lichtenstein, 
and Dr. Yair Moshe with the Signal and 
Image Processing Lab, Andrew and 
Erna Viterbi Faculty of Electrical Engi-
neering, Technion–Israel Institute of 
Technology, Haifa, Israel (https://
sigport.org/documents/real-time-
control-hand-prosthesis-using-emg). 
This project is motivated by the need to 
design a low-cost multifunctional alter-
native for high-cost prostheses for 
below-the-elbow amputees. It sets a 

clear scope of work in terms of reliabil-
ity, portability, gestures support, inter-
face quality, and setup time along with 
a low price target. The Intel Edison 
board is used along with EMG sensors 
(Myo armband) and a printed prostatic 
hand. The project includes data collec-
tion from the EMG sensors sampled at 
200 Hz and communicated to the 
microcomputer via Bluetooth. Data is 
processed to determine the required 
hand gesture via the implementation of 
simple feature extraction at each time 
segment. The mean absolute value  
method was found to perform best for 
this case. Each time segment was clas-
sified to one of six gesture classes using 
K-nearest neighbors. The prototype was 
tested to demonstrate high classification 
success rates and multiple gestures sup-
port with a low cost (evaluated at 
US$345). Figures 3–5 illustrate the 
design and functionalities.

Another closely related project, 
“Micro Hand Gesture Recognition 
System Using Ultrasonic Active Sens-
ing Method,” by Yu Sang, Quan Wang, 
and Dr. Yimin Liu with the Intelligent 
Sensing Lab, Department of Elec-
tronic Engineering, Tsinghua Uni-
versity, Beijing, China (https://www
.youtube.com/watch?v=8FgdiIb9WqY; 
https://sigport.org/documents/micro-
hand-gesture-recognition-system-using-
ultrasonic-active-sensing-method), 
looks into the use of ultrasonic active 
sensing methods for microhand ges-
ture recognition. The pulsed radar 
signal processing technique is used to 
obtain time-sequential range-Doppler 
features. Object distance and velocity 
are measured through a single channel 
to reduce hardware complexity. A hid-
den Markov model approach is used to 
classify time-sequential range-Doppler 
features. A state transition mechanism 
significantly compresses the data and 
extract intrinsic signatures. A real-time 
prototype was developed and an average 
recognition accuracy of 90.5% for seven 
gestures was achieved. Related works 
include the WiSee gesture recognition 
system developed in 2013 by Patel et al. 
[8] to leverage wireless signals for home 
sensing and recognition under complex 
conditions and Google’s Soli project that 

BT PWMBT PWM

FIGURE 3. An overview of the project “Real-Time Control of Hand Prosthesis Using EMG System.” 

Input Output

FIGURE 4. The six implemented hand gestures.

FIGURE 5. The constructed prosthetic hand.
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uses wearable and micro hand gestures 
to control smart devices [9]. Figures 6–8 
illustrate the design and functionalities.

A tutorial for a do-it-yourself Sky Im-
ager is offered in “DIY Sky Imager for 
Weather Observation,” by Soumyabrata 
Dev (Nanyang Technological Univer-
sity), Florian M. Savoy (University of Il-
linois at Urbana Champaign‘s Singapore 
and Advanced Digital Sciences Center), 
Dr. Yee Hui Lee (Nanyang Technologi-
cal University), and Dr. Stefan Winkler 
(University of Illinois at Urbana Cham-
paign‘s Singapore and Advanced Digital 
Sciences Center); for more information 
see https://github.com/FSavoy/DIY-sky-
imager and https://sigport.org/documents/
diy-sky-imager-weather-observation. 

(d) Motion Up (e) Motion Down (f) Screw

(a) Finger (b) Button On (c) Button Off

FIGURE 6. Examples of micro hand gestures, named by (a) finger, (b) button on (BtnOn), (c) button 
off (BtnOff), (d) motion up (MtnUp), (e) motion down (MtnDn), and (f) screw.
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FIGURE 7. Range-Doppler feature frames sampled in the “button off” (see Figure 1) gesture. (a) Index finger and thumb separate at a 3-cm distance. 
Noises will be removed using time smoothing to increase robustness as the three marked “noise” objects in the first subfigure. (b) and (c) The index 
finger is moving down with acceleration while the thumb almost keeps static with a tiny velocity moving up. (d) Two fingers get touched. Note that the 
object’s trajectory will always be a curve in the range-Doppler plane. The symbolized states are labeled at the center of the detected objects.
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As shown in Figure 9, this image pro-
cessing application is Raspberry Pi-
based and incorporates off-the-shelf 
components to replace what would oth-

erwise be a high-cost system. The proj-
ect involved a digital single-lens reflex 
camera and image processing per-
formed by the microcomputer to gener-

ate a segmented binary image. A simple 
algorithm is employed to calculate the 
instantaneous cloud coverage. This is 
useful for regular monitoring of cloud 
formation over a region.

Chien-Sheng Yang and Dr. Lav R. 
Varshney with the University of Il-
linois at Urbana-Champaign present 
a more research-oriented project in 
“Self-Sustainable OFDM Transmis-
sions with Smooth Energy Delivery” 
(https://sigport.org/documents/self-
sustainable-ofdm-transmissions-smooth-
energy-delivery). This project stud-
ies the question: “Is it possible to have 
small peak-to-average power ratio 
(PAPR) in the cyclic prefix of an OFDM 
signal, while maintaining self- sustain-
ability?” A new system architecture, 
shown in Figure 10, is proposed that 
employs a frame-theoretic method that 
demonstrates significant improvement 
in PAPR of the cyclic prefix in self-sus-
tainable OFDM.

Audio processing is at the core of the 
“Automatic Lyrics Display System for 
Live Music Performances” project by 
Karan Vombatkere, Bochen Li, and 
Dr. Zhiyao Duan with the University 
of Rochester, New York (https://sigport
.org/documents/automatic-lyrics-dis-
play-system-live-music-performances). 
The primary objective of the project 
is to design and implement a computa-
tional system that can follow live music 
performances (e.g., choruses) in real 
time and display pre-encoded lyrics for FIGURE 9. The design of the DIY Sky Imager.

Hidden State Z1 Z2 Z3A21 A32

A23A12

Multinominal HMM

Symbol Sequence

Range-Doppler Plane

Feature Extraction Symbolize Symbolize Symbolize

State 1 State 4

State 8

Object TrackObject Track

S1 S2 S3

Φ11
Φ12 Φ21

Φ22 Φ23
Φ32 Φ33

FIGURE 8. Feature extraction and classification workflow.
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FIGURE 10. A self-sustainable OFDM system with EPS-CP for PAPRCP reduction. 
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the audience. As basic harmonic pro-
gression of two recordings is similar, 
the chroma feature is used to represent 
the audio data. It uses 12 bins to rep-
resent the relative energy of the audio 
in the 12 semitones of a musical octave, 
represents the harmonic content of the 
audio. A prerecorded version of a con-
cert serves as reference for lyrics align-
ment. This is performed through online 
dynamic time wrapping. See the design 
and interface shown in Figures 11 and 
12, respectively.

A National Instruments (NI)-based 
project is detailed in “Acoustic Detec-
tion and Localization of Impulsive 
Events in Urban Environments” by 
Sabeeh Irfan Ahmad, Hassan Shah-
baz, Hassam Noor, Dr. Momin Up-
pal, and Dr. Muhammad Tahir with 
the Syed Babar Ali School of Science 
and Engineering, Lahore University of 
Management Sciences, Pakistan. The 
project focused on the detection of im-
pulsive acoustic events and localizing 
the source in an urban environment. 
As illustrated in Figure 13, the system 
used an array of microphones that re-
corded the sounds and transmitted raw 
data to a central fusion center, based 

on the NI compact reconfigurable 
input-output setup. With a sampling 
frequency of 100 KHz per channel and 
on-board field-programmable gate ar-
ray unit programmed to minimize la-
tency, the collected data was process 
to estimate the source angle-of-arrival. 
The sine sweep method was found to be 
the most effective, where a sinusoid of 
temporally increasing frequency, both 
linearly and exponentially, is applied 
via accurate speakers.

This first set of project highlights 
manifest a diverse collection of un-
dergraduate engineering projects and 

tools. Some concentrate on developing 
devices that offer a solution for so-
cial or environmental needs. Others 
are focused on mathematical model-
ing and research to advance existing 
technology. A tutorial project offered 
step-by-step guidelines for building 
an image acquisition and processing 
platform. Many projects concentrated 
on embedded systems and all incorpo-
rated signal and information process-
ing methods commonly thought in 
fundamental courses.

The main objective of this effort is 
to expand the knowledge base in the 

Reference
Audio

Reference
Lyrics Data

Audio
Recording

Thread

Import

Reference Audio
Waveform Data

Lyrics Prealigned
with Reference

Audio

Chroma
Feature

Extraction

Real-Time
Dynamic

Time
Warping

Display
Lyrics in Real

Time

Alignment In
stance

Live Music
Input

Live Audio
Waveform Data
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Reference Audio
Chroma Vector

Live Audio Chroma
Chroma Vector

FIGURE 11. Lyrics display system flowchart.

FIGURE 12. A graphic user interface.
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community and shorten the learning 
curve in the academia while encourag-
ing a discussion in the community on 
education and engineering studies al-
lowing for rethinking teaching method 
to a promote more disruptive and multi-
disciplinary engineering.
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Denis A. Gudovskiy and Lichung Chu

An Accurate and Stable Sliding DFT 
Computed by a Modified CIC Filter

The sliding discrete Fourier transform 
(SDFT) is a popular algorithm used 
in nonparametric spectrum esti-

mation when only a few frequency bins 
of an M-point discrete Fourier transform 
(DFT) are of interest. Although the clas-
sical SDFT algorithm described in [1] is 
computationally efficient, its recursive 
structure suffers from accumulation and 
rounding errors, which lead to poten-
tial instabilities or inaccurate output. 
Duda [2] proposed a modulated SDFT 
(mSDFT) algorithm, which has the prop-
erty of being guaranteed stable without 
sacrificing accuracy, unlike previous 
approaches described in [1],  [3], and 
[4]. However, all of these convention-
al SDFT methods presume DFT compu-
tation on a sample-by-sample basis. This 
is not computationally efficient when the 
DFT needs only to be computed every 
R R 12^ h samples. To address such 
cases when R-times downsampling is 
needed, Park et al. [5] proposed a hop-
ping SDFT (HDFT) algorithm. Recent-
ly, Wang et al. [6] presented a modulated 
HDFT (mHDFT) algorithm, which com-
bines the HDFT algorithm with the 
mSDFT idea to maintain stability and 
accuracy at the same time. In parallel, 
Park [7] updated the HDFT algorithm 
with its guaranteed stable modification 
called gSDFT, which exists only for cer-
tain M and L relationships.

Introduction
In this article, we present a method 
to improve the SDFT algorithm. The 
improved algorithm is called cascade 
integrator-comb (CIC)-SDFT, which is 
based on extending the idea established 
in the mSDFT algorithm and mostly 
in the context of spectrum estimation 
application. Similarly to mSDFT, we 
move the DFT bin of interest k to the 
zero position to exclude complex coef-
ficient multiplication in the recursive 
stage and avoid instabilities. In addi-
tion, CIC-SDFT comprises a modi-
fied CIC filter structure proposed by 
Hogenauer [8]. Two goals are achieved 
using this approach. First, the accuracy 
of spectrum estimation is improved by 
using high-order CIC filters without 
computationally expensive windowing 
in the frequency domain as described in 
[1]. Second, the complexity of the SDFT 
can be further decreased by reducing 
the DFT output rate, also achieved by 
[5]–[7].

SDFT and mSDFT
The kth frequency bin of an M-point 
DFT at time index n for input signal x
is defined by

( ) ,X k W xn M
km

m

M

q m
0

1

= -

=

-

+/ (1)

where ,q n M 1= - + k M0 1# # - ,
and the complex exponential factor 
W e /

M
j M2= r . A recursive equivalent of 

(1) is given by

( ) ( ) .X k W X k x xn M
k

n n n M1= + -- -^ h

(2)

Equation  (2) can be implemented as a 
filter with a comb stage followed by an 
integrator stage, as shown in Figure 1(a). 
This conventional SDFT filter has a 
z-domain pole on the unit circle located 
at .z WM

k=  Hence, it is only marginally 
stable in finite precision recursive cal-
culations with accumulation, except at 
points when poles z 1!=  or .z j!=

Duda [2] proposed to shift the ( )X k
DFT bin of interest to the k = 0 bin prior 
to calculating the comb stage in SDFT. 
Thus, the ( )X kn  calculation is simpli-
fied to multiplication of input signal 
xn  by the modulation sequence ,W M

km-

followed by calculation of a new zero-
frequency ( )Y 0n  DFT bin expressed as

( ) ( ) ( ) ,X k Y Y y y0 0n n n n n M1= = + -- -

(3)

whe r e  y W xn M
km

n= -  a nd  yn M =-

.W x(
M

k m M
n M

- -
-

)

The mSDFT structure is shown 
in Figure  1(b). Complex multiplica-
tion in the integrator stage is unneces-
sary because .W 1M

0 =  Therefore, the 
mSDFT filter becomes guaranteed-
stable and accurate at the same time. In 
addition, complex multiplication in the 
recursive stage might limit the clock rate 
of the digital circuit, which is avoided in 
this method by effectively moving it into 
the feedforward part.

The drawback of the mSDFT algo-
rithm compared to the conventional Date of publication: 11 January 2017
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SDFT is the necessity to generate a mod-
ulating sequence W M

km-  instead of keep-
ing a fixed twiddle factor .WM

k  Note that 
the output of the mSDFT in Figure 1(b) 
has W ( )

M
k m 1- +  phase shift compared to 

DFT, which does not have an effect on 
magnitude spectrum estimation appli-
cations. The last two topics are not cov-
ered in this article since they are well 
described in [2].

CIC-SDFT

Recursive structure
One can note that the mSDFT filter 
structure depicted in Figure 1(b) looks 
exactly like a modified first-order CIC 
filter with an additional complex multi-
plication by .WM

km-  This is not a coin-
cidence, since the mSDFT calculates 
the ( )Y 0n  (zero frequency) DFT bin 
given by

( ) .Y y0n q m
m

M

0

1

= +

=

-

/ (4)

Equation (3) rewrites the moving aver-
age filter (4) in recursive form, which, 
indeed, is a first-order CIC filter with-
out rate change. Using (3) and (4), we 
can generalize the mSDFT idea and 
apply the CIC filter theory [8] for DFT 
spectrum estimation.

The general structure of CIC-SDFT 
is depicted in Figure 2, which contains 
complex multiplication of input signal 
xn by the modulating sequence ,WM

km-   
followed by a CIC decimation filter with 
R rate change. The CIC decimator con-
tains an integrator section with L inte-
grator stages, a downsampler by R, and 
a comb section with L comb stages. The 
CIC filter part is equivalent to a cascade 
of L moving average filters with transfer 
function expressed as

( )
( )
( )

.H z
z

z
z

1
1

L

M L
m

m

M L

1
0

1

=
-

-
=

-

-
-

=

-

e o/
(5)

It is known that the magnitude response 
of the CIC filter evaluated at z e j= ~

can be written as

( )
( / )

( / )
,

sin
sin

H
M

2
2 L

~
~

~
= (6)

where ~  is a normalized angular 
frequency and # #r ~ r-  radians/
sample. In this case, the magnitude 
response ( )H ~  of the CIC filter is the 
magnitude response ( )W ~  of a window 
function ( )w m  applied to a discrete-
time Fourier transform (DTFT), when 
a finite length DFT is being computed. 
Note that the computed CIC-SDFT 
magnitude response should be normal-
ized according to the CIC decimator 
gain, which is equal to .ML

Window function
The described CIC-SDFT algorithm 
provides two salient features. First, 
it improves spectrum estimation per-
formance using a naturally embed-
ded B-spline window function ( )w m ,
which is defined as self-convolution 
of L length-M rectangular functions. 
Equation  (6) shows that, for ,L 1=
CIC-SDFT provides an exact DFT spec-
trum. However, the spectral leakage can 
be reduced by increasing the CIC filter 
order L, which is equivalent to a higher-
order filter magnitude response ( ) .W ~

For example, it can be shown that 
( )WL 1 ~=  corresponds to a rectangular 

window of length M in the time domain, 
( )WL 2 ~=  corresponds to a triangular 

window of length ( ),M2 1-  and so on.
In general, windowing is an 

expensive operation. Conventional time-
domain windowing would compromise 
computational simplicity of the SDFT 
algorithm. Hence, frequency-domain 
convolution of adjacent DFT outputs 
with another window function was 
proposed in [1]. Practically, it is limit-
ed to only short window functions with 
preferably power-of-two coefficients 
because SDFT complexity grows 
faster than a linear function of win-
dow length. For comparison, Figure 3 
illustrates several DFT magnitude 
responses for .M 32=  First, it shows 
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FIGURE 1. SDFT filter structures: (a) conventional and (b) mSDFT.
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FIGURE 2. The recursive CIC-SDFT filter structure.
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three normalized magnitude responses 
of ( )W , ,L 1 2 3 ~=  window functions gen-
erated by CIC-SDFT with lengths M,
( ),M2 1-  and ( ),M3 2-  respectively. 
The last plot depicts the magnitude 
response of the optimized five-point 
Hanning window described in [1], 
which has three nonzero coefficients 
–1/4, 1/2, and –1/4. As can be seen, 
CIC-SDFT realizes a powerful win-
dow function compared to the short 
Hanning window. For example, an 
interference that falls into the first sid-
elobe will be attenuated by 13, 26, and 
39 dB for , , ,L 1 2 3=  respectively.

Estimator variance
Assuming that the input signal x is cor-
rupted by additive white Gaussian noise 
(AWGN) with variance /1 SNR2v = ,
where SNR is the signal-to-noise ratio, 
the CIC-SDFT variance can be writ-
ten as

{ ( )} / ,X k Cvar SNRn =t (7)

where coefficient C depends on the 
convolution of L rectangular windows. 
Each rectangular window can be rep-
resented as a length-M column vector 
of all ones. Then, coefficient C can be 
expressed as

.C
M

1 1 1 1
( )

L
L mm

L M

2
2

0

1 1

) ) )f=
=

- +

c m1 2 3444 444/
(8)

The closed-form expression of (8) can 
be written in vector form as

| | | | / ,A bC ML L1 2 2= - (9)

where vector b = 
1
0
; E, 1 is an M 1#

column vector of all ones, 0  is an 
( ) ( )L M1 1 1#- -  column vector of all 
zeros, and A is a Toeplitz matrix with b as 
the first column and ( ( ) )L M1 1 1# - +

vector [ ]u 1 0 0 0f=  as the first row. 
The case L 1=  gives exactly the 
variance of a moving average filter 

./ (  )M1 SNRL 1
2v ==  The variance of a 

second-order filter is decreased by a factor 
of 3/2 for any large M. The variance of the 
output periodogram for high SNR can be 
approximated by

{ ( ) } / .X k C2var SNRn
2
.t (10)

Computational complexity
The second feature of CIC-SDFT is 
reduced computational complexity for 
R 1>  cases. When R 1=  and ,L 1=   
CIC-SDFT performs the same num-
ber of computations as mSDFT. When 

,R 1>  the digital circuit after the inte-
grator section operates at a /f Rs  clock 
rate and the memory size in the comb 
section is decreased by a factor of R.
That is a significant reduction in com-
putational complexity and considerably 
simplifies digital circuit implementa-
tion. Table 1 summarizes computation-
al complexity by comparing the number 
of complex multiplications, complex 
additions, and memory size needed to 
calculate a single-bin DFT. 

In addition, it states whether a par-
ticular method requires generation of 
the modulating sequence and the out-
put phase shift correction or not, which 

can be accomplished by a number of 
approaches. For example, a simple table-
based method can be used for some appli-
cations to generate the complex exponent 
WM

km-  or, in the general case, a generator 
and a phase shift corrector described in 
[2] can be used. The phase shift correc-
tor is not needed for magnitude spectrum 
estimation. Note that a conventional 
SDFT in Table 1 is the method that can-
not be guaranteed stable and accurate at 
the same time due to recursive complex 
multiplication. The gSDFT and mHDFT 
computational workload was recalcu-
lated for the single-bin case. As can be 
seen, these algorithms are not beneficial 
in this configuration unless a significant 
subset of M bins has to be calculated. On 
the other hand, CIC-SDFT is a beneficial 
method, when only one or a few bins of 
an M-point DFT need to be computed 
with R downsampling.
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FIGURE 3.  The window function comparison.

Table 1. Single-bin DFT computational complexity.

Method Mul. Add. Mem. Mod. Seq. Ph. Cor.
DFT M M – 1 0 No No 

SDFT 1 2 M + 1 No No
mSDFT 1 2 M + 1 Yes Yes 

gSDFT, mHDFT 1 2 M R2 1+ - No No 

CIC-SDFT 1 L R1 1+c m L R
M1+c m Yes Yes 
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Partially nonrecursive structure
Although recursive CIC-SDFT reduces 
computational complexity for R > 1, it 
experiences a bit-growth according to 
CIC filter theory. Assuming an input 
bit-width ,Bin  the bit-width B used for 
all computations in the CIC-SDFT can 
be expressed as

( ) .logB L M B2 in= +^ h (11)

Wider bit-widths have to be used as the 
number of stages L and DFT length M
grows. This drawback can be solved by 
using nonrecursive structures derived 
from polynomial factoring and applying 
polyphase decomposition [9]. Then for 
power-of-two DFT length ,M 2P=  the 
transfer function of CIC-SDFT can be 
written as

( )

( ) ( )

( ) ( ) .

H z z

z z

z z

1 1

1 1

m

m

M L

L L

L L

0

1

1 2

4 2P 1

# f

=

= + +

+ +

-

=

-

- -

- - -

e o/

(12)

Assuming a power-of-two downsam-
pling factor R 2Q= , (12) can be rewrit-
ten as

( )

( ) ( ) ( )

( ) ( )

( ) ( ) .

H z

z z z

z z

H z H z

1 1 1

1 1

( )

( )

L L L

H z

L L

H z

1 2 2

2 2

1 2

Q

Q P

1

1

1

2

#

g

g

= + + +

+ +

=

- - -

- -

-

-

1 2 3444444444 444444444

1 2 3444444 444444

(13)

Next, assuming that the ( )H z1  output 
is followed by a downsampler by R, the 
transfer function ( )H z2  in (13) can be 
simplified to

( ) ( ) ( )

.

H z z z

z

1 1
/

L L

m

m

M R L

2
1 2

0

1

P Q 1

f= + +

=

- -

-

=

-

- -

e o/
(14)

From (13) and (14) it is clear that the 
CIC-SDFT transfer function H(z) can 
be split into two parts: ( )H z1  computed 
in nonrecursive fashion and ( )H z2  com-
puted in recursive fashion.

The first nonrecursive part compris-
es Q stages where each stage increases 
bit-width by L bits and downsamples 
the output by two. For each stage, which 
calculates ( ) ,z1 L1+ -  several imple-
mentations are possible. For example, 
it can be realized as a length-L cascade 
of ( )z1 1+ -  operations or direct expo-
nentiation of the whole stage. The latter 
can be expressed as a transfer function 

( ),H zN  and for L 4=

( ) ( )

( )

( ) ( ),

H z z

z z

z z

H z H z

1

1 6

4 1

N

N N

1 4

2 4

1 2

1 2

= +

= + +

+ +

= +

-

- -

- -

(15)

where ( )H zN1  and ( )H zN2  are new 
poly  phase components. Note that each 
polyphase component may downsample 
computations by two prior to perform-
ing add operations. The nonrecursive 
part experiences bit growth of only 

( ),logL R2  which means that the total 
bit-width at its output can be written as

( ) .logB L R BN 2 in= + (16)

The second recursive part now imple-
ments an Lth-order moving-average filter 
of length M/R with the transfer function 

( ) .H z2  Such a filter can be realized using 

a cascade of L sections, where each sec-
tion contains a comb stage followed by 
an integrator stage. Then, the bit-width 
increases by only ( / ) ( )log M R P Q2 = -

bits per section. The total bit-width at the 
output of partially nonrecursive struc-
ture is identical to (11).

Figure 4 illustrates an alternative 
partially nonrecursive implementation of 
CIC-SDFT. First, it contains Q non-
recursive stages ,N NQ0 1f -  accord-
ing to the aforementioned description. 
Second, nonrecursive stages are fol-
lowed by a cascade of L recursive 
sections , .R RL0 1f -  Due to the fact 
that bit-widths are increased on a 
per-stage basis rather than all at once 
at the input of the CIC-SDFT, the 
computational and circuit complexity 
decreases. Moreover, since downsam-
pling is performed as early as pos-
sible, the number of add operations is 
minimized as well. Another important 
advantage of the structure shown in 
Figure  4 is the ability to model CIC-
SDFT using floating-point arithmetic, 
since overflows in the integrator stages 
are avoided. The latter property allows 
to implement a rounding operation 
between algorithm stages.

Summary
In this article, a novel SDFT algorithm 
called CIC-SDFT was introduced. It 
generalizes a previous approach by 
incorporating a modified CIC filter 
structure. Such a generalization adds 
two new programmable parameters: 
filter order and output rate. Filter 
order is responsible for an embedded 
window function, and therefore deter-
mines the spectrum estimator variance 
and interference rejection capabilities. 
Sidelobe level is proportional to the 
filter order as L13-  dB for the embed-
ded window function. The closed-form 
expression for the variance of CIC-
SDFT estimator and its periodogram 
was provided.

Programmability of the output rate 
allows one to decrease algorithm com-
putational complexity when needed. 
Specifically, the number of memory 
cells and half of the add operations in 
recursive CIC-SDFT are inversely pro-
portional to the downsampling factor R.
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xn yn CIC
N0 R0NQ–1 RL–1

Xn (k)
~

2

z–
R
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FIGURE 4.  The partially nonrecursive CIC-SDFT filter structure.
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Bit growth can be minimized using 
the presented partially nonrecursive 
structure of CIC-SDFT, which is suit-
able for digital circuit implementation 
and algorithm modeling using floating-
point arithmetic.
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Compressive Privacy: From Information/Estimation 
Theory to Machine Learning

Most of our daily activities are now 
moving online in the big data era, 
with more than 25 billion devices 

already connected to the Internet, to pos-
sibly over a trillion in a decade. Howev-
er, big data also bears a connotation of 
“big brother” when personal information 
(such as sales transactions) is being ubiq-
uitously collected, stored, and circulated 
around the Internet, often without the 
data owner’s knowledge. Consequently, a 
new paradigm known as online privacy
or Internet privacy is becoming a major 
concern regarding the privacy of person-
al and sensitive data.

As depicted in Figure 1, Internet 
data live in two different worlds: 1) the 
private sphere, where data owners gen-
erate and process decrypted data, and 
2) the public sphere, where the data in 
cloud servers are presumably encrypted 
and therefore unaccessible by intruders. 
However, the data may be decrypted by 
the intended and trusted “authorities,” 
who will be provided with the right key 
for the data decryption. Following the 
cryptographic channel and adversarial 
models, formally defined by Claude 
Shannon, we shall also name the data 
owner, intended user, and intruder as 
Alice, Bob, and Eve, respectively. Recall 
that the typical security protocol hinges 
upon Alice’s passing a decrypting key 
to Bob but not to Eve. Since the notion 
of an unbreakable key is questionable, 
there is no wonder that Internet data 

remain highly vulnerable to unauthor-
ized leakages and hacker attacks.

Data owner should have
control over data privacy
Privacy-preserving (PP) tools have a 
broad spectrum of applications, cover-
ing numerous types of Internet data 
(such as speech, image, location, and 
media/social/health data). They all 
require a delicate balance between uti-
lization and privacy. For example, in 

case of a bomb explosion, images from 
various mobile sources near the crime 
scene may be collected by authorities for 
wide-scale forensic analysis. Ideally, the 
uploaded images should provide critical 
and relevant information to help capture 
the targeted suspects while protecting 
the full facial images of the innocent 
from being leaked to the public.

Data are not just a collection of 
words/numbers working in isolation, 
rather they encompass the global and 

Digital Object Identifier 10.1109/MSP.2016.2616720
Date of publication: 11 January 2017

Public Space: Cloud

Private Space: Clients

Cloud
Server

Trusted AuthorityIntruder

Encrypted
Data

Decrypted
Data

Adversary

FIGURE 1. In collaborative learning environments, individual data are uploaded to the cloud. From the 
privacy perspective, data in the private sphere versus the public sphere should be treated differentially, 
which calls for a novel PP encoding paradigm, known as compressive privacy (CP). For privacy pro-
tection, the query data uploaded to the public sphere should be designed to retain the information 
useful for the intended application and should not be easily repurposed into malicious exploitation.
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highly coordinated control of informa-
tion. PP protocols allow the data owner 
to control the fate of the data, instead 
of chancing with the protection prom-
ised by the cloud severs. To this end, 
the Defense Advanced Research Proj-
ects Agency (DARPA) has championed 
a major Brandeis Program to develop 
novel communication protocols so that 
the uploaded data are useful only for the 
intended utility but not easily repurposed 
into privacy intrusion.

Privacy communication paradigm
Note that, as depicted in Figure 2, both 
Bob and Eve will receive the same data 
(denoted by y), i.e., there is no key 
required. Ideally, in this paradigm, the 
query y  should be useful to (friendly) 
Bob but useless to (malicious) Eve. 
More realistically, we would like to see 
to it that the query may retain informa-
tion as lossless as possible to Bob and, 
at the same time, be as lossy as possible 
against Eve.

In short, it should also be recognized 
that the security protocols for data shar-
ing are neither necessary nor sufficient 
for data privacy protection. Therefore, it 
is worth installing both the security and 
privacy protocols for maximal protec-
tion of Internet data.

Differential privacy and  
compressive privacy

Differential privacy
In the differential privacy (DP) theory 
[1], a desensitizing function K  is 
said to provide e-DP of the data if 

[ ( ) ] [ ( ) ]K D S e Pr K D SPr ! # !e l  for 
all ( )S KRange!  and all data sets D
and Dl differing by one entry. Note also 
that the DP sensitization does not neces-
sarily require the utility function to be 
known in advance, and DP guarantees 
that the distribution of the search result 
should be indistinguishable (modulo a 
factor of )ee  with or without the missing 
entry. Two types of “differential-log-like-
lihood” criteria, e-DP versus e-informa-
tion privacy (a stronger privacy metric), 
are analyzed and compared in the study 
of the so-called privacy funnel in [2]. 
Due to the absence of systematical meth-
ods for the derivation of optimal que-

ries, however, the DP approach remains 
somewhat unwieldy for many real-world 
applications. This prompts us to explore 
other desensitizing methods for privacy 
preservation.

Compressive privacy
The query, denoted by ,y  is represented 
by ( , )fy x f=  where x  denotes the fea-
ture vector representing the original data 
and f  is an independent random noise. 
Unlike DP, the CP approach allows the 
query to be tailor-designed according 
to the known utility and privacy mod-
els. As depicted in Figure 2, we propose 
a query encoding scheme that is 1) 
information preserving from the utili-
ty’s perspective but 2) information lossy 
from the privacy’s perspective. Collec-
tively, such a scheme is called CP. This 
article explores the tradeoff analysis 
between the utility mutual information 
(between y  and Bob) and its privacy 
counterpart (between y  and Eve). This 
is in a sharp contrast to most machine-
learning problems, where the design 
goal is exclusively focused only on the 
utility information.

Scope and prerequisite of the article
This article explores the rich synergy 
between information theory, estimation 
theory, and machine learning and, ulti-
mately, develops a PP methodology—CP. 

While formal courses on information 
theory, estimation theory, and machine 
learning are highly recommended for 
advanced and serious researchers, we 
shall nevertheless review the basic mate-
rials for novice readers, hopefully mak-
ing the article somewhat self-contained.

Information and estimation theory
Let the original data (owned by Alice)  
be represented by a vector space con-
taining M-dimensional random vectors

[ , , , ] .x x xx M
T

1 2 f=

To convey information concerning ,x
the design of PP query y must be based 
on joint consideration of both the utility 
maximization (for Bob) and the privacy 
protection (against Eve). Mathematically,

 ■ Utility function: The utility func-
tion is denoted by ( ).u x

 ■ Privacy function: The privacy func-
tion (i.e., cost function) is denoted by 

( ).p x

Prior work on non-Gaussian models
A natural formulation for the utility-pri-
vacy tradeoff analysis involves optimiz-
ing ( ; )I u y  [respectively, ( ; )]I p y  while 
setting a bound on ( ; )I p y  [respectively, 

( ; )] .I u y  More specifically:
 ■ Information bottleneck (IB) [4]. In 

the IB scenarios, it is assumed that 

I(p;y)

I(u;y)

Eve (p)

Bob (u)

Query (y)
Alice (x)

Feature Space

Privacy Space

Utility Space

FIGURE 2. Our study on privacy preservation involves joint optimization over three design spaces: 
1) the feature space (Alice), 2) the utility space (Bob), and 3) the privacy space (Eve). Alice (the 
data owner) wants to convey certain information relevant to Bob (the intended user/utilizer) while 
preventing it from being eavesdropped by Eve (the intruder). In the CP paradigm, both Bob and Eve 
will receive the same data (denoted by y), i.e., there is no key required. We propose a query encod-
ing scheme which is 1) information preserving from the utility’s perspective but 2) information lossy 
from the perspective of privacy. Collectively, such a scheme is called CP. This article explores the 
utility-privacy tradeoff analysis via comparing the ( ; )I u y  and ( ; ).I p y
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( ) ,p x x=  i.e., Eve has no additional 
role here. Two specific examples are 
as follows:
– Alice wants to transmit as much 

information as possible, relevant to 
Bob, while consuming minimum 
resources on bandwidth/storage.

– Alice wants to transmit as much 
information as possible, relevant 
to Bob, while preventing the origi-
nal data from being reconstructed 
or leaked.

The objective is to design the query 
y, which maximizes the utility gain, 
prescribed by ( ),u x  while keeping the 
data bandwidth below a certain bound.

 ■ Privacy funnel (PF) [2]. In this sce-
nario, it is assumed that ( ) ,u x x=
i.e., Bob has no role here. Now Alice 
wants to transmit the original data, as 
much as possible, while preventing 
leaking sensitive data to Eve. (Recall 
that Eve may perform any adversarial 
inference attack, based on the query 

,y  to intrude the privacy prescribed 
by ( ) .)p x  Therefore, we must design 
a query y that can minimize the pri-
vacy leakage while assuring a guar-
anteed level of information on the 
original data is being conveyed.
Most analysis regarding IB [4] and 

PF [2], especially those pertaining to 
the convex optimization, may be natu-
rally extended to the general case when 

( )u x x!  and ( ) ,p x x!  i.e., both Bob 
and Eve have their own specific goals. 

Gauss–Markov estimation theorem
The assumption of Gaussian distribution 
of the data is vital to our development 
of the CP theory. More specifically, 
it allows us to make use of the results 
that 1) the amount of information can 
be quantified as a log function of its 
variance and 2) the difference of vari-
ances (before-and-after-query) can be 
derived via the classic Gauss–Markov 
estimation theorem [3]. As proven next, 
the Gaussian assumption leads us to a 
simple (eigenvalue-based) optimal solu-
tion in closed form.

Now, as depicted in Figure 2, the 
design will be optimized over two com-
peting linear vector spaces:

 ■ Utility subspace. The utility function 
is represented by ,u U xT=  where 

U M0! #n  is the projection matrix 
characterizing the utility subspace.

 ■ Privacy subspace. The cost (i.e., 
privacy) function is represented by 

,p P xT=  where P M0! #o  is the 
matrix characterizing the privacy 
subspace. (Here we shall simply 
assume the subspace projection 
matrices U and P as given, leaving 
their learning/estimation strategies a 
later discussion.)

Gaussian distribution
with linear optimal query
The linear query is represented by

,y f xT f= + (1)

where we assume that 1f =  and f
is an independent random noise, with 
variance ,2 2v v=f  all without loss of 
generality.

The amount of information con-
tained in x  (as well as u  and )p  can be 
quantitatively measured by its entropy

( ) ( ) ( ) ,logp pH dx x x x/- #

where the integration is taken over the 
M-dimensional vector space. Assume 
that x  has a Gaussian distribution 

,N x x0 Rt^ h , where x0t  and xR  are the 
mean and covariance matrix of .x  The 
entropy and covariance matrix are 
closely connected

( ) ( ) .log logH M e
2
1

2
2x 2 2x rR= +^ h

Effect of query on covariance matrix
Assume that [ ]E x x0= t  and [(E x-

) ( ) ] .x x x T
0 0 xR- =t t  Before query, the 

initial estimate of x  is x0t , and the ini-
tial error-covariance-matrix (ECM) is 

[( ) ( ) ]E .x x x x T
0 0 xR- - =t t  Now that 

we are given the knowlege of the query, 
.y f xT f= +   According to the well-known 

Gauss–Markov theorem; cf. [3, ch. 
15], the optimal estimation of x  is

[ | ]

[ ] .

E

y

x x y

x f f f f xT T
0

2 1 2 1
0xv vR

=

= + + -- - - -

t

t t^ h

Let x x x/ -u t  denote the updated 
estimation error (given the query y)
with its corresponding ECM as follows:

[ | ]

.

E x x y

f f

f f f f

T

T

T T

1 2 1

2 1

x

x

x x x x

v

v

R

R

R R R R

=

= +

= - +

- - -

-

u uu

^ h

6 @
(2)

This leads to a postquery Gaussian dis-
tribution for ,x  denoted by , .N x xRt u^ h

For multiquery cases, just change f "
F RM m! #  and .R mm2 " !/v #

e

Effect on the estimation error  
of the original feature vector
Conventionally, we would like to maxi-
mally preserve the fidelity, i.e., to best 
reconstruct the original data. In this 
case, natural formulation for the optimal 
query vector(s) is as follows:

 { ( )}argmax tracef xR u (3)

whose optimal solution lies exactly on 
the principal component analysis (PCA) 
eigen-subspace.

Effect on the utility and  
privacy entropies
It is obvious that the additional query 
knowledge can only reduce the entro-
py of u  and .p  The utility and privacy 
functions are linear functions of the state 
vector ,x  so they are Gaussian distrib-
uted with the utility covariance matrices 
(before and after the query) given as

andU U U UT T
u x u x/R R R R=u u (4)

and the privacy covariance matrices as

and .P P P PT T
p x p x/ /R R R Ru u (5)

Example 1. The double income problem (DIP) 
Here, a two-dimensional vector 

[ ]x xx T
1 2=  represents the two indi-

vidual incomes of a couple.
 ■ From the utility perspective, to 

assess the family’s total income, the 
utility function should be set as 

( ) .x xu u x 1 2= = +

 ■ From the privacy perspective, the 
query should not pry into the in  come 
disparity between the couple. To pro-
tect such privacy, the privacy function 
is set as ( )p p x= .x x1 2= -

Suppose that the initial covariance 
matrix of x  is

.
8
6

6
10xR = -
-; E
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Note that  [ ]1 1U T=  and P =
[ ]1 1 T-  and the initial utility and pri-
vacy variances are respectively 62

uv =

and ,302
pv =  cf. (4) and (5).

Let us study two scalar queries: 
. .y x x0 8 0 61 2 f= + +  and .y x0 6 1=l

. .x0 8 2 f+ +  According to (16), y  and 
yl deliver almost the same differen-
tial information gain . .2 7.  However, 
because the spouse’s income is initially 
more private than the husband’s (note 

),10 82 y  and yl have different effects 
on the variances of u  and .p

In Figure 3, the distribution of , ,p pu
and plu  are respectively represented 
by the solid green, dotted red, and 
dashed blue curves. More specifically, 
yl is more intrusive than y, implying a 
higher weight placed on the spouse’s 
income would leak more on the dispar-
ity. Indeed, we have .29 352

pv =u  and 
. ,25 722

pv =lu  cf. (5). On the other hand, 
from the utility perspective, yl outper-
forms y in producing a narrower util-
ity variance: . . ;1 72 1 962 2

u u1v v= =lu u

cf. (4).
4

Utility mutual information 
maximization
In information theory, ( )H u  denotes the 
entropy of , ( ; )Iu u y  denotes the mutual 
information between u  and y  while 

( | )H u y  denotes the conditional entropy 
of u given the new knowledge on the 
query .y  The utility entropy before the 
query is

( ) ( ) .log logH e
2
1

2
2u 2 2u

n
rR= +^ h

As illustrated in Figure 4(a), ( )H u =
( ; ) ( | ),I Hu y u y+  thus maximizing the 

mutual information is equivalent to 
minimize the conditional entropies, i.e.,

{ ( | )},H u y{ ( ; )} argminI u y =argmaxy y

where the postquery conditional en -
tropy is

( | ) (| |) ( ).log logH e
2
1

2
2u y 2 2u

n
rR= +u

Let us denote a scalar | |.uu /o R  By 
the variational principle, the gradient on 
the entropy (constant ignored) bears the 
following form:

,logu u
u

u2 2/d o
o

o- = -^ h (6)

which reflects the reduction of the 
entropy due to y , i.e., the difference 
between ( | )H u y  and ( ).H u

Theorem 1. Utility-Driven Differential Information 
Maximization (DIM)
The query vector f  in (1) that maximizes  
the mutual information ( ; )I u y  can be 
derived via the following optimizer:

( )

[ ]
,

argmax

argmax  Ω

f

f I f
f f

T

T

2

f u

f
x

d

vR

=

+
(7)

where

Ω U UT1
x u x/ R R R- (8)

denotes the utility amplification matrix 
(UAM). The optimal solution can be 
computed from the principal eigen-
vectors of the generalized eigenvalue 
decomposition: ( Ω,  ) .eig I2

x vR +

Proof of theorem 1
We shall proceed with the proof of 
Theorem 1 for the scalar case, and then 
show how to extend the proof to the vec-
tor case.

Proof of the scalar case
Assume that U M 10! #  and ,u 0!

then the UAM [see (8)] has a simpler form:

.Ω UUT2
u x x/ v R R- (9)

Also, for the scalar case,

.andU U U UTT2 2
u x u u xv o vR R= = =u u

(10)

Via (6),

2

2 2

2

2 2

u
u

u

u

u u

u

u u2
d

o

o

v

v v

v

v v
= - = -

-
=

-u u

(11)

and it follows that

( )

( [ ] )

[ ]
. Ω

U U

f f
U ff U

f I f
f UU f

f I f
f f

.

.

| | | |

.

f

Eq

T

Eq T

T T

T

T T

Eq T

T

10 2

2 2 2

1 2 2

9 2

u
u

x x

u x

x x

u x

x x

x

d
v

v v

v v

v

R R

R
R R

R
R R

R

=
-

=
+

=
+

=
+

=

u^ h

(12)

Proof of the vector case
We shall show that there is an orthogo-
nalization procedure that can be used to 
assure that no intercomponent redun-
dancy may exist (i.e., zero mutual infor-
mation). Then the additive property that 

( ) ( )HH u uii
= /  allows each compo-

nent of u  to be treated individually, just 
like the scalar case. The orthogonaliza-
tion hinges upon a proper transforma-
tion matrix, denoted by ,C  i.e., replacing 
U  by UC  for uR  in (4) and for Ω in (8).
Note that

H (p⎢y)

H (u⎢y)

I (u,y)

I (p
,y)

H (u)H (p)

H (y)

H (u⎢y)

I (u,y)

H (u)

H (y)

(a)

(b)

FIGURE 4. (a) From the utility’s perspective, 
maximizing the mutual information ( ; )I u y  is 
the same as minimizing the conditional entropy 

( | ),H u y  given a query .y  (b) For the optimal 
utility-privacy tradeoff, we want to find a query 
y  to yield larger ( ; )I u y  and smaller ( ; ).I p y
This calls for an optimization metric called 
DIG:/ ( ; ) ( ; ).Iu y p y-

p(x)

x

FIGURE 3. The Gaussian distribution of the 
original privacy function is shown by the solid 
green curve with the initial variance, say, 

30p
2v =  as exemplified in our DIP case study. 

Two post-query and narrower distribution 
curves are: a) dotted red curve with the vari-
ance reduced to .29 35352

pv =u  after a less in-
trusive query y, and b) dashed blue curve with 
a further reduced variance of .25 71682

pv =lu
after a more intrusive query .y l
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[ ]

[ ]

Ω .

Ω U U U U

U U U U

T T T T

T T

1

1

new

old

x x x

x x x

R C C R C C R

R R R

=

=

=

-

-

It is important to note that X  remains 
invariant with respect to any post-
transformation. Thus, in our analysis, 
we shall pretend as if U  were already 
preorthogonalized, i.e., ,U UT

x uR K=
where u 0!K #n n  is a diagonal matrix 
with diagonal elements: .2

uiv" ,  Let 
the ith column of U be denoted by Ui   
and then

Ω

.

U U

U U

T

i
i i

T

1

2

x u x

x u xiv

R K R

R R

=

=

-

-/ (13)

The proof is now trivial having the fol-
lowing additive property:

( ) ( ) .H Hu u ( )

i
i

i

i
ud= =/ / (14)

Fidelity preservation query
A special situation for the aforemen-
tioned analysis is when the design 
objective is for the fidelity preservation. 
For this case, U I=  and it follows that 

x/ RX  and (7) becomes

( )
[ ]

,argmax argmaxf
f I f

f f
T

T

2f u f
x

xd
vR
R

=
+

(15)

whose optimal solution is again the 
same as PCA, just like (3).

Differential utility/cost
analysis (DUCA)
With reference to the Venn diagram 
in Figure 4(b), the basic differential 
information gain (DIG) can be char-
acterized as the difference of the areas 
corresponding to the utility and privacy 
mutual information

( ; ) ( ; ) .I IDIG u y p y= - (16)

Since the entropy (or information) is a 
log function of its corresponding covari-
ances, thus “differential gain” in infor-
mation is in some sense corresponding 
to the “ratio gain” in covariance.

While the default setting is 1a =

and ,1b =  it serves many practical pur-
poses to adopt a more flexible variant:

( ; ) ( ; )I IDIG u y p ya b= - (17)

so as to further broaden the application 
scope. For example,
■ First, a  and b  are adjustable to 

account for the relative reward/pen-
alty associated with the utility gain 
versus the privacy loss.

■ Second, for constrained optimiza-
tion problems such as “information 
bottleneck” [4] and “privacy funnel” 
[2], a  or b  play the role of being the 
Lagrangian multipliers.
We have previously focused on 

the utility-based (mutual) information 
optimization and, obviously, the same 
analysis carries through to the privacy 
analysis. (Detail omitted.) To study the 
joint utility-privacy tradeoff, we define 
the privacy amplification matrix (PAM) 
as follows:

.P PT1
x p xP R K R= - (18)

Theorem 2. DUCA: Joint Utility-Privacy Optimization
The query vector f  in (1) that maximizes 
the (weighted) “differential informa-
tion gain,” ( ; ) ( ; ),I Iu y p ya b-  can be 
derived via the following optimizer:

[ ]

Ω
.argmax

f I f
f f

T

T

2f
x v

a b

R

P

+

-6 @
(19)

The optimal solution can be computed 
from the principal eigenvectors of 

, .Ωeig I2
xa b vP R- +^ h 4

Example 2. The DIP (continued)
Note that 62

uv =  and ,302
pv =  via (8)  

and (18)

Ω
/
/

/
/

/
/

/
/

.

4 6
8 6

8 6
16 6

196 30
224 30

224 30
256 30

and

P

=

=
-

-

;

;

E

E

Optimal PP query
The optimal query vector is f =
[ . . ] .0 727 0 687 T  This boosts the DIG from 

.1 61DIG = (no query) to .2 97DIG =
(with query). Moreover, it improves the 
utility variance by fourfold (from six 
down to 1.54) while keeping the pri-
vacy loss to within 6% (from 30 down 
to 29.83). Pictorially, in Figure 5(a), the 
variance of the distribution narrows 
from the blue “4”s to the red “*”s.

Privacy intrusive query
From the intruder’s perspective, it makes 
sense to set 0a =  and 1b =-  because 
its only objective is on the privacy 
attack, paying no attention to the utility 
gain. This results in a “most intrusive” 
query vector: [ . . ] ,0 695 0 719f T= -

with the post-query distribution nar-
rowing sideways (from the blue “4”s 
to the red “*”s), indicating that the pri-
vacy variance is severely compromised 
(from 30 down to 1.87) while the utility 
remains little affected (from six down 
to 5.86). 4

Discrimant component analysis 
(DCA) machine learning
and variants
The utility projection matrix U is some-
times known in advance but some-
times not. In machine learning, it is 
possible to develop learning algorithms 
to estimate U  and X  from the train-
ing data set, made available during the 
learning phase:

, {[ , ], [ , ], , [ , ]},y y yx x xX Y N N1 1 2 2 f=6 @

where the teacher values, denoted as 
yi, represent two types of class labels: 
1) the utility-classes, e.g., the family 
income level: H/M/L (say, high/middle/
low), and 2) the privacy-classes, e.g., the 
income disparity between the couple 
(i.e., who earns more).

Represent UAM by between-class 
scatter matrices
The “center-adjusted” scatter matrix is 
[5]

[ ][ ] ,S XX x xT
i

i

N

i
T

1

/ n n= - -
=

r r r v v/
(20)

which assumes the role of the covari-
ance matrix xR  in the estimation con-
text. The classic unsupervised learning 
PCA algorithm is typically computed 
from .Sr  More exactly, the PCA sub-
space is represented by a projection 
matrix :W M m

PCA 0! #

.argmax trW W S W
{ : }

T
PCA

W W W IT
=

=

r^ h (21)

The PCA solution can be computed 
from the m  principal eigenvectors of 

.eig Sr^ h
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In supervised learning, the scatter 
matrix Sr  can be further divided into two 
additive parts [5]

,S S SB W= +r

where the within-class scatter matrix 
SW  is defined as

[ ][( ] .S x x( ) ( )
W j

j

NL

j
T

11

n n= - -
,

,
,

,

, ==

,

v v//
(22)

The between-class scatter matrix SB  is 
defined as

NSB

L
T

1

n n n n= - -
,

, , ,

=

v v v v6 6@ @/ (23)

where N,  denotes the number of train-
ing vectors associated with the th,
class, n,v  denotes the centroid of the , th 
class, for , , ,l L1 f=  and L  denotes 
the number of different classes. The 
between-class scatter matrix represents 
the so-called signal subspace as it is 
formed from the L  class-discriminating 
vectors learnable from the data set.

To facilitate the training of Ω from 
the supervised data set, we adopt two 
coordinate transformations to simplify 
the mathematical analysis.

 ■ Orthogonalization Transforma-
tion on U. Without loss of generali-
ty, we assume that U  is already 
pre-orthogonalized in (8), which can 
then be expressed as

Ω UUT
x xR R= u u (24)

where U M0! #nu  with column vectors 
defined as , , , .i 1U Ui i

1
ui fv n= =-u

 ■ Whitening Transformation on x. 
Let x

2
1

R  denote the square-root of 
the covariance matrix xR  i.e., 

.x x x
T

2
1

2RR R=  By transforming the 
original vector space to a “canonical” 
(or “whitened”) vector space via

x x2
1

xR=
-

l , (25)

the new covariance matrix becomes 
an identity matrix, i.e., .IxR =l  It 
follows that

,U U U UT T
x xX R R= =l l l l ll l

t u u u u (26)

where

.U Ux
T
2/ Rlu u (27)

In the whitened space, the between-
class utility scatter matrix SBUl  points to 
the L  best utility-class-discriminating 
vectors, spanning an ( )L 1- –dimen-
sional subspace. Therefore, pursuant to 
(26), it is natural to associate each col-
umn of Ulu  with a vector pointing from 
the mass center to the centroid of a util-
ity class. This results in

.S U U
.B

T
Eq 26U ? X=l l l lu u t (28)

Note also that

.

UU U U
. .

.

Eq

T
Eq

T

Eq

24 27

26

x x x x

x x

T

T

2
1

2

2
1

2

?X R R R R

R X R

=

=

l l

l

u u u u

(29)

It follows that

.S S
. . .

B
Eq

B

T

Eq

T

Eq25
2
1

2
28

2
1

2
29x x x xU U ?R R R X R X= =l lt t

(30)

Utility-driven DIM-DCA
for supervised learning
Now we are ready to establish a machine 
learning variant, called DIM-DCA, cor-
responding to (7).

Algorithm 1. Utility-driven DCA 
learning algorithm
The optimization formulation of DIM-
DCA involves searching for the projec-
tion matrix :W M m

DCA 0! #

.argmax trW W S W
{ : }

T
BDCA

W W S I W IT
U=

t+ =r
^ h

6 @

(Note that t  here assumes the role of 
the variance .)2v  The optimal DCA 

solution can be derived from the prin-
cipal eigen-subspace of the following 
“discriminant matrix” [6]:

.S I SB
1

Ut+ -r6 @ (31)

Equivalently, they can be derived from 
the first m  principal eigenvectors of

, .eig S S IBU t+r^ h (32)

The extracted queries are rank-
ordered according to their “signal to 
power ratios,” which are equivalent to 
their corresponding eigenvalues:

 ( )
, ,

.

i L

i L

1 1

0

  if

  if
v S I v

v S v
i

i
T

i

i
T

B iU f

$

m

t

=

+
= -r*

(33)
4

Metric for interclass separability
The trace-norm of the discriminant matrix, 
defined in (31), may be used as a simple 
metric to measure the inter-class separa-
bility of a supervised data set. It offers a 
convenient tool to evaluate the the suit-
ability of a certain similarity function (or 
kernel function [3]) to be chosen for non-
linear data analysis (see the next section). 

Theoretical connection
between two variants of DCA
In [6], another variant of DCA was 
developed for finding the optimal sub-
space projection matrix via the principal 
eigenvectors of

4
3

2

1
0

–1
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–3

–4
–5 –4 –3 –2 –1 0 1 2 3 4 5

x
(2

)

x (1)

4
3

2

1
0

–1

–2

–3

–4
–5 –4 –3 –2 –1 0 1 2 3 4 5

x
(2

)

x (1)

(a) (b)

FIGURE 5. A display of DUCA-reduced covariance matrices for the DIP example, where .x xx ( ) ( ) T1 2= 6 @
(a) PP query, with the setting 1a =  and ,1b =  and (b) privacy-intrusive query, with 0a =  and 

.1b =-
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, ,eig S S IWU t+r^ h (34)

where SWU  denotes the within-(utility)-
class scatter matrix. This variant is 
an extension of Fisher’s LDA and is 
indeed a very close sibling of the DIM-
type DCA. To prove that the Fisher-
type DCA is exactly the same as the 
DIM-type DCAs, when ,0t =  we 
let { , }vi im  and { , }vi iml l  respectively 
denote the eigenvalues/eigenvectors 
for DIM-DCA [see (32)] and Fisher-
DCA [see (34)]. It can then be shown 
that v vi i=l  and ( ) .1i i

1m m= - -l  The 
latter guarantees iml" , and { }im  to be 
sorted in the same order, thus verify-
ing the equivalence.

PPFR simulation results
Apply PCA and DCA to the Yale data 
set for PP face recognition (FR) (PPFR) 
applications, we have the following 
observations:

 ■ PCA/DCA Classification Ac-
curacies. There are only L 1-
meaningful eigenvectors, because 

.L 1rank SBU # -^ h  Note also that 
usually ,L M%  it implies that the 
DCA eigen-components can enjoy a 
win-win advantage in improving pri-
vacy without sacrificing utility.
– First, the L 1-  principal compo-

nents can capture key features 
fully adequate for very high per-
formance, as evidenced by the 
performance curves shown in 
Figure 6. Note that DCA far out-
performs PCA and random pro-
jection in terms of FR accuracies.

– The DCA dimension reduction 
results in removal of a large pro-
portion of components, making it 
an effective compression tool for 
privacy preservation.

 ■ Data Visualization by PCA/DCA 
Projection. The high-dimensional 
Yale data set may be visualized by 
means of two-dimensional PCA or 
DCA subspace projection. Fig-
ure 7(a) displays the PCA visualiza-
tion, showing that many classes are 
nonseparable by PCA. In contrast, 
the DCA visualization in Figure 7(b)
shows very well separated classes. 
In fact, many data points from the 

same class align almost perfectly, 
sometimes making the whole class 
of data projected to a single point.

Privacy-driven desensitized
DCA via ridge DCA (RDCA)
In the previous section, the utility-driv-
en learning algorithms are good for sce-
narios where the intended utility is well 
defined but the privacy policy is still 
open. Conversely, there are other sce-
narios where the intended utility is yet 
to be determined but the privacy policy 
is already pre-defined. This calls for a 
DCA variant tailored designed for the 
extraction of desensitized components. 
To this end, we further incorporate 
another ridge parameter tl to regulate 
the (privacy) signal matrix ,SBP  result-
ing in the following privacy-driven 
learning algorithm [7].

Algorithm 2: Privacy-driven
ridge DCA algorithm 
Find the project ion matr ix 

:W M m
RDCA 0! #

.

argmax

tr

W

W S I W
{ : }

T
B

RDCA
W W S I W IT

P t

=

-

t+ =

l

r

^ h6
6

@
@

where SBP  denotes the between-
(privacy)-class scatter matrix and tl
is a small positive value. The optimal 
RDCA solution can be derived from 
the m eigenvectors corresponding to the 

, , ( )L L m 1th thf + -  eigenvalues of

, .eig S I S IBP t t- +l r^ h (35)

The component powers are closely relat-
ed to their corresponding eigenvalues:

( )  , .P i L forvi
i

. $
m

t
t- -

l
(36)

4

Equation (36) assures that the desen-
sitized components can be orderly 
extracted according to their eigenval-
ues, just like PCA. This is why RDCA 
is sometimes referred to as desensitized 
DCA or, more simply, desensitized PCA.
Let us highlight some key properties of 
RDCA’s eigen-components:

 ■ Signal-Subspace Components, i.e., 
when :i L1 The first L 1-  eigen-
components are potentially most 
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intrusive, so they must be filtered 
out for the privacy sake.

 ■ Noise Subspace Components, i.e., 
when :i L$ In contrast, v Si

T
BP

0vi -  for all ,i L$  indicating that 
they do not leak sensitive information. 
Moreover, their utilizable component 
powers are rank ordered by the corre-
sponding eigenvalues .im

Antirecognition utility maximization results
Antirecognition utility maximization
(ARUM) is an exemplifying application 
scenario, in which the privacy policy 
calls for deidentification. More exactly, 
while we want to conceal the person’s 
identity, we would like to retain as much 
information as possible to serve other 
purposes such as 1) eyeglasses detection 
or 2) mood detection, e.g., happy versus 
sad faces. Further ARUM applications 
may include, for example, anomaly/
intruder detection without leaking the 
exact identity of the user.

As an example, we have applied 
DCA and RDCA to the Yale data set, 
with 15 different persons (i.e., ),L 15=

and compared their performances for 
both PPFR and ARUM applications.

 ■ Eigenfaces in the Signal-Subspaces 
of DCA and RDCA. Note that, 
when tl is relatively small, DCA and 
RDCA share almost the same signal 
subspace.  Specifically,  their 

( )L14 1= -  principal eigenfaces 
are very similar. How to treat the 14 
eigenfaces depends on the intended 
utility/privacy goals:
– For PPFR, the principal eigenfaces 

alone are sufficient to yield high 
accuracies shown in Figure 6.

– For ARUM, on the other hand, the 
same principal eigenfaces are 
deemed to be most intrusive and, 
therefore, they should be cast away 
for the sake of desensitization.

 ■ Eigenfaces in the Noise-Subspace. 
Shown in Figure 8(a) are the first five 
desensitized DCA eigenfaces and, in 
Figure 8(b), the first five RDCA 
eigenfaces. Each of the noise-sub-
space components yields a very low 
classification accuracy around 6.6%, 
no better than random guess out of 
L 15=  choices. This confirms that 
each of them is perfectly desensi-

tized and contains no useful informa-
tion for authentication.

Reconstructed images
by DCA and RDCA
The performance distinction lies in the 
power-based rank-ordering (or lack of it) 
of the DCA’s and RDCA’s desensitized 
components:

 ■ Figure 8(a) shows the DCA’s desen-
sitized eigenfaces, which apparently 
contain no useful information.

 ■ Figure 8(b) shows the RDCA’s 
desensitized eigenfaces, which exhib-
it much higher component powers, 
rendering them possibly amenable to 
ARUM-type applications.
By the following ARUM-type exam-

ple, we show how to harness the recon-
struction for some useful applications.

 ■ Shown in Figure 9(a) is the original 
image of the first sample in the Yale 
data set, which is sampled/represent-
ed by a full-dimensional vector 
( , ).M 4 096=

 ■ Figure 9(b) displays the reconstruct-
ed face images using 3,986 DCA 
components.

 ■ Figure 9(c) displays the reconstruct-
ed face images via 3,986 (power-
sorted) RDCA components.
By comparing the two reconstructed 

images with the original image, we note 
that the RDCA outperforms DCA for 

both the eyeglasses detection and mood 
detections. (More visibly so for the former 
but somewhat subjective for the latter.)

Quantitative tradeoff  
analysis via RDCA
An experimental study on an in-house 
glasses data set (with seven different 
persons) was conducted for an ARUM-
type application[7], where 1) the utility 
is to determine whether or not a person 
wears glasses and 2) the privacy involves 
concealing the person’s identity, i.e., 
deidentification. 

Our study involved 1,000 trials. 
RDCA appears to be promising: Upon 
the RDCA desensitization, the privacy 
accuracy drops significantly from 97.6% 
to 44.4%, implying a much improved pro-
tection, while its utility accuracy remains 
fairly high, from 98.3% to 95.5%.

DUCA machine learning
and variants
It would be idealistic if we could benefit 
from having both types of the teacher 
values made available during the learn-
ing phase, one for the utility class and 
one for privacy class. Together with the 
training data set, these teacher values can 
be used to produce two between-class 
scatter matrices, SBU  (for utility) and SBP

(for privacy), which can, in turn, be used 
to estimate X and ,P  respectively.

DCA 15 DCA 16 DCA 17 DCA 18 DCA 19

RDCA 15 RDCA 16 RDCA 17 RDCA 18 RDCA 19

(a)

(b)

FIGURE 8. The DCA and RDCA basically have the same principal (14) eigen-faces in their signal sub-
space (not shown here). However, they  have completely different  eigen-faces in the noise subspace. 
(a) The  next five privatized DCA-eignfaces are random and useless. (b)  In contrast,  rich information 
is revealed by the five highest-power desensitized  RDCA-eigenfaces, corresponding to the 15th–19th 
eigenvalues (r '= 0.05). (Figure courtesy of T. Chanyaswad and A. Filipowicz.)
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DUCA: Joint utility-privacy
learning algorithm
For utility-privacy tradeoff analysis, a 
natural combination of Algorithm 1 and 
(19) leads to the following DUCA super-
vised learning algorithm.

Algorithm 3. DUCA supervised 
learning algorithm
Find the projection matrix WDUCA

M m0! #  such that

.

argmax

tr

W

W S S W
{ : }

T
B B

DUCA
W W S I W IT

U Pa b

=

-

t+ =r

^ h6
6

@
@

whose solution can be derived from the 
m  principal eigenvectors of

, .eig S S S IB BU Pa b t- +r^ h (37)

4
Note that there are only L C 2+ -

meaningful eigenvectors, because 
L C 2rank S SB BU P #a b- + -^ h  where 

L  and C  denote the numbers of utility 
and privacy classes, respectively.

Example 3
Machine learning for DIP. Let us 
revisit the DIP example, now with two 
more features. Suppose that we are 
given a training data set:
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with the utility/privacy teacher labels, 
denoted by

H H M M M M L L
Y

3 3 3 4 4 4 4 3
= ; ; ; ; ; ; ; ;E E E E E E E E" ,

where “H/M/L” denotes the three (high/
middle/low) utility classes (i.e., family 
income) and “ /3 4” denotes the two 
privacy classes (i.e., who earns more 
between the couple).

Recall that, via (20), the scatter ma-
trix can be learned from the given data 
set { }X  and UAM and CAM can be 
learned, via (23), by further incorporat-
ing their respective class labels. Let us set 
the query vector as [. . . . ] ,9 4 1 1f T= -

whose projection to the two-dimen-
sional subspace is marked as “H.” 
Given the full-dimensional query it is 
clear that it belongs to the middle (util-
ity) class, because ( ) x x 15u x 1 2= + =

and to the “3” privacy class, because 
( ) .x x 5 0p x 1 2 2= - =  The objec-

tive of CP design is to find a dimension-
reduced query to correctly classify the 
utility class but not to reveal its privacy 
class. By comparing the PCA, DCA, and 
DUCA subspace projections, depicted in 
Figure 10, DUCA is noticeably the far 
best in meeting both objectives. 4

It is worth elaborating further on the 
performance comparison between PCA, 
DCA, and DUCA.

 ■ The two PCA principle eigen-
v e c t o r s  o f  (21)  a r e  f1 =

[. . . . ]984 174 039 016 T-  and f2 =

[. . . . ] .163 899 042 405 T-  As shown 
by the PCA projections in Fig-
ure  10(a), the utility class of the 
query “H” is somewhat undeter-
mined because it is possible to be 
either middle-income or high-
income. More seriously, Figure 10(b)
strongly hints its “3” class, poten-
tially exposing the privacy.

 ■ The two DCA principle eigenvectors of 
(32) are [.  .  .  . ]204 838 245 443f T

1 =

and [. . . . ] ,221 535 733 357f T
2 = -

leading to the DCA projections in 
Figure 10(c) and (d). The good news 
is that the query “H” is correctly 
classified as middle-income. 
Moreover, when compared with 
PCA, cf. Figure 10(b) and (d), the 
two privacy classes seem to overlap 
more, which suggests an enhanced 
privacy. Indeed, although the query “
H” is leaning towards the “3 ”
class, its uncertainty represents a 
noticeable improvement over PCA.

 ■ With ,1a b= =  the two DUCA 
principle eigenvectors of (37) are: 

[. . . . ]142 872 168 438f T
1 =  a n d 

[ .  . . . ] .002 114 682 723f T
2 = - -  The 

DUCA subspace projection enjoys 
the best of the two worlds:
– As shown in Figure 10(e), the 

query “H” can be confidently clas-
sified into the middle-income class.

– As shown in Figure 10(f), the two 
privacy classes now overlap much 
more than before. Indeed, the pri-
vacy label for the query “H”
appears to be totally undecided.

Supervised DUCA-based filtering  
for feature selection
An alternative approach to the dimension 
reduction of the query vector is the fea-
ture selection strategy. Its design objec-
tive is to retain only a small number of 
selective features for CP. In this case, the 
feature vector is restricted to an indica-
tor-type vector: ,0 0 1 0 0f g g= 6 @
where only the ith entry is nonzero. 
This brings about the following DUCA-
scores useful for ranking the features in 
feature selection:

( )
( , )

( , ) ( , )
.i

i i
i i i i

DUCA
S

S SB BU P

t

a b
=

+

-
r

(38)

Example 4
DUCA Ranking for DIP Feature 
Selection: According to (38), the 
DUCA-scores are DUCA ( , , , )1 2 3 4 =
[ . . . . ] .0 05 0 73 0 19 0 12-  This is con-
sistent with the previous finding that 
(1) ,x1  being most DUCA-costly, is 
given the lowest weight in both f1  and ;f2

and (2) ,x2  being most DUCA-rewarding, 
receives the highest weight in .f1

4

(a) (b) (c) (d)

FIGURE 9. The original and reconstructed image of the first sample of the Yale data set. (a) The 
original face image, (b) the DCA reconstructed image, (c) the RDCA reconstructed image (with 

. ),0 05t =l  and (d) the reconstructed image from 399 selected wavelet components. (Figure 
courtesy of T. Chanyaswad and A. Filipowicz.)
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Example 5
DUCA Filtering for PPFR Application: 
By applying SVM to the full-dimen-
sional Yale data set, it yields a recog-
nition accuracy of 82%. We have also 
applied a utility-driven DUCA score, 
i.e., ( , / ( , ) ,)i i i i–S SBU t+r^ h  to select 
the best 399 (of 4,096) Wavelet-trans-
formed components. We have found 
that the DUCA-filtered CP method actu-
ally offers a higher accuracy at 82.3%, 
again via SVM. At the same time, it 
also totally obfuscates the face images, 
as exemplified by Figure 9(d). In short, 
the DUCA-filtering feature selection is 
promising for PPFR since it offers PP 
compression without compromising the 
FR accuracy.

4

Extension to kernel  
DCA and kernel DUCA
In the kernel learning models [3], ( )u x
and ( )p x  will be nonlinear functions 
in general. As such, it can induce an 
expanded solution space and thus further 
improve the performance. It involves 
a simple kernelization procedure to 
extend from DCA to kernel DCA [6]. 
For example, the discriminant matrix 
in (31) can be extended to the following 
kernel-DCA discriminant matrix:

[ ]K K KB
2 1

Ut+ -r r (39)

where Kr  and KBU  denote the kernelized 
counterparts of Sr  and ,SBU  respectively. 
Again, applying eigen-space analysis to 
this kernelized matrix will lead to the 
optimal query solution in the kernel vec-
tor space.

For applications to CP problems, 
a kernel-DUCA discriminant matrix 
may be derived by substituting KBU  by 
K KB BU P-  in (39). (Again, the prin-
ciple eigen-subspace analysis would 
yield the optimal queries.) However, 
for such applications, the reduced di-
mension must be strictly lower than 
the original dimension ,M  since the 
CP encoding scheme must necessarily 
be lossy.

Recently, there has been growing in-
terest in multikernel research[3], where 
a multikernel function is expressed as 
linear combination of many kernels: 

( , ) ( , ).K Kx y x yl ll

L
c=/  In this case, 

the trace-norm of kernel-DCA discrimi-
nant matrix in (39) may be used as an ef-
fective evaluation criterion for finding the 
optimal coefficients: { , , , }.l L1l fc =

(Detail omitted.)

Tailor designed noise  
for privacy preservation
Pursuant to (23), the privacy matrix SBp

may be learned from labeled training 
data and the original data xv  be pur-
posefully perturbed by noise parallel to 

the privacy subspace, leading to a new 
query: ( ),xfy T e= +v v v  with colored noise 
covariance .SBp/ t=e  This compels 
the eigen-solution (37) to be modified as:

( , )eig S S S SB B BU P Pa b t- +r

Intuitively speaking, such a design 
aims to dampen Eve’s ability to intrude 
privacy while leaving the utility gain 
for Bob relatively unaffected.
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FIGURE 10. Visualization of a query, marked as H, mapped to the (a) and (b) optimal two-dimensional 
PCA, (c) and (d), DCA, and (e) and (f) DUCA subspaces. The high/middle/low utility labels are marked 
by / / ,) #+  and the two privacy labels are marked by /43 . The results suggest that DUCA-sub-
space offers a promising approach to optimal utility-privacy tradeoff. 

(continued on page 112)
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E xoplanets, short for extra solar plan-
ets, are planets outside our solar sys-
tem. They are objects with masses 

fewer than around 15 Jupiter-masses that 
orbit stars other than the sun. They are 
small enough so they cannot burn deu-
terium in their cores, yet large enough 
that they are not so-called dwarf planets 
like Pluto.

To discover life elsewhere in the uni-
verse, particularly outside our own so-
lar system, a good starting point would 
be to search for planets orbiting nearby 
sun-like stars, since the only example 
of life we know of thrives on a planet 
we call Earth that orbits a G-type dwarf 
star. Furthermore, understanding the 
population of exoplanetary systems in 
the nearby solar neighborhood allows us 
to understand the mechanisms that built 
our own solar system and gave rise to the 
conditions necessary for our tree of life 
to flourish.

Signal processing is an integral part 
of exoplanet detection. From improving 
the signal-to-noise ratio of the observed 
data to applying advanced statistical sig-
nal processing methods (among others), 
to detect signals (potential planets) in 
the data, astronomers have tended, and 
continue to tend, toward signal process-
ing in their quest of finding Earth-like 
planets. Methods that have been used to 
detect exoplanets are listed in “Discov-
ering Exoplanets.” 

In this article, we focus on the radial 
velocity method of exoplanet detection, 
the most successful method for dis-
covering planets orbiting the nearest 
stars to the sun [1]–[3]. We address 
basic questions such as 
■ How is the radial velocity data 

obtained? 
■ Why is the data nonuniformly sampled? 

■ What are the different signal pro-
cessing methods that astronomers 
have been using for detecting exo-
planets and what are their pros and 
cons? 

■ What is the statistical significance 
of signal detection? 

■ What are the potential directions for 
future research? Date of publication: 11 January 2017

Digital Object Identifier 10.1109/MSP.2016.2617293

Discovering New Worlds
A review of signal processing methods for detecting 
exoplanets from astronomical radial velocity data

Muhammad Salman Khan, James Stewart Jenkins, 
and Nestor Becerra Yoma

Radial velocities: where the gravitational tug of the planet on the star is mea-
sured by analyzing the stellar spectral fingerprint to search for the Doppler 
shift of these lines as the star and planet orbit their common center of mass.

Transits: where the planet passes in front of the star toward our line of sight, block-
ing the star’s light as it does so, and inducing a slight dimming of the light profile.

Transit timing variations: where the time of center of transit is measured over 
many transits, and variations in that time that are due to the gravitational inter-
action from another planet in the system can be measured.

Photometric variations: a series of methods that model variations in a star’s photo-
metric light curve to infer the presence of planets orbiting the star (e.g., planetary 
reflected light or thermal emission, Doppler boosting, and ellipsoidal variations).

Gravitational microlensing: where a foreground star passes across the line 
of sight of a far-off star, and the gravitational field of the foreground star acts 
as a lens to intensify the light of the background star, and also intensifies the 
light from a planet orbiting that star.

Pulsar timing: where the precise arrival time of the pulses of light are mea-
sured, and small differences in the timing can be introduced due to small plan-
ets orbiting these dead stars.

Direct imaging: where we point large telescopes at stars and directly image 
any orbiting planets.

Astrometric wobble: where we measure the position of a star on the sky and 
search for changes in that position, or a wobble, due to the gravitational tug 
of orbiting planets.

Discovering Exoplanets
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Introduction
The radial velocity method works by 
breaking a star’s light up into its constit-
uent colors using a high-resolution ech-
elle spectrograph. The observed stellar 
spectral lines can then be used as mark-
ers for the star’s velocity. If the star’s 
velocity changes, the Doppler effect 
tells us that electromagnetic waves are 
affected by this movement by present-
ing a shift in frequency, depicted in 
Figure 1. We can measure that frequen-
cy and then correct for any additional 
velocity shifts from noise sources, such 
as temperature and pressure variations 
in the laboratory, mechanical instabili-
ties throughout the optical train, obser-
vational airmass chromatic effects, 
stellar magnetic activity affects, and 
stellar convective blueshift, and mea-
sure the star’s radial velocity toward 
or away from us. Over the course of a 
planet’s orbital period, we can measure 
the star’s spectral redshift and blue-
shift, and by analyzing the amplitude, 
phase, shape, and period of this signal, 
we can understand characteristics about 
the companion that is causing the star’s 
velocity variations.

Exoplanets are difficult to detect 
due to their extreme contrasting char-
acteristics compared to the stars they 
orbit. Planets are so much smaller and 
fainter than their host stars that all of 
the aforementioned methods have a dif-
ficult time detecting them. For the radial 

velocity technique, which is the focus of 
this article, the much smaller mass of 
the planet compared to the star means 
we need spectrographs that are stable at 
the meters/second level to detect even 
the most massive planets, and to detect 
Earths in Earth-like orbits around sun-
like stars, we need spectrographs that 
are stable at the centimeters/second 
level. This is very difficult to accom-
plish since small pressure and tempera-
ture variations, illumination problems, 
mechanical stability problems, and even 
the stars themselves can introduce noise 
in the measurements at levels higher 
than this.

The radial velocity data is obtained 
by observing a star with a telescope and 
feeding the light to an echelle spectro-
graph, as mentioned previously. We 
can observe the star as many times 
as we want in a single night and as 
many times as we can when the star 
is in the sky throughout the year. The 
more observations we get, the better 
we sample the signal of the star’s radi-
al velocity. The data is first reduced, 
which is a way of using calibrations to 
prepare the spectra for analysis, and 
then we can measure the velocity. The 
typical reduction procedure for such 
data is to perform a bias correction to 
the image, so-called debiasing, then we 
correct for the pixel-to-pixel variations 
through a process called flatfielding,
any scattered-light is then removed 

from the high signal-to-noise ratio data, 
and the spectra can be extracted, or col-
lapsed, into its two-dimensional format. 
Finally, all cosmic rays or bad pixels can 
be cleaned from the extracted spectrum 
and a highly precise wavelength correc-
tion is applied. Interested readers can 
refer to, e.g., [4] and [5] for more details 
of this process.

The radial velocity data is unevenly 
sampled because we can only observe 
the star when it is visible in the night 
sky. Stars are not visible all year round, 
as sometimes they are in the same area 
of sky as the sun. Furthermore, we must 
compete for telescope time, so we can-
not always observe when we want—we 
are at the mercy of schedulers and pro-
posal reviewers. Also, the number of 
stars we can observe per night is lim-
ited, e.g., 30–40 or more, so we cannot 
observe all of them every night that we 
actually have telescope time.

In the following sections, we review 
the different signal processing methods 
used by the astronomical community 
for detecting exoplanets based on radial 
velocity data. These methods include 
the Lomb–Scargle (LS) periodogram, 
Keplerian periodogram, prewhitening 
method, maximum-likelihood (ML) 
periodograms, Bayesian analysis, and 
the minimum mean square error (MMSE)-
based method. All of the methods 
assume that ( )x t  is the radial velocity 
data, t  is the timestamp of observations, 
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When an exoplanet orbits a star, its gravitational pull causes the star to wobble.
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FIGURE 1. Detecting exoplanets using the radial velocity method. 
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i.e., , , , ..., ,t T1 2 3=  where T  is the total 
number of observations.

LS periodogram
The LS method [6] of signal detec-
tion has been extensively used in the 
search for exoplanets, particularly using 
the radial velocity technique of planet 
detection. In its simplest form, the 
method works in a Fourier-like man-
ner by applying a number of sines and 
cosines to the radial velocity data ( )x t
across a grid of frequencies chosen by 
the user, and the amplitude of these 
functions are minimized to fit the data 
and a power is calculated. When one of 
the functions provides a good match to 
the radial velocity time series, the power 
will be maximized at the selected fre-
quency, indicating to the user that there 
is a signal at that frequency, and this can 
be visually viewed by a periodogram:
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where Px  is the periodogram powers as a 
function of frequency, and x  is defined as 
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Although the technique is easy to 
implement and fast to apply even to 
large data sets, it has some major draw-
backs when searching for Doppler sig-
nals induced on stars from orbiting 
planets. For instance, not all exoplanets 
are found to be on circular orbits around 
their stars. In fact, there is a high frac-
tion that have significant eccentricities, 
and once the eccentricity of the orbit is 
larger than ~ . ,0 6  the LS method finds 
it more difficult to detect these signals. 
Another issue with this method is that it 
makes the assumption there is only one 
signal in the data, each time the method 

is applied. Yet many planetary systems 
are found to contain more than one 
planet, which means the radial veloc-
ity time series should exhibit more than 
one signal. This assumption also under-
lies the Fourier transform analysis [7]. 
Therefore, signals must be subtracted 
out of the data fits, before reapplica-
tion of the method on the residuals 
is performed, and since the signals are 
generally not orthonormal, this gradi-
ent-based approach introduces problems 
for detecting low-mass and multiple 
planet systems. It is worth mention-
ing that in [8] a date-compensated dis-
crete Fourier transform was proposed 
that gives better estimates of the power 
spectrum of nonuniformly sampled 
data, aiding in accurate determination 
of spectral peak heights. Finally, the 
LS method only considers white noise, 
which can be problematic since starlight 
often involves correlated noise.

Keplerian periodogram
Given some of the problems mentioned 
with the LS periodogram method of signal 
detection—particularly the fact that sig-
nals are not always well described by sines 
or cosines—the Keplerian periodogram 
was developed [9], [10]. The Keplerian 
periodogram allows the user to consider 
factors of noncircularity as part of the 
analysis when calculating the powers for 
the periodogram, since the chi-squared 
comparison used is open to any model 
that can be fit to the data, for instance 

( )
( )

.pK ep
Kep

0
2

0
2 2

~
|

| | ~
=

-

Here ( )pK ep ~  is the power, 0
2|  is the 

chi-squared for the weighted mean, and 

K ep
2| ( )~  is the chi-squared of the Keple-

rian model. The Keplerian model in this 
case can be written as

( ) [ ( ( ) )],cos cosx t K e tc s o s= + + +

(2)

where c  is the systemic offset of the 
data, K  is the amplitude of the signal, 
e  is the eccentricity of the orbit, s  is 
the longitude of periastron of the orbit, 
and ( )to  is the true anomaly of the 
orbit. Keplerian signals can be detected 
in radial velocity data following this 

approach, but we remind the reader 
that the Keplerian periodogram is open 
to including other models to calculate 
powers. In contrast to the LS method, 
the Keplerian method is relatively slow 
and complicated to apply to long time 
series data, but since it is more robust 
in detecting signals that deviate from 
sinusoids, it is more applicable in the 
search for exoplanetary systems orbit-
ing nearby stars [11]. However, it again 
makes the assumption that there is only 
one signal in the data, which means it 
suffers from the same problems as the 
LS method if the data contains more 
than one signal, and there is no corre-
lated noise component.

Prewhitening method
The method of prewhitening to search 
for Doppler signals in radial velocity 
time series is similar to the LS method, 
except that the method is applied in the 
Fourier domain to search for any signals 
in the data, but again using sines and 
cosines (e.g. [12]). As the name suggests, 
the method works by whitening the data 
as much as possible to remove all noise 
sources with fitted functions, until a 
real Doppler signal is found. The data is 
translated into Fourier space and a search 
for frequencies that pass a significance 
threshold is performed. The strongest 
signal is fit, the corresponding residual 
to the fit calculated, and then the process 
is repeated again. This goes on until the 
residual data is just the noise-floor of the 
observations, meaning no peaks are found 
above the significance threshold. Simi-
lar to the LS and generalized LS (GLS) 
methods, this is quick and easy to apply, 
but it has the same problems as these other 
two methods. However, the prewhitening 
part is done to clean noise from the time 
series, but that requires knowledge of the 
noise source, like aliases of real signals, or 
in the case of stars, stellar activity signals/
timescales, and again, this is a gradient-
based approach that does not consider 
correlated noise.

ML periodograms
Given that the aforementioned ap-
proaches focus on searching for one 
signal at a time in the time series when 
searching for planets, and none deal 
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with correlated noise, ML periodogram 
methods have been developed to cir-
cumvent these issues [13], [14]. The ML 
periodogram method does not generate 
a periodogram that shows power on the 
y-axis, but instead it shows the log-like-
lihood of the model that is compared to 
the data at each step. In this way, any 
model can be compared to the data di-
rectly across a grid of frequencies or or-
bital periods, and the log-likelihood can 
be calculated for each, with a detected 
signal having the maximum likelihood

( | )
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L m
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The likelihood to be maximized 
can be described as in (3) with ( | )L m i
being the likelihood of the data m given 
the model parameters .i fv  and lv

represent the stellar and instrumental 
white noise components, respectively, 
and ( )tl fo  is the Keplerian model to 
fit, similar to (2) but with correlated 
noise terms included. Maximization of 
this likelihood function allows signal 
detection to be performed and prob-
abilities can be calculated directly from 
the log-likelihood values. Although 
in practice this method is slower than 
the aforementioned methods, it has the 
desired effect of allowing multiple sig-
nals to be detected at the same time 
(i.e., a global model approach), and it 
also means the model can include cor-
related noise components, along with 
the white noise component(s). There-
fore, given the continuing increase in 
computer processing power, the extra 
information and flexibility of ML peri-
odograms outweigh the inefficiency of 
its application to real radial velocity 
data. However, as with all model fit-
ting methods, one must be careful not 
to overfit the data by adding unneces-
sary terms to the applied model, which 
is where proper model comparison sta-
tistical tests should be applied.

Bayesian analysis
Like the ML approach, Bayesian anal-
ysis applies a global model to the data, 
including correlated noise components, 

and assesses the parameter space using 
Markov chains (e.g., [15), where the 
model is assessed by covering a given 
frequency/period domain. The maxi-
mum of the posterior density distribu-
tion can be used to detect a signal in the 
data (e.g., [16] and [17])
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Here model m  for a given Keplerian 
k  and velocity data point ,f  previous 
measurement ,z  and data set d  can be 
described by the Keplerian model as a 
function of time ( ( )),F t  a systemic off-
set velocity ,c  a linear trend as a func-
tion of time ,tc  a Gaussian noise model 
to describe the random noise ,f  a red 
noise component described by a mov-
ing average (MA) model with exponen-
tial smoothing (parameters z  and ),x
and a set of linear correlations c with 
activity indicators that parameterise 
the activity state of the star at the time 
of the observation .p  The Bayesian 
approach is the least efficient of these 
signal detection methods, since long 
chains are required to properly search 
the multidimensional parameter space 
in a robust manner. However, currently 
this method is the most flexible, allow-
ing the user to assess the parameter 
space in many different ways. It also 
allows visualization of the full param-
eter space after the chains are com-
plete, meaning nonlinear correlations 
between parameters can be scruti-
nized. Finally, this method was shown 
to be the most robust signal detection 
and false-positive suppression method 
currently used, given the results of an 
International Challenge (Extreme Pre-
cision Radial Velocities, Yale 2015) 
[30] issued to the radial velocity planet 
detection community.

MMSE-based method
In [18]–[20], the independent sinu-
soidal components in nonuniformly 
sampled radial velocity data are deter-
mined by means of the MMSE method 
or its direct extension, the ML estima-
tion scheme. According to [19], signifi-
cance tests are employed to filter out 
the parasitic solutions appearing on the 
way. In [18], the MMSE-based method 
applies a trellis-based optimal global 
search and returns the optimal number 
of sinusoidal components including 
their frequencies, phases, and ampli-
tudes. This technique employs the 
MMSE criterion as an objective func-
tion in all the analysis.

If Ci  is the ith sinusoidal compo-
nent, and NC  is their number, each 
component may be written in the form 

( , , ),C ai i i i~ z=  where , ,ai i i~ z  are the 
frequency, amplitude, and phase of the 
ith component, respectively.

The MMSE technique tries to find 
the set ( , , )S ai i i i

N
1

C~ z= =" ,  that mini-
mizes the mean square error between 
the original signal and S  by optimizing 

, ,ai i~  and iz  of each component [18].
First, the target frequency bandwidth 

is divided into K~  levels. Each level 
k~  is represented by / ,k Kk #~ r= ~

 .k K1where # # ~ For each k~  an 
optimal amplitude and phase, ,a k kz~ ~

are obtained by performing an MMSE-
based Fourier analysis: for each ,k~

a k~  and kz~  are optimized to mini-
mize the mean square error between 
the original signal and the components 

( )cosa tk k k~ z+ ~ .
The number of components to analyze, 

N, is then estimated for all the frequen-
cies having local minimum of MMSE 
values and/or higher amplitudes with 
respect to a defined threshold. There-
fore, a subset ( , , )S amin i i i~ z= ~ ~" ,
is constructed out of the set SP , which 
includes only these components. Next, 
a neighborhood band Vi  is defined 
for each component, Ci  in Smin as, Vi =

( , , ) / [ , ] ,a SP i i! !~ z ~ ~ d ~ d- +~ ~" ,

(5)( , , ) ( ) ( )arg min cosa x t a t
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where d  defines half of the neighbor-
hood band around each component and 
set to some value that incorporates all 
the significant components around the 
selected peaks of SP . Hence, for each 
component ( , , )C ai i i i~ z~ ~  there are 
MCi  candidates, where MCi  is the car-
dinality of .Vi

Subsequently, a trellis analysis for 
all of the possible combinations of com-
ponents and their local neighborhoods 
is performed, as schematically shown 
in Figure 2. Now, all possible combi-
nations of candidates NC is evaluated, 

where , ..,N N1C = " ,. For each value 
of ,NC  let , , ...,A C C Cj j j

N
j

1 2 C= " , be 
a set of triplets for one of the possible 
combinations, where j  is from 1 to 

!/ ! ( ) !N N N NC C-  and Ci
j  corresponds 

to the ith component in the jth combina-
tion. The corresponding set of neighbor-
hoods is , , ..., ,V V V VA

j j
N
j

1 2j
C= " ,  where 

( , , )V ai
j

i
j

i
j

i
j

~ z=  denotes the neighbor-
hood of candidate components .Ci

j  The 
optimal set of Aj, ,A jt  for a specific NC

value, is the one associated with the 
lowest MMSE and corresponds to (5), 
shown in the box at the bottom of the 

previous page [18], where , ,ai
j

i
j

i
j

~ zt t t^ h

,Vi
j

!  1 # i ,NC#  providing an optimal 
set of triplets for each NC. Finally, the 
optimal set of triplets having the global 
minimum MMSE is selected at which 
its length, defines the number of the 
most important sinusoidal components 
in the nonuniformly sampled signal, 
while its elements are their frequencies, 
amplitudes, and phases, respectively. It 
is worth mentioning that the problem of 
order selection has also been addressed 
by using statistical significance analysis 
[20] and extreme value theory [21].

Figure 3 illustrates, as an example, 
the Keck and the High Accuracy Radial 
Velocity Planetary Searcher radial veloc-
ity data of the M-dwarf planet host star 
GJ876 and the corresponding LS and 
MMSE periodograms. GJ876 is known 
to host a system of planets that contains 
at least two short-period gas giants [18]. 
Signals can be searched for using the 
gradient-based approach that starts by 
searching for one signal only, and when 
one is detected it is then subtracted out of 
the data and a new search is made using 
the residuals all over again by treating 
them as an independent time series from 
the original observed data.  This process is 
then repeated until the noise floor of the 
data is reached.  By applying this method, 
the following signals [with periods in days 
(d)] were detected with the MMSE meth-
od [18]: 61.03 d, 30.23 d, 15.04 d, 1.94 d, 
10.01 d, and 124.69 d. This system was 
chosen because the two large-amplitude 
signals could be detected in both halves 
of the time series separately. The MMSE 
and trellis technique allows studying the 
phase of the detected signals as a function 
of time, showing that the phase differ-
ence between both planets is stable over 
the length of the time series and therefore 
adding weight to the reality of these sig-
nals. This analysis shows the power of this 
method over previous periodogram tech-
niques, such as the LS method, that gives 
no information on the signal parameters 
other than the frequency. However, phase 
variations with time for the 1.94 d, 10.01 d, 
and 15.04 d signals were found, which 
could cast doubt on the origin of these sig-
nals as being from orbiting planets. This 
was consistent with previous Newtonian 
integrational methods. This highlights that 
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FIGURE 2. A trellis diagram representing all the possible combinations of components and their local 
neighborhoods [18].
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FIGURE 3. Radial velocity data of (a) star GJ876, (b) the LS and MMSE periodograms, and (c) the 
planets initially detected shown by asterisks.
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the MMSE method provides the flexibil-
ity of further validating the authenticity 
of the signals, runs a global search for all 
the signals in the entire data, and outputs 
the frequency, phase, and amplitude of 
the signals. Nevertheless, the MMSE and 
trellis search method does not include any 
correlated red noise model, whereas the 
ML and Bayesian analysis do, and since 
correlated noise does indeed appear to be 
a very important part of high-precision 
radial velocity analysis at the ~m/s level, 
as mentioned previously, avenues to test 
here would be the application of Gaussian 
processes (e.g., [22] and [23]), MAs [24], 
among others applied in the field and those 
yet to be tested.

Statistical significance 
of signal detection
For any signal detection method, a robust 
statistical validation should be made of 
any detected signal, likely calculating the 
probability directly that the signal could 
be due to random noise fluctuations. For 
instance, for the LS method [6], the prob-
ability of a signal at any given frequen-
cy follows an exponential distribution, 
where the larger the number of frequen-
cies sampled, the larger the probability 
that a matching frequency is found. They 
defined a false alarm probability (FAP) 
analytically, such that one can determine 
the probability of any given frequency 
being real, solely based on the signal’s 
measured power and the number of fre-
quencies sampled.

Given the nature of problems in 
astronomy, the deviations from normal-
ity, the excess noise in measurements, 
etc., it has become normal to instead cal-
culate FAPs directly from the data using 
nonparametric statistical methods, like 
bootstrap analysis, for example (see [25]
and [26]). Bootstrapping is performed 
by scrambling the radial velocity data 
with replacement, maintaining the time 
stamps, then reconstructing the peri-
odogram and selecting the highest peak. 
Each of the strongest peaks are recorded 
from a series of 10,000 or more inde-
pendent trials, and the total number 
of peaks found to be stronger than the 
observed peak power provides a direct 
measure of the FAP, or how much such 
a power can arise from random chance.

Finally, the ML periodograms and 
Bayesian method allow probabilities 
to be drawn directly from the data. We 
previously discussed that the ML meth-
od allows probabilities to be calculated 
for each frequency as part of the meth-
odology. For the Bayesian approach, 
statistical comparison tests can be per-
formed to assess if certain models are 
better suited to the data in comparison 
to flat noise models, for instance. It is 
common to calculate the Bayes factors 
to evaluate if one model is statistically 
favored over another, since this method 
is based on marginalization of the like-
lihood, a process that naturally applies a 
penalty to models with increasing com-
plexity (so-called Occam’s penalty; see 
[27]). In fact, teams who employ these 
types of methods are known to favor 
certain models over others, only if they 
are at least 10,000 times more probable 
(e.g., [24]).

Potential directions
for future research
We want to detect exo-Earths so future 
directions for the radial velocity method 
are better calibrations. One big avenue of 
research is the implementation of laser 
comb technology, which recent tests have 
told us will allow velocity stability at the 
centimeter/second level, necessary for the 
discovery of Earth-like worlds. Further-
more, some areas of stellar astrophysics 
needs to be better understood, particu-
larly the impact of stellar activity on radial 
velocity measurements. All of the methods 
reviewed in this article have the potential 
to be optimized to further enhance the 
detection results. We need to better model 
the impact of magnetic activity on radial 
velocities. In fact, this impacts transits, 
transit timing variations, and astrometry 
measurements. New signal processing 
methods for signal enhancement and red 
noise modeling and removal also need to 
be investigated (e.g., see [28] and [29]).
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BOOK DIGEST

  David R. Bull. Communicating Pictures: 
A Course in Image and Video Coding.
Academic Press/Elsevier, Year: 2014, 
ISBN: 9780124059061.

Communicat ing 
Pictures starts with 
a unique historical 
perspective of the 
role of images in 
communications 
and then builds on 
this to explain the 

applications and requirements of a mod-
ern video coding system. It draws on the 
author’s extensive academic and profes-
sional experience of signal processing and 
video coding to deliver a text that is algo-
rithmically rigorous, yet accessible, rele-
vant to modern standards, and practical. It 
offers a thorough grounding in visual per-
ception and demonstrates how modern 
image and video compression methods 
can be designed to meet the rate-quality 
performance levels demanded by today’s 
applications, networks, and users.

  With this book you will learn: 1) prac-
tical issues when implementing a codec, 
such as picture boundary extension and 
complexity reduction, with particular 
emphasis on efficient algorithms for 
transforms, motion estimators and error 

resilience; 2) conflicts between conven-
tional video compression, based on vari-
able length coding and spatiotemporal 
prediction, and the requirements for error 
resilient transmission; 3) how to assess 
the quality of coded images and video 
content, both through subjective trials and 
by using perceptually optimised objective 
metrics; and 4) features, operation, and 
performance of the state-of-the-art high-
efficiency video coding  standard.

 Bruce Hajek. Random Processes for 
Engineers. Cambridge University Press, 
Year: 2015, ISBN: 9781107100121.

This engaging intro-
duction to random 
processes provides 
students with the 
critical tools needed 
to design and evalu-
ate engineering sys-
tems that must 

operate reliably in uncertain environments.
A brief review of probability theory 

and a real analysis of deterministic func-
tions set the stage for understanding ran-
dom processes, while the underlying 
measure theoretic notions are explained 
in an intuitive, straightforward style. Stu-
dents will learn to manage the complexi-
ty of randomness through the use of 
simple classes of random processes, sta-

tistical means and correlations, asymp-
totic analysis, sampling, and effective 
algorithms. Key topics covered include 
calculus of random processes in linear 
systems, Kalman and Wiener filtering, 
hidden Markov models for statistical 
inference, the estimation maximization 
algorithm, and an introduction to martin-
gales and concentration inequalities. 
Understanding of the key concepts is 
reinforced through more than 100 
worked examples and 300 thoroughly 
tested homework problems.

Lingyang Song, Dusit Niyato, Zhu Han, 
and Ekram Hossain. Wireless Device-to-
Device Communications and Networks.
Cambridge University Press, Year: 2015,
ISBN: 9781107063570.

Covering the funda-
m e n t a l  t h e o r y 
together with the 
state of the art in 
research and devel-
opment, this practi-
cal guide provides 
the  techniques 

needed to design, analyze, and optimize 
device-to-device (D2D) communications 
in wireless networking.

With an ever-increasing demand for 
higher-data-rate wireless access, D2D 
communication is set to become a key 

EDITORS’ INTRODUCTION
Books focusing on signal processing are constantly pub-
lished by academic publishers and researchers. To enhance 
the visibility of new signal processing books and to inform 
our readers of recently published books in a timely fashion, 
IEEE Signal Processing Magazine (SPM) launched the first 
“Book Digest” column in its January 2016 issue. Different 
from the “Book Review” column, which requires capable 
reviewers and takes a lengthy time to complete a review, 
the “Book Digest” column provides a list of books with a 
concise summary for each one. Books are selected by a 
pool of senior editors and are based on criteria such as 

timeliness of the topic, track record of the authors, training 
materials for students, and signal processing focus. If an 
expert volunteer is available to review a book that has a 
high impact on signal processing, a review will be consid-
ered for publication in the “Book Review” column. Should 
you have any comments or wish to have your book consid-
ered for publication in this column, do not hesitate to con-
tact Kenneth Lam (enkmlam@polyu.edu.hk), SPM’s area 
editor, columns and forums, or Danilo Mandic (d.mandic@
imperial.ac.uk), SPM’s associate editor, “Book Digest” and 
“Book Review” columns.
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Date of publication: 11 January 2017
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feature supported by next-generation cel-
lular networks. This book  introduces 
D2D-based wireless communications 
from the physical-, media access control-, 
network-, and application-layer perspec-
tives, providing all the key background 
information before moving on to discuss 
real-world applications as well as potential 
future developments. Key topics are dis-
cussed in detail, such as dynamic resource 
sharing (e.g., of spectrum and power) 
between cellular and ad hoc D2D commu-
nications to accommodate larger volumes 
of traffic and provide better service to 
users. Readers will understand the practi-
cal challenges of resource management, 
optimization, security, standardization, 
and network topology, and learn how the 
design principles are applied in practice.

S huguang Cui, Alfred O. Hero III, Zhi-quan 
Luo, and José M.F. Moura (Editors). Big 
Data over Networks. Cambridge University 
Press, Year 2016, ISBN: 9781107099005.

Utilizing both key 
mathematical tools 
and state-of-the-art 
research results, this 
text explores the 
principles underpin-
ning large-scale 
information pro-

cessing over networks and examines the 
crucial interaction between big data and 
its associated communication, social, and 
biological networks.

Written by experts in the diverse fields 
of machine learning, optimization, statis-
tics, signal processing, networking, com-
munications, sociology, and biology, this 
book employs two complementary 
approaches: 1)  analyzing how the under-
lying network constrains the upper layer 
of collaborative big data processing and 
2) examining how big data processing 
may boost performance in various net-
works. Unifying the broad scope of the 
book is the rigorous mathematical treat-
ment of the subjects, which is enriched by 
in-depth discussion of future directions 
and numerous open-ended problems that 
conclude each chapter. Readers will be 
able to master the fundamental principles 
for dealing with big data over large sys-
tems, making it essential reading for grad-

uate students, scientific researchers, and 
industry practitioners alike.

Guo wang Miao, Jens Zander, Ki Won 
Sung, and Slimane Ben Slimane. 
Fundamentals of Mobile Data Networks.
Cambridge University Press, Year: 2016, 
ISBN: 9781107143210.

This unique text 
provides a compre-
hensive and system-
atic introduction to 
the theory and prac-
tice of mobile data 
networks. Covering 
basic design princi-

ples as well as analytical tools for network 
performance evaluation, and with a focus 
on system-level resource management, 
you will learn how state-of-the-art net-
work design can enable you to flexibly 
and efficiently manage and trade off vari-
ous resources such as spectrum, energy, 
and infrastructure investments. Topics 
covered range from traditional elements 
such as medium access, cell deployment, 
capacity, handover, and interference man-
agement, to more recent cutting-edge 
topics such as heterogeneous networks, 
energy and cost-efficient network design, 
and a detailed introduction to long-term 
evolution (4G). Numerous worked exam-
ples and exercises illustrate the key theo-
retical concepts and help you put your 
knowledge into practice, making this an 
essential resource whether you are a stu-
dent, researcher, or practicing engineer.

Albert-László Barbási. Network Science.
Cambridge University Press, Year: 2016,
ISBN: 9781107076266.

Networks are every-
where, from the 
 In  ternet, to social 
 networks, and the 
genetic networks that 
determine our biolog-
ical existence. Illu -
strated throughout in 

full color, this pioneering textbook, spanning 
a wide range of topics from physics to com-
puter science, engineering, economics and 
social sciences, introduces network science 
to an interdisciplinary audience.

From the origins of the six degrees of 
separation to explaining why networks are 
robust to failures and fragile to attacks, 
the author explores how viruses like 
Ebola and H1N1 spread and why it is that 
our friends have more friends than we do. 
Using numerous real-world examples, 
this innovative text includes clear delinea-
tion between undergraduate- and gradu-
ate-level material. The mathematical 
formulas and derivations are included 
within advanced topics sections, enabling 
use at a range of levels. Extensive online 
resources, including films and software 
for network analysis, make this a multi-
faceted companion for anyone with an 
interest in network science.

Vikram Krishnamurthy. Partially Observed 
Markov Decision Processes: From Filtering 
to Controlled Sensing. Cambridge 
University Press, Year: 2016, 
ISBN: 9781316471104.

Covering formula-
tion, algorithms, 
and structural re  -
sults and linking 
theory to real-world 
applications in con-
trol led sensing 
(including social 

learning, adaptive radars, and sequential 
detection), this book focuses on the con-
ceptual foundations of partially observ-
able Markov decision processes 
(POMPDs). It emphasizes structural 
results in stochastic dynamic program-
ming, enabling graduate students and 
researchers in engineering, operations 
research, and economics to understand 
the underlying unifying themes without 
getting weighed down by mathematical 
technicalities. Bringing together research 
from across the literature, the book pro-
vides an introduction to nonlinear filtering 
followed by a systematic development of 
stochastic dynamic programming, lattice 
programming, and reinforcement learning 
for POMDPs.

The abstraction of POMDPs becomes 
alive with applications. This book con-
tains several examples starting from target 
tracking in Bayesian filtering to optimal 
search, risk measures, active sensing, 
adaptive radars, and social learning.
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The supplement of this book contains 
errata and problem sets and can be 
accessed via: http://www.cambridge
.org/gb/academic/subjects/engineering/
communications-and-signal-processing/
partially-observed-markov-decision-
processes-filtering-controlled-sensing? 
format=HB.

Fa-Long Lu o and Charlie Jianzhong Zhang 
(Editors). Signal Processing for 5G: 
Algorithms and Implementations.
Wiley-IEEE Press, Year: 2016, 
ISBN: 9781119116462.
Signal processing techniques have played 
the most important role in wireless 

 communications 
since the second 
generation of cel-
lular systems. It is 
anticipated that 
new techniques 
employed in fifth-
generation (5G) 

wireless networks will not only improve 
peak service rates significantly but also 
enhance capacity, coverage, reliability, 
low-latency, efficiency, flexibility, com-
patibility, and convergence to meet the 
increasing demands imposed by applica-
tions such as big data, cloud service, 
machine-to-machine, and mission-crit-
ical communications.

This book is a comprehensive and 
detailed guide to all signal processing tech-
niques employed in 5G wireless networks. 
Uniquely organized into four categories, 
“New Modulation and Coding, “New Spa-
tial Processing,” “New Spectrum Opportu-
nities,” and “New System-Level Enabling 
Technologies,” it covers everything from 
network architecture, physical layer 
(down-link and up-link), protocols and air 
interface, to cell acquisition, scheduling 
and rate adaption, access procedures, and 
relaying to spectrum allocations. All tech-
nology aspects and major roadmaps of 
global 5G standard development and 
deployments are included in the book.

SP

LECTURE NOTES (continued from page 103)

Conclusions
This article introduces a new paradigm 
of PP techniques—CP—which repre-
sents a dimension-reduced subspace 
approach to PP machine learning. Built 
upon the information and estimation 
theory, CP methods tackle joint optimi-
zation over feature/utility/privacy spaces. 
This leads to several eigen-system-based 
subspace methods, including PCA, 
DCA, and DUCA. To confirm the theo-
retical analysis, we have conducted 
experimental studies on various DIP and 
FR problems. The latter also demon-
strates possible real-world applications 
of the proposed CP methodology.
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Please send calendar submissions to: 
Dates Ahead, Att: Jessica Barragué, E-mail: j.barrague@ieee.org

DATES AHEAD

2017
MARCH

IEEE International Conference 
on Acoustics, Speech, and 
Signal Processing (ICASSP)
5–9 March, New Orleans, Louisiana, USA.
General Chair: Magdy Bayoumi
URL: http://www.ieee-icassp2017.org/

APRIL

IEEE International Symposium 
on Biomedical Imaging (ISBI)
18–21 April, Melbourne, Australia.
General Chairs: Olivier Salvado and Gary Egan
URL: http://biomedicalimaging.org/2017/

16th ACM/IEEE International Conference on 
Information Processing in Sensor Networks 
(IPSN)
18–21 April 2017, Pittsburgh, Pennsylvania, USA.
General Chair: Pei Zhang
URL: http://ipsn.acm.org/2017/

MAY

IEEE Radar Conference (RADARCONF)
8–12 May, Seattle, Washington, USA.
General Chair: Daniel J. Sego
URL: http://www.radarconf17.org

JULY

18th IEEE International Workshop on 
Signal Processing Advances in Wireless 
Communications (SPAWC)
3–6 July, Hokkaido, Japan.
General Chairs: Yasutaka Ogawa, Wei Yu, 
and Fumiyuki Adachi 
URL: http://www.spawc2017.org/

IEEE International Conference on 
Multimedia and Expo (ICME) 
10–14 July, Hong Kong, China.
General Chairs: Jörn Ostermann 
and Kenneth K.M. Lam
URL: http://www.icme2017.org/

AUGUST

25th European Signal Processing 
Conference (EUSIPCO)
28 August–2 September, Kos Island, Greece.
General Chairs: Petros Maragos and 
Sergios Theodoridis
URL: www.eusipco2017.org

14th IEEE International Conference 
on Advanced Video and Signal-Based 
Surveillance (AVSS)
29 August–1 September, Lecce, Italy.
General Chairs: Cosimo Distante and 
Larry S. Davis
URL: www.avss2017.org

SEPTEMBER

IEEE International Conference 
on Image Processing (ICIP)
17–20 September, Beijing, China.
General Chairs: Xinggang Lin, 
Anthony Vetro, and Min Wu
URL: http://2017.ieeeicip.org/

OCTOBER

IEEE Workshop on Applications 
of Signal Processing to Audio and 
Acoustics (WASPAA)
15–18 October, New Paltz, New York.
General Chairs: Patrick A. Naylor 
and Meinard Müller
URL: http://www.waspaa.com/

19th IEEE International Workshop on 
Multimedia Signal Processing (MMSP)
16–18 October, London-Luton, United Kingdom.
General Chairs: Vladan Velisavljevic, 
Vladimir Stankovic, and Zixiang Xiong
URL: http://mmsp2017.eee.strath.ac.uk/

NOVEMBER

5th IEEE Global Conference on Signal and 
Information Processing (GlobalSIP)
14–16 November 2017, Montreal, Canada.
General Cochairs: Warren Gross 
and Kostas Plataniotis 
URL: http://2017.ieeeglobalsip.org

DECEMBER

Seventh IEEE Conference of the Sensor 
Signal Processing for Defence (SSPD)
6–7 December, Edinburgh, Great Britain.
General Chairs: Mike Davies, Jonathon 
Chambers, and Paul Thomas
URL: www.sspd.eng.ed.ac.uk/

17th IEEE International Workshop on 
Computational Advances in Multisensor 
Adaptive Processing (CAMSAP)
10–13 December, Curacao, Dutch Antilles.
General Chairs: André L.F. de Almeida 
and Martin Haardt
URL: http://www.cs.huji.ac.il/conferences/
CAMSAP17/ SP
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ICASSP 2017 will be held in New Orleans, 
Louisiana, 5-9 March. 
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much like data science, many of the dis-
ciplines within signal processing are 
fundamentally about looking for correla-
tions and dependencies in data to effec-
tively make decisions.

That is not to say that signal process-
ing is the same as data science. Perhaps 
the most notable difference between the 
past era and the new 
era of data science 
and big data is the 
tearing down of 
boundaries associated 
with how data is pro-
duced and accessed. 
Big data is fundamen-
tally heterogeneous, 
involving data from a 
vast collection of sources that report data 
of various modalities for analysis. Where-
as the previous generation of scientific 
discovery involved scientists conducting 
(and planning) experiments to intentional-
ly measure specific data for the purpose 
of discovery, oftentimes big data involves 
the opportunistic sharing of data from 
nonvetted sources often provided in 
unstructured representations. Thus, the 
new era of big data and data analytics will 
likely lead to new engineered systems that 
utilize data from sources previously 

unknown to the engineer and application 
developer. In short, the new era will have 
more data than you could ever dream.

But, as we move forward in this new 
era, we need to relish in the opportuni-
ties it will provide, yet also retain an 
appropriate level of caution. The prom-
ise of being able to analyze large 

amounts of data to 
find a cure for cancer, 
integrate infrastruc-
ture and vehicle 
sensor data to allow 
for automated driving 
and more efficient 
transportation, or the 
potential to analyze 
the data being gener-

ated by the broad collection of astro-
nomical observatories to discover new 
stellar phenomena are certainly fantastic 
and truly important to society. We 
would not be able to make such 
advancements or build new systems 
without the emergence of this new field 
of data science. However, we must be 
careful as this explosion of data and data 
science could take on a life of its own. 
Regardless of whether you are a scien-
tist, mathematician, engineer, or in some 
other profession, you were likely raised 

with the “scientific method” drummed 
into you like a mantra. We’ve all grown 
up in an era of slow, methodical research 
and development. In fact, one way of 
looking at both the scientific method and 
the engineering design process is that it 
leads to implicit practice of quality con-
trol—almost bordering on pessimism 
and overt caution.

Big data will often involve others 
unintentionally conducting experiments 
for the data scientist. The allure of hunt-
ing through more and more data to find 
patterns without vetting that data is dan-
gerous. Data science will have some 
growing pains, especially as the vast 
amount of data being examined guaran-
tees that data will be haphazardly ana-
lyzed and spurious correlations will be 
proclaimed as scientific truths. Data sci-
ence will need quality control.

And this is where the signal pro-
cessing community can advance big 
data and data science. Over the years, 
the signal processing community has 
carefully built up a sophisticated tool-
box full of algorithms designed to 
analyze data, as well as the deep under-
standing of when and how to use these 
algorithms, and how they can be made 
to work efficiently. Signal processors 

As this new era of big data 
and data science unfolds, 
let us issue a challenge
to scientists, engineers, 
and signal processors
to establish new forms
of collaboration.
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are a mixed breed of statisticians 
crossed with control theorists crossed 
with computer engineers who have, 
over the decades, folded performance 
assurance into their algorithms to 
ensure that video looks good after 
compressed, targets are accurately 
tracked, and tumors can be effectively 
classified with low rates of false alarm 
and missed detections.

Hence, as this new era of big data and 
data science unfolds, let us issue a chal-
lenge to scientists, engineers, and signal 
processors to establish new forms of col-
laboration: To the data scientists, reach 
out and ask a signal processor whether 
they know of any signal processing tools 
that might work on your data. To the sig-
nal processor, find the scientists and 

engineers who are making the next wave 
of data and offer your services. Now 
more than ever is the time for those 
engaged in signal processing to reach 
across the boundaries of technical fields 
and contribute their tools to the analysis 
of the vast amounts of data that are being 
generated everywhere. Signal processing 
has had a fantastic record of success, and, 
as we move to this new world of data 
treasure hunting, signal processing can 
ensure the success of data science—
ensuring that the hidden correlations one 
finds are truly golden treasures and not 
spurious pyrite counterfeits.
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Data Treasure Hunters: Science Expanding to New Frontiers

Science and engineering are rapidly 
heading toward a major culture 
change—a change in how we think 

about data.
This change is already happening, 

and it will be dramatic and exciting! It 
will completely change how most of us 
think about data and how we tackle sci-
ence and engineering problems. With it 
will come a flood of new discoveries—
advances in the sciences and in new tech-
nologies—that were never before 
possible. What is this revolution? How 
did we get here? Where is it going, and 
how is signal processing involved?

The short answer is that we are enter-
ing an era of treasure hunting. Rather 
than digging through dirt like archaeolo-
gists looking for ancient artifacts, the 
future will involve digging through data.

We are experiencing an explosion in 
the amount of data available for scien-
tists and engineers to do their jobs. The 
world around us is becoming increas-
ingly “connected” as communication 
technologies have proliferated and the 
costs of digital data storage have plum-
meted. Seemingly mundane items and 
devices that never before had a bit or 
byte associated with them are now 
streaming a constant flow of data to 
data warehouses located in the cloud. 
Advancements in medical devices are 
leading to the emergence of miniatur-
ized, nonintrusive medical sensors that 
will be integrated with communication 
technologies to report real-time glucose 
levels, monitor respiratory conditions, 
track immune responses, and allow for 
the analysis of a wide array of other 
data associated with the human condi-
tion. Meanwhile, scientific equipment 
is being aimed both out into space as 

well as deep into the Earth and across 
its ecosystems. Matching this explosion 
in data is a commensurate advance in 
computing: computing resources are 
now sophisticated enough to be able to 
perform immense amounts of computa-
tion on this data.

This is the emergence of the new 
field of big data and data analytics. 
Data scientists are the postmodern trea-
sure hunters. They will reach into their 
toolboxes of algorithms and dig into 
data looking for hidden correlations, 
trying to find never-before-seen patterns 
with the hope of advancing the frontier 
of knowledge and supporting the devel-
opment of new products.

The frank truth, though, is that data 
science isn’t really new. Many technical 
fields have been performing analysis on 
large amounts of data before the term 
big data was ever coined. The signal 
processing community has been analyz-
ing data since its inception. After all, 
what is the Fourier transform but a tool 
to find periodic phenomena in data? Or 
take a quick survey of papers over the 
past 25 years (or more), and you will find 
signal processing is involved in every-
thing from analyzing geological data for 
oil discovery, to face recognition for 
domestic security, to processing genomic 
data and looking for patterns that indicate 
the onset of cancer. Signal processing 
was fundamental to advancements in 
multimedia processing and storage, and 

Digital Object Identifier 10.1109/MSP.2016.2619918
Date of publication: 11 January 2017

EDITOR’S NOTE
In June 2016, the IEEE Signal Processing Society (SPS) launched an SPS blog 
website, which provides a nontechnical supplement to highly technical signal pro-
cessing topics. There are seven SPS blogs so far, and these blogs help students 
and the general public to become more aware of signal processing. We selected 
the first SPS blog in the web series, written by Wade Trappe, for this issue’s “In 
the Spotlight” column. We hope you enjoy reading it. You can find more SPS 
blogs by visiting http://signalprocessingsociety.org/publications-resources/blog. 
Should you have any suggestions regarding the SPS blogs, please do not hesi-
tate to contact IEEE Signal Processing Magazine’s Area Editor, Columns and 
Forums Kenneth Lam (enkmlam@polyu.edu.hk) and SPS Membership and Content 
Administrator Jessica Perry (jessica.perry@ieee.org).

(continued on page 114)
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Call for Symposium Proposals

We invite Symposium proposals for the fifth IEEE Global Conference on Signal and Information Processing (GlobalSIP) which will be 
held in Montreal, Quebec, Canada on November 14-16, 2017. GlobalSIP is a flagship IEEE Signal Processing Society conference. It 
focuses on signal and information processing with an emphasis on up-and-coming signal processing themes. The conference features
world-class plenary speeches, distinguished Symposium talks, tutorials, exhibits, oral and poster sessions, and panels. GlobalSIP is 
comprised of co-located General Symposium and symposia selected based on responses to the call-for-symposia proposals. Topics 
include but are not limited to: 

Signal and information processing for
o communications and networks, including green 

communications
o  optical communications 
o forensics and security
o finance
o energy and power systems (e.g., smart grid) 
o genomics and bioengineering (physiological,

pharmacological and behavioral)
o neural networks, including deep learning 

Image and video processing 
Selected topics in speech processing and human 
language technologies 

Human machine interfaces 
Multimedia transmission, indexing, retrieval, and quality 
of experience 
Selected topics in statistical signal processing 
Cognitive communications and radar
Graph-theoretic signal processing 
Machine learning 
Compressed sensing  and sparsity aware processing 
Seismic signal processing 
Big data and social media challenges
Hardware and real-time implementations 
Other (industrial) emerging applications of signal and 
information processing. 

Symposium proposals should contain the following information: title; duration (e.g., full day or half day); paper length, acceptance rate;
name, address, and a short CV (up to 250 words) of the organizers, including the technical chairs (if any); a 1-page or 2-page
description of the topics to be addressed, including timeliness and relevance to the signal processing community; names of (potential) 
members of the technical program committee; invited speakers' name; a draft call for papers. Please pack everything together in a
single pdf document. More detailed information can be found in GlobalSIP2017 Symposium Proposal Preparation Guide.

Proposed Timeline 
Jan. 20,  2017: Symposium proposals due 
Jan. 25,  2017: Symposium selection decision made
Feb. 1,  2017: Call for Papers for accepted Symposia 
May 15,  2017: Paper submission due 
June 30, 2017: Notification of Acceptance 
July 22, 2017: Camera-ready paper due. 

 Digital Object Identifier 10.1109/MSP.2016.2636084
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You can simulate, prototype, 
and verify wireless systems 
right in MATLAB. Learn how 
today’s MATLAB supports RF, 
LTE, WLAN and 5G development 
and SDR hardware.

mathworks.com/wireless
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General Chairs:
John R. Hershey,  MERL
 Tomohiro Nakatani,  NTT

Important Dates: 
Paper Submission:  

June 29, 2017

Paper Notification: 
August 31, 2017

Early Registration Period: 
August 31 - Oct 5, 2017 

Camera Ready Deadline:  
Sept 21, 2017

More Information: 

info@asru2017.org

IEEE Automatic Speech Recognition and Understanding Workshop  

The biennial IEEE ASRU workshop has a tradition of bringing 
together researchers from academia and industry in an
intimate and collegial setting to discuss problems of common 
interest in automatic speech recognition, understanding, and 
related fields of research. The workshop includes keynotes, 
invited talks, poster sessions and will also feature challenge 
tasks, panel discussions, and demo sessions. 

Automatic speech recognition 
ASR in adverse environments 
New applications of ASR
Speech-to-speech translation 
Spoken document retrieval 
Multilingual language processing 
Spoken language understanding 
Spoken dialog systems 
Text-to-speech systems 

Okinawa, Japan,  
December 16-20, 2017

ASRU 2017 IEEE 
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SIGNAL AND INFORMATION PROCESSING 
OVER NETWORKS

IEEE TRANSACTIONS ON

The new publishes high-quality papers 
that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to 
processing of signals and information (data) defined over networks, potentially dynamically varying. In signal 
processing over networks, the topology of the network may define structural relationships in the data, or 
may constrain processing of the data. Topics of interest include, but are not limited to the following:
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IEEE TRANSACTIONS ON
C

The IEEE Transactions on Computational Imaging 
publishes research results where computation plays 
an integral role in the image formation process. All areas 
of computational imaging are appropriate, ranging from 
the principles and theory of computational imaging, to mod-
eling paradigms for computational imaging, to image for-
mation methods, to the latest innovative computational imaging system 
designs. Topics of interest include, but are not limited to the following:

Computational Imaging Methods and  
Models

Coded image sensing
Compressed sensing
Sparse and low-rank models
Learning-based models, dictionary methods
Graphical image models
Perceptual models

Computational Image Formation

Sparsity-based reconstruction
Statistically-based inversion methods
Multi-image and sensor fusion
Optimization-based methods; proximal itera-
tive methods, ADMM

Computational Photography

Non-classical image capture
Generalized illumination
Time-of-flight imaging
High dynamic range imaging
Plenoptic imaging

Computational Consumer 
Imaging

Mobile imaging, cell phone imaging
Camera-array systems
Depth cameras, multi-focus imaging
Pervasive imaging, camera networks

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopy

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy
Light field microscopy

Imaging Hardware and Software

Embedded computing systems
Big data computational imaging
Integrated hardware/digital design

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic aperture imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

For more information on the IEEE Transactions on Computational Imaging see

OMPUTATIONAL IMAGING
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http://dx.doi.org/10.1109/TIFS.2016.2594130 . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . M. Sayad Haghighi, S. Wen, Y. Xiang, B. Quinn, and W. Zhou 2854

Still-to-Video Face Matching Using Multiple Geodesic Flows http://dx.doi.org/10.1109/TIFS.2016.2601060 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhu, Y. Li, G. Mu, S. Shan, and G. Guo 2866

List of Reviewers http://dx.doi.org/10.1109/TIFS.2016.2617259 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2876

EDICS-Editor’s Information Classification Scheme http://dx.doi.org/10.1109/TIFS.2016.2625404 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2887
Information for Authors http://dx.doi.org/10.1109/TIFS.2016.2625405 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2888
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2016 Index http://dx.doi.org/10.1109/TIFS.2016.2637459 . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . Available online at http://ieeexplore.ieee.org
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The 3rd IEEE International Conference on Network Softwarization (NetSoft 2017) will be held July – at the 
University of Bologna in Bologna, Italy. IEEE NetSoft is the flagship conference of the IEEE SDN Initiative which 
aims to address Softwarization of networks and systemic trends concerning the convergence of Cloud Computing, 
Software-Defined Networks, and Network Function Virtualization.

TOPICS OF INTEREST
Authors are invited to submit papers that fall into the area of software-defined and virtualized infrastructures. Topics 
of interest include, but are not limited to, the following:

SDN and NFV as enabling technologies for 5G
From Cloud Computing to Edge-Fog Computing
5G Functional Decomposition and Infrastructure slicing
5G sustainable ecosystems: IoT, Industry 4.0, Pervasive 
Robotics, Self-driving vehicles, Tactile Internet, Immersi-
ve Communications, Artificial Intelligence applications
Software Defined infrastructures for Public Protection 
and Disaster Relief (PPDR) network services
Service Function Chaining for NFV: Modeling, composi-
tion algorithms, deployment
Intent-based interfacing for NFV
SDN/NFV Network & Service Orchestration and Mana-
gement
Management of federated SDN/NFV infrastructure and 
frameworks

Real time operations and efficient network/service moni-
toring in SDN/NFV
Performance and scalability issues in NFV implementa-
tion scenarios
Traffic Engineering and QoS/QoE in SDN/NFV
APIs, protocols and languages for programmable net-
works and Software-Defined Infrastructure
SDN switch/router architectures/designs
SDN/NFV issues and opportunities for security, trust 
and privacy
Experience reports from experimental testbeds and de-
ployment 
Softwarized platforms for Internet-of-Things (IoT)
New value chains and business models

SCOPE
The telecommunications landscape will change radically in the next few years. Pervasive ultra-broadband, program-
mable networks, and cost reduction of IT systems are paving the way to new services and commoditization of tele-
communications infrastructure while lowering entrance barriers for new players and giving rise to new value chains.   
While this results in considerable challenges for service providers, this transformation also brings unprecedented 
opportunities for the Digital Society and the Digital Economy related to emerging new services and applications.  
Examples include Tactile Internet of Things, Industry 4.0, Cloud Robotics, and Artificial Intelligence. 5G will both ex-
ploit and accelerate this transformation.  

NetSoft 2017 aims to capture the theme of Softwarization Sustaining a Hyper-connected World: en route to 5G and 
serve as forum for researchers to discuss the latest advances in this area.  NetSoft 2017 will feature technical paper, 
keynotes, tutorials, and demos and exhibits from world-leading experts representing operators, vendors, research 
institutes, open source projects, and academia.

PAPER SUBMISSION
Authors are invited to submit original contributions (written in English) in PDF format. Only original papers not publi-
shed or submitted for publication elsewhere can be submitted. Papers can be of two types: full (up to 9 pages) or 
short (up to 5 pages) papers. Full Papers accepted as short Papers will be required to be reduced to 5-pages length. 
Papers should be in IEEE 2-column US-Letter style using IEEE Conference template (

) and submitted in PDF format via JEMS at: 
. Papers exceeding these limits, multiple submissions, and self-plagiarized papers 

will be rejected without further review. All submitted papers will be subject to a peer-review process. The accepted 
papers will be published in IEEE Xplore, provided that the authors do present their paper at the conference. 

IMPORTANT DATES
December 5, 2016: Technical Papers deadline

December 15, 2016: Workshop Submission deadline
March 6, 2017: Paper submission acceptance notification

April 10, 2017: Full Conference Pa
May 30, 2017: Early-Bird Registration

GENERAL CO-CHAIRS
Antonio Manzalini (Telecom Italia Mobile, Italy)
Roberto Verdone (University of Bologna, Italy)

STEERING COMMITTEE CHAIR
Prosper Chemouil (Orange Labs, France)

TPC CO-CHAIRS

Alexander Clemm (Cisco, USA)
Kohei Shiomoto (NTT Labs, Japan)
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PAPERS

Compression and Coding

Quadtree Degeneration for HEVC http://dx.doi.org/10.1109/TMM.2016.2598481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Gao, P. Liu, Y. Wu, and K. Jia 2321
Clustering-Based Content Adaptive Tiles Under On-chip Memory Constraints http://dx.doi.org/10.1109/TMM.2016.2600439 . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Jin and Q. Dai 2331

Watermarking, Encryption, and Data Hiding

Data Hiding Robust to Mobile Communication Vocoders http://dx.doi.org/10.1109/TMM.2016.2599149 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R. Kazemi, F. Pérez-González, M. A. Akhaee, and F. Behnia 2345

Image/Video/Graphics Analysis and Synthesis

Interactive Multilabel Image Segmentation via Robust Multilayer Graph Constraints http://dx.doi.org/10.1109/TMM.2016.2600441 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Wang, Z. Ji, Q. Sun, Q. Chen, and X.-Y. Jing 2358

Task-Driven Progressive Part Localization for Fine-Grained Object Recognition http://dx.doi.org/10.1109/TMM.2016.2602060 . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Huang, Z. He, G. Cao, and W. Cao 2372

System Design Methodology and Tools

A Constellation Design Methodology Based on QoS and User Demand in High-Altitude Platform Broadband Networks
http://dx.doi.org/10.1109/TMM.2016.2595260 . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . F. Dong, H. Han, X. Gong, J. Wang, and H. Li 2384

Video Surveillance and Semantic Analysis

Exemplar-AMMs: Recognizing Crowd Movements From Pedestrian Trajectories http://dx.doi.org/10.1109/TMM.2016.2598091 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Liu, R. W. H. Lau, X. Wang, and D. Manocha 2398

Multimedia Using Haptic and Physiological Information

Deep Learning for Surface Material Classification Using Haptic and Visual Information http://dx.doi.org/10.1109/TMM.2016.2598140 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Zheng, L. Fang, M. Ji, M. Strese, Y. Özer, and E. Steinbach 2407

Multimodal Perception, Integration, and Multisensory Fusion

Mean-Shift and Sparse Sampling-Based SMC-PHD Filtering for Audio Informed Visual Speaker Tracking
http://dx.doi.org/10.1109/TMM.2016.2599150 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V. Kiliç, M. Barnard, W. Wang, A. Hilton, and J. Kittler 2417
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Media Translation for Sense Substitution

Perceiving Graphical and Pictorial Information via Hearing and Touch http://dx.doi.org/10.1109/TMM.2016.2601029 . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. M. Silva, T. N. Pappas, J. Atkins, and J. E. West 2432

Subjective and Objective Quality Assessment, and User Experience

Perceptual Annoyance Models for Videos With Combinations of Spatial and Temporal Artifacts
http://dx.doi.org/10.1109/TMM.2016.2601027 . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . A. F. Silva, M. C. Q. Farias, and J. A. Redi 2446

Blind Image Quality Assessment Using Statistical Structural and Luminance Features http://dx.doi.org/10.1109/TMM.2016.2601028 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Li, W. Lin, J. Xu, and Y. Fang 2457

Ubiquitous Media Access

Optimal Incentive Design for Cloud-Enabled Multimedia Crowdsourcing http://dx.doi.org/10.1109/TMM.2016.2604080 . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Maharjan, Y. Zhang, and S. Gjessing 2470

Multimedia Search and Retrieval

Robust Latent Poisson Deconvolution From Multiple Features for Web Topic Detection http://dx.doi.org/10.1109/TMM.2016.2598439 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Pang, F. Tao, C. Zhang, W. Zhang, Q. Huang, and B. Yin 2482

Web and Internet

Image Classification by Cross-Media Active Learning With Privileged Information http://dx.doi.org/10.1109/TMM.2016.2602938 . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Yan, F. Nie, W. Li, C. Gao, Y. Yang, and D. Xu 2494

Multimedia Streaming and Transport

Trend-Aware Video Caching Through Online Learning http://dx.doi.org/10.1109/TMM.2016.2596042 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Li, J. Xu, M. van der Schaar, and W. Li 2503

Resource-Efficient Mobile Multimedia Streaming With Adaptive Network Selection http://dx.doi.org/10.1109/TMM.2016.2604565 . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Lee, K. Lee, C. Han, T. Kim, and S. Chong 2517

Multimedia Sentiment Analysis and Synthesis; Affective Multimedia Processing

A Deep Neural Network-Driven Feature Learning Method for Multi-view Facial Expression Recognition
http://dx.doi.org/10.1109/TMM.2016.2598092 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. Zhang, W. Zheng, Z. Cui, Y. Zong, J. Yan, and K. Yan 2528

Multimedia Networking and Processing in the Cloud and Data Centers

Media Query Processing for the Internet-of-Things: Coupling of Device Energy Consumption and Cloud Infrastructure
Billing http://dx.doi.org/10.1109/TMM.2016.2600438 . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . F. Renna, J. Doyle, V. Giotsas, and Y. Andreopoulos 2537

Ultra-Efficient Surveillance Video and Coding Of Multimedia Features

Person Reidentification via Ranking Aggregation of Similarity Pulling and Dissimilarity Pushing
http://dx.doi.org/10.1109/TMM.2016.2605058 . . . . . . . . . . . . . . . . . . . . . . . . M. Ye, C. Liang, Y. Yu, Z. Wang, Q. Leng, C. Xiao, J. Chen, and R. Hu 2553

ANNOUNCEMENTS

Introducing IEEE Collabratec http://dx.doi.org/10.1109/TMM.20162.2625923 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2567

CALLS FOR PAPERS

IEEE International Conference on Multimedia and Expo Call for Papers http://dx.doi.org/10.1109/TMM.2016.2625925 . . . . . . . . . . .. . . . . . . . . . . . . 2568
IEEE TRANSACTIONS ON MULTIMEDIA Call for Papers for the Special Issue on Video Over Future Networks: Emerging

Technologies, Infrastructures, and Applications http://dx.doi.org/10.1109/TMM.2016.2625899 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2569

Information for Authors http://dx.doi.org/10.1109/TMM.2016.2625921 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2570
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2017 IEEE Workshop on Applications of Signal Processing to
Audio and Acoustics (WASPAA 2017)   October 15–18, 2017

www.waspaa.com 
Mohonk Mountain House

New Paltz, New York, USA

Workshop Committee 
General Chairs

Patrick A. Naylor
Imperial College London

Meinard Müller
International AudioLabs Erlangen

Technical Program Chairs
Gautham Mysore 

Adobe Research 
Mads Christensen

Aalborg University

Finance Chair
Michael S. Brandstein

M.I.T. Lincoln Laboratory

Publications Chair 
Toon van Waterschoot

KU Leuven 

Registration Chair 
Tiago H. Falk
INRS, Montréal 

Industrial Liaison Chair 
Tao Zhang

Starkey Hearing Technologies 

Far East Liaison
Shoko Araki

NTT

Local Arrangements Chair
Youngjune Gwon

M.I.T. Lincoln Laboratory

Demonstrations Chair
Christine Evers

Imperial College London

Awards Chair
Sebastian Ewert

Queen Mary University of London

The 2017 IEEE Workshop on Applications of Signal Processing to Audio and 
Acoustics (WASPAA 2017) will be held at the Mohonk Mountain House in New 
Paltz, New York, and is supported by the Audio and Acoustic Signal Processing 
technical committee of the IEEE Signal Processing Society. The objective of this 
workshop is to provide an informal environment for the discussion of problems 
in audio, acoustics and signal processing techniques leading to novel solutions. 
Technical sessions will be scheduled throughout the day. Afternoons will be left free 
for informal meetings among workshop participants. Papers describing original 
research and new concepts are solicited for technical sessions on, but not limited 
to, the following topics:

Acoustic Signal Processing
Source separation: single- and multi-microphone techniques
Acoustic source localization and tracking
Signal enhancement: dereverberation, noise reduction, echo reduction 
Microphone and loudspeaker array processing
Acoustic sensor networks: distributed algorithms, synchronization
Acoustic scene analysis: event detection and classification
Room acoustics: analysis, modeling and simulation

Audio and Music Signal Processing
Content-based music retrieval: fingerprinting, matching, cover song retrieval
Musical signal analysis: segmentation, classification, transcription
Music signal synthesis: waveforms, instrument models, singing
Music separation: direct-ambient decomposition, vocal and instruments
Audio effects: artificial reverberation, amplifier modeling 
Upmixing and downmixing

Audio and Speech Coding
Waveform and parametric coding
Spatial audio coding
Sparse representations
Low-delay audio and speech coding
Digital rights

Hearing and Perception
Hearing aids
Computational auditory scene analysis
Auditory perception and spatial hearing
Speech and audio quality assessment
Speech intelligibility measures and prediction

Important Dates
Submission of four-page paper 
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Notification of acceptance
June 27, 2017

Early registration until 
August 15, 2017

Workshop 
October 15–18, 2017
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Call for Symposium Proposals

We invite Symposium proposals for the fifth IEEE Global Conference on Signal and Information Processing (GlobalSIP) which will be 
held in Montreal, Quebec, Canada on November 14-16, 2017. GlobalSIP is a flagship IEEE Signal Processing Society conference. It 
focuses on signal and information processing with an emphasis on up-and-coming signal processing themes. The conference features
world-class plenary speeches, distinguished Symposium talks, tutorials, exhibits, oral and poster sessions, and panels. GlobalSIP is 
comprised of co-located General Symposium and symposia selected based on responses to the call-for-symposia proposals. Topics 
include but are not limited to:

Signal and information processing for
o communications and networks, including green 

communications
o optical communications
o forensics and security
o finance
o energy and power systems (e.g., smart grid)
o genomics and bioengineering (physiological,

pharmacological and behavioral)
o neural networks, including deep learning

Image and video processing
Selected topics in speech processing and human
language technologies

Human machine interfaces
Multimedia transmission, indexing, retrieval, and quality
of experience
Selected topics in statistical signal processing
Cognitive communications and radar
Graph-theoretic signal processing
Machine learning
Compressed sensing and sparsity aware processing
Seismic signal processing
Big data and social media challenges
Hardware and real-time implementations
Other (industrial) emerging applications of signal and 
information processing.

Symposium proposals should contain the following information: title; duration (e.g., full day or half day); paper length, acceptance rate;
name, address, and a short CV (up to 250 words) of the organizers, including the technical chairs (if any); a 1-page or 2-page
description of the topics to be addressed, including timeliness and relevance to the signal processing community; names of (potential) 
members of the technical program committee; invited speakers' name; a draft call for papers. Please pack everything together in a
single pdf document. More detailed information can be found in GlobalSIP2017 Symposium Proposal Preparation Guide.

Proposed Timeline
Jan. 20, 2017: Symposium proposals due
Jan. 25, 2017: Symposium selection decision made
Feb. 1, 2017: Call for Papers for accepted Symposia
May 15, 2017: Paper submission due
June 30, 2017: Notification of Acceptance
July 22, 2017: Camera-ready paper due.
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We invite Symposium proposals for the fifth IEEE Global Conference on Signal and Information Processing 
(GlobalSIP2017) which will be held in Montreal, Quebec, Canada on 
(http://2017.ieeeglobalsip.org/ ). GlobalSIP is a flagship IEEE Signal Processing Society conference. It focuses on 
signal and information processing with an emphasis on up-and-coming signal processing themes. The conference 
features world-class plenary speeches, distinguished Symposium talks, tutorials, exhibits, oral and poster sessions,
and panels. GlobalSIP is comprised of co-located General Symposium and symposia selected based on responses 
to the call-for-symposia proposals. Topics include but are not limited to:

Signal and information processing for 
communications and networks, including 
green communications
optical communications

forensics and security 
finance
energy and power systems (e.g., smart grid)
genomics and bioengineering (physiological, 
pharmacological and behavioral)
neural networks, including deep learning

Image and video processing
Selected topics in speech processing and human 
language technologies
Human machine interfaces

Multimedia transmission, indexing, retrieval, and
quality of experience
Selected topics in statistical signal processing
Cognitive communications and radar
Graph-theoretic signal processing
Machine learning
Compressed sensing and sparsity aware processing
Seismic signal processing
Big data and social media challenges 
Hardware and real-time implementations
Other (industrial) emerging applications of signal and 
information processing.
Interdisciplinary theme symposia are strongly encouraged.

Symposium proposals should contain the following information: title; duration (e.g., full day or half day); paper 
length; name, address, and a short CV (up to 250 words) of the organizers, including the technical chairs (if any); 
a 1-page or 2-page description of the topics to be addressed, including timeliness and relevance to the signal 
processing community; names of (potential) members of the technical program committee; invited/potential
speakers' names; a draft call for papers (up to 1 page). Please pack everything together in a single pdf document
and email your proposal to the Technical Program Committee (TPC) Chairs. More detailed information can be 
found in “GlobalSIP2017 Symposium Proposal Preparation Guide” at http://2017.ieeeglobalsip.org/. For better 
consideration, proposers are strongly advised to submit their proposals as early as possible.

: Symposium proposals due
: Symposium selection decision made

: Call for Papers for accepted Symposia
: Paper submission due
: Notification of Acceptance

: Camera-ready paper due.
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correspondence. As a key identifier for the IEEE database, circle your last/surname.
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