
[VOLUME 32 NUMBER 1 JANUARY 2015]

Contents    |    Zoom in    |    Zoom out    Search Issue    |    Next PageFor navigation instructions please click here    

Contents    |    Zoom in    |    Zoom out    Search Issue    |    Next PageFor navigation instructions please click here    



Y O U K N O W Y O U R S T U D E N T S N E E D I E E E I N F O R M A T I O N .

N O W T H E Y C A N H AV E I T. A N D Y O U C A N A F F O R D I T.

I E E E R E C O G N I Z E S T H E S P E C I A L N E E D S O F S M A L L E R C O L L E G E S , and wants students

to have access to the information that will put them on the path to career success. Now,

smaller colleges can subscribe to the same IEEE collections that large universities receive,

but at a lower price, based on your full-time enrollment and degree programs.

Find out more–visit www.ieee.org/learning

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.qmags.com/clickthrough.asp?url=www.ieee.org/learning&id=19183&adid=PCOVER 2A1
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [1] JANUARY 2015

Digital Object Identifier 10.1109/MSP.2014.2364658

[CONTENTS] [VOLUME 32  NUMBER 1]

[SPECIAL SECTION—QUANTITATIVE BIOIMAGING]

18 FROM THE GUEST EDITORS
Arrate Muñoz-Barrutia,
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88  OPTICAL AND OPTOACOUSTIC 
MODEL-BASED TOMOGRAPHY
Pouyan Mohajerani,
Stratis Tzoumas, Amir Rosenthal,
and Vasilis Ntziachristos

[FEATURE]
101  VIDEO QUALITY ASSESSMENT

Margaret H. Pinson,
Lucjan Janowski,
and Zdzisław Papir

[COLUMNS]
4 FROM THE EDITOR

Taking Up the Torch
Min Wu

8 PRESIDENT’S MESSAGE
SigView: Video Tutorials in Emerging 
Signal Processing Topics
Alex Acero

9 SPECIAL REPORTS
Signal Processing in Next-Generation 
Prosthetics
John Edwards

Accuracy, Apps Advance Speech 
Recognition
Ron Schneiderman

15 SOCIETY NEWS
2015 Class of Distinguished Lecturers 
and Technical Field Award Recipients

115 LIFE SCIENCES
Human–Machine Interfacing by 
Decoding the Surface 
Electromyogram
Dario Farina
and Ales Holobar

121 SOCIAL SCIENCES
Signal Processing in the Workplace
Daniel Gatica-Perez

[DEPARTMENT]
128 DATES AHEAD

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [2] JANUARY 2015

Digital Object Identifier 10.1109/MSP.2014.2364660 

SCOPE: IEEE Signal Processing Magazine publishes 
tutorial-style articles on signal processing research and 
applications, as well as columns and forums on issues 
of interest. Its coverage ranges from fundamental prin-
ciples to practical implementation, reflecting the mul-
tidimensional facets of interests and concerns of the 
community. Its mission is to bring up-to-date, emerg-
ing and active technical developments, issues, and 
events to the research, educational, and professional 
communities. It is also the main Society communica-
tion platform addressing important issues concerning 
all members.
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Call for Papers
The International Conference on Image Processing (ICIP), sponsored by the IEEE Signal Processing 
Society, is the premier forum for the presentation of technological advances and research results in 
the fields of theoretical, experimental, and applied image and video processing. ICIP 2015, the twenty 
second in the series that has been held annually since 1994, brings together leading engineers and 
scientists in image and video processing from around the world. Research frontiers in fields ranging 
from traditional image processing applications to evolving multimedia and video technologies are 
regularly advanced by results first reported in ICIP technical sessions. 

Topics include, but are not limited to: 
Image/video coding and transmission: Still-image and video coding, stereoscopic and 3-D 
coding, distributed source coding, source/channel coding, image/video transmission over 
wireless networks; 
Image/video processing: Image and video filtering, restoration and enhancement, image 
segmentation, video segmentation and tracking, morphological processing, stereoscopic and 
3-D processing, feature extraction and analysis, interpolation and super-resolution, motion 
detection and estimation, color and multispectral processing, biometrics; 
Image formation: Biomedical imaging, remote sensing, geophysical and seismic imaging, 
optimal imaging, synthetic-natural hybrid image systems; 
Image scanning, display, and printing: Scanning and sampling, quantization and half toning, 
color reproduction, image representation and rendering, display and printing systems, image-
quality assessment; 
Image/video storage, retrieval, and authentication: Image and video databases, image and 
video search and retrieval, multimodality image/ video indexing and retrieval, authentication and 
watermarking; 
Applications: Biomedical sciences, mobile imaging, geosciences & remote sensing, astronomy 
& space exploration, document image processing and analysis, other applications. 

Paper Submission: Authors are invited to submit papers of not more than four pages for 
technical content including figures and references, with one optional page containing only references. 

Call for Tutorials: Tutorials will be held on Sunday, September 27, 2015. Proposals must be 
submitted by January 15, 2015 via email to tutorials@icip2015.org. For detailed submission 
guidelines, please visit the  section of the web site. 

Call for Special Sessions: Proposals should be submitted by November 27, 2014 in a single 
PDF document sent to specialsessions@icip2015.org. For detailed submission guidelines, please visit 
the  section of the web site.

Important Dates  
Special Session Proposals: 27 November 2014
Papers Submissions:  15 January 2015
Tutorial Proposals: 15 January 2015
Authors Notification: 30 April 2015 

Visit icip2015.org for details on paper submission, social events, no-show policy, and more.
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[from the EDITOR]
Min Wu

Editor-in-Chief 
minwu@umd.edu

I
t will almost be the start of a new 
year when you receive this issue of 
IEEE Signal Processing Magazine 
(SPM). Happy New Year to you all! 

The new year accompanies major 
changes in SPM’s management team. The 
2012–2014 editor-in-chief, Abdelhak Zou-
bir, and his capable executive team of 
senior area editors—Fulvio Gini (special 
issues), Marc Moonen (feature articles), 
and Andrea Cavallaro and Andres Kwanski 
(columns and forums)—have successfully 
completed their terms in leading the mag-
azine for the past three years. Given the 
production lead time required for the mag-
azine, much of the technical material in 
this and the next several issues are attrib-
uted to their efforts. My sincere thanks are 
given for all of their hard work and also for 
their generous mentoring and assistance 
to help me ramp up the learning curve!

It is truly an honor and privilege for 
me to take on the editor-in-chief position 
of the magazine for the next three years. 
Joining me to form the new SPM execu-
tive team are four new senior area edi-
tors: Wade Trappe (special issues), 
Shuguang Robert Cui (feature articles), 
and Gwenael Doerr and Kenneth Lam 
(columns and forums), as well as Chris-
tian Debes, who was on board last year for 
the eNewsletter. Together with a dedicat-
ed group of associate editors and mem-
bers of the senior editorial board, we are 
ready to take the journey to serve you. 

SPM reaches over 20,000 readers 
worldwide across a diverse range of career 
sectors and is very different from the 
transactions-type of research journals 
with a focused scope and audience. I have 
been an SPM subscriber since my senior 
year in college. The magazine’s tutorial 

surveys and overview articles gave a stu-
dent like me a high-quality yet accessible 
way to take a peek into this incredible 
field. SPM traces its roots back to 1970 as 
IEEE Audio and Electroacoustics News-
letter. Accompanying the expanded tech-
nical scope and a then new name of the 
IEEE Signal Processing Society (SPS), 
SPM in its current name and form was 
first published in 1991. For a quarter of a 
century since then, six predecessors lead-
ing SPM before me have made strong 
marks in growing SPM into a premier 
publication to serve our signal processing 

community. As I take up the torch with 
awe, I ask myself: what more can be done?

SPM has been a leader in citation im-
pact among 200+ publications in electrical 
and computer engineering as indexed by 
the Thomson Reuters’ annual Journal Ci-
tation Report (JCR). Over the past decade, 
SPM has made it to the top (multiple 
times) of JCR’s “popularity measure” 
known as the impact factor, which is 
based on the average number of received 
citations in a given year for each article 
published in the preceding two years. Also 
by Thomson Reuters, a newer “prestige 
measure” known as the article influence 
score accounts for both the citation 
amount and the influences of the citing 
journals that have contributed to the cita-
tions; by excluding self-citations and con-
sidering a longer window of five years, the 
article influence score is more robust to 
intentional inflation and accounts for a 

longer-term influence. Currently, SPM
ranks at the top in article influence score 
among all 250 electrical and computer en-
gineering publications indexed by Thom-
son Reuters—what an achievement for 
SPM’s past editorial teams and authors! 

To maintain a high citation impact, 
SPM needs to continue to identify topics of 
keen interest to the R&D community in 
the broad areas of signal processing and 
attract authors who can write timely and 
high-quality tutorial and survey articles on 
these topics. This is easier said than done. 
Citation statistics often have a few years’ 
lag time, so actions taken by an editorial 
team may not be reflected in the citation 
until toward the end of a three-year term 
or well after. But help from you, our read-
ers and community colleagues, can com-
plement the effort by our editorial board, 
so that together we can sustain a high cita-
tion impact for SPM. For example, let us 
know the topics you are interested in 
learning about; offer us your feedback 
regarding the articles you see in SPM—
what aspects you love and what aspects 
you hope we improve or do differently; for 
the articles that you find beneficial, help us 
spread the word by recommending them 
to colleagues and students, and cite these 
articles in your relevant writings and pre-
sentations. And if you are working on topic 
areas that may stimulate broad interests, 
consider proposing the topic for a special 
issue, a feature article, or a column, and 
publish in SPM!

While citation impact is an important 
metric, the role and impact of SPM is 
much more than scoring well in a citation 
ranking. A substantial number of our 
members and readers are not in academia 
or industrial academia and do not publish 
regularly as a major part of their jobs. They 
include, but are not limited to, industry 
practitioners as well as undergraduate and 
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WHILE CITATION IMPACT
IS AN IMPORTANT METRIC, 

THE ROLE AND IMPACT
OF SPM IS MUCH MORE 
THAN SCORING WELL IN 
A CITATION RANKING.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

____________

mailto:minwu@umd.edu
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com
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IEEE Standards Online
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Free Trial!
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[from the EDITOR] continued
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nonresearch-track students. SPM, as the 
Society’s only publication going to every 
member, has a distinguished tradition of 
offering valuable information to these 
readers. I will do my best to continue to 
serve you and make SPM an important 
part of your career advancement and per-
sonal enrichment. 

In today’s well-connected world, what 
are the best ways for SPM to bring signal 

processing-related information to you? 
We plan to explore ways both through 
the content in the traditional magazine 
format as well as complementary chan-
nels such as electronic, online, and social 
media platforms to bring you useful infor-
mation. Some of these means may be in 
cooperation with other SPS publications, 
boards, and committees. I look forward to 
learning your thoughts on SPM and 

meeting you in the months to come 
through SPS conferences, Distinguished 
Lecturer tours, and other local Chapter 
events. Until then, I wish you all a healthy 
and productive new year!

[SP]

ERRATA

In the article “Location-Aware Communications for 5G Networks” by R. Di Taranto et al., IEEE Signal Processing Magazine, vol. 31, 
no. 6, pp. 102–112 [1], math was typeset incorrectly due to a production error in (2) and in the text directly following (5). In (2), a 
“1” should not appear before the “C” on the left-hand side of the equation. The correct way it should be displayed is as follows:

( , ) { ( , ) ( , )} ,expC dx x x x x x
x x

Ei j s i s j
c

i j2vW W= = -
-

} c m (2)

In the second line under (5) on page 106, the subscript asterisk should not be followed by a period. The correct way it should be 
displayed is as follows: in which k)  is the N 1#  vector of cross-covariances ( , )C x xi)  between x)  and the training inputs .xi

Also, two authors’ names were misprinted. The corrected names are L. Srikar Muppirisetty and Dirk Slock. We apologize for the 
errors and any confusion they may have caused. 

Reference
[1] R. Di Taranto, L. S. Muppirisetty, R. Raulefs, D. Slock, T. Svensson, and H. Wymeersch, “Location-aware communications 
for 5G networks,” IEEE Signal Processing Mag., vol. 31, no. 6, pp. 102–112, Nov. 2014.

Digital Object Identifier 10.1109/MSP.2014.2364864

Date of publication: 5 December 2014

Digital Object Identifier 10.1109/MSP.2014.2373471

The Third IEEE China Summit and International Conference on Signal and Information Processing 
(ChinaSIP 2015) will be held in Chengdu, China, on 12–15 July 2015. Sponsored by the IEEE Signal 
Processing Society, ChinaSIP is an annual summit and international conference held in China for 
domestic and international scientists, researchers, and practitioners to network and discuss the latest 
progress in theoretical, technological, and educational aspects of signal and information processing. The 
official language of the conference is English. Prospective authors are invited to submit up to 4 pages in 
length (with an optional 5th page containing only references). [www.chinasip2015.org/]

General Chairs: Dezhong YAO (China), Yingbo HUA (USA) 
Technical Program Chairs: Ce ZHU (China), Wenjun ZENG (USA), Haizhou LI (Singapore) 

Submission Deadlines: 31 January 2015 (regular full papers), 15 February 2015 (invited papers) 
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technology breakthroughs. From outlining new uses for 

existing technology to detailing cutting-edge innovations in 

a variety of disciplines, you’ll fi nd the breadth of content and 

depth of knowledge that only IEEE can provide. 
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the latest technology?
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Alex Acero 
2014–2015 SPS President
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SigView: Video Tutorials in Emerging Signal Processing Topics

I
n September 2013, the IEEE Signal 
Processing Society (SPS) launched 
SigView, an online video library of 
tutorials in emerging areas of signal 
processing. SigView acts as a supple-

mental resource to the SPS’s host of ed-
ucational resources with a focus on new, 
hot topics in signal processing. As of Oc-
tober 2014, the rapidly growing video li-
brary hosts more than 40 videos. The 
most frequently accessed video, a tutori-
al on compressive sensing, has more 
than 6,000 views. You can access that 
video and many more—including our 
International Conference on Acoustics, 
Speech, and Signal Processing 2014 pre-
sentations—at http://www.sigview.org. 
Make sure to sign in using your SPS log-
in information to access member-exclu-
sive content, as well!

When our members want to learn 
about the very latest in the field, they 
attend conferences, read conference 
papers, and read brief IEEE Signal Pro-
cessing Letters; when they want to see a 
more comprehensive treatment of a sub-
ject, they read longer journal articles—a  
tradeoff for the fact that it may not 
include the most recent developments.

IEEE Signal Processing Magazine 
(SPM) offers many tutorial-style articles 
for members who want to learn about 
new fields, which can be difficult to learn 
through the Society’s more formal jour-
nals and conference papers. In addition, 
SPM is highly rated as number three 

among all IEEE publications in the five-
year impact factor of Thomson Reuter’s 
Journal Citation Report, a true testament 
of its quality and value to readers.

But still, some people find it more 
engaging to watch and listen to an edu-
cational lecture. This is why video tutori-
als are an integral part of the modern era 
of research and why the SPS wants to 
continue to engage its members through 
a variety of resources across platforms.  
Unfortunately, there are many poor-qual-
ity lectures out there. SigView was born 
as a means to provide well-researched, 
well-presented signal processing-related 
tutorial content that meets the Society’s 
standards, treated with similar editorial 
considerations as our publications, prod-
ucts, and services. SigView offers some 
interactive features, such as the opportu-
nity for readers to rate the videos and 
add comments, a key aspect of the mod-
ern Web.

Who are the distinguished speakers in 
these videos? You are! We strongly urge 
you, the Society’s experts, to create 
SigView tutorials of your own. SigView 
tutorials are a great way to not only share 
knowledge and information about new 
topics but they are a great way for SPS 
members to exchange ideas, network, and 
coordinate with one another. Creating a 
video is easy and only requires the raw 
materials you want to include—just log 
in, upload your materials, and sequence 
and narrate the resulting video. You can 
mix and match all manner of materials 
including videos, PowerPoint, PDF, Word 
documents, images, audio, and much 
more. SigView automatically integrates all 

these different media types and allows you 
to narrate each, requiring nothing more 
than a microphone. The results are there 
for viewing and editing immediately, and 
once you’re finished, they are hosted on 
the SigView site ad-free. For more infor-
mation on how to create a SigView video, 
including a video tutorial, visit the SPS 
Web page: http://www.signalprocessing
society.org/community/online-tutorial-
library. To propose a submission, e-mail 
your proposed title to ad.sigview@ieee.org. 

For any member who would like to get 
involved as a reviewer or editorial board 
member, the SigView editorial board asks 
you to get in touch. These people are 
responsible for screening submissions for 
quality and accuracy and assure that the 
Society’s standards are upheld. If you’re 
interested in joining, e-mail ce.sigview@
ieee.org to learn how to get involved.

The SPS is always looking for new 
ways to deliver research, knowledge, and 
information to its members. If you have 
any ideas about how to keep SPS at the 
forefront of providing content, please 
don’t hesitate to reach out to us.

I hope that you’ll take the time to check 
out some of our SigView presentations and 
maybe even submit your own. Our Society 
and community is what we make it. Let’s 
keep learning and sharing together.
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Signal Processing in Next-Generation Prosthetics

rtificial devices that allow 
amputees to either walk again 

or to continue to use an arm 
and hand have existed since 
ancient times, the most 

notable example being the simple peg leg. 
Modern prosthetics, however, are a world 
apart from predigital-age artificial limbs. 
Using advanced robotic, cybernetic, and 
fabrication technologies, as well as signal 
processing, researchers are well on their 
way to making prosthetics that are 
remarkably useful, realistic, and intuitive.

As prosthetic development advances, 
signal processing is playing important 
roles in control and sensing operations. 
“The sensor is our window to the world,” 
says Veronica J. Santos (Figure 1), an asso-
ciate professor of mechanical and aero-
space engineering at the University of 
California at Los Angeles. Santos, who is 
codeveloping a multimodal tactile sensor 
skin that’s designed to assist prosthetic 
hand users, notes that signal processing is 
essential to the project. “Without signal 
processing, we wouldn’t be able to mea-
sure anything, including the types of infer-
ences we would have to make about the 
size, shape, or type of object and, therefore, 
how to grasp and manipulate it.”

AIMING FOR INTUITIVE CONTROL
Santos notes that all prosthetic hand 
researchers face the same fundamental 
challenge. “Whether a prosthetic hand is 
a simple body-powered hook or an 
advanced anthropomorphic device, it will 
only be useful and desirable to an ampu-
tee if it is intuitive to control, functional, 
and improves the quality of life,” she 
explains. “A prosthesis will be rejected if it 

poses too great of a cognitive burden on 
the user.”

Santos and colleague Jonathan Posner, 
an associate professor of mechanical engi-
neering at the University of Washington in 
Seattle, are developing a multimodal tac-
tile sensor skin that promises to reduce 
the cognitive burden on prosthetic hand 
users, making control a faster, intuitive, 
and more natural process.

The researchers’ microfluidic, capaci-
tive-based tactile skin is designed to con-
formally wrap around curved surfaces, 
such as a prosthetic hand’s fingertips. A 
current prototype can detect various fin-
ger-object interactions, such as normal 
contact forces and low-frequency dynamic 
loads. Its pliable, sensor-laden skin, which 
is closely wrapped around a prosthetic 

hand’s curved digits, aims to help users 
grip objects by cushioning impacts, 
increasing the effective contact area dur-
ing grasp, and enabling activities of daily 
living that rely upon a sense of touch. “We 
are developing algorithms to map artificial 
tactile sensor data to object properties for 
restoring the sense of touch to amputees,” 
Santos says.

The system’s capacitive sensors are 
created by injecting a flexible material, 
such as a polydimethyl siloxane (PDMS) 
polymer, with a liquid metal alloy that’s 
designed to function as deformable wires 
and plates. “If we monitor the voltage 
across those plates we can relate that data 
to the distance between the plates, which 
we can then relate to the deformation of 
the skin surface,” Santos explains. “The 

A

[FIG1] Dr. Santos (left) is shown with Biomechatronics Lab members Ryan Manis 
(right, back) and Randall Hellman.  Ryan is mounting a tactile sensor on a robot hand 
while Randall is adjusting the lab’s custom remote actuation system for tendon-
driven mechanisms. (Photo courtesy of ASU Magazine and Dan Vermillion of 
Vermillion Studio.)
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raw voltages can be turned into something 
representing a contact area, an indication 
of force being applied, or the hardness of 
an object, for example.” Such information 
can be relayed to amputees via neural 
interfaces or used to develop intelligent 
artificial reflexes and grasp patterns within 
the prosthesis itself.

With funding from the National Sci-
ence Foundation, Santos and Posner are 
continuing to add sensing modalities and 
refine the technology. “We’re hoping to 
take a next-generation prototype and put 
it on some of our artificial hands and 
begin experiments with amputees and 
able-bodied individuals who can help us 
troubleshoot and develop the grip control 
algorithms we’re interested in,” she says.

AN ASSISTIVE TECHNOLOGY
A soft, wearable device that mimics the 
muscles, tendons, and ligaments of the 
lower leg promises to aid in the rehabilita-
tion of patients with ankle-foot disorders 
such as drop foot. The Active Soft Orthotic 
(ASO) is designed to provide active assis-
tance to ankle motions for people with 
drop foot symptoms, which can com-
monly come from various neuromuscular 
disorders, such as cerebral palsy, multiple 
sclerosis (MS), amyotrophic lateral sclero-
sis (ALS), and stroke.

Yong-Lae Park (Figure 2), an assistant 
professor of robotics at Carnegie Mellon 
University, developed the device using soft 
plastics and composite materials, instead 
of a rigid exoskeleton, while working with 
collaborators at Harvard University, the 
University of Southern California, the Mas-
sachusetts Institute of Technology, and 
BioSensics, a Cambridge, Massachusetts, 
company that specializes in wearable sen-
sors. The soft materials, combined with 
pneumatic artificial muscles (PAMs), light-
weight sensors, and advanced control soft-
ware, enable the robotic device to achieve 
more natural motions in the ankle.

Unlike previously developed devices 
featuring designs that primarily rely on 
traditional mechanical joints and rigid 
linkages, Park’s system doesn’t contain any 
rigid frame structures that could poten-
tially prohibit natural degrees of joint 
motions. “Instead, our device employs a 
bioinspired tendon-ligament-skin archi-
tecture combined with pneumatically 
powered soft artificial muscles,” says 
Park, who performed the research while 
a postdoctoral researcher at Harvard 
University’s Wyss Institute for Biologi-
cally Inspired Engineering. “Another 
unique feature is the use of highly 
stretchable strain sensors, which we 
developed in the lab for measuring ankle 

joint-angle changes for feedback control 
of ankle motions.”

Among the device’s innovations are 
sensors featuring a touch-sensitive artifi-
cial skin—thin rubber sheets containing 
long microchannels filled with a liquid 
metal alloy. When the rubber sheets are 
stretched or pressed, the microchannels’ 
shapes change, which in turn creates 
changes in the electrical resistance of 
the alloy. The sensors are positioned on 
the top and at the side of the ankle.

A significant drawback presented by 
the soft device is that it’s more difficult 
to control than a rigid exoskeleton. The 
system demands highly sophisticated 
sensing to track the position of the ankle 
and foot and an intelligent plan for con-
trolling foot motion. “We use three dif-
ferent types of sensors,” Parks says. 
“Inertial measurement units (IMUs) and 
soft strain sensors detect the ankle joint-
angle for ankle motion control, and a 
force sensitive resistor (FSR) foot-pres-
sure sensor detects ground contact 
events.” At the sensing stage, all of the 
sensors are sampled at 50 Hz.

Each sensor type has its own micro-
controller unit (MCU) for independent 
sampling. After samples are acquired, dif-
ferent processing algorithms for each sen-
sor type are applied in the signal 
processing stage. “We used an off-the-shelf 
microcontroller as the MCU for sensor 
sampling and signal processing,” Park 
continues. “Also, each IMU has its own 
MCU to run a direct cosine-matrix (DCM)-
based orientation estimation algorithm.” 

Each IMU board computes a three-
dimensional (3-D) orientation vector and 
sends the value to the IMU master board 
using a standard serial protocol universal 
asynchronous receiver/transmitter 
(UART). Then, the IMU master MCU deter-
mines the joint-angle by computing the 
angle between the two orientation vectors. 
The pressure-sensing MCU produces an 
on-off output for each pressure sensor. 
The strain sensor MCU records the analog 
readings from the strain sensor analog cir-
cuit. Although the MCUs for the pressure 
and strain sensors currently do not per-
form significant processing, they are 
reserved for future implementation of 
more sophisticated filtering algorithms.

[FIG2] An example of soft artificial skin that can detect multiaxis (x and y) strain (i.e., 
stretch) and contact pressure simultaneously. (Photo courtesy of IEEE Sensors Journal.)

25 mm

Thickness: 3.2 mm
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“We used this approach because it 
was simple but accurate enough for our 
purpose,” Park says. “However, there is 
definitely room to improve in our 
method since we spent our time mainly 
on mechanical design and prototyping at 
this stage.”

Park and his coresearchers envision a 
final system that not only increases reha-
bilitation efficiency by enhancing muscle 
usage but can also provide assistance dur-
ing gait by increasing safety and stability. 
Park says similar approaches could be 
used to create rehabilitative devices for 
other joints of the body or even to create 
soft exoskeletons that increase the 
strength of the wearer.

The team’s next step will be human 
subject testing. “We need to detect the 
intention of an individual muscle or a 
muscle group ... of the wearer so we [can] 
actuate and control the corresponding 
artificial muscle to assist the motion with-
out disrupting the existing gait,” Park 
notes. To achieve this goal, the researchers 
will need to read muscle activation and 
interpret the signal on both a quantitative 
and qualitative information basis. “I 
believe signal processing will be heavily 
involved and play a significant role in this 
step,” he says. 

Park noted that additional work will 
also be necessary to improve the device’s 
wearability. This includes the development 
of artificial muscles that are less bulky 
than the commercially produced PAMs 
used in the current prototype.

A LIFELIKE MODULAR 
PROSTHETIC LIMB
Researchers at Baltimore’s John Hopkins 
University have worked for nearly a decade 
on a prosthetic arm and hand that they 
hope will eventually bring lifelike func-
tionality to people who have lost a limb to 
disease or trauma. The project’s roots go 
back to 2005, when the U.S. Defense 
Advanced Research Projects Agency 
(DARPA) launched a program designed to 
produce a technology that would restore 
natural limb function to soldiers who had 
suffered amputations in the line of duty. 
Since prosthetic technology at the time 
was still rooted in concepts of previous 
decades, the potential advancement in 

restorative function that advanced pros-
thetic devices could provide promised to 
be revolutionary.

DARPA specified that devices created 
by program participants should look, 
feel, weigh, perform, and seamlessly 
integrate with a human user as if it were 
a natural limb. Following two phases of 
development, DARPA hoped that by the 
end of 2009 a fully functional and neu-
trally integrated prosthetic device would 
be developed that could accurately 
mimic the natural function of the 
human arm.

Michael McLoughlin, chief engineer of 
research and exploratory development at 
Johns Hopkins’ Applied Physics Labora-
tory, notes that the DARPA initiative stim-
ulated prosthetics development in what 
was then a generally neglected area. “The 
vast majority of amputees have lost a 
lower extremity; there’s probably fewer 
than 100,000 or so people with upper 
extremity amputations,” McLoughlin says. 
“So you have a situation where the tech-
nology to produce a replacement for the 
human arm is much more complex than 
for a leg, yet you don’t have as many peo-
ple who need it so you don’t have the 
commercial pull to stimulate the technol-
ogy’s development.”

The Modular Prosthetic Limb 
(Figure 3) developed by McLoughlin and 
his research team in response to the 
DARPA proposal features an anthropo-
morphic form factor and appearance as 
well as humanlike strength and dexterity. 
Other attributes include high-resolution 
tactile and position sensing capabilities 
and a neural interface for intuitive and 
natural closed-loop control.

The prosthesis contains more than 
100 sensors. McLoughlin notes that many 
candidate technologies were prototyped 
and evaluated by using a custom-
designed test bed and various standard-
ized processes. Design constraints 
included integration, reliability, and man-
ufacturability. At the arm’s individual 
joints, sensors are used to measure angle, 
velocity, and torque. Additional sensors, 
located at the fingertips, measure force, 
vibration, fine point contact, and temper-
ature/heat flux.

To reduce design complexity, the team 
needed to design motor controllers that 
were usable at multiple joint locations. A 
large motor controller (LMC) was devel-
oped to provide a circuit design that could 
be leveraged for use at the four joints of the 
upper arm and the three joints at the wrist. 
The LMC offers brushless direct current 

[FIG3] The Modular Prosthetic Limb developed by Johns Hopkins University
researchers has an anthropomorphic form factor and appearance as well as human-
like strength and dexterity. (Photo courtesy of Johns Hopkins University.)
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(BLDC) motor commutation, sensor signal 
sampling, and communication with the 
central limb controller (LC) via a control-
ler area network (CAN) bus.

The LMC was also designed to monitor 
local joint temperature, torque, position, 
current, and rotor position sensors for 
motor commutation. Custom schematic 
design and multilayer board fabrication 
allowed direct integration within the drive 
module. This approach allowed the drives 
to be designed as single integrated motor 
and controller packages, helping to shrink 
the overall mechanical profile and maxi-
mizing performance. Each LMC uses an 
advanced reduced instruction set com-
puter (ARM)-based processor.

“It really comes down to a matter of 
functionality,” McLoughlin says. “If you 
think about things like turning a door-
knob, that’s very difficult to do with a 
prosthesis.” The researchers wanted to 
create a prosthesis capable of extremely 
fine dexterity and precision allowing users 
perform tasks ranging from the mundane, 
such as turning a doorknob up to and 

including playing a piano. “We want peo-
ple to be able to do the very complex 
things with their fingers that those of us 
who have an arm and hand do naturally,” 
McLoughlin says.

Studying brain signals is crucial to the 
team’s research, since such data is essential 
for enabling natural control of the artificial 
limb. “If you think about moving your arm, 
or opening and closing your hand, there 
are areas of your brain that will become 
active,” McLoughlin says. “You can actually 
see those areas of activity if you do an MRI.”

The team searches for specific types of 
signals in different parts of the brain. “The 
signal processing typically involves things 
like pattern recognition, in which we look 
for patterns of neural activity,” McLough-
lin says. “We can then begin to use pattern 
recognition techniques to interpret what 
the user’s intent was.”

The researchers need to work quickly. 
“It’s all done in real time,” he says. “You 
filter it, process it, pull out the informa-
tion, and then convert that data into 
motor commands.”

McLoughlin says he’s always amazed 
by the brain’s flexibility and adaptability. 
“We’re looking for very specific struc-
tures in the signal, and we come up with 
a very specific model of the signals we’re 
looking at,” he says. “I think it’s going to 
open up a whole new realm of possibili-
ties for assistive devices, particularly for 
the elderly or people with mobility prob-
lems who will be able to use machines in 
ways that are well beyond what we can 
do now.”

One of the challenges facing the 
team is finding a way of driving down 
the sophisticated limb’s cost. “Right 
now this is a research tool,” McLoughlin 
says. “We’ve had ten or 12 different 
patients utilize the limb with great suc-
cess, and we have to look at getting it 
down to a cost point where it’s afford-
able,” he says.

AUTHOR
John Edwards (jedwards@johnedwards
media.com) is a technology writer based 
in the Phoenix, Arizona, area.

[special REPORTS]continued

Accuracy, Apps Advance Speech Recognition

T
echnical breakthroughs in 
speech recognition have 
been hard to come by, but 
the technology continues to 
improve in accuracy and nat-

ural language understanding and find its 
way into a broad range of enterprise and 
commercial platforms that include 
health care, e-commerce, telecommuni-
cations, and other vertical markets.

In this third in a series of Q&A inter-
views for IEEE Signal Processing Maga-
zine (SPM), we talked to Li Deng, the 
principal researcher and research man-
ager of the Deep Learning Technology 
Center at Microsoft Research, and Vlad 

Sejnoha, the chief technology officer at 
Nuance Communications, about current 
activities and future developments in 
speech recognition, text-to-speech (TTS), 
speech-to-speech translation, and related 
applications.

IEEE SPM: Accuracy has been an issue 
in speech technology since its emer-
gence out of Bell Labs in the 1950s. How 
has it improved?   

Vlad Sejnoha: We actually have been 
improving it quite quickly over the 
years. We have improved the error rate 
by a consistent amount and there seems 
to be no end to this. Each year, it’s 
through a different combination of new 
algorithms, more data, more computa-
tion. Different mixes of that. So, when 

we talk about speech recognition accu-
racy, it really is a moving target. I think 
we have passed a magical threshold of 
usability that means that you can pick 
up a device today and speak to it and 
expect to be understood.

In recent years, the focus has been on 
deep learning. That is the sort of algo-
rithmic underpinning of why we are 
continuing to improve. In a few years, it 
might be something else. So, it’s a very 
rapid and dynamically evolving process.

Li Deng: Progress was relatively slow 
from 1989 to 2009 compared with the 
last few years after deep learning made 
inroads into speech recognition. The 
introduction of deep learning has been 
one of the major breakthroughs, mostly 
in the form of deep neural networks. But 
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there’s expected to be work that may go 
beyond neural networks.

The concept of deep learning applies 
in terms of being able to absorb more 
data and you can actually impart rele-
vant domain knowledge of speech into 
the system in a hierarchical manner. All 
of this new technology, especially from 
the machine-learning community that is 
heavily overlapping with our speech/lan-
guage and signal processing communi-
ties, has had a tremendous impact in our 
field. That’s why we’re quite hopeful that 
the accuracy will keep improving, even 
after neural networks reach their poten-
tial limit sometime in the future.

Deep learning started its success dras-
tically raising speech recognition accu-
racy with deep neural networks [around 
2010, soon after Microsoft researchers 
collaborated with Prof. Geoff Hinton in 
Redmond, Washington]. In the future, I 
expect that deep neural network will inte-
grate with other forms of deep models in 
elegant and theoretically appealing ways 
to achieve better success, with the new 
capability of not only absorbing big data 
but more importantly “big knowledge” 
that would include semantic knowledge 
in the top-down fashion.  

Sejnoha: One thing that should be 
pointed out, I think, is the importance of 
good signal acquisition. If you have the best 
speech recognition system in the world, if 
you’re using it in a very difficult environ-
ment, with a mobile device with a micro-
phone that might be moving and not 
properly positioned to you, it will not do 
very well. So, we’re finding that these funda-
mental modeling improvements, like deep 
learning, are being coupled with more and 
more sophisticated ways of capturing a sig-
nal, and that includes things like using mul-
tiple microphones that can be configured 
into a steerable beam that can track the 
speaker, in combination with voice biomet-
rics where you actually know who is talking 
and you can tease out the desired signal 
from interfering signals. And you can use 
this with other sensors like audio-visual rec-
ognition where you can actually use camera 
feeds to lock in on the speaker. That’s 
becoming extremely important, but 
improvements there are equal to multiple 
generations of modeling improvements. 

IEEE SPM: What is deep learning?
Sejnoha: It’s an approach that tries to 

model or make decisions about the 
nature of input signals by organizing lay-
ers of very simple processing units, 
which are very loosely modeled after our 
understanding of how neurons work. 
Each processing unit has a number of 
inputs, and those inputs are weighted. 
They come from the outputs of other 
neurons. These neurons are processing 
nodes. Some of these are weighted inputs 
and then pass them through in non-lin-
ear function that basically says on or off, 
or some degree of that, and then passes 
that on to higher layers.

It can model very complex decision 
spaces. In the past, these were very difficult 
to train and got stuck in what we call local 
optima. There have been a number of 
breakthroughs in the training in recent 
years that help these layered networks reach 
more global or overall optima. It’s called 
compositionality; that you can have rela-
tively few processing units and they can 
explain very high dimensional spaces. Ever 
since they became more trainable, this has 
been applied to a wide variety of problems—
acoustic modeling, language modeling, and 
assigning meaning to patterns. 

Interestingly, you can use them to 
concurrently learn or optimize multiple 
parts of the recognition process. Tradi-
tionally, we would build a so-called fea-
ture extractor that takes the audio signal 
and maps it usually into spectral space 
that we think is more amenable to further 
processing. It turns out that these deep 
neural nets can simultaneously learn a 
more optimal set of features that also 
make decisions on the results. And that’s 
exciting, but I want to caution about 
thinking that the world going forward is 
all going to be about machine learning, or 
learning from examples and patterns.

A lot of current cutting-edge work is 
about how to combine machine learning 
with techniques that encapsulate our 
existing knowledge of the world, either 
through rules or grammar, or explicit 
knowledge bases where you describe 
object, concept, and relationships.

IEEE SPM: What’s the role of artifi-
cial intelligence (AI) in improving the 

accuracy of speech recognition? Is it 
advancing the technology? 

Sejnoha: AI is a big term, but some 
aspects of AI are already manifested in 
today’s virtual assistants. A simple example 
would be a user asking for a restaurant 
that serves good spaghetti, and it turns out 
that the back-end services to which you’re 
connected don’t understand that because 
they only understand cuisine types. You 
would actually take this input user request, 
and, using explicit reasoning on a knowl-
edge base that relates specific dishes to 
specific cuisines, it would learn that spa-
ghetti is a form of Italian cuisine. But 
that’s a trivial example. There are a lot 
more sophisticated ways of relating an 
input concept language with a backup con-
cept language and deciding what makes 
sense and doesn’t make sense. 

But there could be a lot of subtasks in a 
request that a virtual assistant should be 
able to do, but there are lots of contingen-
cies. Being able to specify tasks by express-
ing goals at a high level with automatic 
back-off strategies versus prescripting 
every possible interaction is really impor-
tant in AI.

IEEE SPM: To what extent is digital 
signal processing (DSP) playing a role in 
the development of speech technology?

Deng: The community, including many 
speech recognition, understanding, and 
machine-learning researchers, are part of 
our [IEEE Signal Processing] Society, so 
we are actually thinking about changing 
the Society’s name to the IEEE Signal and 
Information Processing Society. This 
would better describe the recent activities 
of this community [of the Society’s mem-
bers]. Many big companies, and I am 
thinking about Microsoft, Apple, Google, 
Baidu, etc., have researchers and engineers 
working on speech technology problems 
much more complex than the DSP topics 
you would see in Oppenheimer’s book. We 
have moved well beyond traditional DSP.

As for deep learning, the people who 
brought that into large-scale speech tech-
nology applications are mainly from our 
[IEEE] Signal Processing Society. I 
recently gave a long lecture at the Inter-
national Conference on Machine Learn-
ing, and I delivered the keynote at the 
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[special REPORTS]continued

Interspeech Conference held in Singapore 
in mid-September, reflecting on part of 
that history with emphasis on the indus-
try–academic collaboration and on what 
future direction that history points to. A 
lot of DSP techniques, such as short-time 
Fourier transforms, cepstral analysis, and 
linear prediction, which used to be stan-
dard analysis as front ends for speech rec-
ognition systems, are now becoming 
mere initialization of low layers of the full 
deep-learning system, subject to much 
more important step of end-to-end learn-
ing by what is known as back propagation 
beyond DSP.

However, one important concept of 
DSP, convolution, has been playing a cru-
cial role in modern deep learning systems. 
They are called deep convolutional neural 
networks, very popular in image recogni-
tion and recently also gaining popularity 
in speech recognition.

IEEE SPM: How much progress has 
been made in implementing TTS, espe-
cially in making it more natural?

Sejnoha: That’s a topic that is near and 
dear to us. The TTS, or speech synthesis 
field, has moved through some phases 
through the years. It started out by build-
ing what we call some model-based 
approaches, some mathematical models 
that are very compact, and the use of 
algorithms to express how particular text 
should be mapped–ultimately into a 
waveform. But they sounded very robotic. 

There was a breakthrough in the late 
1990s when the first commercial sys-
tems started coming out. People discov-
ered that by extracting snippets of real 
speech and forming them into struc-
tured data bases you could, on the fly, 
concatenate, or glue together, the appro-
priate segments and they sounded far 
more natural. The problem with those 
systems is that they were big. There were 
lots of different segments that were 
needed, and it was very difficult to 
manipulate pitch, duration, and loud-
ness, but it really carried a lot of emotion 
and naturalness in human speech. 

So a lot of the work now is how to 
build hybrid systems, just like hybrid 
systems in understanding and combine 
machine learning and some explicit 

knowledge. Building TTS that have the 
quality of the concatenated system, but 
the ability to manipulate pitch and loud-
ness and volume—all of the prosodic sig-
nals based on understanding of the text. 
So, what we do is take text and apply nat-
ural understanding to what is being said 
and what it means, and use a combina-
tion of prerecorded segments and mod-
els to try to generate expressive speech 
synthesis. Deep learning plays a role 
there as well.

Deng: Deep learning has also been 
making an inroad into speech synthesis 
or TTS research since last year. At 
ICASSP 2013, there were four nice papers 
on this topic, from different angles and 
for different aspects of the synthesis prob-
lem. They demonstrated more natural 
subjective speech sound’s quality pro-
duced by deep learning systems than the 
previous state-of-the-art, Gaussian-HMM-
based statistical methods. More research 
papers have come out since then. In a 
sense, it is very intuitive to adopt an orig-
inal, generative version of deep learning 
approaches, called the deep believe net-
work, which is quite different from the 
deep neural network, to deal with speech 
generation or synthesis problems.

IEEE SPM: Are there particular chal-
lenges at this point in deploying speech 
technology globally given the need to 
support many languages and with a 
high degree of accuracy?

Deng: You want to have voice sys-
tems perform well in noisy environ-
ments. These include the conditions 
where the voice intended to be recog-
nized are mixed with other speakers’ 
voices, such as when playing Xbox or 
Kinect games with voice control. As was 
demoed in May this year, Skype transla-
tor will be able to perform real-time 
speech-to-speech translation. Under the 
conditions where there is no close-talk-
ing microphone, noise robustness, espe-
cially the robustness against other 
speakers’ voice, in speech recognition 
component of the system is very impor-
tant. Human listeners can use attention 
to focus on the intended speaker, but so 
far computer systems cannot simulate 
such ability easily. Deep learning is 

moving toward solving such difficult 
problems, with preliminary promising 
results already seen in the literature.

Before the rise of deep learning, mul-
tilingual speech recognition was very dif-
ficult in economic terms due to the need 
to collect data and design dictionaries 
from many languages. Deep neural net-
works have drastically reduced this chal-
lenge, thanks to the “transfer learning” 
capability where the upper hidden layers 
in the deep networks are shown to repre-
sent more abstract acoustic features uni-
versal across different language. This 
capability is made possible because acous-
tic properties of speech, no matter which 
language it belongs, are shared across 
languages since they are all generated by 
the highly constrained human vocal tract, 
plus the rest of the speech production 
system. Only deep learning systems can 
effectively take advantage of such con-
straints, not the previous systems without 
hierarchical feature representations.

For many speech recognition applica-
tions that are linked closely to downstream 
processing, semantic understanding of the 
recognition output and of the end tasks 
and the final actions taken by the overall 
system are the final goal. One particular 
technical challenge here is how to effec-
tively represent semantics and the backend 
application-domain knowledge. Recent 
advances in deep learning for natural lan-
guage processing have provided a very 
interesting approach where any semantic 
linguistic entity and simple relation in the 
knowledge source can be mapped into a 
continuous-valued vector, called embed-
ding. Embedding has been shown to be 
quite effective for a word, a phrase, a sen-
tence, a paragraph, or even a whole docu-
ment. These embedded linguistic units can 
also be used to represent the output of a 
speech recognizer. Thus, the designs of 
downstream text processing and speech 
recognition systems are intimately con-
nected and can be jointly optimized.

Despite such progress, however, seman-
tic representations for more advanced tasks 
that would require structured representa-
tions and complex relations may not be 
adequately accomplished with vector 

(continued on page 125)
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2015 Class of Distinguished Lecturers 
and Technical Field Award Recipients

T
he IEEE Signal Processing 
Society’s (SPS’s) Distinguished
Lecturer Program provides 
the means for Chapters to 
have access to well-known 

educators and authors in the fields of sig-
nal processing to lecture at Chapter meet-
ings. While many IEEE Societies have 
similar programs, the SPS provides finan-
cial support for the Chapters to take advan-
tage of this service. Chapters interested in 
arranging lectures by the Distinguished 
Lecturers can obtain information from the 
Society’s Web page (http://www.signalpro-
cessingsociety.org/lecturers/distinguished-
lecturers/) or by sending an e-mail to sp.
info@ieee.org.

Candidates for the Distinguished 
Lecturer Program are solicited from the 
Society technical committees, editorial 
boards, Chapters, and other boards and 
committees by the Awards Board. The 
Awards Board vets the nominations, and 
the Board of Governors approves the final 
selection. Distinguished Lecturers are 
appointed for a term of two calendar 
years. Distinguished Lecturers named for 
2015 are as follows.

Hynek Hermansky received his doctor 
of engineering, electrical engineering, 
University of Tokyo (1979–1983); doctoral 
graduate studies, Technical University 
Brno, Czech Republic (1973–1978); and 
Ing. (M.S. degree equivalent), Technical 
University Brno, Czech Republic (1967–
1972). His appointments include Julian S. 
Smith Professor in Electrical Engineering, 
Department of Electrical and Computer 
Engineering, and director of the Center 
for Language and Speech Processing, 

Johns Hopkins University, Baltimore, 
Maryland (2012–present); research profes-
sor (on leave of absence), Brno University 
of Technology, Czech Republic (2000–
present); external fellow, International 
Computer Science Institute, Berkeley, 
California (1995–present); professor, 
Department of Electrical and Computer 
Engineering, Johns Hopkins University, 
Baltimore, Maryland (2008–2012); direc-
tor of research, IDIAP Martigny, 
Switzerland (2003–2008); professor and 
director, Center for Information 
Technology, Oregon Graduate Institute 
School of Oregon Health and Science 
University, Portland (1993–2003); senior 
scientist and fellow, International 
Computer Science Institute, Berkeley, 
California (1999–2003); senior member of 
technical staff, US West Advanced 
Technologies, Boulder, Colorado (1988–
1993); research engineer, Panasonic 
Technologies, Santa Barbara, California 
(1983–1988); research fellow, University of 
Tokyo, Japan (1978–1983); assistant pro-
fessor, Technical University Brno, Czech 
Republic (1975–1978); and member of 
research staff, Technical University Brno, 
Czech Republic (1972–1975).

Dr. Hermansky is an IEEE Fellow. He 
was member of the organizing committee 
in charge of invited lectures, International 
Conference on Acoustics, Speech, and 
Signal Processing (ICASSP) (2011); chair 
of the technical committee, ICASSP 
(1998); general chair, Automatic Speech 
Recognition and Understanding Workshop 
(2013); associate editor, IEEE Transactions 
on Speech and Audio Processing (2000–
2001); fellow, International Speech 
Communication Association; elected 
member, Board of Directors, International 
Speech Communication Association 
(ISCA), (2000–2004, 2013–present); Medal 

for Scientific Achievements, ISCA (2013); 
Distinguished Lecturer, ISCA (2013–
2014); editorial board member, Speech 
Communication.

He has over 250 publications and has 
reviewed technical journals, professional 
conference proceedings, and invited book 
chapters. He has been granted ten pat-
ents. His lecture topics include dealing 
with unknown unknowns in speech, data-
guided features in recognition of speech, 
information extraction from temporal 
dynamics of speech, and multistream rec-
ognition of speech.

Visa Koivunen received his D.Sc. 
degree in electrical engineering with hon-
ors from the Department of Electrical 
Engineering, University of Oulu, Finland. 
He received the Primus Doctor (Best 
Graduate) Award among doctoral gradu-
ates in 1989–1994. He is a member of Eta 
Kappa Nu. He was a visiting researcher at 
the University of Pennsylvania, United 
States, from 1992 to 1995; faculty, 
Tampere University of Technology, 
Finland, from 1997 to 1999; and full pro-
fessor of signal processing, Aalto 
University (formerly known as Helsinki 
University of Technology), Finland, since 
1999. He holds the academy professor 
position (distinguished professor nomi-
nated by the Academy of Finland). He was 
a principal investigator with SMARAD 
Center of Excellence in Research nomi-
nated by the Academy of Finland in 2002–
2013. He was also an adjunct full 
professor, University of Pennsylvania, 
United States (2003–2006); visiting fellow, 
Princeton University, New Jersey, United 
States (2007, 2013–2014); and part-time 
visiting fellow, Nokia Research Center 
(2006–2012). 

He holds six U.S. patents and has coau-
thored papers that received the Best Paper 

Digital Object Identifier 10.1109/MSP.2014.2353431

Date of publication: 5 December 2014

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

________

______

____________

_________________________

_

http://www.signalprocessingsociety.org/lecturers/distinguished-lecturers/
mailto:sp.info@ieee.org
mailto:sp.info@ieee.org
http://www.signalprocessingsociety.org/lecturers/distinguished-lecturers/
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [16] JANUARY 2015

[society NEWS]continued

Award at IEEE International Symposium 
on Personal, Indoor, and  Mobile Radio 
Communications (2005); the European 
Signal Processing Conference (2006); the 
Conference on Antennas and Propagation 
(2006); and the International Conference 
on Advances in Cognitive Radio (2012). He 
was awarded the IEEE SPS Best Paper 
Award in 2007 (with J. Eriksson). He 
served as associate editor, IEEE Signal 
Processing Letters (2002–2004); IEEE 
Transactions on Signal Processing (2011–
2012); Signal Processing, and Journal of 
Wireless Communication and Networking;
and guest editor, IEEE Journal of Selected 
Topics in Signal Processing (Special Issue 
on Smart Grids). He is an editorial board 
member, IEEE Signal Processing 
Magazine (2012–present); member, IEEE 
Signal Processing for Communications 
and Networking Technical Committee 
(2005–2010); member, Sensor Array and 
Multichannel Technical Committee (2009–
present); member, SPS Industrial Relations 
Committee (2011–2013); general chair, 
IEEE International Workshop on Signal 
Processing Advances in Wireless 
Communications (SPAWC) (2007); techni-
cal program chair, IEEE SPAWC (2015); 
array processing track chair, ASILOMAR 
(2014). He has given tutorials at both IEEE 
ICASSP 2007 and 2013.

His research interests include statisti-
cal, communications, sensor array, and 
multichannel signal processing. His lec-
ture topics include “Optimal Array Signal 
Processing in the Face of Nonidealities,” 
“Optimization Under Unitary Matrix 
Constraints: Differential Geometry 
Approach,” “Robust Estimators for 
Complex-Valued Multichannel Data,” 
“Spectrum Exploration and Exploitation: 
Joint Optimization of Identifying and 
Accessing Idle Spectrum,” “Analyzing 
Large-Scale Data: Robust and Sparse 
Signal Processing,” and “Complex Random 
Vectors and Noncircularity: Statistical 
Inference and Parameter Estimation.”

Hamid Krim received his degrees in 
electrical engineering. As a member of tech-
nical staff at AT&T Bell Labs, he has worked 
in the area of telephony and digital commu-
nication systems/subsystems. In 1991, he 
became a National Science Foundation 
(NSF) postdoctoral scholar at the Foreign 

Centers of Excellence (LSS Supelec/
University of Orsay, Paris, France). In 1992, 
he joined the Laboratory for Information 
and Decision Systems, Massachusetts 
Institute of Technology, Cambridge, as a 
research scientist performing/supervising 
research in his area of interest. In 1998, he 
joined the Electrical and Computer 
Engineering Department at North Carolina 
State University, Raleigh, where he is cur-
rently a professor. His editorial activities 
include editorial board member, IEEE 
Transactions on Signal Processing (2002–
2004) and IEEE Signal Processing 
Magazine (2014).

Dr. Krim is an IEEE Fellow and was a 
fellow, Japanese Foundation for the 
Advancement of Research in Science and 
Engineering at the University of Tokyo, 
Japan. He is a member of SIAM and of 
Sigma Xi. He is an original contributor 
and now an affiliate of the Center for 
Imaging Science, sponsored by the U.S. 
Army. He is a recipient of the NSF Career 
Young Investigator Award.

Dr. Krim’s research interests are in sta-
tistical signal processing and mathemati-
cal modeling with an emphasis on 
applications. He has been particularly 
interested in introducing geometric and 
topological tools to statistical signal pro-
cessing problems and applications. His 
research has primarily centered on estima-
tion theoretic problems and modeling. Dr. 
Krim has published extensively on these 
areas with over 5,000 citations to date. 

His lecture topics include “Shape 
Analysis and Modeling in Video 
Applications: Activity Analysis,” “Convexity, 
Sparsity, Nullity and All That in Machine 
Leaning,” and “Sensor and Social Networks: 
A Case for Topological Data Analysis.”

Jean-Christophe Olivo-Marin is the 
head of the Bioimage Analysis Unit and 
director of the Center for Innovation and 
Technological Research at Institut 
Pasteur, Paris. He has chaired the Cell 
Biology and Infection Department from 
2010 to 2014 and was a cofounder of the 
the Institut Pasteur Korea, Seoul, South 
Korea, where he held a joint appointment 
as a chief technology officer (2004–2005). 
Prior to that, he was a staff scientist at the 
European Molecular Biology Laboratory, 
Heidelberg, from 1990 to 1998. He 

received the Ph.D. degree (1989) and 
Habilitation (1998) degrees in optics and 
signal processing from the Institut 
d’Optique Théorique et Appliquée, 
University of Paris-Orsay, France. 

Dr. Olivo-Marin is an IEEE Fellow. He 
is the steering committee chair, IEEE 
International Symposium on Biomedical 
Imaging (2014–2016); past chair, IEEE 
SPS Bioimaging and Signal Processing 
Technical Committee (2009–2011); mem-
ber, IEEE SPS Conference Board (2010–
2011); senior area editor, IEEE Signal 
Processing Letters (2013–2014); and edito-
rial board member, Medical Image 
Analysis and BMC Bioinformatics. He has 
organized several special sessions dedicat-
ed to biological imaging at international 
biomedical conferences including the 2002 
International European Light Microscopy 
Initiative Meeting and Workshop on 
Advanced Light Microscopy (ELMI), 2003 
Extracorporeal Life Support Organization, 
IEEE ISBI (2004), IEEE ICASSP (2006 and 
2011), SPIE Wavelets (2009 and 2013), 
EMBO (2011), SPIE Wavelets (2009 and 
2013), EMBO (2011), and he was the gen-
eral chair, IEEE ISBI (2008).

Dr. Olivo-Marin’s research interests 
are in image analysis of multidimensional 
microscopy images, computer vision and 
motion analysis for cellular dynamics, 
and mathematical approaches for biologi-
cal imaging. His lecture topics include 
“Particle Tracking in Biological Imaging,” 
“Cell Shape and Motility Analysis,” and 
“Quantitative Bioimage Analysis.”

Min Wu received the B.E. degree in elec-
trical engineering–automation and the B.A. 
degree in economics from Tsinghua 
University, Beijing, China, in 1996 (both 
with the highest honors), and the M.A. and 
Ph.D. degrees in electrical engineering from 
Princeton University, New Jersey, in 1998 
and 2001, respectively. She was with NEC 
Research Institute and Signafy, Inc. in  
1998, and with the Media Security Group, 
Panasonic Information and Networking 
Laboratories in 1999. Since fall 2001, she 
has been on the faculty of the Electrical and 
Computer Engineering Department and the 
Institute of Advanced Computer Studies at 
University of Maryland, College Park, where 
she is now an ADVANCE professor and 
University Distinguished Scholar-Teacher. 
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She was a visiting associate professor of 
Stanford University in 2007–2008. Dr. Wu 
leads the Media and Security Team at the 
University of Maryland with main research 
interests on information security and foren-
sics and multimedia signal processing. 

She has been an IEEE Fellow since 
2010 “for contributions to multimedia 
security and forensics.” She received an 
NSF CAREER Award (2002); TR100 
Young Innovator Award from MIT 
Technology Review Magazine (2004); 
ONR Young Investigator Award (2005); 
Computer World “40 Under 40” IT 
Innovator Award (2007); IEEE Mac Van 
Valkenburg Early Career Teaching Award 
(2009); and the Daily Record Innovator 
of the Year Award (2012). She has served 
as vice president–finance, IEEE SPS 
(2010–2012); chair, IEEE Information 
Forensics and Security Technical 
Committee (2012–2013); technical pro-
gram cochair, ICIP (2013); founding chief 
editor, IEEE SigPort Initiative (2013–
2014); and chair, ChinaSIP Steering 
Committee as an SPS’s outreach effort in 
China, with a successful launch in 
Beijing in 2013 and Xi’an in 2014, and 
the third conference planning under way 
for Chengdu in 2015. She is the current 
editor-in-chief of IEEE Signal Processing 
Magazine (2015–2017).

Dr. Wu’s IEEE and SPS volunteer activ-
ities include: corresponding member, 
IEEE TAB Finance Committee (2012);  

editorial board member, IEEE Signal Pro-
cessing Magazine and IEEE Journal of 
Selected Topics in Signal Processing
(2012–present); area editor, IEEE Signal 
Processing Magazine; leading the creation 
and editing of the monthly Inside Signal 
Processing e-Newsletter (2007–2010); 
associate editor, IEEE Transactions on 
Image Processing (2009–2011), IEEE 
Transactions on Information Forensics 
and Security (2008–2011), and IEEE Sig-
nal Processing Letters (2005–2007); mem-
ber, Image, Video, and Multidimensional 
Signal Processing Technical Committee 
(2007–2012), Multimedia Signal Process-
ing Technical Committee (2002–2005 and 
2007–2009), Information Forensics and 
Security Technical Committee (since 
2008), and multimedia-related technical 
committees of the IEEE Communications 
Society and IEEE Circuits and Systems 
Society; general cochair, ICIP (2017); tech-
nical program cochair, ICIP (2013); finance 
chair, ICASSP (2007); publicity chair, 
ICME (2003); and founding chair, IEEE 
Signal Processing Washington Chapter.

Dr. Wu’s lecture topics include “Seeing 
the Invisibles: A Backstage Tour of Infor-
mation Forensics,” “Exploring Power Net-
work Signature in Multimedia: From 
Information Forensics to Digital Humani-
ty,” and “Hands-On Education on Multi-
media and Security: From Kindergarteners 
to Undergraduate to Business and English 
Majors in Continuous Education.”

2015 TECHNICAL FIELD
AWARD RECIPIENTS
Each year, the IEEE recognizes individu-
als who have made outstanding contribu-
tions or exercised leadership within 
IEEE-designated technical areas. The 
IEEE SPS is honored to announce three of 
its members as recipients of the 2015 
IEEE Technical Field Awards.

■ IEEE James L. Flanagan Speech and 
Audio Processing Award: presented to 
Stephen John Young for “pioneering 
contributions to the theory and practice 
of automatic speech recognition and 
statistical spoken dialogue systems”
■ IEEE Fourier Award for Signal 
Processing: presented to Georgios B. 
Giannakis for “contributions to the 
theory and practice of statistical signal 
processing and its applications to wire-
less communications”
■ IEEE Donald O. Pederson Award in 
Solid-State Circuits: presented to 
Robert Whitlock Adams for “contribu-
tions to noise-shaping data converter 
circuits, digital signal processing, and 
log-domain analog filters.”
Congratulations to all of the recipients! 

The full list of 2015 IEEE Technical Field 
Awards recipients can be found in [1]. 

REFERENCE
[1] [Online]. Available: http://www.ieee.org/about/
awards/news/2015_ieee_tfa_recipients_and_citations_
list.pdf

[SP]
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Jelena Kovačević, Michal Kozubek, 
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Quantitative Bioimaging: Signal Processing in Light Microscopy

M
icroscopy has histori-
cally been an observa-
tional technique. In re-
cent years, however, the 
development of auto-

mated microscopes, digital sensing tech-
nologies, and novel labeling probes have 
turned microscopy into a predominantly 
quantitative technique. In this context, 
the management and analysis of auto-
matically extracted information calls for 
the involvement of signal and image pro-
cessing experts to provide technically 
sound, quantitative answers to biological 
questions. This is especially relevant to-
day, due to the widespread use of time-
lapse video microscopy, high-throughput 
imaging, and the development of novel 
superresolution microscopy techniques. 
The complexity and size of the multidi-
mensional and often multimodal data 
produced by those microscopy tech-
niques requires the use of robust compu-
tational methods encapsulated in ad-
vanced bioimage informatics tools. 

Our motivation for publishing this spe-
cial issue of IEEE Signal Processing Maga-
zine is to stimulate the interaction among 
researchers from the biological, optical, 
computer science, and signal processing 
communities by 1) presenting cutting-edge 
signal processing research in quantitative 
bioimaging and 2) bringing the vast scope 
of ongoing open problems and novel appli-
cations to the attention of the signal pro-
cessing community. As we hope to show in 
this issue, there are many high-impact sig-
nal processing challenges at the intersec-
tion of quantitative bioimaging and 
integrative biology where signal processing 
experts can make a mark. These challenges 
are described in the context of the imaging 

modality used, the probes and sensors em-
ployed for image acquisition, and the final 
targeted applications (i.e., development 
studies, disease diagnosis and prognosis, 
drug discovery). When possible, works fol-
lowing the reproducible research (http://re-
producibleresearch.net) philosophy are 
highlighted.

The interest that the signal processing 
community has in quantitative bioimag-
ing is evident from the increasing number 
of papers submitted on this topic to signal 
processing-oriented publications, work-
shops, and conferences. Dedicated issues 
on molecular and cellular bioimaging 
were previously published in IEEE Trans-
actions on Image Processing [1] and IEEE 
Signal Processing Magazine [2]. The rapid 
evolution of the field justified the interest 
of devoting a new special issue to examine 
all these developments from a signal pro-
cessing perspective. Furthermore, in the 
last few years, a number of related “scien-
tific challenges” have been held either as 
stand-alone or as part of image processing 
conferences. These activities are very rele-
vant for the community since they facili-
tate the comparison of various algorithms 
for a given generic task (e.g., deconvolu-
tion, single particle localization, particle 
tracking, cell tracking) using a normalized 
framework consisting of annotated data 
and common evaluation metrics. In terms 
of funding programs, the importance of 
quantitative bioimaging research is also 
apparent. In this respect, the European 
Strategy Forum on Research Infrastruc-
tures roadmap contains a pertinent proj-
ect, “Euro-Bioimaging,” with a dedicated 
work package on data storage and analysis.
The U.S. counterparts of the European ini-
tiative are the “Continued Development 
and Maintenance of Software” program 
run by the U.S. National Institutes of 
Health (NIH), since 2002, and the recently 

announced “Software Infrastructure for 
Sustained Innovation” program that will 
be run by the U.S. National Science Foun-
dation (NSF). Apart from those, a number 
of consortia addressing extraordinarily rel-
evant problems are being or will be funded 
by the European Union (under the Sev-
enth Framework and the recently opened 
Horizon 2020 Programmes) and the NIH 
and NSF. All of these provide ample proof 
that this issue’s theme is timely, and we 
hope that it offers barrier-breaking materi-
al from which the readership will benefit. 

From a systems biology perspective, 
the cell is the principal element of infor-
mation integration. Profiling cellular re-
sponses and clonal organization in its 
spatiotemporal context are important 
endpoints for unraveling molecular 
mechanisms of diseased tissue (e.g., bac-
terial invasion, cancer). The first article, 
“Toward a Morphodynamic Model of the 
Cell,” by Ortiz-de-Solórzano et al., is a re-
view of relevant signal processing aspects 
from the detection of cellular compo-
nents to the description of the morphody-
namics of the entire cell in relation to its 
extracellular environment. A survey of 
ongoing efforts to create a credible model 
of cell behavior is also an integral part of 
the manuscript. Significantly related, Du-
four et al. in “Signal Processing Challeng-
es in Quantitative 3-D Cell Morphology” 
give an overview of the problems, solu-
tions, and remaining challenges in deci-
phering the morphology of living cells via 
computerized approaches, with a particu-
lar focus on shape description frame-
works and their exploitation, using 
machine-learning techniques. In their 
technical article, “Snakes on a Plane,” 
Delgado-Gonzalo et al. present an extend-
ed and inclusive taxonomy of different 
variants of two-dimensional active con-
tours (also known as snakes) for the 
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segmentation of cells and other biological 
entities. The authors also lay out general 
design principles that can help to create 
new parametric snakes adjusted to differ-
ent imaging modalities. 

Newly developed superresolution mi-
croscopy techniques break Abbe’s diffrac-
tion limit, providing lateral resolution 
values as high as 10 nm, far below the 250 
nm of conventional microscopy. Those 
techniques, through the visualization of 
molecular machinery, are helping to an-
swer biological questions about the mech-
anisms of cellular behavior regulation. 
Localization microscopy is one of these 
superresolution techniques. In localiza-
tion microscopy, the fluorescent labels are 
photochemically manipulated to switch 
“on” and “off” stochastically, such that at 
each instant in time only a sparse subset 
of all molecules is in the “on” state in 
which they fluoresce. Assembling the lo-
calization data obtained from all frames 
into the final superresolution image re-
veals previously hidden details. In “Image 
Processing and Analysis for Single-Mole-
cule Localization Microscopy,” Rieger et 
al. describe the image processing and 
workflow involved, from raw camera 
frames to the visualization and quantita-
tive analysis of the reconstructed super-
resolution image. Single-molecule 
approaches place stringent demands on 
experimental and algorithmic tools due to 
the low signal levels and the presence of 
significant extraneous noise sources. This 
necessitates the use of advanced statistical 
signal and image processing techniques 
for the design and analysis of single-
molecule experiments. In their article, 
“Quantitative Aspects of Single-Molecule 
Microscopy,” Ober et al. address this issue 
and discuss the resolvability of single-mol-
ecule localization from an information-
theoretic perspective.

The use of time-lapse video microscopy 
to capture the spatiotemporal dynamics of 
many biological experiments has signifi-
cantly increased. The complexity of those 
experiments is driving continued advances 
in the incipient field of bioimage informat-
ics [3]. Registration, segmentation, and 
annotation of microscopy images and re-
spective biological objects (e.g., cells) are 
distinct challenges often encountered in 

this field. In “3-D Registration of Biologi-
cal Images and Models,” Qu et al. discuss 
several studies in widely used model sys-
tems such as fruit fly, zebrafish, or C. ele-
gans to show how registration methods 
help solve challenging segmentation and 
annotation problems for three-dimension-
al cellular images. 

A classical light microscopy application 
in clinical practice is histopathology. Clini-
cians evaluate histological preparations for 
the patient’s diagnosis, estimation of prog-
nosis, personalized therapy planning and, 
in a research context, biomarkers discov-
ery. Tissue processing for histology is in-
creasingly automated, and digitalization 
using modern computer-driven micro-
scopes or slide scanners is extremely time 
effective and generates an extensive vol-
ume of data. Therefore, as described by 
McCann et al. in “Automated Histology 
Analysis,” there is a niche for image analy-
sis methods that can automate prohibi-
tively time-consuming tasks for human 
evaluation. Moreover, as concluded by the 
authors, a close collaboration and exten-
sive work with pathologists is required for 
the developed applications to reach an im-
portant impact in clinical practice.

The final article, “Optical and Opto-
acoustic Model-Based Tomography,” by Mo-
hajerani et al., describes optical imaging 

techniques that reach beyond microscopy 
depths, bringing unique visualization of in-
tact small animals or human tissues in vivo.
Light propagation in tissue defines complex 
nonlinear inversion problems in both opti-
cal and optoacoustic model-based tomogra-
phy. Therefore, the robust localization and 
quantification of the optical probes is a non-
trivial problem opening up a clear opportu-
nity for the signal processing community. 

We would like to express our apprecia-
tion to the editorial board and staff of 
IEEE Signal Processing Magazine (partic-
ularly Special Issue Area Editor Fulvio 
Gini) for encouraging, reviewing, and fa-
cilitating the process of editing this issue. 
It would not have been possible without 
the high-quality feedback received from 
the conscientious reviewers whom we 
wish to thank for their volunteer efforts 
and timely responses. We sincerely hope 
you enjoy reading this issue as much as 
we enjoyed putting it together.
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F
rom a systems biology perspec-
tive, the cell is the principal 
element of information inte-
gration. Therefore, under-
standing the cell in its 

spatiotemporal context is the key to 
unraveling many of the still unknown 
mechanisms of life and disease. This 
article reviews image processing aspects 
relevant to the quantification of cell 
morphology and dynamics. We cover 
both acquisition (hardware) and analysis 
(software) related issues, in a multiscale 
fashion, from the detection of cellular components to the descrip-
tion of the entire cell in relation to its extracellular environment. 
We then describe ongoing efforts to integrate all this vast and 
diverse information along with data about the biomechanics of the 
cell to create a credible model of cell morphology and behavior.

INTRODUCTION
Systems biology [1] is a multilevel approach to the study of bio-
logical phenomena that integrates structural and functional 
information at different levels of spatial (molecular, cellular, tis-
sular, organismal) and temporal resolution. Although many 
noteworthy ongoing efforts aim at computationally describing 
the structure, function, and even the development of entire 
organs [2] and simple organisms [3], the cell remains 

the principal element of information 
integration and is the key to the design 
of higher-order models. The cells ema-
nate signals that collectively determine 
the fate and evolution of organs and, 
within the cells, signals are directed 
that elicit inner mechanisms of protein 
production, replication, differentiation, 
and death. Understanding how the cell 
senses, reacts to, and produces these 
regulatory signals is the key to explain-
ing the principles of life and disease. 
This is a daunting task that requires 

the study of the cell from many different perspectives (morpho-
logical, biochemical, mechanical, electrical) accounting for both 
the temporal and spatial dimensions. Accordingly, numerous 
efforts today are directed toward the creation of multidimen-
sional morphodynamic models of the cell. Feeding into these 
models are technologies (hardware) and methods (software) 
that produce quantitative visual information. The evolution of 
these methods and technologies poses continuous challenges to 
the signal processing community. In this article, we review the 
state of the art of computational and signal processing aspects 
involved in: 

■ the development of advanced live cell imaging modalities
■ the dynamic tracking of cells and subcellular components
■ the estimation of forces exerted between the cell and its 
local environment
■ the integration of “visual” information into credible models 
of cell behavior. 

[Carlos Ortiz-de-Solórzano, Arrate Muñoz-Barrutia, Erik Meijering, and Michal Kozubek]

[Signal processing for cell modeling]

Toward a 
Morphodynamic 
Model of the Cell
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A brief historical perspective and a discussion of the state of 
the art of all these fields are presented, along with new challenges 
that require the involvement of the signal processing community.

IMAGING CELL BEHAVIOR
The first studies of the behavior of living cells date back about 340 
years, when the Dutch draper Antoni van Leeuwenhoek decided to 
turn his interest in lens making to visualizing more interesting 
objects than his merchandise. In the mid-1670s, possibly inspired 
by the 1665 groundbreaking publication of Robert Hooke’s discov-
ery of plant cells, he was the first to observe micro-organisms, or 
little animals (animalcules) as he called them, in a drop of lake 
water. The magnification factor of van Leeuwenhoek’s single-lens 
microscopes amounted to a stunning 300#, and the optical reso-
lution of his lenses was already around 1 micron. It took until the 
19th century before compound microscopes were developed that 
surpassed the quality of his microscopes and reached the diffrac-
tion limit—roughly half the wavelength of the light—discovered 
by Ernst Abbe in 1873.

Cells by themselves are fairly transparent and cannot be stud-
ied in detail using conventional light microscopy. One trick to 
improve optical contrast without 
having to explicitly stain cells is to 
exploit the fact that when light trav-
els through a medium, it undergoes 
amplitude and phase changes that 
are dependent on the properties of 
the medium. While the human eye is 
sensitive only to amplitude varia-
tions, phase shifts may carry impor-
tant information about the medium, and can be made visible by 
conversion to changes in brightness using special optical compo-
nents. Phase contrast (PC) microscopy [4] was invented in the 
1930s by Frits Zernike, which earned him the Nobel Prize in phys-
ics in 1953. Unfortunately, the use of this technique is restricted to 
very thin specimen preparations, and the resulting images suffer 
from halo artifacts. Another technique invented by Georges 
Nomarski in the 1950s, is to exploit the interference obtained 
when recombining two orthogonally polarized and slightly dis-
placed light components after traveling through the specimen. 
Differential interference contrast (DIC) microscopy [4] yields 
superior resolution compared to PC microscopy and has excellent 
optical sectioning capability. However, the effectiveness of DIC is 
reduced by the specimen’s reaction to polarized light. Moreover, 
the resulting images show typical pseudo-three-dimensional (3-D) 
artifacts that can be mistakenly interpreted as topographical cell 
features. Several of the limitations of both PC and DIC microscopy 
can be avoided by the use of Hoffman modulation contrast micros-
copy [4], developed by Robert Hoffman in 1975.

These optical contrasting techniques are used particularly in 
studies that do not require quantification of intracellular compo-
nents, but that rather aim to characterize the morphodynamics 
of individual cells or the aggregate migratory behavior of groups 
of cells. For the study of dynamic processes within a living cell, 
it is necessary to specifically label the intracellular objects of 

interest. This has become possible at large by the discovery 
(1962), gene sequencing and cloning (1992), and expression 
(1994) of the green fluorescent protein (GFP) from the jellyfish 
Aequorea victoria [5]. GFP-labeling enabled the visualization of 
very specific targets within living cells and opened the door to 
studying the location and function of intracellular components 
with unprecedented sensitivity and specificity. This caused a 
true paradigm shift in biological experimentation [6] to the 
extent that the inventors of the technique, Osamu Shimomura, 
Martin Chalfie, and Roger Tsien, were awarded the Nobel Prize 
in chemistry in 2008. During the 1990s and 2000s, many deriva-
tives of GFP were developed with their own characteristic exci-
tation and emission spectra, which further extended the toolbox 
of fluorescent labeling [5].

Much of the research in optical microscopy imaging in the past 
two decades has focused on the development of strategies to break 
the Abbe resolution limit and achieve “superresolution micros-
copy.” These techniques yield images with a level of detail close to 
the intrinsic scale of molecular biology. It is especially this 
endeavor that has led to major new challenges for the signal and 
image processing community. The most prominent recent exam-

ples of microscopy imaging tech-
niques that rely heavily on image 
processing are photoactivated local-
ization microscopy (PALM) [7] and 
the related technique of stochastic 
optical reconstruction microscopy 
[8]. These exploit the long-known 
fact that, even though the image of a 
subresolution particle is diffraction-

limited (on the order of hundreds of nanometers), its location can 
be estimated with much higher accuracy (on the order of nano-
meters), depending on the signal-to-noise-ratio (SNR) [9]. Instead 
of acquiring a single image with all labels fluorescing concur-
rently, by using fluorescent proteins that can be switched on and 
off, thousands of images of well-separated particles can be 
acquired and their locations estimated very accurately by particle 
detection and fitting techniques. The composite image built up 
from the detections displays very high resolution. An alternative 
way to acquire better localized images is stimulated emission 
depletion [10], a nonlinear imaging technique that uses controlled 
de-excitation of previously excited off-center fluorophores. 
Another important technique is structured illumination micros-
copy [11], which computationally combines the images of differ-
ently oriented illumination patterns that produce Moiré fringes in 
the emission, resulting in an image with double resolution in each 
dimension. Complementary to these developments, improved 
techniques for imaging intact whole organisms have also been 
developed in recent years. Selective-plane illumination micros-
copy (SPIM), for example, in which the specimen is illuminated 
with a thin sheet of light perpendicular to the direction of observa-
tion, has proven to be an extremely valuable technique for long-
time observation of embryonic development [12].

These and related advanced microscopy imaging techniques 
have enabled biologists to study the complexity of subresolution 
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intracellular organelles and the relation of their constituting 
components down to the molecular level and under physiologi-
cal conditions in single cells or even developing organisms 
[13]–[15]. Technical improvements of these fluorescence-based 
imaging modalities, for instance, taking advantage of the spar-
sity of the signal being detected [16], go hand-in-hand with new 
versions of switchable fluorophores that allow nonlinear optical 
effects to be more efficiently used to push the resolution limit 
down further. The trends indicate that as imaging techniques 
become more and more sophisticated, requiring multiple pieces 
of information to be combined to reconstruct the full image, 
there is an increasing need for computationally efficient signal 
and image processing algorithms. 

ANALYZING CELL BEHAVIOR
The extraction of biologically relevant information from both clas-
sical and novel microscopy imaging modalities requires the use of 
advanced image processing methods. Here, we will focus on tech-
niques for segmenting and tracking cells and intracellular parti-
cles and for estimating cell-matrix tensional forces.

CELL SEGMENTATION AND TRACKING
Accurately defining the boundaries of cells in both static and 
dynamic images is a classical prob-
lem. It has been addressed over the 
years using a variety of segmentation 
methods [17]. Traditionally, cell seg-
mentation in high-resolution fluo-
rescence microscopy has been used 
to establish a spatial reference 
framework for the quantification of 
molecular or genetic events inside 
the cell. Alternatively, low-resolution 
cell segmentation and tracking, both 
in fluorescence and brightfield two-
dimensional (2-D) microscopy has been applied to study the 
dynamics of cell populations with an emphasis more on the 
detection of population changes (e.g., cell mitoses, deaths, 
fusions) and motility (e.g., organ development, wound healing) 
than in accurately delineating cell morphology changes. More 
recently, a growing interest in the mechanobiology of the cell has 
brought back the focus of the segmentation and tracking field to 
the accurate delineation of cellular morphology and the changes 
associated to cell movements on flat substrates, and more 
recently, in 3-D environments.

There are two main approaches to the problem of cell track-
ing: tracking by detection and tracking by model evolution. The 
first approach consists of independently segmenting the cells in 
all the frames of a video and then, using association methods, 
tracking each segmented cell in all the video frames. The second 
approach uses evolution of curves or surfaces, either implicitly or 
explicitly defined, to track the boundaries of the cells along the 
entire length of the video. The first approach is more suitable for 
situations of low spatiotemporal resolution—high cell density, 
large time step—while the second performs best in high 

spatiotemporal resolution settings where high segmentation 
accuracy is required and there are few topological changes. Both 
paradigms can be enhanced by introducing knowledge of the 
topology changes (e.g., mitosis, apoptosis, fusion) into the data 
association (tracking by detection) or evolution (tracking by 
model evolution) phase of the algorithm.

The most recent tracking by detection methods use relatively 
simple segmentation approaches, such as wavelet decomposition 
[18], seeded watersheds [19], [20] or thresholding techniques [21], 
while investing their efforts in sophisticated association methods, 
such as minimum-coupled cost flow [18], dynamic programming 
[19], integer programming [22], or multiple-hypothesis [23] 
tracking. Some of these association methods implicitly incorpo-
rate the detection of topological changes [18], [19] while others 
include preprocessing detection of mitosis [20] or apoptosis to 
account for them. The state of the art of the tracking by model 
evolution paradigm uses the evolution of implicit contours (i.e., 
level sets) [21], [24] to segment and track individual cells. The 
principal limitation of these methods is the high computational 
cost involved in evolving one level set function per cell, by finding 
the numerical solution of its associated partial differential equa-
tion (PDE). To address this point, reducing the computational 
cost, Dufour et al. [25] use a discrete–parametric-active mesh 

framework and Maska et al. [26] 
minimize the original Chan–Vese 
model without solving any PDE, 
while evolving one single level set 
function per frame. Finally, there are 
complex methods that combine 
these two paradigms by using a fast 
level set framework combined with 
local spatiotemporal association [27].

A recurrent problem of the field 
was the lack of common test data 
sets and metrics to evaluate the per-

formance of novel and existing algorithms. This prevented a fair 
and objective evaluation of the segmentation methods leaving the 
user (normally a noncomputer-proficient biologist) with the deci-
sion of choosing between the existing methods, with only the help 
of complex technical descriptions. In addition, not all published 
tracking algorithms are publicly available, or they have been 
released in a format that requires important computer and pro-
gramming skills. To address this relevant issue, a benchmark for 
objective evaluation of cell tracking algorithms was recently estab-
lished [28]. The challenge provides annotated data sets composed 
of both 2-D and 3-D video microscopy modalities (PC, DIC, fluo-
rescence, confocal), nuclear and cytoplasmic staining, and various 
cell densities and microscopy resolutions (from high-throughput 
to high-resolution situations). Realistic simulations of nuclearly 
stained cells are also provided, for which there is an absolute, unbi-
ased ground truth. The metrics used to compare the algorithms 
take into account both the accuracy of the segmentation and the 
accuracy of the tracking (movement and lineage) of the cells. 

The outcome of the challenge revealed that the problem of seg-
menting and tracking cells in microscopy is far from being solved, 
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especially in the case of cytoplasmic labeled cells or in high-
throughput setups (low spatiotemporal resolution and low SNR). 
In addition, more work needs to be done to segment cells in non-
fluorescent microscopy modalities (PC, DIC) where the cellular 
boundaries present complex gradient patterns or extended arti-
facts, as well as in novel microscopy techniques such as SPIM.

PARTICLE DETECTION AND TRACKING
Quantitative analysis of healthy cell behavior and how various dis-
eases may alter it often requires the analysis of intracellular 
dynamic processes. Examples include the motion of proteins or 
lipids on the cell membrane in relation to cell adhesion and regu-
lation, the dynamics of cytoskeletal filaments involved in cell 
maintenance and intracellular transport, the interaction of virus 
particles with the cell machinery, and the intricate molecular pro-
cesses involved in genome maintenance. Typically, these processes 
require very large numbers of “particles” (molecules, macromo-
lecular complexes, organelles). In biological experiments, several 
hundreds to thousands of them are imaged at the same time to 
allow studying both the characteristic behavior and interaction of 
individual particles as well as aggregate behavior. Since manual 
annotation of the image data is infea-
sible, in addition to being inaccurate, 
this calls for advanced methods for 
automatic particle detection and 
tracking [23], [29]–[33].

Similar to methods for the anal-
ysis of cell dynamic behavior 
described in the previous section, 
methods for the tracking of intra-
cellular particles in an image sequence usually consist of two 
fundamental stages [34]: 1) particle identification within indi-
vidual image frames and 2) particle association from frame to 
frame to build trajectories. The goal of the first stage is to dis-
tinguish between local image intensity patterns that truly repre-
sent particles of interest versus irrelevant image structures and 
background. Commonly used image analysis methods for this 
purpose range from simple intensity thresholding, to more 
advanced linear filtering (in particular, Gaussian and its deriva-
tives) and nonlinear wavelet-based or morphological image pro-
cessing approaches. After detection, representative coordinates 
of the underlying particle within its corresponding local image 
patch are typically estimated by computing the intensity center 
of mass, by finding the local maximum, or by fitting a theoreti-
cal or experimentally obtained intensity model. In the case of 
spatially well-separated subresolution particles, the ideal model 
is the point-spread function of the microscope used, which in 
the case of both widefield and confocal fluorescence microscopy, 
can be well approximated by a Gaussian [35]. The localization 
problem is strongly linked to superresolution recovery (SRR) of 
the underlying true signal. While solid mathematical theory for 
SRR is now emerging [36], the development of computationally 
robust and efficient recovery algorithms remains a challenge, 
especially for multiparticle-tracking applications, where the 
data usually contains large numbers of (possibly overlapping) 

diffraction-limited spots drowning in very high levels of Poisson 
noise. The use of compressed sensing approaches has recently 
shown promising results in this area [16] and may be further 
improved by accurate statistical models.

The goal of the second stage in the particle-tracking process is 
to establish the best possible association of detected particles 
between image frames. Depending on the density of the particles 
within the field of view, and whether or not prior knowledge about 
their dynamic behavior is available, commonly used methods for 
this purpose range from simple nearest-neighbor linking (con-
necting each particle in a given frame with the spatially nearest 
particle in the next frame of the sequence), to more advanced mul-
tiframe association schemes, including multiple hypothesis track-
ing, dynamic programming, and various combinatorial 
approaches. The use of a motion model is often implemented in 
the form of Kalman filtering or in the case of nonlinear and non-
Gaussian tracking problems, by means of sequential Monte Carlo 
estimation methods (often confusingly referred to as particle fil-
tering). These can be made even more sophisticated by the use of 
interacting multiple motion models. However, the rise of high-
density particle-tracking applications [37] is challenging currently 

existing methods, increasing the 
need for dealing with ever-larger 
amounts of imperfect data. As popu-
lar detection and localization meth-
ods yield optimal precision and 
accuracy only in circumstances that 
are rarely achieved in particle-track-
ing experiments [38], improved per-
formance can be expected from 

novel methods that more intimately link the detection, localiza-
tion, and association aspects of the tracking problem.

Since the early 1990s, many particle-tracking methods have 
been published based on the mentioned principles. With the 
increasing encouragement in the field to promote reproducible 
research, several dozens of software tools implementing these 
methods have been released [34]. To gain insight into their relative 
performance in an objective and reproducible manner, an open 
competition was recently organized [39]. One important finding is 
that, despite the often-heard claim when a new method is pre-
sented in the literature that it beats previous methods, as yet there 
exists no such thing as a single universal particle-tracking method 
that works best for all biological experiments. However, overall, 
certain methods do perform considerably better than others. A 
shared feature of superiorly performing methods is that they make 
optimal use of prior knowledge about both the objects of interest 
and the imaging process, re-emphasizing the importance of 
domain modeling. Another important finding is that current parti-
cle-tracking methods still tend to break down at SNRs representa-
tive of typical live-cell fluorescence microscopy imaging 
experiments. Although the SNR can be easily improved by increas-
ing the illumination level, this has detrimental effects to the cell 
(photodamage and/or phototoxicity). Thus, in current practice, a 
careful selection of imaging conditions and analysis methods 
remains essential. 

QUANTITATIVE ANALYSIS 
OF HEALTHY CELL BEHAVIOR

AND HOW VARIOUS DISEASES 
MAY ALTER IT OFTEN REQUIRES 

THE ANALYSIS OF INTRACELLULAR
DYNAMIC PROCESSES.
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MEASUREMENT OF FORCES
Mechanobiology is an emerging field at the interface of biology and 
engineering. It focuses on the processes by which physical forces 
and cell or tissue mechanics contribute to development, normal 
physiology and disease. In the early 1920s, Buckminster Fuller first 
proposed the principle of tensegrity within the realm of architec-
tural design. Tensegrity refers to the stability of a 3-D structure, 
granted by the opposing equilibrium between a discontinuous set 
of rigid compression elements and a continuous stabilizing tensile 
force. It was not until the mid-1970s that the (at that time) Yale 
undergraduate and current Harvard professor, Donald Ingber, 
related the behavior of a simple tensegrity stick-and-string model 
(flat when attached to a flat surface, abruptly becoming rounded 
when being detached from the flat surface) to the behavior of the 
cells that he had seen in culture at that semester’s cancer lab. Ing-
ber thought that cells might use their recently discovered internal 
framework, the cytoskeleton, to control their shape, much like a 
tensegrity structure does by means of a set of compressing ele-
ments and force distributing tensile elements [40]. Ingber further 
reasoned that cells must use their substrate, the extracellular 
matrix, to anchor themselves. Later on, he proved that mechanical 
forces exerted at the surface of the cell can be transmitted to the 
nucleus, resulting in biochemical changes and ultimately genetic 
changes—causing genes to turn on and off [41].

Understanding the molecular mechanism by which cells sense 
and respond to physical forces is a major challenge in this field. 
Traction force microscopy (TFM), a light microscopy technique 
developed in the mid-1990s [42], can compute traction forces 
exerted by a cell onto a biomimetic hydrogel substrate. These trac-
tion forces are calculated from the displacement of a large number 
of fluorescent beads embedded in the hydrogel, which in turn can 
be seen as samples of the deformation field that the forces cause in 
the substrate. Finally, the traction forces generating the deforma-
tions are inferred by direct or inverse methods that work from the 
expression of the laws of the elasticity of materials. Most of the 
existing, simplified methods compute the forces exerted on a plane 
by cells lying flat on a 2-D surface. Legant et al. [43], in a recent 
breakthrough, estimated traction forces exerted by cells fully 
encapsulated in a 3-D polymer gel. Using this physiologically rele-
vant model, they discovered that the cells sensed the surrounding 
gel pulling strongly inward through traction anchors located near 
the tip of long, thin protruding extensions. 

The classical procedure used to recover the forces in 2-D 
TFM experiments is composed of two steps: first, the displace-
ment of the microbeads is calculated using particle-imaging 
velocimetry (PIV). Then, the stress field is obtained by consider-
ing the substrate as a linear and elastic half-space. The Boussin-
esq solution of the Green tensor is then computed using 
Fourier transform traction cytometry (FTTC) [44]. Legant et al. 
[43] relaxed the half-space constraint and solved the inverse 
problem within a 3-D geometry using the finite element 
method (FEM). More recently, the constraint on the linear 
behavior of the gel has been eliminated by combining multiple 
nonlinear FEM solutions, thus resulting in higher accuracy in 
the estimation of the forces [45]. 

It is clear that there is an urgent need to develop and 
integrate more efficient, precise, and robust computational 
methods. In particular, we believe that signal processing 
could greatly contribute to the technique with 1) robust and 
accurate cell segmentation algorithms as the ones described 
in the section “Cell Segmentation and Tracking,” 2) sophisti-
cated microbead displacement estimation methods such at 
the ones described in the section “Particle Detection and 
Tracking,” and 3) fast and robust solutions for the ill-posed 
problem of recovering the forces (i.e., sparse tensor regular-
ization, sparse reconstruction). 

While TFM is well suited for the study of mechanotrans-
duction at the cellular scale, particle-tracking microrheology 
[46] applies similar approaches to study mechanics at an intra-
cellular scale. In particular, it enables measuring the local vis-
coelastic properties of the cytoplasm with high spatiotemporal 
resolution (i.e., nanoscale in seconds intervals). To this end, 
submicron particles are ballistically injected into the cyto-
plasm of live cells. After injection, the beads disperse rapidly 
within the cytoplasm, while being imaged using high-magnifi-
cation fluorescence microscopy. The random spontaneous 
movement of the beads is tracked using particle-tracking 
methods. The trajectories of the cytoplasm-embedded particles 
are used to compute mean-squared displacements (MSDs). 
Finally, the time lag-dependent MSDs of the beads are trans-
formed into local estimations of frequency-dependent visco-
elastic moduli or the time-dependent creep compliance 
(deformability) of the cytoplasm. The ongoing efforts to extend 
the method to 3-D go hand-in-hand with the developments in 
superresolution microscopy and particle-tracking methods for 
high-density and low SNR conditions.

MODELING CELL BEHAVIOR
Ultimately, the information obtained using the quantification 
methods detailed in the section “Analyzing Cell Behavior” should 
be used to elaborate spatiotemporal models of cell appearance and 
behavior. The models should not only fit the available data but also 
lead to new hypotheses that can subsequently be verified experi-
mentally. The truth is that there still remains a long way before a 
morphodynamic model capturing all the cell’s complexity 
becomes available. 

Approaches to modeling cell behavior can be divided into 
two main categories—top-down and bottom-up—that are 
being developed independently. Top-down approaches rely pri-
marily on image data starting at the cell level and going down 
to imaging selected subcellular components trying to infer 
rules of cell morphology and behavior hidden inside. On the 
other hand, bottom-up approaches rely primarily on nonim-
age data (such as bioinformatics databases, signaling path-
ways, gene expression data, genome sequencing data, 
measurements of forces, etc.) starting at the level of very basic 
partial rules of cell behavior and going up to defining more 
complex rules for specific cellular processes or behavior of 
small cellular components ultimately leading to the model of 
how the whole cell works. 
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TOP-DOWN APPROACHES
The first models of the cell date back to the 19th century [47], 
being just rough descriptions based on the limited unspecific 
observation provided by the microscopes of the time. After oil-
immersion lenses became available in the 1870s, people could 
observe the structure of the membrane, nucleus and cytoplasm (at 
the time called protoplasm). For example, in 1885, C. Rabl [48] 
published his famous model of the nucleus consisting of nucleoli 
and chromatin formed by chromosomes. The model even illus-
trated chromosome behavior during mitosis. 

Computers enabled a gradual transition from those original 
descriptive models based on rather vague verbal explanations of 
cell components accompanied by drawings to more precisely for-
mulated mathematical models. The earliest mathematical tool to 
describe cell behavior (interaction of neighboring cells) was the 
cellular automaton, which became famous in 1970 thanks to John 
Conway’s “Game of Life.”  

By the end of the 20th century, it became popular to represent 
cells or cell nuclei using simple mathematical shapes (spheres, 
ellipsoids, discs, or rods) and create virtual microscopy images 
that could be used as digital phantoms. These were dedicated to 
test the limits of image segmentation algorithms to different noise 
levels, blur degradations, or phantom densities. These digital 
phantoms enable the comparison of the algorithm results with a 
known ground truth [28]. Later on, more sophisticated artificial 
objects were developed: shapes were modeled as randomly 
deformed spheres or ellipsoids, and texture was added to simulate 
staining of cell or cell nucleus. There is an abundant work aimed 
at describing and classifying both subcellular structures and whole 

cells based on the analysis of protein distribution (i.e., image tex-
ture) and morphological descriptors of the cell. This information  
can be readily incorporated to the digital descriptions of the cell. 
An excellent review of these machine-learning approaches both 
from a theoretical and practical point view has been recently pre-
sented by Conrad and Gerlich [49]. 

The virtual microscopy “observation” of these artificial 
cells also improved: Gaussian blurring was replaced by the 
convolution with a real point spread function, more noise 
types were considered (Poisson, Gaussian, dark current, fixed 
pattern) and imaging artifacts introduced (uneven illumina-
tion, depth-related aberrations in 3-D samples, etc.). For a par-
ticular cell type, virtual microscopy images can be made 
almost indistinguishable from reality (not only visually but 
also based on computed image characteristics) [50]. See 
Figure 1 for an example of digital phantoms and correspond-
ing virtual microscopy images.

Learning-based cell modeling is another modality that infers 
algorithmic parameters from training image data by employing 
supervised or nonsupervised machine-learning techniques [51]. 
Parameters need not to be just single values but may be also 
expressed as probability density functions. Learning techniques 
build either discriminative models dedicated to object classifica-
tion (of unknown test data) or generative models able to synthe-
tize new artificial images belonging to a given class. 
Learning-based approaches can be used not only for testing 
image analysis algorithms but also to characterize the differ-
ences between healthy and pathological cells or for structure-
function relationship studies. 
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Labeled Phantom Mask Digital Phantom Blurred Image Noisy Blurred Image

Simulated Microscopy Simulated Detection

[FIG1] Modeling cells and their components using 3-D digital phantoms. First, a digital phantom is created for each modeled biological 
object in the field of view as a synthetic solid object of a precisely defined shape filled with a certain texture. The shape defines the 
binary mask serving as ground truth segmentation result and the image with texture serves as the input for virtual (simulated) 
microscopy. The image of the phantom produced by the optical system of a virtual microscope is typically generated by adding blur 
using convolution with a suitable point spread function. The blurred image is further subject to virtual image detection by adding 
adequate noise of various types. The noisy blurred images must be indistinguishable from real images of modeled biological objects 
and can serve for testing performance of image analysis algorithms against known ground truth. Examples of 3-D digital phantoms for 
two types of cell nuclei are shown. Each 3-D image is shown as a triplet of three mutually orthogonal cuts through the object: xy view 
(upper left), xz view (bottom), and yz view (right). 
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Another extended approach is to create a model of a specific cell
segmented in a particular image (more precisely a model of its 
stained components visible in the image data). This approach lacks 
generalization but can help revealing hidden properties using simu-
lations. For instance, to measure the diffusion coefficient in fluores-
cence recovery after photobleaching (FRAP), diffusion is simulated 
on the segmentation-based model [52]. This approximation to the 
study of biological systems and the 
learning-based approach presented 
above are sometimes denoted as 
image-based systems biology to dis-
tinguish them from modeling in 
computational biology where image 
data is not considered.

Several software tools for model-
ing cells and their components have 
been made publicly available: SIM-
CEP (2-D digital phantoms), avail-
able at http://www.cs.tut.fi/sgn/csb/
simcep/; CytoPacq (3-D digital 
phantoms), available at http://cbia.fi.muni.cz/simulator/; or Cel-
lOrganizer (learning-based models), which can be found at 
http://cellorganizer.org. Moreover, one can use pregenerated 
benchmark data sets offered on the Web pages of these software 
packages. The synthetic cell images are still available only for 
just a few cell types and several cell components but can be gen-
erated in large quantities with different levels of noise, various 
cell densities, and are accompanied by ground truth data. 
Lately, also time-lapse sequences of such synthetic image data 
have become available and have been used, for example, in the 
Cell Tracking Challenge, available at http://www.codesolorzano.
com/celltrackingchallenge/.

BOTTOM-UP APPROACHES
Parallel to these black box-modeling efforts, there are attempts 
to mathematically model the intricacies of the signaling path-
ways that govern the cellular function of the cell. These models, 
if properly populated with a complete list of substances (e.g., 
genes, ribonucleic acids (RNAs), proteins), rules (e.g., transfor-
mation of molecular species, reaction kinetics) and cellular spa-
tial or functional compartments, can simulate the molecular 
machinery of the cell. E-CELL, developed by Tomita et al. [53] is 
a software environment that simulates the behavior of a cell 
from the activity of gene sets derived from entire genomes. As a 
proof of principle, the authors presented a model of a minimal 
cell based on a subset of genes of Mycoplasma genitalium,
whose complete 580-kbit genome was sequenced in 1995. This 
simplified model simulates how proteins interact within the liv-
ing cell. Specifically, it models how changes in the amount of a 
protein (by knocking out the corresponding gene or altering its 
expression level), or the medium (e.g., starving the cell by 
removing glucose) may affect its behavior (e.g., mitotic rate, 
probability of entering in apoptosis) and its survival. 

These mathematical models are becoming increasingly com-
plex to account for higher organisms and more temporal scales. 

Simultaneously, computational models [54] are being developed 
which, instead of representing cell processes with equations, pres-
ent recipes (algorithms) that mimic natural phenomena. Instead of 
searching for a mathematical solution to a complicated list of equa-
tions, it provides algorithms that steer into different states or con-
figurations of a cell. The rules of navigation are operational, hence 
the name executable biology. In both types of models (mathemati-

cal and executable biology), there is a 
close connection with the experimen-
tal image-based data that feeds the 
models and are used to validate, and 
when necessary, update them.

Finally, the recent developments 
in the field of mechanobiology allow 
integrating morphological and 
molecular aspects with the mechani-
cal interactions between the cell and 
its environment, thus creating 
mechanical models of the cell. These 
efforts are fed with information 

about morphological changes (see the section “Cell Segmenta-
tion and Tracking”), traction force and viscosity data (obtained 
using among others, some of the tools described in the section 
“Measurement of Forces”), coupled to the trafficking of mechano-
sensitive and mechanotransductive biomolecules (see the section 
“Particle Detection and Tracking”). Most of these methods have 
been used to model cell motility, mostly of cells crawling on a 
surface [55], from the treadmill of actin that implies persistent 
front-to-back asymmetry, through a synchronized assembly–dis-
assembly directional process. These models explain the formation 
and release of lamellas and protrusions, as well as the adhesion-
mediated contraction that facilitates the push-and-pull mecha-
nism required for the cell to move on its substrate. Other models 
focus on mechanosensing in general [56], and on how the 
mechanical properties of the cell, defined by the composition and 
structure of its cytoskeleton self-adjust as a reaction to the 
mechanical properties of the extracellular environment. 

FUSION OF AVAILABLE KNOW-HOW
Top-down and bottom-up approaches are complementary to each 
other. As the coverage of the former ones goes down the scale and 
deeper into the cell (thanks to the development of imaging tech-
niques enabling observations of subresolution targets with 
increasing spatial as well as temporal resolution) while the cover-
age of the latter ones goes up the scale (due to the advances in 
molecular biology, cellular biochemistry, or the development of 
high-throughput screening methods), they tend to meet and 
cover certain cell components or events both from the rules side 
and from the imaging side. For example, within the MitoCheck 
project (http://www.mitocheck.org/), systematic analysis of genes 
and proteins that are required for chromosome segregation and 
cell division in human cells was performed by inactivating all 
22,000 human genes one by one in cultured human cells using 
RNA interference (RNAi) and recording cellular phenotypes by 
high-throughput live-cell imaging.

THE ADVENT OF NOVEL
IMAGING TECHNIQUES, 

COUPLED WITH THE USE OF
ADVANCED COMPUTATIONAL

AND SIGNAL PROCESSING
METHODS, HAS OPENED THE
DOOR TO UNDERSTANDING

MANY CRUCIAL ASPECTS 
OF THE CELL.
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Besides advances in imaging and bio-
techniques, advances in computer vision 
and artificial intelligence may also help 
integrating all pieces of know-how together 
into a single model of the cell. Besides the 
ability of learning from image data (as in 
the case of learning-based modeling meth-
ods), they can offer multimodal fusion of 
knowledge from different sources [57] inde-
pendent of the application—the data can be 
related to studying human appearance and 
behavior in a video sequence as well as 
studying cell appearance and behavior in a 
time-lapse series. Multimodal fusion tech-
niques can help integrate pieces of informa-
tion obtained from different sources 
depicted in Figure 2, which could be the 
key for defining an accurate cell model.

DISCUSSION AND PERSPECTIVE
The cell is an extremely complex machine. 
Its changing morphology and its dynamic 
spatial relationship with the surrounding 
environment depend on the biochemical 
composition of the latter, internal and 
external mechanical stresses, electrical sig-
nals, gravity, etc. Furthermore, the cell’s 
metabolic production (i.e., its phenotype) is 
regulated by genetic and epigenetic factors 
that depend and have an impact on its mor-
phology. Consequently, a faithful model of 
the cell should take into account the inter-
play of all these factors in their precise spa-
tiotemporal context.

Needless to say, such a model cannot be based on static obser-
vation of the cell, much like the complexity of the universe cannot 
be explained based on a single snapshot of the skies. The cell is in a 
particular environment, and the cell is in a precise developmental 
stage. That explains why the exact genetic content gives rise to 
such a diverse display of cell types and phenotypes that coexist in a 
living organism. Therefore, a model of the cell should integrate all 
the factors involved (e.g., genes, RNAs, molecular/metabolic sig-
naling pathways, structural elements of the cell nucleus and cyto-
skeleton, forces, biochemical factors) in its precise time and 
location. Light microscopy, as described in this article, provides 
visually quantifiable information that feeds into these models. Fig-
ure 2 presents a graphic summary of how quantitative image anal-
ysis provides information about the cell and its dynamic processes. 

Simultaneously visualizing and quantifying all these internal 
and external players during the entire life of a cell, within its 
native tissue context is beyond all possible imagination, due to 
technical and physical limitations. However, the advent of novel 
imaging techniques, coupled with the use of advanced computa-
tional and signal processing methods has opened the door to 
understanding certain aspects of the cell that can be used to 

populate a computational model. In this article, we have reviewed 
the history and the state of the art of both hardware and software 
that are contributing to this enterprise.

In the hardware arena, the existing microscopy techniques 
can capture a few events in a relatively limited spatiotemporal 
framework, mostly in 2-D in vitro setups. The use of synthetic 
hydrogels of controlled biomechanical properties has recently 
facilitated the study of cells in more realistic 3-D environments, 
thus taking full advantage of the sectioning and 3-D imaging 
capabilities of the diverse flavors of confocal and multidimen-
sional microscopy. Simultaneously, two complementary techno-
logical efforts are being pursued. In particular, the development 
of novel superresolution microscopy methods (especially, those 
that may work in 3-D and time lapse) and the development of 
large-scale, whole organ, or whole animal imaging systems, 
where resolution is sacrificed for the benefit of spatial complete-
ness. Both efforts require significant input from the signal pro-
cessing community in the areas of efficient data sampling, 
single-molecule detection, fast sparse-image reconstruction, 
compression, and data handling.

Software development necessarily follows the advances in 
image acquisition, thus leading the way to novel 3-D particle and 

Cell Tracking

Cell Model
Particle Tracking

MicrorheologyTFM

Cell Tracking

CelCelCelCelCelCC l MMMMMModeodeodeodeodeodeodellllll
Particle Tracking

MicrorheologyTFM

[FIG2] A summary of image analysis techniques described in the article. From the top 
left, counterclockwise: Cell tracking provides dynamic information about morphological 
changes of a moving cell; TFM calculates tensional forces between a cell and its 
surrounding environment from the displacement (red arrows) of fluorescence beads 
(yellow dots) embedded in the extracellular substrate; microrehology informs about the 
viscoelastic properties of the intracellular space from the microscopic movements (black 
arrows) of ballistically injected fluorescent nanobeads (yellow dot) under the stress of 
fibers (green lines), which can be represented as soft and stiff spring series (read arrows); 
and particle-tracking algorithms provide information about the movement (red arrows) 
and trafficking of subcellular elements (red dots).
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cell tracking routines. The existence of high-sensitivity sensors 
has placed the emphasis on the need for fast, optimized tracking 
methods, while the increasing use of high-throughput systems for 
big-data analysis pushes toward the development of very robust 
segmentation and tracking algorithms that may work in low SNR 
situations. Similarly, the incipient field of mechanotransduction 
demands novel, more efficient methods for the calculation of cell 
traction forces, especially in 3-D environments.

Finally, partial, in silico models of the cell, based on simple 
genetic and molecular approximations are already available. Those 
are being complemented with morphomechanistic models of cell 
behavior as it is visualized using an optical microscope of tunable 
properties. Mechanical models that incorporate the role of forces, 
and viscoelastic properties in the homeostasis and dynamics of 
cells are also being developed. These models are far from being 
complete, and work only as partial descriptions of some cellular 
processes during limited temporal steps. Furthermore, it remains 
to be defined how the models of the cells will be incorporated into 
similarly complex models of both subcellular–molecular models 
and dynamic models of complete organs or even entire organisms. 
The tremendous challenge posed to the signal processing and 
modeling community is how to integrate all the information 
about the cell—biochemical, structural, and mechanical—into a 
single unifying, multiscale, and spatiotemporal model that may 
open the door to the explanation and engineering of life. This, far 
from being a science fiction exercise, is the goal of the field of syn-
thetic biology. For instance, in what could be considered a break-
through in the field, Annaluru et al. [58], have reported the 
synthesis of a functional 272,871–base pair designer eukaryotic 
chromosome, based on the 316,617–base pair native Saccharomy-
ces cerevisiae chromosome III. The future is indeed here, since the 
descriptive models of the cell will provide mechanistic information 
eventually leading to the production of functional cells. The use of 
this artificial life, properly empowered by bioethical principles, 
may clear the way to a new era in the field of tissue engineering 
and regenerative medicine.
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M
odern developments 
in light microscopy 
have allowed the 
observation of cell 
deformation with 

remarkable spatiotemporal resolution 
and reproducibility. Analyzing such phe-
nomena is of particular interest for the 
signal processing and computer vision 
communities due to the numerous 
computational challenges involved, 
from image acquisition all the way to 
shape analysis and pattern recognition 
and interpretation. This article aims at providing an up-to-date 
overview of the problems, solutions, and remaining challenges in 
deciphering the morphology of living cells via computerized 
approaches, with a particular focus on shape description frame-
works and their exploitation using machine-learning techniques. 
As a concrete illustration, we use our recently acquired data on 
amoeboid cell deformation, motivated by its direct implication in 
immune responses, bacterial invasion, and cancer metastasis. 

MOTIVATION AND CHALLENGES
Cell deformation and migration are dynamic processes regu-
lated by a complex machinery with major implications on a 
number of key processes in biology including development, 

immune responses, and invasive pro-
cesses [1]. A method of choice for 
studying this mechanism lies in light 
microscopy, whereby living cells evolv-
ing in their three-dimensional (3-D) 
environment (both in vitro and in vivo)
can be imaged over prolonged periods 
of time with limited invasiveness, pro-
ducing time-lapse sequences of volu-
metric 3-D images [2]. Due to the 
considerable complexity of cell defor-
mation and migration, visual analysis 
of such processes is no longer limited 

just by user bias and fatigue but also fails to apprehend large-
scale, population-wise patterns that may otherwise appear ran-
dom or disorganized. Systematic quantitative analysis and 
understanding of cellular dynamics is becoming a major interest 
for the signal processing and computer vision communities, given 
the wide range of computational challenges to overcome. These 
challenges principally fall into one of the following five categories, 
covering many aspects of the experimental pipeline (cf. Figure 1).

IMAGE RECOVERY
Modern optical light microscopy techniques have substantially 
expanded the diversity and reliability of live cell imaging appli-
cations, constantly improving on speed, penetration depth, 
and spatial resolution, though usually at the expense of the sig-
nal-to-noise ratio. An important part of the literature therefore 
focuses on the development of deconvolution and denoising 
techniques adapted to the peculiarities of bioimaging data (e.g., 
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mixed Poisson–Gaussian noise and anisotropic lateral-to-axial 
resolution [3]–[5]), while recent advances in computational 
optics (notably compressive sensing and superresolution tech-
niques) have given rise to new challenges in signal reconstruc-
tion and inverse problems [6]–[9]. 

SEGMENTATION AND TRACKING
The increasing diversity and complexity of environments in which 
motile cells can be observed has made their reliable detection and 
tracking most challenging, notably in crowded or cluttered envi-
ronments [10]. Added to the sheer amount of routinely produced 
3-D imaging data, the need to develop fast and semi- to fully auto-
mated approaches remains a long-standing challenge in the com-
munity [11], [12]. 

SHAPE REPRESENTATION
Although informative, raw shape and trajectory information are 
usually too large and complex to produce interpretable results, 
unless their dimensionality is suffi-
ciently and adequately reduced. 
Unfortunately, the natural variabil-
ity of shape configurations observ-
able within so-called homogeneous 
cell populations pose significant 
challenges in defining descriptors 
that are both robust to noise and 
retain enough specificity across 
populations. While much effort has 
been conducted to develop such 
descriptors in two-dimensional 
(2-D) [13] or pseudo-3-D [14], 
3-D-shape descriptors that permit robust morphological analy-
sis and facilitate human interpretation are still under active 
investigation [15]–[21]. 

LEARNING AND INTERPRETATION
Linked to the issue of shape description is that of invariant analy-
sis of cell populations across various experimental conditions. The 
difficulty here lies in two aspects: 1) developing pattern recogni-
tion and machine-learning approaches able to capture the differ-
ences between populations while remaining robust to intraclass 
variability [22], [23] and 2) highlighting such differences in a 
human-readable form and ultimately leading to the inference of 
standardized computational models with the aim of deriving novel 
biological hypotheses [24]. 

AVAILABILITY AND REPRODUCIBILITY
The vast majority of developments in the community generally 
appears in the literature in the form of theoretical workflows 
that facilitate understanding and software (or hardware) imple-
mentation. Unfortunately, the increasing complexity of these 
protocols renders their implementation and validation very 
tedious for nonspecialists, hindering both their adoption and 
reproducibility. Ironically, while many scientific findings are 
based on computerized analysis, the associated computer codes 
are only rarely made public in contrast to reproducible research 
practices in other scientific domains [25]. Community efforts 
such as the Reproducible Research Initiative strive to make 
both code and data publicly available, although more support 
from publishers and/or research sponsors is required [26]. 

In the specific context of 3-D bioimaging, the image recovery 
and segmentation aspects have received extensive focus from the 
signal processing community over the last several decades, as 
illustrated by the recent introduction of challenges at the IEEE 

International Symposium on Bio-
medical Imaging, with special ses-
sions on image deconvolution
(http://bigwww.epfl.ch/deconvolu-
tion/challenge), particle tracking 
[27], and cell segmentation and 
tracking [12]. The shape representa-
tion and machine-learning aspects 
have been comparatively less thor-
oughly investigated, even though 
they provide essential keys to deci-
pher the cell machinery. Here we 
review recent developments in the 

fields of cell-shape description and associated machine-learning 
approaches, highlighting the current state of the art and the chal-
lenges ahead toward a comprehensive understanding of cellular 
dynamics. We also review a number of open-source software solu-
tions that permit reliable and reproducible quantification of cellu-
lar images. We shall illustrate this review using the example of 
amoeboid cell deformation, which is a mechanism of strong 
interest in the life science community due to its importance in 
immune response, infectious diseases, and cancer metastasis. 
Amoeboid motion is characterized by the emission of localized 
protrusions at the cell surface that permit environment scanning 
and motion initiation (cf. Figure 2) [28], [29] and poses signifi-
cant challenges in terms of quantitative characterization and 
comparative phenotyping.

[FIG1] Typical experimental pipeline for cellular (notably phenotypic) studies. Boxes marked with green and blue labels indicate the 
availability of associated open hardware and software developments, respectively.
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3-D-SHAPE DESCRIPTORS AND THE CELL
Proper description of the cell shape in a numerical form is inher-
ently dependent on its underlying representation, i.e., how it was 
extracted from the image data [13]. While most segmentation 
methods usually produce voxel-based masks or distance maps as 
an indicator of the cell location and cell interior (analogous to the 
input data), outline-based approaches produce a description that is 
homotopic to the cell surface (e.g., using control points or param-
eterized curves [14], [30], [31]). From any of these representa-
tions, various low-level descriptors 
can be extracted (e.g., volume, sur-
face, elongation, ellipticity, compac-
ity, etc.), providing a coarse 
appreciation of the global shape 
conformation (most of these 
descriptors can be extracted using 
the approaches further reviewed 
below). However, when dealing with 
more complex shapes such as cells 
or organs, such low-level descrip-
tors quickly become sensitive to 
increasing amounts of noise and 
usually fail to capture subtle shape variations occurring at dif-
ferent spatial scales, from large conformation changes (e.g., 
elongation, contraction) to smaller variations at the cell surface 
(e.g., protrusions) [32]. Higher-lever descriptors based on multi-
scale decomposition become particularly interesting in this 
context, as they decompose the shape in a coarse-to-fine man-
ner, allowing one to restrict the analysis to the scale of interest 
and thereby increasing robustness to negligible or unlikely 
shape variations. These approaches typically fall into one of the 
three following categories, classified in increasing order of 
complexity. 

LANDMARK-BASED APPROACHES
Landmark-based approaches are a popular choice for morpho-
logical studies [33], with numerous applications in medical 
imaging [34], [35], evolutionary biology [21], and face 

recognition [36]. The common denominator in these fields is 
the availability of a reliable low-dimensional model for the 
shapes of interest, allowing one to reduce the description of the 
shape (or its tolerated deformations) to a small number of con-
trol points (or parameters). This simplified representation in 
turn permits efficient registration, statistical analysis, and tem-
plate modeling [37]. Applications in cellular morphology are, 
however, not as common, mostly due to the fact that deforming 
cells generally have many more degrees of freedom that cannot 

be accurately captured using such 
methods (counterexamples can be 
found in specific biological applica-
tions, e.g., [38]). 

GRAPH-BASED 
REPRESENTATIONS
Graph-based representations fall in 
two subcategories, depending on 
whether they describe the interior 
or the outline of the shape of inter-
est. In the former case, the cell 
body is converted (e.g., from a ini-

tial binary mask) into a hierarchical treelike graph connecting 
virtual landmarks inside the cell. Typical examples include mor-
phological skeletons, medial axis transforms, or Voronoi tessel-
lations [39], [40]. Once the graph is obtained, local shape 
features at the cell surface (the leaves of the tree) are semanti-
cally segregated from large shape conformation (closer to the 
root). As the graph generation process may be subject to noise, 
adequate graph pruning algorithms are required to differentiate 
structures at the cell edge (e.g., filopodia from erratic spikes), 
thereby permitting an unbiased analysis of the cell deformation 
over time [40]. However, such approaches remain limited to 2-D 
analysis, and their extension to 3-D is computationally 
challenging. 

The latter category considers a surface-based graph 
representation of the shape of interest. While the topic of signal 
processing on arbitrary graphs is only in its early days [41], 
several methods have been developed for the specific case of 
closed surfaces (homeomorphic to the two-sphere), such as 
energy-minimizing graph matching (developed for protein sur-
face alignment [42]) and graph-based spherical wavelets 
(applied to cell-shape analysis in [18]). 

MOMENT-BASED APPROACHES
These approaches consider the shape of interest as an arbitrary 
spatial distribution function that is then mathematically repre-
sented as a sum of known polynomial functions, thereby permit-
ting the extraction of geometrical moments with suitable 
invariants [43]. Such methods generalize traditional Fourier anal-
ysis to arbitrary distributions and therefore share the same 
descriptive properties: low-order moments describe the coarse 
conformation, while high-order moments retain information at 
higher frequency. For this reason, these approaches have been uti-
lized in many areas of image processing, with popular choices of 

(a) (b)

[FIG2] Planar slices of two field of views representing (a) wild 
type and (b) chemically modified parasites. Distinguishing
between these populations based on shape information is 
particularly challenging, even for the trained eye, and 
requires robust quantitative tools for shape description and 
machine learning.

IRONICALLY, WHILE MANY 
SCIENTIFIC FINDINGS ARE 

BASED ON COMPUTERIZED 
ANALYSIS, THE ASSOCIATED 

COMPUTER CODES ARE ONLY 
RARELY MADE PUBLIC IN 

CONTRAST TO REPRODUCIBLE 
RESEARCH PRACTICES IN OTHER 

SCIENTIFIC DOMAINS.
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bases including Lengendre, Zernike, Tchebichef polynomials (see 
[44] for a comparison), and splines [45]. 

In the context of cell-shape description, such approaches are 
generally not applied on the raw image data. Instead, a binary 
mask or outline of the shape is first extracted and then pro-
jected onto an appropriate basis [14], [16], [19], [20], [46], [47]. 
These methods can further be 
decomposed into two categories. On 
the one hand, the 2-D cell outline is 
projected directly onto a chosen 
basis (e.g., Fourier [46] or splines 
[14]), and the process is repeated on 
each slice of the cell shape to obtain 
a 3-D set of descriptors [14]. On the 
other hand, the surface of interest is 
first mapped onto the sphere using 
appropriate spherical parameterization techniques [48] and 
then projected onto a reference function basis living on the 
sphere. Two popular and complementary candidates in this fam-
ily are the spherical harmonics (SPHARM) [47] and spherical 
wavelets (SWAVE) [49], which significantly differ from the 
eponym graph-based approach, notably in the way they are con-
structed. In the former case, the spherical signal is projected onto 
a basis of Legendre polynomials, extending the classical Fourier 
analysis to signals on the two-sphere [cf. Figure 3(b)]. SPHARM 
therefore have global spatial support, and each coefficient 
describes the general conformation of the shape of interest at dif-
ferent spatial scales. Applications of SPHARM include molecular 
surface modeling [50], [51], medical-shape analysis [52], and cell-
shape analysis [15], [16], [19], [53]. In the latter case, the function 
basis is formed of wavelets (hence its name), and are constructed 
by analogy to wavelets in the plane via appropriate spherical pro-
jections [17], [20], [54]. Here the local spatial support provided by 

SWAVE is of particular interest to localize specific features along 
the surface [cf. Figure 3(c)]. 

While the function bases utilized here are not specific to cel-
lular shapes, other approaches have been proposed to increase 
their specificity by locally adapting the basis to the data set at 
hand (e.g., using the Laplace–Beltrami operator, as in [19] and 

[55]). Nevertheless, the use of 
standard function bases preserves 
two major advantages: 1) they are 
ubiquitousness in signal processing 
applications that propels the cre-
ation of ever-more efficient compu-
tational implementations and 2) 
they permit an unbiased descrip-
tion and comparison of shapes 
across multiple experimental condi-

tions, and also serve as a basis to perform shape synthesis (cf. 
Figure 3) or build so-called generative models of the cell [24]. 

RECOGNITION, CLASSIFICATION, AND INTERPRETATION
In terms of dimensionality, shape extraction and description 
have led to simplified representations of the raw data from 3-D 
images (on the order of 108–10 voxels) down to a smaller set of 
descriptors (also called features) per cell (on the order of 
101–3). Unfortunately, these feature sets are rarely translatable 
to a concrete, biologist-friendly interpretation of the biological 
experiment, rather appearing as large arrays of poorly inform-
ative numbers. This motivates the following questions: Which 
features really matter? What is the influence of the experimen-
tal conditions on these features? How do they translate into 
biological terms? Machine-learning approaches are particu-
larly well suited to answer these questions, and choosing the 
appropriate technique depends on the application and how 

Analysis

Wavelets

f (θ, ϕ)

ψjm
~ yjm

fl
m∧

Wavelet Decomposition

SPHARM Domain
Synthesis

Inverse Filters ψjm

∑ Ylfl
m∧ m (θ, ϕ)

∞

l = 0
∑
+l

m = –1

(a) (c)

(b)

(d)

[FIG3] The comparison of spherical harmonics and spherical wavelets for signal processing on the sphere. (a) The signal of interest 
( , )f i { can be projected on a basis of functions with global spatial support such as (b) spherical harmonics, or a basis of functions 

with local support such as (c) spherical wavelets. In both cases, the spherical signal can be synthesized back (d) from the 
coefficients. 

SHAPE EXTRACTION AND 
DESCRIPTION HAVE LED TO 

SIMPLIFIED REPRESENTATIONS
OF THE RAW DATA FROM 3-D

IMAGES DOWN TO A SMALLER 
SET OF DESCRIPTORS PER CELL.
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easily the initial question can be cast into a machine-learning 
framework [23]. 

Machine learning consists of building computer models that 
accurately describe a given population of individuals with the ulti-
mate goal to either characterize subgroups of individuals with sim-
ilar properties, or to predict the properties of a new unknown (or 
simulated) individual [62]. Machine-learning techniques are gener-
ally split into two categories: 1) supervised techniques require that 
a subset of individuals in each subpopulations be manually anno-
tated to classify the rest of the data set, while 2) unsupervised tech-
niques learn the model directly from the inherent structure of the 
feature set without user intervention. Both families have their set 
of advantages and drawbacks, which 
we discuss next in the context of cell-
shape analysis (we refer the reader to 
[23] for an applications-oriented 
review, and [63] for a more theoretical 
introduction). 

Supervised techniques require a 
subset of the data to be annotated, i.e., one or more examples 
describing all known subclasses of the population must be indi-
cated beforehand. This so-called training set is then used to 
learn an optimal classifier. Popular approaches for cell classifi-
cation from image data include k-nearest neighbors [64], deci-
sion trees [65], and support vector machines (SVMs) [57]. These 
approaches can be further combined, resulting in so-called 
ensemble learning techniques, e.g., boosting [22] and random 
forests [66]. Supervised techniques are widely popular due to 
their robustness to noise and apparent intuitiveness and versa-
tility. Annotating a small finite number of examples is generally 
acceptable in many applications, while the classifier itself 
remains sufficiently generic to accept a wide range of applica-
tions. Unfortunately, some of these methods may suffer from 
overfitting when the dimension becomes much larger than the 
number of samples. Variable selection techniques provide a 
solution to this issue, while improving learning accuracy and 
often facilitating interpretation. Typical examples include for-
ward selection, backward elimination and sparsity-constrained 
classifiers [67]. The major limitation of supervised learning is 
that it requires class labels to be available: nonannotated sub-
populations will not be learned and, hence, not recognized, and 
by extension, novel unknown subpopulations (e.g., unpredicted 
cell phenotypes) cannot be discovered. 

Unsupervised techniques do not require a training set and 
can be applied to unlabeled populations. They learn the inherent 
structure of the data set using a predefined metric (e.g., a simi-
larity or distance measure between individuals), permitting 
homogeneous groups or dimensions to be distinguished. One 
usually distinguishes clustering techniques, which aim at 
extracting subpopulations sharing similar properties according 
to the considered metric, from dimensionality reduction tech-
niques, which aim at selecting a subset of essential principal 
components that best represent a high-dimensional data set to 
facilitate user interpretation. Classical clustering techniques 
include k-means [68] and Gaussian mixture modeling (GMM) 

[69], while dimensionality reduction 
techniques include principal com-
ponent analysis (PCA) [46] and 
independent component analysis 
(ICA) [70]. The major advantage of 
unsupervised learning is that the 
data labels need not be known in 

advance, alleviating the need for data annotation while allowing 
the discovery of unexpected subpopulations, giving them 
remarkable exploratory potential in biology [71]. Unfortunately, 
unsupervised techniques also have their drawbacks: they are 
more sensitive to noise, defining the appropriate metric for the 
data set at hand can be complex for high-dimensional data set, 
as is the interpretation of the results. 

It is worth pointing out that most of these techniques can also 
be applied directly to the raw image data without necessarily need-
ing a preliminary shape extraction and description step. Shape 
description becomes necessary as soon as both qualitative and 
quantitative characterization or modeling of the cell shape is 
required, notably when studying the effect of known experimental 
conditions on the cell phenotype. 

AVAILABILITY AND REPRODUCIBILITY
Emerging interdisciplinary fields such as bioimage informatics 
foster interactions across an ever broader portfolio of scientific 
expertise (this article only mentions six of them: optics, signal pro-
cessing, image segmentation, object tracking, shape description, 
and machine learning). Unfortunately, novel algorithmic develop-
ments in many of these fields are only rarely published in the form 
of ready-to-use software, while reimplementing the underlying 
method becomes increasingly challenging for the nonspecialist in 

[TABLE 1] OPEN-SOURCE SOFTWARE SOLUTIONS WITH DEDICATED MODULES FOR CELL-SHAPE ANALYSIS.

NAME REFERENCE SUPPORTED LANGUAGES 2-D/3-D SHAPE DESCRIPTORS MACHINE LEARNING
CELLCLASSIFIER [56] MATLAB* 2-D GEOMETRIC SUPERVISED
CELLCOGNITION [57] PYTHON, C++ 2-D GEOMETRIC SUPERVISED AND UNSUPERVISED
CELLORGANIZER [24] MATLAB* 2-D, 3-D SPLINES UNSUPERVISED (GENERATIVE)
CELLPROFILER [22] PYTHON, VISUAL PROGRAMMING 2-D GEOMETRIC SUPERVISED
EBIMAGE [58] R 2-D GEOMETRIC (VIA R)
ICY [59] JAVA, SCRIPTING, VISUAL PROGRAMMING 2-D, 3-D GEOMETRIC, SPHARM (VIA PLUGINS)
IMAGEJ/FIJI [60] JAVA, SCRIPTING, MACRO RECORDING 2-D, 3-D GEOMETRIC (VIA PLUGINS)
TANGO [61] IMAGEJ, R 3-D GEOMETRIC (VIA R)

*MATLAB is licensed by Mathworks.

QUANTITATIVE MORPHOLOGY 
OF SINGLE CELLS IS ONLY THE 
VISIBLE PART OF THE DIGITAL 

BIOIMAGING “ICEBERG.”
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addition to being time-consuming and error prone [25]. Fortu-
nately, the bioimage informatics community has been a proactive 
driver of the Reproducible Research Initiative [26] with the 
appearance of multiple software solutions for quantification in bio-
imaging over the last decades (cf. [72] and Table 1). Some of these 
frameworks rely on a so-called plug-in architecture, allowing their 
enrichment via third-party contributions, removing much of the 
redundant work including data loading and visualization, and 
streamlining the publishing process. Each platform will tend to be 
specialized in a specific discipline (mostly driven by its core devel-
opers), and current efforts in the community are devoted to pro-
vide higher interoperability across software, so as to combine the 
best solutions available for to tackle a given problem. Table 1 pro-
vides a nonexhaustive list of such software platforms, focusing spe-
cifically on the solutions available for cell-shape analysis and 

SPHARM AS SHAPE DESCRIPTORS
SPHARM are defined as 

( , ) ( ) ,cosY k P e,l
m

l m l
m imi { i= {

where i  and {  parameterize the spherical domain, l
and m  are respectively the degree and order of the 
harmonic, k ,l m  is the expansion coefficient, and Pl

m  is 
the associated Legendre polynomial. 

Spherical harmonic analysis is a natural extension of tradi-
tional Fourier analysis for signals defined on the unit sphere. 
Hence, any arbitrary function f  defined on the sphere can 
be expanded using the SPHARM transform, given by 

( , ) ( , ),f C Y·l
m

m l

l

l
l
m

0

i { i {=
3

=-=

//

where Cl
m  are the generalized Fourier coefficients with 

respect to the SPHARM basis, or more simply, SPHARM 

coefficients. 
To conduct a SPHARM expansion of the cell shape, its sur-

face must be written as a spherical function, which is done 
via so-called spherical parameterization techniques [47]. 
While some surfaces may not be bijectively transposable to 
the sphere by a simple radial projection (also referred 
to as nonstar-shaped surfaces), a classical approach is to 
project each Cartesian component of the surface inde-
pendently, yielding a vector of spherical functions 

( , ) ( , ) ( , )f f f fx y zi { i { i {= 6 @ [48]. Expanding f  thus yields 
three sets of SPHARM coefficients ( ) ( ) ( ) .C C C Cl

m
l
m

x l
m

y l
m

z= 6 @
Rotation invariant coefficients are subsequently obtained 
by considering their L2-norm: 

( ) ( ) ( ) .C C C C Cl
m

l
m

l
m

x l
m

y l
m

z
2 2 2= = + +t

SPHARM-BASED FEATURE DESIGN FOR CLASSIFICATION

Protocol
SPHARM expansion of the cell surfaces (cf. “Spherical 
Harmonics as Shape Descriptors”) is conducted with 
an empirical precision of ,l 5=  yielding an array of 21 
rotationally invariant coefficients per cell (this value 
depends on the application, and defines the balance 
between shape and noise information). 
The data set is then divided into groups of 

{ , , ..., }K 1 2 5!  randomly selected cells observed over 
{ , , , , , }Q 1 5 10 15 20 25!  consecutive frames (the start-

ing frame is random if Q  is less than the entire length 
of the video). We avoid imbalance in the training 
samples by randomly subsampling the larger class so 
that the sizes of both classes are identical. 
Finally, the coefficients are indexed throughout the 
data set as ( , , )C i qcelll

m
k

t  , where { , , ..., }i n1 2!  is the 
sample indicator, { , ..., }k K1!  indicates the cell, and 

{ , ..., }q Q1!  indicates the time at which the frame is 
acquired. From this data set, one can design a struc-
tured combination of features. Here we illustrate two 
possible combinations: 

Population features ( )n  are obtained by averaging 
each coefficient over Q  frames for each cell of a group, 
yielding K21  features: 

( , ) ( , , ) .i
Q

C i q1cell celll
m

k l
m

k
q

Q

1
n =

=

t/

Temporal features ( )nu  are obtained by averaging each 
coefficient over a group of K  cells in each frame, yield-
ing Q21  features: 

( , ) ( , , ) .i q
K

C i q1 celll
m

l
m

k
k

K

1
n =
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From these descriptors, a set of group structures can be 

derived:
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[TABLE 2] A COMPARISON OF SEVERAL SUPERVISED CLASSIFI-
CATION APPROACHES FOR CELL SHAPE CLASSIFICATION.

CLASSIFICATION METHOD SPHARM FEATURE SET ERROR (%)

k-NEAREST NEIGHBORS [64] STANDARD ( , )K Q1 1= = 43.96

POPULATION 33.75

TEMPORAL 26.25

COMBINED 29.23

DECISION TREES [65] STANDARD ( , )K Q1 1= = 45.52

POPULATION 35.94

TEMPORAL 31.67

COMBINED 30.94

SVM [57] STANDARD ( , )K Q1 1= = 42.69

POPULATION 27.73

TEMPORAL 18.08

COMBINED 20.00

STRUCTURED SVM [74] STANDARD ( , )K Q1 1= = 40.45

POPULATION 31.36

TEMPORAL 17.69

COMBINED 19.23
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quantification. Such software can be 
classified in two categories: general-
purpose image-based quantification 
software for which specific third-
party modules for cellular analysis 
have been developed (this is notably 
the case of Fiji/ImageJ [60] and Icy 
[59]), and more streamlined software 
dedicated almost exclusively to cell-based analysis (such as Cell-
Classifier [56], CellCognition [57], CellOrganizer [24], CellProfiler 

[22], EBImage [58], and Tango [61]). 
While some of these software pack-
ages limit their analysis to the 2-D 
case, the methods are in principle 
extensible to 3-D. This limitation is 
notably present in the field of high-
throughput, high-content screening 
(HT-HCS), where 3-D imaging con-

siderably increased acquisition and analysis times, alongside data 
management issues [22]. 
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[FIG4] The performance comparison of several classification methods on various combinations of SPHARM features. Each table cell 
indicates the classification error for a particular combination of the number of cells per group (K) and the number of time points per cell 
( ),Q  as defined in “SPHARM-Based Feature Design for Classification.” (a) Population features ( .)n  (b) Temporal features ( .)nu
(c) Population and temporal features ( .n, )nu

THE ROAD TO BUILDING A
THE CELL IS PAVED WITH MAJOR 

DIFFICULTIES IN TERMS
OF MATHEMATICAL MODELING 

AND SIGNAL PROCESSING.
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On the hardware side, recent efforts to make public blueprints 
and to increase the interaction between hardware and software has 
led to the development of so-called smart acquisition systems. 
Some of the key contributions on the hardware side include the 
Warwick Open Microscope System (http://wosmic.org) and the 
OpenSPIM project (http://openspim.org), while integrated hard-
ware and software approaches have been developed in several pro-
jects including nManager (http://micro-manager.org) and 
MicroPilot [73]. 

CASE STUDY: AMOEBOID CELL DEFORMATION
In this section, we illustrate the use of shape description and clas-
sification in the context of studying morphology and motility of 

Entamoeba histolytica, a unicellular parasite responsible for 
the amoebiasis disease. Recent studies in vitro and ex vivo have 
suggested that parasites specifically modified to prevent their 
degrading of the extracellular matrix remained able to migrate 
at the same speed as unmodified parasites, possibly due to sub-
tle shape changes that simple descriptors could not fully cap-
ture [32]. Illustrative slices of the 3-D data set are presented in 
Figure 2. Here cells are segmented using active contours [30], 
and described by SPHARM features (cf. [16] and “SPHARM as 
Shape Descriptors” and “SPHARM-Based Feature Design for 
Classification”). Although other combinations of methods and 
descriptors are possible, our aim here is to show how an ade-
quate design of feature vectors may lead to discoveries of sig-
nificant and interpretable differences between populations that 
otherwise seem visually identical. 

Table 2 reports the comparative performance of several clas-
sification approaches (described in “Classification Methods”) 
with various combinations of features. The performance is eval-
uated by leave-one-out cross-validation, while the entire leave-
one-out process is repeated for ten trials to report the averaged 
performance for each method. Both the temporal features 
(averaged over groups of cells) and population features (aver-
aged over a fixed number of frames) are tested against variable 
group sizes, as illustrated in the error rate heat-maps presented 
in Figure 4. As the group size increases, the classification per-
formance systematically improves, suggesting that more robust 
classification can be achieved by group-based analysis. Table 2 
further indicates that the best performance is obtained either 
using temporal features or a combination of temporal and pop-
ulation features. However, combining both feature sets does 
not necessarily yield the best performance, suggesting that 
temporal information is more discriminant. Finally, structured 
SVM imposes sparsity to select an optimal subset of features 
and has better classification performance. Also, by specifying 
the most predictive subset of features, the structured SVM has 
the advantage of providing feature interpretability. While each 
feature alone does not necessarily translate directly to biologi-
cal knowledge, this example illustrates that a careful and sys-
tematic design of the features can highlight significant and 
unexpected discrepancies between cell populations, which in 
turn can potentially lead to new interpretations and hypotheses 
that enhance the design of the next experiment. 

FUTURE PERSPECTIVES AND CHALLENGES
Numerous breakthroughs in imaging and computational tech-
niques have had a considerable impact on the amount of quantita-
tive data that describe the behavior of single cells evolving in their 
3-D environment. After suitable standardization, such data become 
amenable to proper mathematical characterization, invariant 
description, and classification. Thus, these tools have exciting 
potential to reveal the complexity of biological mechanisms at all 
spatial scales: 1) at the single cell level, the mechanisms and signals 
responsible for the transition between modes of migration (notably 
in cancer development); 2) at the group level, the short- and long-
distance signaling queues that induce cells to interact, differentiate, 

CLASSIFICATION METHODS
We consider an input feature set x Ri

p!  and the class 
labels { , },y 1 1i ! + -  where , ..., .i N1= Under this nota-
tion, we can describe the classification methods used in 
this review as follows. 

k-Nearest Neighbors 
Let ( )xNk  be the neighborhood of x  found by the k
nearest samples, defined by some metric, e.g., Euclid-
ean distance. The decision rule is defined by a majority 
vote on { | ( )} .x xy Nii k!

Decision Trees 
The decision tree is an greedy algorithm that adds split-
ting nodes to the tree by defining half planes 

{ | }xP x sj1 #=  and { | },xP x sj2 2=  in which x j  is the 
splitting variable and s  is the splitting point. At each can-
didate node, compute the impurity, e.g., the Gini index 

( ) ( ),I p p p p1 11 1 1 1= - + -- - + +

in which pk  is the fraction of class k  observed at that 
node. The splitting nodes are selected to improve the 
homogeneity sequentially, and the decision at each leaf 
node is by majority vote. 

SVMs 
Let ( )x wf x b= +l  be a decision function that assigns 
observation x  to ( ( )),xsign f  then ( )xf 0=  is a hyper-
plane in .Rp  In the general case, where classes are not 
linearly separable, the SVM is written as 

( , ) ( )min xV f R fi
f i

n

1
m+

=

/
with

( , ) ( ) , ( ) .x xV f y f R f w1 2
1

i ii 2
2< <= - =+6 @

Structured SVMs
The structured sparse SVM is formulated as an SVM but 
with a different regularization: 

,( , ) ( ) , ( )x xV f y f R f w1i ii I
g

G

1
2g< <= - =+

=

6 @ /

where Ig  is the set indexing the variables that are in the 

gth  group.
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or migrate to distant locations (e.g., for tissue repair and immune 
responses); and 3) at the tissue level, how information is propa-
gated across a dense cell network, and how this information is 
locally interpreted to drive cell intercalation, differentiation, and 
renewal (e.g., during embryo- and 
morphogenesis). In this article, we 
have highlighted some of the latest 
developments in quantitative tools 
and associated software packages to 
study some of these processes and 
illustrated how group-based analysis 
of cell morphology provides a much 
more powerful and discriminant 
description of a cell population as 
compared to single-cell analysis, while 
temporal information carries a significant potential to improve the 
overall classification performance. Yet, quantitative morphology of 
single cells is arguably only the visible part of the digital bioimag-
ing “iceberg.” 

The next major challenges in the bioimaging and biosignal 
processing field lie in studying spatiotemporal processes beyond 
single cells, from the nanoscopic to the macroscopic scale. At the 
subcellular level, the mechanisms that underlie cell deformation 
and motility are still poorly understood, mostly due to the lack of 
proper visual insight into the various architectural components 
(down to individual proteins) forming the cell cytoskeleton. The 
road to building a computational model of the cell (not to men-
tion the huge variety of cell types in plant or animal models) is 
paved with major difficulties in terms of mathematical modeling 
and signal processing and will require the development of novel 
biophysics-inspired algorithms to:  understand how the cytoskele-
ton is formed, acts, and reacts to internal and environmental sig-
nals; and generates force and adhesion that ultimately lead to 
deformation, movement, and division. At the macroscopic level, 
studying biological processes at large spatial and temporal scales 
requires the integrating of single-cell analyses over millions of 
cells and hours of imaging data in multiple modalities and experi-
mental conditions, raising major visualization and computational 
bottlenecks. One example of such a challenge is illustrated by the 
recent advances in selective plane illumination microscopy and 
its application to the reliable observation of embryonic develop-
ment in numerous animal models, from the single cell up to tens 
of thousands of cells [10]. Such data sets have already initiated 
many developments in image denoising, cell segmentation, cell 
tracking, and data manipulation software, however, comprehen-
sive modeling of the morphology and trajectory of these cells and 
their clustering into biologically relevant subpopulations remain 
open challenges. 
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I
n recent years, there has been an 
increasing interest in getting a 
proper quantitative understanding 
of cellular and molecular processes 
[1], [2]. One of the major chal-

lenges of current biomedical research 
is to characterize not only the spatial 
organization of these complex systems 
but also their spatiotemporal relation-
ships [3], [4]. Microscopy has matured 
to the point that it enables sensitive 
time-lapse imaging of cells in vivo and 
even of single molecules [5], [6]. Mak-
ing microscopy more quantitative brings important scientific 
benefits in the form of improved performance and reproducibil-
ity. This has been fostered by the development of technological 
achievements such as high-throughput microscopy. A direct 
consequence is that the size and complexity of image data are 
increasing. Time-lapse experiments commonly generate hun-
dreds to thousands of images, each containing hundreds of 
objects to be analyzed [7]. These data often cannot be analyzed 
manually because the manpower required would be too exten-
sive, which calls for automated methods for the analysis of bio-
medical images. Such computerized extraction of quantitative 
information out of the rapidly expanding amount of acquired 
data remains a major challenge. The development of the related 
algorithms is nontrivial and is one of the most active fronts in 
the new field of bioimage informatics [8]–[11]. Segmenting 
thousands of individual biological objects and tracking them 
over time is remarkably difficult. A typical algorithm will need 
to be tuned to the imaging modality and will have to cope with 
the fact that cells can be tightly packed and may appear in vari-
ous configurations, making them difficult to segregate. 

SNAKES (IN A NUTSHELL)
Deformable models have gained popu-
larity in segmentation and tracking 
applications [12] since they provide an 
excellent tradeoff between flexibility and 
efficiency. Within this category, active 
contours, also called snakes, are very 
popular tools for image segmentation. It 
can indeed be observed that, among the 
roughly 12,000 publications about 
active contours indexed by Thomson 
Reuters’ “Web of Science” (formerly 
known as the “Web of Knowledge”), 

about 2,000 have appeared within the past three years. 
In essence, an active contour is a curve that evolves within an 

image from some initial position toward the boundary of the 
object of interest, in our case, a biological target. In Figure 1, we 
show our favorite snakes segmenting a group of Helacyton 
gartleri (HeLa) nuclei within a microscopic image. The initial 
position of the snake is usually specified by the user or is other-
wise provided by an auxiliary rough detection algorithm. The evo-
lution of the snake is formulated as a minimization problem. The 
associated cost function is usually referred to as snake energy.

Snakes have become popular because they facilitate user 
interaction, not only when specifying initial positions but also 
during the segmentation process. The user is typically provided 
with tools to easily control the shape of the snake. Research on 
active contours has been fruitful and resulted in many variants. 
They usually differ in the type of representation and in the choice 
of the energy term. The choice and design of both the representa-
tion and energy of the snake highly depends on the application 
and image modality. 

CURRENT CHALLENGES
In the particular case of active contours for bioimage segmenta-
tion, several issues can be identified [13], [14]. In the following, we 
describe ongoing challenges for snake algorithms. 

[Ricard Delgado-Gonzalo, Virginie Uhlmann, Daniel Schmitter, and Michael Unser]

[A perfect snap for bioimage analysis]

Snakes on a Plane
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■ Robustness and stability: Active contours are intended to 
be practical. It is, therefore, of utmost importance to ensure 
robustness under real-life imaging conditions where sources 
of image degradation include noise, bias field, and low con-
trast. Such image artifacts often appear in biological data. 
Guaranteeing stability in their presence is a major challenge 
to ensure the usability of algorithms. 
■ Multitarget interaction: Bioimages rarely feature only one 
object of interest. In most situations, several targets, as well 
as undesired structures such as water bubbles or dust parti-
cles, are present in the image. Hence, a major requirement 
for efficient segmentation is to avoid confusion between 
nearby targets. Active contours must be designed to be able 
to discriminate between close or even overlapping objects, 
which is difficult to achieve.
■ Flexibility and shape priors: Another requirement that 
snake algorithms find difficult to satisfy is to balance flexibility 
(to accommodate a wide range of shapes) against sufficient con-
straints (to secure convergence of the optimization procedure). 
For instance, integrating prior knowledge about the shape to 
segment can be used efficiently to constrain the snake, but it 
often remains desirable to retain the capability to adapt to varia-
tions in size, orientation, and moderate deformations. 
■ Initialization: Snakes are semiautomated algorithms. The 
segmentation part is mostly automated through the optimi-
zation of the snake energy, but the initialization often relies 

on user input. Developing automated methods to conve-
niently initialize active contours is an area of open research. 
■ Snake–human interaction: Despite good initialization 
and efficient optimization, even the best segmentation algo-
rithm will occasionally fail to produce satisfying results. In 
the case of active contours, the natural abilities of snakes to 
accommodate user interaction will allow one to suitably 
modify results in a user-friendly way. 
■ Computational efficiency: It is crucial to provide reason-
ably fast implementations that run on standard computers, 
thereby enabling biologists to use them online for the analy-
sis of bioimages. 
■ Cell tracking: The last major image analysis challenge is to 
reliably segment thousands of individual biological objects and 
to track them over time. This is far from trivial due to the 
dependence on the imaging modality and the fact that the cells 
can be tightly packed in the growth chamber and may appear in 
various configurations making them difficult to segregate. 

SNAKE TAXONOMY
Several types of snakes have been proposed over the past few 
decades. They can be broadly classified in three categories: point, 
geodesic, and parametric snakes. In the following, we describe the 
strong and weak points of each representation while putting 
emphasis on parametric representations, which is the main focus 
of this article. 

The first category is made of point snakes, which are con-
structed on the most elementary representation of discrete curves. 
They simply consist of an ordered collection of neighboring points 
within a grid [15]. In Figure 2(a), we show an example of a two-
dimensional point snake overlaid on the grid associated to a dis-
crete image model. The discrete curve is displayed as shaded pixels 
and here satisfies an eight-neighbor connectivity. Due to the dis-
crete nature of the representation, the concept of smoothness 
makes no sense. However, an approximate measure of smoothness 
can still be defined and deployed in the energy functional of the 
snake. The principal drawback of this representation is that it 
relies on many parameters, even to encode simple shapes. The 
robustness of the overall segmentation algorithm hence suffers 
and results in a high computational complexity. 

The second category is made of geodesic snakes, which have 
been used extensively during the past decade [16]–[22]. These 
snakes are implicit, being described as the zero level set of a 
higher-dimensional manifold. In the usual formalism, the snake 
contour is given by ( ) { | ( ) },0 0p pRn1 !U U= =-  where U  is a 
scalar function defined over the image domain. A unique charac-
teristic of geodesic methods is that they can be extended to any 
number of dimensions. In Figure 2(b), we represent a set of curves 
generated as the result of computing ( ) .01U-  This approach  
originates from the work of Osher and Sethian, who aimed at 
modeling the propagation of solid–liquid interfaces with curva-
ture-dependent speeds [23]. In this framework, the interface (or 
front) is represented as a closed, nonintersecting hypersurface 
flowing along its gradient field with either constant speed or a 
speed that depends on the curvature. Applying motion to it then 

c [1]

c [2]

c [0]

c [3]

r (t )

[FIG1] A representation of the capabilities of parametric active 
contours at outlining HeLa nuclei in a fluorescence microscopic 
image. On the central cell, two contours are depicted: the 
parametric contour and the control polygon. The parametric 
contour ( )r t  is shown as a solid line enclosing a shaded region 
and corresponds to the actual segmentation result. The “+” 
elements represent the location of the free parameters of the 
model [ ] .c k  The latter define the control polygon through 
which the user interacts: this polygon can be adjusted to change 
the shape of the enclosed parametric curve.
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amounts to solve a Hamilton–Jacob-type equation written for a 
function in which the interface is a particular level set. This type of 
active contour has the interesting property of being particularly 
flexible in terms of topology. A single geodesic snake evolving 
under the appropriate energy functional is indeed able to split 
freely to segment disconnected objects within an image. This plas-
ticity is especially convenient when segmenting complex shapes 
(perhaps involving significant protrusions) and when no prior 
assumption about the topology of the object is available. But use-
ful geodesic models require many degrees of freedom. This makes 
it difficult to constrain shapes and can lead to overfitting in real-
world imaging conditions. Another drawback of geodesic 
approaches is their very expensive computational needs, mainly 
due to the fact that they evolve a manifold with a higher number 
of dimensions than the actual contour to segment. In summary, 
geodesic snakes, based on level sets, are convenient when the 
shapes of the objects to segment exhibit high variability. However, 
geodesic snakes are suboptimal when segmenting known shapes. 

The last category is made of parametric snakes. In this repre-
sentation, the snake is described by some discrete set of coefficients 
and a continuous parameter [25], [26]. Parametric snakes are usu-
ally built in a way that ensures continuity and smoothness. Many 
different techniques for representing continuous curves have been 
published; for a review, see [27]. The continuous definition of para-
metric snakes suggests that the segmentation task can be con-
ducted at arbitrary resolution, hence enabling subpixel accuracy. 
Another advantage is that these contours require much fewer 
coefficients and result in faster optimization schemes than point 
snakes or geodesic snakes. In the particular case of B-spline 

parameterizations, the computational complexity of the energy of 
the snake and, therefore, the speed of the optimization algorithms, 
is related to the degree of overlap of the basis functions [24]. This 
overlap is therefore a critical parameter to consider while designing 
parametric snakes. User interaction is usually achieved by allowing 
the user to specify anchor points for the curve to go through [15]. 
Smoothness and shape constraints can easily be introduced [28]. 
They are particularly suitable when the objects to segment have a 
reproducible shape that can be naturally encoded within the 
parameterization. The most relevant example is the segmentation 
of circles and ellipses. In medical imaging in particular, it is desir-
able to segment arteries and veins within tomographic slices. 
Because those physiological objects are tubes, their sections show 
up as ellipses in the image. Ellipse-like objects are also present at 
microscopic scales. For instance, cell nuclei are known to be nearly 
circular. Similarly, water drops are spherical. However, these ele-
ments deform and become elliptical or ellipsoidal when they are 
subject to stress forces. For approaching these problems, ultrafast 
parametric snakes were designed exploiting the properties of the 
parameterization, which led to high-throughput applications [29], 
[30]. The downside of parametric snakes is that the topology of the 
curve is imposed by the parameterization. Parametric snakes are 
thus less suitable than geodesic ones for accommodating changes 
of topology during optimization, though solutions have been pro-
posed for specific cases [31]. 

SPLINE SNAKES
Curve and surface parameterizations based on Fourier descriptors 
[32] and uniform B-spline functions [24], [26] are popular in 
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[FIG2] A depiction of the three main families of active contours. (a) The discrete curve defined by a point snake over the grid associated 
to a discrete image model. (b) Continuous curves defined as the zero level set ( )01U-  of a scalar function .U  (c) The continuous curve 
defined by a B-spline basis. The snake contour is shown as a solid line enclosing a shaded region, while the “+” elements are the 
control points of the spline. The parametric coordinate functions ( )x t1  and ( )x t2  are displayed in solid lines, and the dashed lines 
indicate the weighted basis functions.
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image processing due to the existence of efficient signal process-
ing algorithms and to their invariance to affine transformations. 
Among these, the B-spline curves have the unique advantage of 
featuring locality of control, hence, favoring user-friendly interac-
tions with the snake. We show in Figure 2(c) an example of a 
curve parameterized with a B-spline basis, its spline control 
points, as well as its corresponding coordinate functions. 

Formally, the parameterization of these snakes is expressed as 
a curve ( )tr  on the plane. This curve corresponds to a pair of Car-
tesian coordinate functions ( )x t1  and ( ),x t2  where t R!  is a 
continuous parameter. The one-dimensional functions ( )x t1  and 

( )x t2  are efficiently parameterized by linear combinations of suit-
able basis functions .kz  The parametric representation of the 
active contour can be expressed as the vectorial equation 

( ) [ ] ( ),t k tr c
k

M

k
0

1

z=
=

-

/ (1)

with { [ ]}kc k Z!  a sequence of control points. The number M  of 
control points determines the degrees of freedom in the model. 
Small numbers lead to constrained shapes; large numbers lead to 
additional flexibility and more general shapes. 

In the case of spline snakes, typical bases are those derived 
from a compactly supported generator z  and its integer shifts 
{ (· )} .k k Zz - !  Hence, ( ) ( )t Mt kkz z= -  in (1). In this setting, 
fast and stable interpolation algorithms can be used [33] to com-
pute the curve. As an illustrative example, three commonly used 
functions to generate spline snakes are represented in Figure 3. 
Along with the plot of the functions, the curves generated by the 
same set of control points and each of the depicted functions fol-
lowing (1) are also illustrated. 

A noticeable technical feature of spline snakes is their compu-
tational cost. Computing points on a spline curve is extremely effi-
cient [34]. It can be shown that the expense for computing any 
point ( )tr 0  on the spline curve is proportional to the support of 
the basis function z  [35]. Moreover, the length of the support of a 
spline basis function is directly related to the degree of regularity 
of the function, and therefore to its approximation power [36]. 
Therefore, there is a tradeoff between computational complexity 
and the approximation properties of the model. The choice of the 
basis function z  is hence influenced by two aspects: the computa-
tional complexity of the resulting segmentation algorithm and the 
ability of the snake to adopt specific shapes and to retain smooth-
ness. This has led to research toward obtaining minimum-support 
basis functions that preserve good reproduction properties [24]. 

It is desirable for the parametric curve to satisfy several proper-
ties. First, the representation should be unique and stable. The 
snake should indeed be defined by its coefficients in such a way 
that the unicity of representation of ( )x t1  and ( )x t2  is guaranteed 
and that the interpolation procedure is ensured to be numerically 
stable. This requirement translates into the so-called Riesz-basis 
condition on the generating function ,z  for which space- and 
time-domain formulations exist. Second, as it is preferable for the 
model to be able to represent shapes irrespective of their position 
and orientation, invariance to affine transformations has to be 
enforced. This constraint yields the partition-of-unity condition, 

well known in approximation theory. It implies that z  is capable 
of reproducing constants; consequently, the snake gains the ability 
to approximate any curve when the number of control points 
increases. Finally, the last common prerequisite is that the curva-
ture of the parametric snake should be a bounded function with 
respect to .t  This imposes for the basis ,z  or, equivalently, for 
each coordinate function, to be at least ( )RC1  with bounded sec-
ond derivative. Starting from these three basic requirements, spe-
cific functions can be designed by imposing additional 
characteristics on the generator ,z  for instance, the ability to 
reproduce ellipses [37], or to control the tangents [38]. 

Under the parametric representation, snakes made of closed 
curves can be described with a periodic sequence of control points. 
In this case, both ( )x t1  and ( )x t2  are periodic with the same 
period. When normalized to unity such that ( ) ( )t t 1r r= +  for all 
t R!  and divided into M  segments, ( )tr  involves weighted peri-
odized basis functions. Under some mild refinability conditions, 
this model naturally leads to a stationary subdivision scheme. 
Closed parametric snakes hence appear to be particularly conve-
nient for the segmentation of cells and cellular components. 

Alternatively, open-ended active contours can also be generated 
with suitable basis functions. Natural conditions on the extremities 
of the curve typically involve two complementary interpolation 
functions that provide both point-wise and tangential control [38]. 
Such snakes have been applied to the segmentation of ridgelike 
objects such as chromosomes and thin rod-shaped bacteria. 

ENERGY-GUIDED SEGMENTATION
The segmentation process with snakes is formulated as an 
energy-minimization problem. The quality of segmentation is 
determined by the choice of the energy terms; it is generally 
agreed that specific image energies need to be defined for each 
particular imaging device. Kass et al. [15] originally formulated 
the snake energy as a linear combination of three terms: 

■ the image energy, ,Eimage  which is purely data driven  
■ the internal energy, ,Eint  which ensures that the seg-
mented region has smooth boundaries  
■ the constraint energy, ,Ec  which provides a means for the 
user to interact with the snake.

The total energy of the snake is written as 

( ) ( ) ( ) ( ),E E E Eintsnake image cH H H H= + + (2)

where H  encodes the snake representation (snake points, parame-
ters, or manifolds). Then, the optimal H  is formally obtained as 

( ) .arg min Eopt snakeH H=
H

The energy-minimization process is nothing but an optimiza-
tion procedure, where the snake representation is iteratively 
updated so as to reach the minimum of the energy function from a 
starting position. This starting position is usually specified by the 
user. However, many application-dependent techniques exist capa-
ble of providing a first estimate of the position of the target (e.g.,
thresholding, difference of Gaussians (DoG) filtering, match 
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filtering, watershed transform, and Hough transform). In Figure 4, 
we illustrate the convergence of our favorite snake segmenting a 
cell. Many methods exist to minimize the energy functional (e.g.,
gradient descent, partial differential equations, and dynamic pro-
gramming), and each optimization scheme is usually linked to a 
particular representation of the snake. In the case of spline snakes, 
the optimization refers to iteratively updating the position of the 
control points, and the fastest approaches usually are gradient-based 
methods. These techniques require a smooth energy functional as 
the optimizing process relies on the computation of the partial 
derivative of the energy with respect to the control points, 
( ) / ( [ ]) .cE ksnake2 2  When splines basis functions are involved, the 
cost of this calculation is proportional to the degree of overlap of .z

The image energy is the most important of the three terms 
in (2) since it is the one that guides the snake to the object of 
interest. Traditional snakes rely on edge maps derived from the 
image [15], [28]. These edge-based energies can provide a good 
localization of the contour of the object to segment. However, 
they have a narrow basin of attraction, making their success 
depend on the quality of their initialization. Several authors 
have developed alternative solutions to this lack of robustness. 
The most important ones are the introduction of balloon forces 
[41], the introduction of gradient vector-fields defined every-
where on the image domain [42], or multiresolution approaches 
[26], [43]. Image energies can also use statistical information to 
distinguish different homogeneous regions [25], [30]. The 
region-based energies have a larger basin of attraction and can 
converge even if explicit edges are not present [44]. However, 
they provide worse localization than edge-based image energies. 
Image energies often require the computation of surface integrals, 
which are computationally expensive. Applying Green’s theorem 
to convert them into line integrals provides a way to drastically 
decrease the computational load [35]. 

The internal energy is responsible for ensuring the smoothness 
of the snake. It combines the length of the contour and the curva-
ture of the snake [15] and still corresponds to the most widely 
used [45]. Some authors also incorporate prior knowledge as 
shape constraints in this energy [59]. 

The constraint energy provides a means for the user to interact 
with the snake. Usually, this is obtained by introducing an energy 
functional that behaves as virtual springs that pull the snake 
toward the desired points [35]. Some implementations obviate the 
constraint energy while accommodating user interaction as hard 
constraints [37]. 

The parameters regulating the specifics of each energy and 
the tradeoff between them are usually specified by the user. In 
automatic pipelines, the full segmentation algorithm is trained 
on real images for a particular application. This usually provides a 
range of acceptable values that exchange robustness and accuracy 
in the overall segmentation algorithm. 

Instead of (2), an alternative minimization framework is the 
multipurpose Mumford–Shah functional. In this framework, the 
image is modeled as a piecewise-smooth function. The functional 
penalizes the distance between the model and the input image, 
the lack of smoothness of the model within the subregions, and 
the length of the boundaries of the subregions. This approach is 
quite popular in the context of geodesic snakes [44]. 

The optimization process can sometimes lead to self-
intersecting snakes. This phenomenon may arise when the image 
energy forces some control points to move faster than others. This 
compromises the approach based on Green’s theorem, which 
assumes non-self-intersecting structures and makes some snake 
variants unsuitable for segmenting the edges of filament-like 
structures (e.g., axons). An extensive body of research can be found 
on the intersection problem, with numerous articles presenting 
different approaches for the intersection of free-form curves and 
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[FIG3] A comparison between the curves generated by three different basis functions ( )tz  using the same set of control points. 
(a) The linear B-spline, (b) quadratic B-spline, and (c) minimum-support ellipse-reproducing spline [24]. 
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surfaces [46]. When a self-intersection is detected, there are several 
ways to proceed. Some authors split their shape descriptor in a way 
that new smaller snakes are born [31]. Others preserve the topol-
ogy by introducing self-repulsive forces [47] or opting to stop the 
optimization routine and ask for user assistance [37]. 

OPEN-SOURCE FRAMEWORK
In the context of bioimaging, an interactive and user-friendly 
implementation of the framework is crucial. Since parametric 
snakes are completely defined by their control points and the 
generator basis function, the intuitive manipulation of the 
snakes can be achieved by letting the user directly move the 
control points with mouse-dragging gestures [29], [37]. Various 
ready-to-use implementations of parametric snakes are freely 
available as plug-ins for most popular bioimage platforms such 

as Fiji [10], Icy [11], and ImageJ [48]. More recently, some also 
have been made available for tablets. Other solutions consist of 
providing libraries that have active contour models integrated, 
such as the Insight Toolkit that can be used to develop custom 
applications [49]. 

BIOMEDICAL APPLICATIONS
The advantageous characteristics of snakes have attracted the 
attention of many researchers working with biological imaging 
data. For example, a biologist might require the segmentation of 
structures at a large scale (see Figure 5), meaning that an auto-
matic application based on high-throughput analysis is required. 
Meanwhile, if a few but large objects need to be segmented where 
small details are important, an interactive scheme might be more 
suitable (see Figure 6). 

(a) (b) (c) (d)

(a) (b) (c) (d)

[FIG4] The typical evolution of a parametric active contour during optimization. (a) A five-control point snake is first initialized as a 
circle roughly in the center of the target cell. Upon optimization, (b) and (c), the contour is automatically deformed and 
monotonically converges from its initial position to a minimizer of the snake energy. (d) At convergence, the snake precisely 
outlines the target cell.

[FIG5] Applications of parametric active contours to the segmentation and tracking. (a) The egmentation of steel needles within a 
cross-section of a block of concrete. The needles are cylindrical rods of identical diameter and length. Since the intersection of the plane 
of the cut with a cylindrical needle takes the shape of an ellipse, ovuscules are particularly appropriate tools for the task. The outer red 
contour represents an enclosing shell around the snake, whose volume is used to compute a region-based energy. This energy 
discriminates an object from its background by maximizing the contrast between the intensity of the data averaged within the volume 
enclosed by the snake (i.e., inner contour) and the intensity of the data averaged within the volume enclosed by the shell [30]. (b) The 
segmentation of rod-shaped yeast cells of the type Saccharomyces Cervisiae at a large scale. The segmentation problem is coupled 
with the task of detecting fluorescent proteins inside the cells (red/green dots). First, the red fluorescent proteins are detected at the 
poles of each cell. The blue line connecting them indicates the orientation of the cell, which is used for the initialization of the snake. 
Because the cells all have the same shape (but different sizes), prior knowledge was integrated in the design of the snake [39]. (c) The 
segmentation and tracking of a dense set of yeast cells within phase-contrast microscopic images. In this application, the tracking was 
performed using a graph-based algorithm that matched snakes across time maintaining temporal consistency (i.e., smooth 
trajectories). The snake-defining nodes were used as low-dimensionality descriptor for the inner states of the Bayesian tracker [4], [40]. 
(d) The segmentation of HeLa nuclei that express fluorescent core histone 2B on an RNAi live cell array [37].
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A vast literature exists on the use of snakes to segment biological 
structures such as biological tissues (nerve fibers [50], [51]), cell struc-
tures (mitochondria [52]), protein-based structures (actin filaments 
[53]), or model organisms such as zebra fish embryos [54] or C. ele-
gans (see Figure 5). The versatile nature of snakes makes them suit-
able for problems that combine segmentation and tracking (Leukocyte 
tracking [55], motility analysis [56]), organelle tracking (microtubule 
tracking), or even the reconstruction of cell lineages [57]. 
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[FIG6] Applications of parametric active contours to the segmentation of structures in organisms. The “+” elements represent  
the control points, and their location define the effective contour of the snakes. (a) The segmentation of the body and legs of a 
Drosophila fly. (b) The detection of the anteroposterior axis of a Caenorhabditis elegans with nuclear staining [38]. (c) The 
detection of the structure of the embryo of a Drosophila fly within a stack of even-skipped confocal images [58]. (d) The 
detection of the structure of the wing pouch of a Drosophila fly within a stack of Wg-Ptc labeled confocal images [58]. 
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F
luorescence microscopy is cur-
rently the most important tool 
for visualizing biological struc-
tures at the subcellular scale. 
The combination of fluores-

cence, which enables a high imaging 
contrast, and the possibility to apply 
molecular labeling, which allows for a 
high imaging specificity, makes it a pow-
erful imaging modality. The use of fluorescence microscopy has 
risen tremendously, in particular since the introduction of the 
green fluorescent protein (GFP) in the mid-1990s and the possibil-
ity to genetically engineer cells to express these proteins. Figure 1 
shows the basic layout of a fluorescence microscope. Excitation 
light of a certain wavelength is reflected via a dichroic beamsplitter 
and projected onto the specimen via the objective lens of the 
microscope. The light is absorbed by the fluorescent labels and re-
emitted, slightly Stokes-shifted by ~10–100 nm, at a larger wave-
length, typically a few nanoseconds later. The emission light is 

captured by the objective lens and 
directed toward the camera via the 
dichroic beamsplitter.

The resolution of a state-of-the-art mi-
croscope is limited by diffraction to a 
length scale / / ,2 NAm  where m is the emis-
sion wavelength, and ( )sinnNA a=  is 
the so-called numerical aperture (NA) of 
the microscope, where n is the refractive 

index of the immersion medium n  and a  is the marginal ray an-
gle of the collected beam (see Figure 1). For visible light and high-
NA immersion objectives, this gives resolutions ~200 nm. While 
this is sufficient for imaging many subcellular structures, it is in-
sufficient for providing an image of the molecular machinery that 
underlies the functioning of the cell. Electron microscopy, howev-
er, can reveal image detail on the order of nanometers but does not 
allow live-cell imaging nor efficient specific labeling. 

Over the last decade, a number of optical nanoscopy techniques 
have been proposed to bridge the resolution gap between electron 
and conventional light microscopy. Localization microscopy is one 
of these superresolution techniques [1]–[4]. These techniques rely 
on the localization of single fluorescent molecules, which was 
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already commonly done, e.g., in the 
field of single particle tracking before 
the advent of localization microscopy 
[5]. In localization microscopy, the 
fluorescent labels are photochemi-
cally manipulated to switch on and 
off stochastically, such that at each 
instant in time only a sparse subset of 
all molecules is in the on-state in 
which they can fluoresce. By now 
there is a whole plethora of stochastic 
switching mechanisms and suitable 
fluorescent labels [4]. The required ratio of on/off times to see only 
single emitters in a region of size /NAm  depends on the labeling 
density, camera frame time, etc., but is typically fewer than 1/100. 
Recording many frames of blinking emitting molecules thus pro-
vides a sequence of images of different random subsets of all mole-
cules. The active molecules appear as well-separated spots that can 
be identified and processed to provide the position of the mole-
cules. The localization precision is on the order of 

/ / N 10NA ph .m  nm with Nph  the number of detected photons 
(typically a few hundred to a few thousand). Assembling the local-
ization data obtained from all frames into one visualization of the 
final superresolution image reveals details on the length scale of 
10–100 nm; this is about one order below the diffraction limit of 
conventional light microscopy. 

The necessary technology for 
localization microscopy is not pro-
hibitive: a state-of-the-art setup only 
requires a fluorescence microscope, 
powerful light sources, and a camera 
with high quantum efficiency and 
low readout noise. Next to this hard-
ware, software for image processing 
and analysis is essential for extract-
ing the desired molecular locations 
in a robust, optimal, and fast way. In 
this review article, we detail the 

image processing and workflow from raw camera frames to the 
visualization and quantitative analysis of the superresolution 
image. Figure 2 shows an overview of this workflow. 

THE IMAGE PROCESSING PIPELINE

SEGMENTATION
The first step in processing the raw frames consists of identify-
ing and segmenting regions of interest (ROIs) that contain the 
emissions of single fluorescent emitters. Usually this is done by 
thresholding the raw frames based on the pixel intensity rela-
tive to the (local) background noise level [1], [2]. Pixels in 
which the value is larger than a fixed threshold value or larger 
than a multiple of the background intensity b  are taken as the 
center of ROIs that are used for localization of possible fluoro-
phore positions in the next processing step. 

Besides this basic thresholding approach, more advanced 
segmentation algorithms have also been proposed. In one pro-
posed method, the raw images are first decomposed into wavelet 
maps to separate the fluorescence signal from bloblike sources 
from the background intensity and noise [6], [7]. Subsequently, 
ROIs are identified using a watershed segmentation algorithm. 

Another approach to identifying ROIs makes explicit use of 
local hypothesis testing against the null hypothesis that a pixel 
belongs to the local background. This is achieved by computing 
the P-value for each pixel under the assumption that it is drawn 
from a normal distribution with the local mean and standard 
deviation of pixel values as parameters [8]. A related method 
that was proposed for single particle tracking employs a likeli-
hood ratio test in each pixel. In this test, the ratio is computed 
between the likelihoods of the null hypothesis and that of the 
hypothesis of having a single emission from a fluorophore in 
the center of the pixel, assuming that the noise per pixel is 
Gaussian [9]. Under the null hypothesis, this ratio follows a chi-
squared distribution. Pixels are thus thresholded based on the 
P-value of the chi-squared distribution for the likelihood ratio 
value of that pixel. 

Segmentation algorithms typically assume a locally uniform 
background intensity. This is reasonable if the ROI is only a few 
pixels wide, unless there is a high degree of autofluorescence and 
the fluorophores themselves are relatively dim. For such cases, 
temporal median filtering has been proposed as a method for esti-
mating the local background intensity [10].

[FIG1] The schematics of an epi-fluorescence light microscope. 
The excitation light is focused onto the sample and the emission 
light is captured by the same lens and recorded on a camera. The 
dichroic mirror is chosen such that it reflects the excitation light 
but transmits the fluorescent emission light, which is of a slightly 
larger wavelength. The objective is characterized by the NA, 
which combines the refractive index of the immersion medium 
n  and the maximum angle a  at which light is captured.
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SINGLE-MOLECULE LOCALIZATION
Once ROIs in the raw data have been segmented, the next step is 
to estimate the positions of the emitting fluorescent molecules in 
these regions. The most common approaches for this are the cen-
ter of mass (CM) algorithm and algorithms that fit a point spread 
function (PSF) model to the data with a (weighted) least-squares 
(LS) estimator or a maximum likelihood estimator (MLE). 

The CM algorithm computes the center of the intensity dis-
tribution. In the absence of any background intensity, this 
estimate corresponds well to the emitter’s true location. How-
ever, for nonnegligible background intensities, this leads to a 
bias toward the CM of the background intensity, which is usu-
ally in the center of the ROI. Therefore the local background 

intensity needs to be estimated and subtracted before the CM 
can be computed. 

LS and MLE algorithms attempt to fit a PSF model to the pixel 
intensities in a ROI. Typically the PSF model consists of a circu-
larly symmetric Gaussian function for two-dimensional (2-D) 
localization microscopy 

, .PSF x y e
2

1
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x x y y

2 2 g

c c
2

2 2

rv
= v

-
- + -

^
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Here the parameters xc  and yc  denote the position of the emitter 
in the x- and y-direction and gv  specifies the width of the PSF. 
The Gaussian PSF model is not derived from optical theory but is 
instead chosen for its conceptual simplicity and computational 
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[FIG2] The complete pipeline for generating a 2-D superresolution image based on raw frames of sparsely activated fluorophores. The 
consecutive steps in this pipeline are acquisition of raw data, segmentation of ROIs, localization of potential fluorophores in the ROIs, 
postprocessing of the localizations (e.g., filtering, frame connection, drift correction), and visualization of the localizations.
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efficiency. However, for typical imaging conditions, the Gaussian 
PSF approximates the theoretical PSF sufficiently well for accu-
rate and precise localization [11], [12]. 

From the PSF model follows the expected intensity kn  per 
pixel k  that is fitted to the data 

, ,PSFI u v dudv bk
A

0
k

n = +^ h# (2)

where I0  denotes the sum intensity of the fluorophore, b  the 
expected background photon count, and the integration runs over 
the area Ak  of the kth pixel. The parameters that are to be esti-
mated are thus , , , ,x y I bc c 0  and possibly .gv

In addition to an optical model for ,kn  fitting the PSF model 
to the data also requires a noise model for the imaging system. LS 
algorithms implicitly assume a Gaussian noise model, whereas the 
slower but more precise MLE algorithms assume a Poissonian 
noise model. The latter algorithms can be implemented on a 
graphical processing unit (GPU) to estimate the positions of many 
emitters in parallel and so achieve real-time computation [13]. 

An important issue in localization microscopy is the precision 
with which single fluorophores can be localized [14]–[16]. This is 
often analyzed using the concept of the Cramér–Rao lower bound 
(CRLB), which expresses the lowest variance of any unbiased esti-
mator of a fluorophore’s position for a given noise model [17]. For 
a Poissonian noise model, a good analytical approximation for this 
bound is given by [18]  

.x N 1 4 1 4
2e2

2

loc
v

x
x
xD = + +
+

c m (3)

Here N  is the number of signal photons, /a 12e g
2 2 2v v= +  with 

a2  is the pixel area, and x  is a normalized dimensionless back-
ground parameter /b Na2 g

2 2x rv= ^ h with b  the number of 
background photons per pixel. 

The noise in the commonly used scientific CMOS (sCMOS) and 
electron multiplying charge-coupled device (EMCCD) cameras 
deviates from the Poisson noise model in two important ways. 
sCMOS cameras suffer from a small amount of (pixel-dependent) 
Gaussian readout noise, which effectively acts as if b  is increased 
with the variance of the readout noise [19]. EMCCD cameras suf-
fer much less from readout noise due to the electron multiplica-
tion process. However, the stochasticity of this process also 
introduces so-called excess noise, which typically deteriorates the 
localization variance x 2

locD  by a factor of two [20]. Balancing the 
effects of readout noise and excess noise implies that sCMOS cam-
eras are preferred over EMCCD cameras, except in extremely low 
light conditions that are not typically encountered in localization 
microscopy [19]. Other considerations in choosing between cam-
eras are that EMCCD cameras have a better photosensitivity, and 
that sCMOS cameras typically have a smaller physical pixel size 
and faster frame rate. Finally, sCMOS cameras require a calibra-
tion of the gain and readout noise of each pixel for accurate local-
ization because they often vary substantially among different 
pixels on the same camera. For a more extensive introduction into 
the choice of localization algorithm, we refer to the review in [21]. 

POSTPROCESSING
After all the segmented ROIs have been processed by the local-
ization algorithm, postprocessing of the raw localizations is 
needed. In the first postprocessing step, raw localizations are 
usually filtered. The goal of this filtering is to remove localiza-
tions that do not represent accurate position estimates of single 
fluorescent molecules, e.g., because they are due to overlapping 
emissions of multiple fluorophores or due to autofluorescence 
or residual sample contaminations. The filtering is usually done 
based on information that is returned by the localization algo-
rithm, such as the estimated intensity of the fluorophore, the 
localization precision, the width of the PSF, as well as on the 
goodness of fit of the model to the data [1], [22]. The latter can 
be expressed as the (weighted) sum of squared errors between 
the fitted model and the data or as a ratio between the likeli-
hoods of a fluorophore being present or absent. 

In the second postprocessing step, localizations originating 
from the same fluorophore in consecutive frames of the raw 
image sequence are combined. This is attempted by searching 
for localizations in subsequent frames that are also spatially 
proximate, typically within a few times the estimated localization 
precision. The rationale for this operation is that fluorophores 
are often visible in multiple consecutive frames before transition-
ing into a stable dark state or photobleached state, whereas it is 
unlikely that a nearby fluorophore starts emitting during this 
time. In practice, fluorophores will not always be localized in all 
frames before going into a stable dark state, either due to failures 
of the localization algorithm or due to short blinking events dur-
ing which the fluorophores briefly stop emitting light. Therefore, 
spatially proximate localizations are usually still combined if they 
are only a few frames apart in time [23]. 

A third common postprocessing operation is to correct for 
drift during the acquisition. Since localization microscopy 
experiments can last anywhere from a few minutes up to several 
hours, the sample often moves relative to the detector over dis-
tances larger than the localization precision of about 10 nm. 
This movement can be reduced with hardware solutions, e.g., by 
mechanically fixing the objective lens to the stage or by using a 
control system that actively controls the position of the sample 
in the image plane [24], [25]. Axial drift, causing the sample to 
drift out of focus, must be suppressed or controlled just as well 
as the lateral drift in the image plane. 

One option is to add fiducial markers such as fluorescent micro-
beads to the sample that are visible during the entire acquisition [1]. 
These fiducial beads can then be localized and used to determine the 
position of the sample at each moment in time. Another option for 
drift correction is to estimate the shifts between images of the sam-
ple at different time points. This can be achieved by determining the 
maximum of the cross-correlation [24], [26], [27] between these 
images, which can either be raw camera images or superresolution 
images that visualize the localizations from these frames. The latter, 
however, is preferred for precision due to the larger high-frequency 
content of the superresolution image. The shift estimation should 
not be done between subsequent images only, as this leads to com-
pounding of registration errors, but between image pairs further 
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apart in time. The main benefit of this 
approach is that it does not require 
any changes on the experimental side. 

VISUALIZATION
The final step in the processing pipe-
line from raw data to superresolu-
tion image is the actual visualization 
of the data. For standard fluores-
cence microscopy acquisitions, this 
sampling occurs in the camera 
where the pixel positions along with 
the magnification determine the 
sampling of the image. In addition, 
the values per pixel are determined by the number of recorded 
photons per pixel bin that are translated into analog-to-digital 
units (ADUs) with a linear amplification factor. Unlike these stan-
dard fluorescence microscopy techniques, localization micros-
copy does not sample an image at pixel locations but produces a 
list of coordinates that represent the estimated fluorophore 
locations. 

Several methods have been proposed for visualizing localiza-
tions in pixelated images that can be shown on a display device 
[28]. First, a scatterplot can be made of the localizations where the 
coordinates are plotted as a symbol in a Cartesian coordinate sys-
tem [2]. Second, a histogram image can be made where the field 
of view is divided into square pixel bins and the number of local-
izations that fall in each bin is counted and used to assign inten-
sity values to pixels. The resulting images often have a low 
signal-to-noise-ratio (SNR) per pixel and may cause aliasing prob-
lems if the resolution of the display device is too low. Therefore, 
these images are often blurred with a Gaussian kernel with a size 
on the order of the average estimated localization precision. 

Third, localizations may be rendered as Gaussian blobs with a 
variable width proportional to their estimated localization preci-
sions [1]. Alternatively, a fast method for obtaining a similar image 
is to sum several histogram images where the localizations are jit-
tered for each image with a zero-mean normal probability distribu-
tion with a standard deviation proportional to the localization 

precision per localization [22]. These 
visualization methods have the bene-
fit of conveying information about 
the precision of each localization in 
the images. However, additional fac-
tors such as uncorrected stage drift 
also lead to additional blurring. 
Therefore the blobs in these images 
cannot always be taken to represent 
the likelihood functions for the posi-
tions of the localized fluorophores. 

Figure 3 shows an example where 
these visualization methods have 
been applied. In general, Gaussian 

rendering is the preferred method of visualization: it is best at con-
veying the information present in the data and it does not suffer 
much from aliasing with low-resolution displays. 

EXTENSIONS
Until now, the discussion focused in detail on the complete pipeline 
for generating a 2-D superresolution image based on raw frames of 
sparsely activated fluorophores. Here we will address several exten-
sions of this pipeline involving localization in three dimensions, 
multicolor localization, and imaging with overlapping spots. 

THREE-DIMENSIONAL LOCALIZATION
One important extension of 2-D localization microscopy imag-
ing is the localization of fluorophores in three dimensions. This 
requires information about the axial position of the fluorophore 
is present and can be extracted from the recordings. 

A first approach to this problem is to modify the optical setup 
such that the shape and/or size of the PSF can be uniquely related 
to the axial position of the fluorophore. The most common 
method to achieve this is to introduce astigmatism into the optical 
system [24]. This causes the minimum width of the PSF in the 
x- and y-direction to occur at different axial positions. The posi-
tion can then be determined based on the ellipticity of the PSF. 

A second approach to obtain the axial position is to modify the 
setup such that multiple images of the fluorophores with different 

[FIG3] An illustration of commonly used visualization methods. (a) The scatterplot method, (b) histogram binning method, (c) Gaussian 
rendering method, and (d) jittered binning method. The scale bar is 200 nm.

(a) (b) (c) (d)
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defocus are simultaneously acquired. This is usually accomplished 
with a beam splitter that splits the emission light into two chan-
nels with different optical path lengths to the camera, such that 
the two images of the fluorophores are defocused with respect to 
each other [29]. 

For both these approaches to three-dimensional (3-D) localiza-
tion, the PSF model that is used in the basic 2-D localization algo-
rithm needs to be modified. The modified PSF model must 
provide a specification of the appearance of the fluorophore for the 
full range of axial positions under consideration and for all image 
channels on which it is observed. The PSF shapes for 3-D localiza-
tion techniques may be difficult to describe in an analytic formula 
such as the Gaussian PSF model. An example of this is the double-
helix PSF, where a spot doublet rotates with the axial focus posi-
tion [30]. In such cases, the PSF can also be determined 
numerically or empirically. The latter approach then requires sub-
sequent interpolation between the measured axial positions to 
provide a full specification of a fluorophore’s appearance. 

MULTICOLOR LOCALIZATION
Another important extension of the basic pipeline is the imaging 
of different labeled molecules in an experiment. A common 
method for doing this is to label these molecules with fluoro-
phores with different emission spectra [31]. Wavelength depen-
dent beam splitters are then inserted in the emission light path 
such that the light at different wavelengths ends up at different 
parts of the camera or at different cameras. The observed fluoro-
phores can subsequently be classified into the different used spe-
cies based on the fraction of the photons of each fluorophore 
ending up in the different color channels. Usually, though, the 
beam splitters are optimally selected such that each color channel 
only shows a single fluorescent species. 

An important problem that arises when imaging fluoro-
phores in different color channels is the registration of the vari-
ous channels with respect to each other. This needs to be done 
with an accuracy comparable to the localization precision, 
which is typically 10% or less of the camera pixel size. A com-
mon solution employs fiducial markers that are visible in all 
color channels. These markers are first imaged and localized, 
and subsequently, a nonaffine mapping function is computed 
that maps the positions of the markers in one color channel to 
their positions in the other channels [32]. 

An alternative approach to multicolor imaging is to use pho-
toswitchable dye pairs with different activator dyes but identical 
reporter dyes [31]. In this way, the wavelength of the illumina-
tion can be used to determine which dye pairs are activated and 
therefore which labeled molecules are imaged. The emitted 
light of all reporter dyes can then be imaged in a single image 
on the camera, thus circumventing chromatic aberration prob-
lems and obviating the need for a registration procedure 
between different images. 

HIGH-DENSITY METHODS
A common problem when localizing fluorophores is that seg-
mented ROIs contain overlapping spots of multiple 

active fluorophores. This issue is particularly important when 
the density of active fluorophores is high. Several solutions have 
been proposed that attempt to fit a PSF model to each of the 
spots in the ROI, either by fitting spots one by one [33] or by 
finding the model with the number of PSFs that best matches 
the data [34]. 

Several other methods for dealing with overlapping spots 
have been proposed that do not estimate fluorophore positions 
but rather estimate the density of fluorophores instead. One 
such approach is to deconvolve the entire raw data set [35]. This 
means that for each frame, a fluorophore density is estimated, 
which has the highest likelihood of producing the experimen-
tally recorded data after convolution with the PSF. To achieve sub-
diffraction resolution, this density is sampled with a smaller pixel 
size than the experimental data. The estimation also incorporates 
a prior probability for the density per frame that promotes spar-
sity: because relatively few emitters are active in each frame, the 
solution should also have few pixels with nonzero density. A 
related approach to estimating the density is provided by compres-
sive sensing [36], [37]. Unlike the deconvolution approach, an esti-
mate ,x yt^ h is made for each frame independently, which 
minimizes the balanced sum between a data misfit term and spar-
sity promoting “L1-norm” of the form , .x y

,x y
t^ h/  A subtlety 

in these approaches is that, in principle, the final estimated den-
sity is a relative rather than an absolute estimation of the 
molecular density, as fluorophores can reappear in the on-state 
multiple times during the data acquisition. 

The final approach to be mentioned here is called the Bayes-
ian analysis of the blinking and bleaching (3B) method [38]. In 
this method, the on- and off-switching and bleaching behavior 
of each fluorophore is modeled as a Markov process. Using this 
model, many different estimates are made of the number of flu-
orophores, their positions, and their activity in each frame. 
These estimates are then all used to create a probability map of 
the positions of the fluorophores. A major drawback of this 
method is its high computational cost. 

QUANTITATIVE IMAGE ANALYSIS

RESOLUTION QUANTIFICATION
Localization microscopy produces images that have a resolution 
below the diffraction limit. However, so far we have not 
answered this question: Exactly how far below the diffraction 
limit is the resolution in these images?  

The apparent width of structures is clearly blurred on the 
scale of the localization precision. Additional blurring is intro-
duced by sample drift and the nonzero size of the fluorescently 
labeled markers (e.g., antibodies). Another factor limiting res-
olution is that the molecules of interest are labeled with fluo-
rophores at a finite density. In addition to this, usually not all 
of the target molecules are labeled and not all labels result in 
actual localizations. So, both the overall density of recorded 
labels and the different blurring factors influence what detail 
can be reliably discerned. It is noteworthy that the sampling 
theorem does not apply here: the localizations that are 
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obtained are positions rather than samples of a bandwidth lim-
ited density function. 

Fourier ring correlation (FRC) provides a practical image-
resolution measure that incorporates all of the aforementioned 
factors that influence the resolution [39]. To compute the FRC 
resolution, the full set of estimated fluorophore positions is 
divided into two independent subsets. An image is then made 
for each subset, yielding two subimages ,f x y1 ^ h and , .f x y2 ^ h

Statistical correlation of their Fourier transforms f q1
t v^ h and 

f q2
t v^ h over the pixels on the perimeter of circles of constant spa-
tial frequency magnitude | |q q= v  then gives the FRC  
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For low spatial frequencies, the FRC curve is close to unity, and 
for high spatial frequencies, noise dominates the data and the 
FRC decays to zero. The image resolution is defined as the 
inverse of the spatial frequency /R q1 R=  for which the FRC 
curve drops below a given threshold. Various threshold criteria 
are in use in the field of cryo-EM, but the fixed threshold of 

( ) / .FRC q 1 7 0 143R .=  was empirically found to be the most 
appropriate for localization microscopy images. Thus the FRC 
resolution describes the length scale below which the image 
lacks signal content; smaller details are not resolved in the 
image. The steps needed to compute the FRC resolution are 
illustrated in Figure 4. 

CLUSTER ANALYSIS
Another common quantification task for localization microscopy is 
cluster analysis. In this analysis, the objective is to assess the degree 
to which the imaged molecules cluster together. In other words, 

the question is: To what extent does the distance distribution 
between the molecules differ from that of randomly distributed 
molecules? The two most common analysis techniques used for 
this problem are the pair correlation function and techniques based 
on Ripley’s K function. See Figure 5 for an illustrative example. 
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[FIG4] A schematic illustration of FRC resolution computation. The localizations are divided into two halves, and their Fourier 
transforms are correlated over the perimeters of circles in Fourier space of radius .q  The resulting FRC curve decays with spatial 
frequency, and the image resolution is taken to be the inverse of the spatial frequency qR  where the FRC curve drops below the 
threshold 1/7.
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[FIG5] A schematic illustration of cluster analysis. The cross-
correlation function ( )g r  indicates the average density of 
localizations around each localization at a distance .r  Ripley’s 
K analysis considers the number of localizations within a 
distance r  of each localization. The linearized version ( )L r  is 
equal to r  for randomly distributed localizations and thus 
allows for easy visualization of clustering of the localizations 
by plotting ( ) .L r r-
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The pair-correlation function g r^ h describes the average num-
ber of localizations at a distance r  from each other localization, 
normalized by the average density of localizations [40]  

, , , / .g x y x y x x y y 2t t t= - -l l l l^ ^ ^h h h (5)

Here ,x yt^ h is the density of localizations at position ( , ) .x y
When using the pair-correlation function to assess clustering, there 
are two important caveats that have to be taken into account. First, 
if fluorophores are localized multiple times then this will result in 
excess clustering on the length scale of the localization uncertainty 
which has to be accounted for. This will almost always be the case 
unless fluorescent proteins are used that are permanently photo-
bleached after their first photoactivation. Second, the pair-
correlation between localizations does not exactly reflect that of the 
actual labeled molecules due to the localization uncertainty. 

A closely related alternative to pair-correlation analysis is pro-
vided by the use of Ripley’s K function [41]. Ripley’s K function 
measures the average number of localizations within a distance r
from each other localization  

,K r
N
1

,i j
j ii

N

1t
d=

!=

^ h // (6)

where N  is the number of localizations and 1,i jd =  if the dis-
tance between localizations i  and j  is smaller than r  and zero 
otherwise. Often, the linearized functions /L r K r r=^ ^h h  or 
H r L r r= -^ ^h h  are used for data analysis, since the latter has an 
expected value of zero for a random distribution of localizations. 

IDENTICAL STRUCTURE AVERAGING
The resolution of localization microscopy can even be further 
increased by image processing in case the field-of-view contains 
many copies of identical structures or macromolecules. All super-
resolution reconstructions from these structures can then be seg-
mented and subsequently registered with respect to each other 
and added together. This results in one compound superresolution 
image of the structure with a very high effective localization den-
sity. This, in turn, increases the SNR and thus the resolution as 

detailed in the section “Resolution Quantification.” In addition, 
this registration can deal with partially unoccupied labeling sites 
on the structure as long as the empty labeling sites are random 
and even these incomplete structures contribute to an increased 
SNR. An example of identical structure averaging is given by 
superresolution imaging of the NPC, which is the gateway 
between the cell nucleus and the cytoplasm; compare Figure 6(a) 
and (b) [42], [43]. The same idea of averaging biological identical 
structures, but with low SNR of each individual image, has been 
employed by Engelenburg et al. [44] to gain insight into the pro-
tein distribution within HIV. 

OUTLOOK
As image processing and analysis is such an essential ingredient of 
superresolution microscopy, substantial efforts have already been 
dedicated to it over the years. The standard 2-D processing pipe-
line is now well established, but there are still significant opportu-
nities for improvement. In particular, the detection of all suitable 
ROIs that contain single molecule events and the filtering of local-
ization events are suitable topics, as these have been treated 
largely ad hoc rather than fundamentally. The reason that these 
tasks have been somewhat neglected is, in part, because a reason-
ably good superresolution reconstruction can be obtained without 
such a very fundamental treatment. The methods using deconvo-
lution on the raw data instead circumvent this problem; however, 
they suffer from other drawbacks (see the section “High-Density 
Methods”). We see a need for fast and reliable identifications of 
ROIs especially for very weak signals (fewer than a few hundred 
photons) on substantial background. Such signals are typically 
encountered when imaging fluorescent proteins, while imaging at 
high frame rates for live cell observation or when imaging deeper 
inside a cell or tissue ( ) .1 m2 n  We also foresee a rise for meth-
ods that deal with overlapping spots of proximate emitters, as 
higher active emitter densities are beneficial for faster and higher 
resolution imaging. Finally, quantitative image analysis methods 
in general and the use of prior knowledge in particular (as in the 
section “Identical Structure Averaging”) may further open up the 
nanoscopic world for image-based exploration. 
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S
ingle-molecule microscopy 
is a relatively new optical mi-
croscopy technique that allows 
the detection of individual 
molecules such as proteins in 

a cellular context. This technique has 
generated significant interest among bi-
ologists, biophysicists, and biochemists, 
as it holds the promise to provide novel 
insights into subcellular processes and 
structures that otherwise cannot be 
gained through traditional experimental 
approaches. Single-molecule experi-
ments place stringent demands on experimental and algorithmic 
tools due to the low signal levels and the presence of significant ex-
traneous noise sources. Consequently, this has necessitated the use 
of advanced statistical signal- and image-processing techniques for 
the design and analysis of single-molecule experiments. In this tu-
torial article, we provide an overview of single-molecule microsco-
py from early works to current applications and challenges. Specific 
emphasis will be on the quantitative aspects of this imaging modal-
ity, in particular single-molecule localization and resolvability, 
which will be discussed from an information-theoretic perspective. 
We review the stochastic framework for image formation, different 
types of estimation techniques, and expressions for the Fisher in-
formation matrix. We also discuss several open problems in the 
field that demand highly nontrivial signal processing algorithms. 

INTRODUCTION
Optical microscopy has a long history 
going back several centuries during 
which it was a key technique for the dis-
covery of biological processes. The basic 
optical principles have not changed, but 
what has changed in the instrumenta-
tion in recent decades is the availability 
of highly sensitive detectors, computer 
control, and powerful laser-based light 
sources [1], [2]. With these improve-
ments in instrumentation came the 
possibility to analyze the acquired 

microscopy data using advanced signal and image processing 
techniques (see, e.g., [3] and [4]). Equally important, however, are 
the major advances in molecular biology and physical chemistry 
that have drastically improved the available technology for the 
labeling of cellular specimens [5]–[7]. 

These technological developments coincided with a time when 
the revolution in molecular biology has demanded powerful explor-
atory tools for the investigation of molecular processes in cells [1], 
[7]. For example, through genomic analyses, biologists have identi-
fied a large array of proteins, such as growth factor receptors, that 
are known to play a role in cancer. Standard techniques in molecu-
lar biology and biophysics, e.g., X-ray crystallography, allow the 
study of these proteins to a very high level of detail. However, to 
investigate their biological functions, it is important that these 
proteins are studied in their cellular context. 

Fluorescence microscopy is the imaging technique of choice 
for the study of molecular processes within cells due to its ability 

[Raimund J. Ober, Amir Tahmasbi, Sripad Ram, Zhiping Lin, and Elizabeth Sally Ward]

[Information-theoretic analysis of single-molecule data]

Quantitative Aspects 
of Single-Molecule 

Microscopy
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to detect specifically labeled proteins, receptors, molecules, or 
structures [2], [7], [8]. There are, however, two aspects of fluores-
cence microscopy that limit its power. The first aspect is the spa-
tial resolution of optical microscopy, which is a measure of the 
ability to distinguish two closely spaced pointlike objects [9]. 
While molecular interactions occur on 
the low nanometer scale, classical reso-
lution criteria predict a resolution limit 
in the range of several hundred nano-
meters [9]–[11]. The second aspect is 
the sensitivity of the technique. A fluo-
rescent molecule emits only a limited 
number of photons [1], [12]. This fact, 
together with the limited resolution of 
an optical microscope, implies that in 
classical fluorescence microscopy only relatively large accumula-
tions of fluorescent molecules are detected. These detection limi-
tations of classical fluorescence microscopy, and in particular their 
associated averaging effects, stand in the way of examining the 
molecular processes and structures at the level of individual mole-
cules, i.e., precisely at the level that is required to study these phe-
nomena in full detail. 

Single-molecule microscopy is a technique that promises to 
overcome the deficiencies of classical fluorescence microscopy by 
allowing the detection of individual molecules rather than larger 
accumulations of molecules [1], [12]. Single-molecule micros-
copy goes back to the work by W.E. Moerner and L. Kador pub-
lished in 1989 [13], followed by that of M. Orrit and J. Bernard 
published in 1990 [14]. Among the many stages of development, 
we mention just a few. In 1991, the image of a single-molecule 
was recorded for the first time [15]. In 2003, single-molecule 
microscopy played a crucial role in the measurement of the step 
size that the molecular motor myosin V takes in moving along 
an actin filament in an in vitro model [16]. This was based on 
being able to estimate the location of the myosin V molecule 
within 1.5 nm [16]. The green fluorescent protein (GFP) brought 
about a major breakthrough in fluorescent microscopy of pro-
teins in living cells as the protein of interest can be genetically 
tagged by the GFP gene [5], [6]. The first single-molecule experi-
ments in live cells using a GFP tag were reported in [17] and 
[18]. In a series of papers, it was recognized that the classical res-
olution criteria do not apply and distances well below those crite-
ria can be measured using single-molecule microscopy [10], [11], 
[19]. One of the key observations was that resolution is signifi-
cantly improved if the molecules to be imaged are not excited at 
the same time [20]. Various photophysical processes were inves-
tigated such as blinking [19], photobleaching [11], and photo-
switching [21]. This knowledge was exploited in [21]–[23] when 
it was recognized that various fluorophores can be stochastically 
excited, which allows only a small number of the total fluoro-
phores present in a sample to be imaged at any time point. This 
led to the development of localization-based superresolution 
microscopy techniques [21]–[23]. The development of tech-
niques continues at a significant rate with the introduction of 
new approaches and refinements of existing ones. 

IMAGE FORMATION
Figure 1(a) shows the schematic of an optical microscope. Excita-
tion light from the light source is reflected off a dichroic mirror 
and passes through an objective lens to illuminate a fluorescent 
object (e.g., a point source) that is located in the object space. The 

fluorescence signal from the 
object is collected by the same 
objective lens, then passes 
through the dichroic mirror and 
an emission filter, and is focused 
on a detector by a tube lens. 
Image formation in an optical 
microscope can be described by 
optical diffraction theory [9]. A flu-
orophore, i.e., the fluorescent 

label of a single molecule, is typically modeled as a point source 
(i.e., a Dirac delta function) and as such its image is given by the 
point spread function (PSF), i.e., the impulse response, of the 
microscope [9]. For an in-focus single molecule, classical diffrac-
tion theory predicts that the image can be described by an Airy 
profile [see Figure 1(b)] whose analytical expression is given by [9] 

( ) , : ( , ) ,r
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a
= =
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where a  characterizes the width of the profile, J1  denotes the 
first-order Bessel function of the first kind, and ·  denotes the 
Euclidean norm. It is important to note that the Airy profile 
may not be an accurate model in practice and more advanced 
PSF models are available (see the section “Stochastic Descrip-
tion of Single-Molecule Data”) [24]–[26]. In addition, as will be 
discussed in the section “Imaging in Three Dimensions,” the 
image of an out-of-focus single molecule depends strongly on 
the distance from the plane of focus and is distinct from the 
Airy profile [9], [24]. A fluorescent object can be described as a 
collection of closely spaced single molecules. As an optical 
microscope can be modeled as a linear shift-invariant system 
[9], the image of a fluorescent object is the superposition of the 
images of point sources at the locations of the single molecules, 
i.e., the superposition of PSFs, translated according to the loca-
tions of the corresponding single molecules. 

Most important from our perspective is that the image of a 
point source is not a point itself but has a nonzero width. There-
fore, if there are too many single molecules in close proximity, 
their images will overlap and the individual single molecules can 
no longer be differentiated in the image. As a result, in many situ-
ations, information about the locations of the single molecules is 
lost in a fluorescence microscopy image. Therefore, one of the 
approaches in single-molecule microscopy is to overcome this 
crowding problem, i.e., to arrange the imaging experiment in such 
a way that the images of the single molecules are placed sparsely 
enough so that they can be properly separated. This crowding 
problem is of course closely related to the notion of resolution that 
will be the topic of the section “Every Photon Counts: A Fisher 
Information Approach to Resolution and Localization Accuracy.” 

SINGLE-MOLECULE MICROSCOPY 
IS A RELATIVELY NEW OPTICAL 

MICROSCOPY TECHNIQUE THAT 
ALLOWS THE DETECTION OF 

INDIVIDUAL MOLECULES SUCH AS
PROTEINS IN A CELLULAR CONTEXT
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LOCALIZATION AND TRACKING EXPERIMENTS
In this section, we discuss the principles behind two of the most 
important single-molecule experiments. The first one, a single-
molecule tracking experiment, aims at obtaining the trajectories 
of individual molecules as they move in a cell [3], [4], [27]–[29]. 
The second one, a localization-based 
superresolution experiment, aims to 
provide an image with a resolution 
well beyond what is achievable by 
classical methods [19], [21–[23]. 

TRACKING SINGLE MOLECULES
The movement of molecules such 
as receptors and proteins in cells 
is crucial for the functioning of the cells [16], [27]. Despite 
the importance of these processes much remains unknown. 
Therefore, tracking experiments, i.e., experiments that record 
such dynamic behavior over time, are of particular impor-
tance [3]. To obtain the most detailed analysis, it is essential 
to carry out these experiments in live cells at the single-mole-
cule level (see Figure 2). 

Such single-molecule tracking experiments, however, are not 
without significant challenges. Foremost among them is the need 
to be able to image isolated single molecules [3], [27] [see 
Figure 2(a)]. This can often be achieved with sparse labeling. 
Another significant problem is the photobleaching of many of the 
conventional fluorescent labels, which means that a fluorophore 
will only emit a certain, typically randomly distributed, number of 
photons before it ceases to emit photons [5], [6]. The phenome-
non in effect limits the length of time for which the track of a sin-
gle molecule can be followed. 

In designing a single-molecule tracking experiment, a number 
of important tradeoffs need to be made, in particular, regarding 
the frame rate of the acquisition and the associated exposure time 
for each of the images. High frame rates and corresponding short 
exposure times allow for better sampling of the dynamics of the 

single molecule. Reducing the expo-
sure time, however, decreases the 
number of photons that are detected 
during the exposure interval and 
thereby, as will be shown later, will 
reduce the accuracy with which the 
parameters can be estimated that are 
associated with the trajectory [12], 
[27], [29]. Increasing the excitation 

light power could be used to increase the number of emitted pho-
tons per exposure. However, this will reduce the lengths of trajec-
tories that can be imaged due to photobleaching. In addition, 
subjecting a cellular sample to excitation light that is too powerful 
might damage the living cell that is being imaged. 

LOCALIZATION-BASED SUPERRESOLUTION MICROSCOPY
The second prototype experiment involves the imaging of fixed, 
i.e., dead, cells to obtain very high-resolution information con-
cerning subcellular structures. In a classical fluorescence micros-
copy experiment, all fluorophores are simultaneously excited and 
imaged with one single exposure. As explained earlier, with 
densely spaced fluorophores, the result is that the individual fluo-
rophores cannot be distinguished in the acquired image [see, e.g., 
Figure 3(a) and (b)]. The idea that underlies localization-based 
superresolution microscopy is to image the sample a large num-
ber of times, but in each of the images that make up the full 
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[FIG1] The schematic diagram of a basic fluorescence microscopy setup. (a) The excitation light, which is typically generated by a laser, 
passes through the objective lens to excite the fluorescent molecules in the object space. The fluorescent molecules emit photons at a 
specific wavelength that pass through the objective lens, the dichroic mirror, and the emission filter and are then collected by a 
detector. (b) The mesh plot of the image of an in-focus point source as seen on the detector plane.

MOST IMPORTANT FROM 
OUR PERSPECTIVE IS THAT THE 
IMAGE OF A POINT SOURCE IS
NOT A POINT ITSELF BUT HAS

A NONZERO WIDTH.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [61] JANUARY 2015

acquisition set, only a small and sparse subset of the fluorophores 
is imaged [see Figure 3(c)] [21], [22]. Through a particular choice 
of fluorescent labels, appropriate sample preparation and laser 
excitation, such sparse, random activation can in fact be achieved. 
The resulting images each are designed such that the positions of 
the sparsely located single molecules can be accurately 

determined. For each of the typically thousands of images, the 
locations of the single molecules are estimated [22], [23]. The final 
image is then assembled from the location estimates of the single 
molecules in each of the images [see Figure 3(d)]. 

Different techniques are available to produce these sparse sub-
sets of fluorophores. These are primarily based on the exploitation 
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[FIG2] Single-molecule tracking. (a) A sequence of images acquired at different time points are first segmented into multiple regions of 
interest (ROIs) each containing an isolated single molecule. (b) In the single-molecule localization step, a PSF model such as the Airy 
profile or a bivariate Gaussian distribution is fitted to each ROI to estimate the location of the single molecule with subpixel precision. 
This provides a set of coordinates of single molecules. (c) The set of coordinates together with its corresponding time points are then 
analyzed by a trajectory linking algorithm. In this way, the trajectory of each single molecule can be determined (a sample trajectory is 
shown). Size bars are 1 nm.
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[FIG3] Localization-based superresolution microscopy. (a) The schematic shows a subcellular structure (a microtubule network) that is 
uniformly labeled with specific fluorophores. (b) In conventional imaging, all of the fluorophores in the sample are simultaneously 
excited. Due to the resolution limit of a fluorescence microscope, the resulting widefield image is poorly resolved and fails to reveal the 
underlying structure in the sample. (c) In localization-based superresolution microscopy, the imaging conditions facilitate activation of 
random subsets of fluorophores that are typically spatially well separated. These fluorophores are then localized with subpixel 
precision and their coordinates are used to create a superresolution image of the sample. (d) The resulting superresolution image 
provides fine structural information of the sample that is not accessible through a widefield image. (e) The comparison of a practical 
widefield image and a superresolution image. In (e), the size bar is 2 nm. In all other panels, size bars are 300 nm.
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of new insights into the photophysics 
of fluorophores [11], [19], [20], 
whereby powerful excitation light 
sources can be used to stochastically 
excite subsets of fluorophores, put 
them in nonemitting states, or pho-
tobleach them. Depending on the 
specific mechanisms and fluoro-
phores, these techniques are known 
as photoactivated localization 
microscopy (PALM), stochastic optical reconstruction microscopy 
(STORM), direct STORM, etc. [21]–[23]. 

STOCHASTIC DESCRIPTION 
OF SINGLE-MOLECULE DATA
Both the single-molecule tracking and the localization-based 
superresolution experiments depend on the accurate determina-
tion of the locations of the imaged single molecules [3], [29], 
[30]. To analyze the algorithmic aspects of the location estima-
tion, it is necessary to carefully describe the data generation pro-
cess that underlies fluorescence microscopy and, in particular, a 
single-molecule experiment. Before introducing a data model for 
the practical situation in which an image is acquired by a pix-
elated camera, it is useful to consider an idealized model. In this 
idealized model, termed the fundamental data model, we 
assume that the object being imaged emits photons as a Poisson 
process that are detected with a rate ( ),xKi 0$x x , on an infi-
nitely large unpixelated detector [12], [31]. In this formulation, 
!i H  denotes the parameter-vector of interest that contains 

the attributes of the object such as its position, where Rn3H  is 
an open parameter space. Making these assumptions allows us to 
ignore, for the time being, the deteriorating effects due to finite 
detector size, pixelation, and readout noise in the camera [32]. 
We assume that each photon is detected on the detector at a cer-
tain position that is distributed according to a two-dimensional 
(2-D) probability distribution ( ),rf ,i x ( , ) ,r x y R2!=  where 

0$x x  is the time of detection of the photon [12],  [31]. This 
probability distribution is, in fact, the (continuous) image of 
the object at the particular time point, normalized such that 

( ) .r rf d 1,
R2

=i x#  For instance, this probability distribution can 
be the Airy profile [see (1)] or a bivariate Gaussian distribution 
[9], [12], [31], [33]. 

As an optical microscope is typically modeled as a linear 
shift-invariant system [9], the probability distribution function 
f ,i x  can be expressed in terms of an image function :q

( , ) , ,f x y
M

q M
x x M

y
y1

, , ,2 0 0= - -i x x x` j (2)

where ( , )x y R2! , M 02  denotes the lateral magnification, 
and ( , )x y, ,0 0x x  is the position of the object at time 0$x x . The 
image function q  describes the image of a stationary object that 
is located on the optical axis in the object space and is imaged at 
unit lateral magnification [12], [31]. In the case that the object 
is a point source, the image function is the same as the PSF of 
the microscope system. 

In practice, the acquired data is 
corrupted by extraneous noise 
sources and by the pixelation that is 
introduced during the capture of 
the image by an imaging detector. 
In single-molecule experiments, the 
imaging detector is typically either 
a charge-coupled device (CCD) 
camera, complementary metal–
oxide–semiconductor (CMOS) cam-

era, or an electron multiplying CCD (EMCCD) camera [32], [34]. 
For the time being, we will concentrate on CCD or CMOS cam-
eras and defer to the end of this section for the discussion 
regarding EMCCD cameras. We represent a pixelated detector 
with Kpix  pixels as { , , }C CK1 pixf , where C Rk

23  denotes the 
area occupied by the kth  pixel of the detector. The acquired data 
at the kth pixel is given by ., , ,S B W k K1I , ,k k k k pixf= + + =i i

In the equation immediately above, S ,ki  denotes an indepen-
dent Poisson random variable with mean ( )kni  that describes the 
detected photon count from the object of interest [12], [35]; Bk

denotes an independent Poisson random variable with mean bk

that describes the photon count due to background and scattering 
[31]; and Wk  denotes an independent Gaussian random variable 
with mean kh  and variance k

2v  that describes the measurement 
noise that is introduced during the readout step in the detector 
[32]. The mean ( )kni  of the random variable S ,ki  can be 
expressed in terms of Ki  and f ,i x , which describe the fundamen-
tal data model, and is given by [12], [31] 

( ) ( ) ( )r rk f d d,
Ct

t

k1

2
n x xK=i i i x##

( ) , ,r
M

q M
x x M

y
y d d1

, ,
Ct

t

2 0 0
k1

2
x xK= - -i x x` j##

for , , ,k K1 2 pixf= , where ( , )r x y R2!= , [ , ]t t1 2  denotes the 
exposure time interval, and we have made use of (2). When the 
single molecule is stationary, the expression ( )kni  reduces to

( ) , , , , ,rk
M
N q M

x x M
y

y d k K1
C2 0 0 pix

k

fn = - - =i ` j# (3)

where

: ( )N d
t

t

1

2
x xK= i#

denotes the expected number of detected photons on an infinite 
detector plane [12], [36]. 

As we will see in the section “Every Photon Counts: A Fisher 
Information Approach to Resolution and Localization Accuracy,” 
the readout noise in a CCD/CMOS detector can severely impair the 
quality of the acquired data, especially in the context of low signal 
levels, i.e., low photon counts. Therefore, over many decades sig-
nificant efforts have been made to develop image intensifiers that 
amplify the signal before the readout process, with the expectation 
that this will minimize the detrimental effects of the readout noise 
on the measured signal. This is also the idea behind the EMCCD 
camera [37] that is widely used in single-molecule experiments. 

BOTH THE SINGLE-
MOLECULE TRACKING AND 
THE LOCALIZATION-BASED 

SUPERRESOLUTION EXPERIMENTS
DEPEND ON THE ACCURATE 

DETERMINATION OF THE 
LOCATIONS OF THE IMAGED 

SINGLE MOLECULES.
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The difficulty in analyzing the suitability of this and other amplifi-
cation-based approaches lies in the fact that the amplification pro-
cess is stochastic, which itself may imply a deterioration of the 
information content of the signal. 

For an EMCCD camera, various probabilistic models have been 
proposed for the amplification process, which is in fact a branching 
process [34]. In [37], using a number of approximations, a bino-
mial model was suggested for every stage of the amplification pro-
cess. For the full process, approximate expressions were also 
derived for high photon counts in [37]. A comprehensive analysis 
of the modeling of the EMCCD amplification process was carried 
out in [34], where several approximate models were also investi-
gated for their accuracy. 

SINGLE-MOLECULE PARAMETER ESTIMATION
The benefits of single-molecule microscopy arise from being able 
to localize single molecules to very high precision [1], [12], 16]. 
The effective pixel size (i.e., the actual pixel size of the camera 
chip adjusted for the microscope magnification) in a standard 
microscope is typically in the range of 65 #  65 nm2 to 400 #   
400 nm2. Localizing a single molecule up to a pixel would not 
bring any significant advantages, since the localization precision 
would be of the same order as that of the native resolution of the 
image [9]–[11] and, more importantly, biomolecular interactions 
typically occur at much lower distance scales. Therefore, it is nec-
essary to localize single molecules with subpixel precision. This 
task is far from straightforward due to the often very low signal 
levels in the presence of significant noise sources, as discussed 
previously [32]. 

The first attempts were based on elementary approaches such 
as the center of gravity estimator [28], [38], while current algo-
rithms are primarily based on fitting of a PSF model to the 
acquired data [see Figure 2(b)] [28], [33], [36]. The most fre-
quently used fitting criterion is the least squares criterion [28], 
although the maximum likelihood estimator is better justified 
considering the probabilistic model of the acquired data [36]. Spe-
cifically, given the measured data , , ,z z zK1 2 f  in the pixels that 
make up the ROI, which includes the image of the single mole-
cule, the least squares criterion is given by [28] 

( ) ,argmin z kk
k

K
2

1

pix

i o= -
!i

i
H =

t /

where ( ) : ( )k k bko n= +i i , and the maximum likelihood crite-
rion is given by [12], [31], [35] 

, , | ,argmax ln p z z, , K1II , ,K1 pixpix fi i= f
!i H

i i
t ^ h

where , , | : |p z z p z, , K k

K
k1 1 II I ,, ,K k1 pix

pix

pix f i i=f = ii i ^ ^h h%  denotes 
the joint probability distribution function (pdf) of the observed 
data. Considering the stochastic framework described in the previ-
ous section, for a CCD/CMOS detector, the pdf of the observed data 
at each pixel, for , , ,k K1 2 pixf= , is given by [12], [31] 
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The above expression shows that the observed data at each pixel of 
the detector has a Poisson–Gaussian mixture distribution where, 
as mentioned earlier, the Poisson and Gaussian parts model the 
photon detection and readout processes, respectively [31]. See [34] 
for the pdf for an EMCCD detector. 

For the purpose of obtaining a localization-based superresolu-
tion image or for the purpose of single-molecule tracking, the 
main information that is necessary from this analysis is the loca-
tion of the single molecule, i.e., the ( , )x y0 0  coordinate. However, 
often other parameters also need to be estimated to be able to 
obtain the coordinate estimates. Examples include determining 
the width parameter of the image profile and the number of 
detected photons during the acquisition period. 

The choice of image profile q  in the estimation algorithms 
raises important questions. As discussed earlier, classical diffrac-
tion theory predicts a profile such as the Airy profile. However, 
very complex PSF models have been advocated to describe opti-
cal phenomena such as aberrations [9], [24] and the dipole 
nature of a single molecule [25]–[26], [39], or to deal with out-of-
focus situations [9]. On the other hand, it has been argued that 
in many situations images of single molecules are adequately 
approximated by 2-D Gaussian functions [33], [38], [40] and, 
therefore, can be used for estimation purposes. It also needs to be 
recognized that, especially in the context of biological samples, 
even if there is a correct model, it is not likely that such a model 
can be identified with ultimate certainty due to the inherent vari-
ability of biological samples. There is also a tradeoff between 
computational complexity and the accuracy of the model of the 
resulting estimates. For instance, in localization-based superres-
olution microscopy, typically many tens of thousands of esti-
mates have to be carried out to obtain one image [21], [22] and 
complex models are typically much more expensive to compute 
than simpler ones [41]. 

EVERY PHOTON COUNTS: A FISHER 
INFORMATION APPROACH TO RESOLUTION 
AND LOCALIZATION ACCURACY
An important topic in single-molecule microscopy has been the 
question of how well the different single-molecule estimation 
techniques perform in quantitative terms. This is a critical aspect 
in an experimenter’s decision on whether the technique is appro-
priate for the scientific task, for experiment design and for the 
evaluation of algorithms. In general terms, there are two aspects 
that have received significant attention. One is the localization 
accuracy [12], i.e., the accuracy with which a single molecule can 
be localized. The second is resolution, which is (loosely speaking) 
the capability of the technique to distinguish different features in 
the sample [11]. When assessing the performance of a localization 
algorithm, its mean and standard deviation are most critical. 
Accuracy of the measurement is paramount even in the context of 
small data samples. Therefore, ideally unbiased estimators are 
sought with the lowest possible standard deviation [35]. While for 
general estimation problems, it is not always possible to obtain 
suitable unbiased estimators, many of the estimators that are cur-
rently applied in single-molecule microscopy have at 
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least numerically been shown to be 
unbiased [25], [36]. According to the 
Cramér–Rao lower bound, the (co)
variance (matrix) of any unbiased 
estimator it  of a parameter (-vector) 

,i  such as the location parameters, 
is bounded from below by the inverse 
of the Fisher information matrix 

( )I i  [12], [35], i.e., 

( ) ( ) .Icov 1$i i-t

The task of assessing the best accuracy with which the various 
parameters can be estimated therefore reduces to calculating the 
Fisher information matrix for the specific estimation problem and 
data model. In [31], a very general expression for the Fisher infor-
mation matrix was derived for the fundamental data model, i.e., 
for the ideal case of an infinite detector without pixelation and in 
the absence of extraneous noise sources. Exploiting the nature of 
a spatiotemporal marked Poisson process [35], for a general image 
profile f ,i x  and photon detection rate ( )xKi , t t1 2# #x , we 
have [31] 
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Specializing this expression to the case of a constant photon detec-
tion rate, i.e., ( ) ,xK K=i ,t t1 2# #x  we immediately obtain 
that the Fisher information depends linearly on the number of 
photons detected [12], [31], i.e., 
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where : ( )N t t2 1 K= -  is the expected number of photons during 
the exposure interval. 

This implies that a lower bound on the standard deviation of 
the estimate of any parameter (-vector) has the form ( / ) ,N C1
where C  is a constant (matrix) related to the specific parameter 
estimation problem. This is an important aspect of single-mole-
cule microscopy. It shows that for algorithms that attain this 
bound, the accuracy of the parameter estimate depends recipro-
cally on the square root of the number of collected photons 
[12], [31]. 

For the case where the image function is the Airy profile and 
the single molecule can be assumed to be stationary, it can be 
shown that this expression implies the following limit on the stan-
dard deviation with which the x  and y  coordinates of the single 
molecule can be estimated [12] 

,
N n
1

2 ar
m

where m  is the wavelength of the emitted light and na  is the 
numerical aperture of the microscope [9]. We refer to this lower 

bound as the fundamental localiza-
tion accuracy measure (FLAM) [36]. 

The prior expressions are derived 
assuming the fundamental data 
model. For the practical data model, 
where we allow for a finite pixelated 
detector, background, and readout 
noise, an expression for the Fisher 

information matrix can also be derived as [34], [36]: 
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where ( ) ( )k k bko n= +i i  with , , , ,b k K1k pixf=  denoting the 
photon count due to the background noise at pixel .Ck  The term 

( ), , , ,k k K1 pixf} =  is referred to as the noise coefficient that 
depends on the type of detector [34]. In the absence of readout 
noise, ( )k 1} =  for all , ,k K1 pixf=  [12]. In the presence of 
readout noise and when using CCD and CMOS detectors, the 
noise coefficient is given by [31] 
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where kh  and k
2v  denote the mean and the variance of the read-

out noise at pixel , , , , ,C k K1 2k pixf=  respectively. The expres-
sion of the noise coefficient for an EMCCD camera is omitted for 
brevity but can be found in [34]. Using these expressions, a lower 
bound can be obtained on the standard deviation with which the 
x  and y  coordinates of the single molecule can be estimated in 
a practical situation. We refer to this lower bound as the practi-
cal localization accuracy measure (PLAM) (see [36]). 

These expressions can be used to not only analyze the influ-
ence of pixelation but the various noise sources on the accuracy 
of the estimates of the location and other parameters. Impor-
tantly, these results can also be compared to those based on the 
fundamental expressions, which give us the theoretically best 
possible results and thereby let us understand how far a partic-
ular experimental configuration is away from the theoretically 
best possible one. For example, Figure 4 compares the behavior 
of the FLAM and PLAM versus the mean photon count and 
extraneous noise sources for a specific set of imaging condi-
tions. The results can be reproduced using a free software 
package, the FandPLimitTool, available online at http://www.
wardoberlab.com/software/. For small photon counts, the 
PLAM is significantly larger than FLAM implying that pixela-
tion and extraneous noise worsen the localization accuracy 
whereas for large photon counts the difference is not apprecia-
ble [Figure 4(a)]. In addition, given a certain photon count, 
increasing the background noise [Figure 4(b)] and the readout 
noise [Figure 4(c)] considerably deteriorate the PLAM (when 
compared with the FLAM). 

THE ACCURACY OF THE 
PARAMETER ESTIMATE DEPENDS
RECIPROCALLY ON THE SQUARE 

ROOT OF THE NUMBER OF 
COLLECTED PHOTONS.
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Another approach to characterize the accuracy with which a 
single molecule can be localized has been proposed in [38] and 
[42]. Here, using a number of approximations, specific algorithms 
such as the least squares algorithm have been used, assuming a 
Gaussian image profile to obtain an expression for the standard 
deviation of the particular location estimator. However, great care 
needs to be taken in the use of these expressions as deviations 
from the actual performance of the algorithms have been observed 
when applied to images with Airy profiles [36]. 

The above analysis based on the Cramér–Rao lower bound has 
the advantage that it is independent of any particular estimation 
algorithm and gives bounds that any unbiased estimator needs to 
satisfy [31], [35]. From a practical point of view it is, however, 
important to know how well a particular algorithm performs in 
comparison to these bounds and whether there is an algorithm 
that attains the bounds. It is well known that, in general, assessing 
whether an algorithm attains the Cramér–Rao lower bound or to 
what extent it differs, is a theoretically difficult question and ame-
nable to a theoretical analysis in only rare cases [35]. For the fun-
damental data model, in case the image is given by a Gaussian 
profile, it was shown in [12] that the maximum likelihood estima-
tor reduces to the center of gravity estimator and attains the Cra-
mér–Rao lower bound. For all other cases, no analytical analysis 
was possible but simulations have shown that the maximum like-
lihood estimator is consistently close to and, in some cases, attains 
the Cramér–Rao lower bound for a wide range of experimental 
conditions [12], [31], [36]. 

Classical resolution criteria for microscopy, such as Ray-
leigh’s or Abbé’s criterion, are heuristic criteria that were devel-
oped at a time when microscope samples were typically 
investigated by eye, rather than being recorded by a highly sensi-
tive imaging detector [9], [10]. Therefore, the classical notions of 
resolution did not take into account the added benefits of a 
detailed analysis of the acquired data by sophisticated image and 
signal processing algorithms. 

Resolution can be defined in a number of ways. One of the 
most fundamental ways relates to the question of the resolution 

of two point sources, which is the scenario Rayleigh’s classical 
criterion addresses [9], [11], [43]. It states that two point sources 
can be resolved if they are separated by a distance of at least 

. /n0 61 am [9], [10]. Interestingly, this expression does not show 
any dependence on the amount of data that is acquired. In [11], 
this two-point resolution problem was cast in the aforementioned 
photon counting framework and the question was changed from 
“Can two points be resolved?” to the question of “How well can 
two points be resolved?” An expression for the limit on the stan-
dard deviation with which the distance d  between two point 
sources can be estimated using the fundamental data model was 
then derived as [11] 

( )
,

N d n4
1

d
a0

v
r

m

C
= (4)

where N  is the expected photon count on the infinite detector 
plane per point source and ( )d0C  is a nonlinear function of the 
distance between point sources (see [11]). Importantly this expres-
sion shows that arbitrarily small distances can be resolved, but the 
smaller the distance, the more photons need to be acquired to 
obtain the same accuracy. This approach can be generalized to 
multiple point sources in a relatively straightforward fashion (see, 
e.g., [11] and [44]). 

The aforementioned information-theoretic resolution measure 
[i.e., (4)] is a powerful tool in determining how well two point 
sources can be resolved, and hence it is suited for applications 
where the structure of interest can be defined by a limited number 
of molecules. However, in other applications where continuous 
structures with a large number of potential labeling sites are 
imaged, the situation is more complex. One important aspect 
relates to the labeling density. As shown in [45], with decreasing 
density of the fluorescent labels, the structure of interest gradually 
becomes unresolvable in the acquired image, even when the previ-
ously discussed two-point resolution measure is appropriate. A 
resolution measure based on the Fourier ring correlation was 
recently published in [46]. This measure can be directly com-
puted from the experimental data and takes into account the 
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[FIG4] The single molecule localization measure. The behavior of the localization accuracy using the fundamental data model (i.e., 
the FLAM) and the practical data model (i.e., the PLAM) for the x coordinate of the single molecule as a function of (a) the expected 
number of detected photons N  from the single molecule, (b) the background level bk , and (c) the standard deviation of the readout 
noise kv . In (a)–(c), the numerical aperture is set to 1.4, the emission wavelength is set to 520 nm, the lateral magnification is set to 
100, the pixel array (ROI) size is set to 25 #  25, and the pixel dimensions are set to 13 #13 nm. In (a) and (c), bk  is 20 photons/pixel 
for all the pixels. In (a) and (b), the PLAM is calculated with /pixele0kv = -  for all the pixels. In (b) and (c), N  is set to 500 photons.
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localization accuracy, the density of fluorescent labels, and the 
spatial structure of the sample. 

IMAGING IN THREE DIMENSIONS
Microscopy is, by its nature, a technique that is most suited to 
study phenomena that occur in one plane, i.e., the focal plane of 
the microscope [1], [12]. Cells, however, are three-dimensional 
(3-D) objects, and 3-D imaging of cellular processes poses several 
technical challenges, especially at the single-molecule level. In the 
previous section, we discussed results that showed that the x- and 
y-coordinates of an in-focus single molecule can be determined 
with very high accuracy. However, the situation changes dramati-
cally when we are concerned with the estimation of the third spa-
tial coordinate, i.e., the z-position of the single molecule. 
Considering the standard Born and Wolf 3-D PSF model [9], the 
image function, which now depends on the z0-position, z R0 ! ,
of the single molecule, is given by [27] 

( ) ,r rq A J e dz
j

n
n z

0
0

1 2

m

a
2

2

at t t= m

r
t

0

0

^ h# (5)

where ( , )r x y R2!= , A  is a normalization constant, 
: /n2 aa r m= , nm  denotes the refractive index of the immer-

sion medium, and J0  is the zeroth order Bessel function of the 
first kind [9]. As seen in Figure 5(a), if the single molecule is 
in focus, i.e., for ,z 00 =  the image of the single molecule is 
identical to the in-focus image we have seen in Figure 1(b). 
However, for out-of-focus positions, i.e., ,z 00 =Y  the image 
starts to depict out-of-focus rings with increasing z0  and in 
general becomes flatter and more spread out. 

Using the approaches based on the Cramér–Rao lower 
bound introduced in the section “Every Photon Counts: A 
Fisher Information Approach to Resolution and Localization 
Accuracy,” we can also compute the accuracy with which the 
z-position of the single molecule can be determined, i.e., the 
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[FIG5] Single molecule imaging in 3-D. (a) An image profile of a point source at different z-positions acquired by a conventional (single 
plane) microscope. (b) A comparison of the localization accuracy, i.e., the PLAM, for the z coordinate of the single molecule along the 
z-axis for a conventional microscope and a two-plane multifocal place microscopy (MUM) setup. For a two-plane MUM setup, the 
PLAM predicts relatively constant z-localization accuracy for a range of z-positions including at the plane of focus (i.e., z0= 0). (c) A
comparison of 3-D single-molecule imaging approaches, which encode/deduce the z-position using different strategies.
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PLAM, [see Figure 5(b)]. Inspecting this plot, we see that far 
away from the focal plane, i.e., above 1.5 nm, the localization 
accuracy of the z coordinate is very poor. Far from the focus, 
the spread out images are barely visible above the background 
[27]. It is therefore not surprising that little information can 
be obtained from them. This indicates that single molecules 
cannot be satisfactorily localized outside a certain distance 
from the focal plane. 

What may, however, be surprising at first glance is that the 
accuracy of estimation for the z-position is also very poor 
when the single molecule is located close to the focal plane 
[see Figure 5(b)]. The reason for this phenomenon, which we 
refer to as the depth discrimination problem, is that, as can be 
seen in Figure 5(a), the images of a point source that is 
located close to the focal plane are barely distinguishable 
(compare profiles at z0 =0 and z0 =150 nm). Therefore, near 
the focus there is little information in the images of the single 
molecules about their precise z-positions. The images only start to 
show appreciable differences when the single molecule is farther 
from the focal plane [see Figure 5(a), where z0= 450 and z0= 600 
nm]. Aberrations in the sample can reduce the depth discrimina-
tion problem [9], [24], [25], but the overall problem persists. 

To address the depth discrimination problem, a number of 
approaches have been proposed. In [47], an astigmatic lens is used 
that introduces an elongation in the image of the single molecule 
when it is out of focus. As can be seen in Figure 5(c), this elonga-
tion occurs along different lateral axes depending upon whether 
the molecule is above or below the plane of focus. By determining 
the extent of elongation of the image profile, the z-location of the 
single molecule can be estimated. Approximate analytical expres-
sions are proposed for the PSF of an astigmatic microscope, such 
as those based on 2-D elliptical Gaussian profiles [47]. 

In another approach [48], sophisticated optical designs have 
been employed to change the image of a single molecule. The 
result, shown in Figure 5(c), is a bimodal image profile that 
resembles a double helix and encodes the z-position as a rotation 
of the profile. The z-location of the single molecule is deduced by 
determining the change in the relative orientation of the bimodal 
peaks with respect to the in-focus image. A precise analytical 
expression is not available for the double helix PSF. Nevertheless, 
using approximate expressions, the double helix PSF has been 
shown to provide a relatively uniform z-localization accuracy 
along the z-axis [48]. 

Another approach, MUM, relies on the simultaneous imag-
ing of several distinct focal planes within the sample [see Fig-
ure 5(c)] [27], [49]. This general approach, which is also known 
by slightly different terminology (e.g., [50] and [51]), produces 
multiple images of a single molecule that are acquired from 
different depths. The z-location of the single molecule is 
deduced by simultaneously fitting these images with appropri-
ate 3-D PSF models [e.g., (5)]. Simultaneous imaging of differ-
ent focal planes provides consistently more information about 
the z-position of the single molecule than a conventional 
microscopy image, even at the plane of focus [27]. This is pos-
sible since the Fisher information matrix for a MUM setup 

( )IMUM i  is the sum of the Fisher information matrices of the 
individual focal planes ( ), , , ,I k K1k plnfi =  due to the inde-
pendence of data acquisition at each focal plane, i.e., we have 

( ), .( ) ( )I II K1MUM pln dfi i ii H= + +

Therefore, the PLAM for MUM shows significant improvements in 
the z-localization accuracy when compared to a conventional 
microscope, as shown in Figure 5(b). Other approaches such as 
the iPALM are also proposed, which rely on interferometric optics 
[52]. All of the aforementioned approaches overcome the depth 
discrimination problem of conventional microscopy. A possibly 
competing criterion is related to the range of z-positions over 
which the single molecule can be localized to an acceptable accu-
racy. For a comparison of different 3-D imaging modalities, see, 
e.g., [53]. 

CURRENT CHALLENGES
Significant challenges remain in the analysis of single-molecule 
data. One of the assumptions that underlies the localization-based 
superresolution experiments is that during each acquisition only 
one single molecule is imaged in a ROI that allows for the localiza-
tion of the single molecule [21], [22]. However, since the number 
of excited fluorophores in superresolution experiments is stochas-
tic, it cannot be guaranteed that all imaged single molecules are 
isolated. Therefore, multiemitters might be present. Hence, there 
is a significant effort underway to find criteria to determine the 
number of single molecules in an ROI and to localize the individ-
ual single molecules that are present in the multiemitter region 
[44], [54]. It should be pointed out that these problems are highly 
nontrivial and are closely related to the resolution problem [11].

Additional problems arise from tracking experiments. Often it 
is assumed that the single molecules are stationary during each 
of the exposures that are taken to capture the single-molecule 
dynamics. While this can well be an appropriate assumption in 
many cases, in other experimental situations this is problematic 
[29]. To analyze this problem, the Fisher information matrix has 
been calculated in [55] for parameter estimation problems 
involving a deterministic trajectory during the exposure interval. 
Diffusion of single molecules on the plasma membrane is an 
important process that can reveal important biological informa-
tion [27]. Clearly, diffusive behavior of a single molecule during 
the exposure of an image can have a significant impact on the 
resulting image. This process has been investigated in an approx-
imate fashion in a series of papers [29], [56], and approaches 
have been proposed of how to infer the diffusion coefficient from 
the obtained images. 

As discussed earlier, under specific imaging conditions, e.g., 
immobilized fluorophores, polarized excitation, and out-of-focus 
imaging, the dipole nature of a single molecule may become evi-
dent in the form of asymmetric image profiles [25], [39], [40]. This 
can be exploited to estimate the dipole orientation of the fluoro-
phore. However, the analysis of such data is particularly challeng-
ing. For example, fitting an inappropriate image profile to the 
acquired data might lead to biased location estimates [26]. 
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Conventional microscopy pro-
duces an image of a sample almost 
instantly so that the microscopist can 
immediately evaluate the outcome of 
the imaging experiment. Localiza-
tion-based superresolution micros-
copy experiments, in contrast, 
require a large number of acquisi-
tions and have a very significant 
computational overhead, as images 
of tens of thousands of single mole-
cules often need to be analyzed and 
processed to produce the final recon-
structed image [21], [22]. Single-molecule localization can be 
computationally complex and will by necessity require a nontrivial 
amount of computational time. To make the results of the analysis 
available to the microscopist as fast as possible, considerable 
efforts are made to speed up the calculations, e.g., by parallelizing 
the calculations on graphics processing units [30], [44]. 

CONCLUSIONS
We have reviewed a number of key quantitative aspects of single-
molecule microscopy. Although this is a nascent field, it has cre-
ated significant interest among biologists, biophysicists, and 
chemists who benefit tremendously from an imaging technique 
that allows molecular processes to be studied at the level of indi-
vidual molecules. This new microscopy modality inherently relies 
on image and signal processing methodologies since the central 
component of the approach is the precise determination of the 
positions and other parameters of the imaged single molecules. 
This localization task is not trivial since the acquired image is 
characterized by a typically very low photon signal in the presence 
of significant noise sources. Estimation approaches and expres-
sions for the Cramér–Rao lower bound were reviewed. While 
much progress has been achieved in a relatively short time, signif-
icant problems remain that can benefit from advanced signal pro-
cessing algorithms. 
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T
he registration, segmenta-
tion, and annotation of mi-
croscopy images and respec-
tive biological objects (e.g., 
cells) are distinct challenges 

often encountered in bioimage informat-
ics. Here we present several studies in 
widely used model systems of the fruit fly, 
zebrafish, and C. elegans to demonstrate 
how registration methods have been em-
ployed to align three-dimensional (3-D) 
brain images at a very large scale and to 
solve challenging segmentation and an-
notation problems for 3-D cellular images. Specifically, we consider 
two types of registration between images and models: image-to-im-
age registration and model-to-image registration, where a model
consists of a description of the geometrical shape or the spatial lay-
out of biological objects in the respective images. 

INTRODUCTION
The registration of objects or patterns (e.g., cells with a globular 
shape, gene expression patterns, and highly irregular arborization 
patterns of neurons) is a commonly used technique in biological 
and medical data analysis. Generally speaking, registration is a 
process to map one image, object, or pattern to another (often 

obtained from different sensors, times, 
subjects, etc.) so that they can be com-
pared, analyzed, or visualized directly 
within the same coordinate system. A 
spatial coordinate system is often con-
sidered. Along with the development of 
time-lapse light microscopy, the regis-
tration of a time series of images is also 
common and deemed important for 
many developmental biology studies. As 
an enabling technique in many applica-
tions such as building digital atlases, 
assessing the invariance (stereotypy) of 

patterns, profiling neuron connectivity, and studying the variation 
of cell populations, registration is essential in large-scale bioimage 
visualization, analysis, data mining, and informatics fields [1]–[3]. 

Segmentation and annotation of microscopy images and the 
respective biological objects are two challenging topics in bioim-
age analysis and informatics [1], [4], [5]. Segmentation refers to 
partitioning an image into multiple disjointed salient image 
regions, within each of which the image pixels share certain 
common characteristics. For 3-D cellular or brain images, the 
partitioned regions often represent interesting cells or compart-
ments. In many cases, this partitioning process is realized by 
assigning a label to a group of pixels or by delineating the 
boundary of interesting objects and patterns. In contrast to seg-
mentation, annotation is more closely related to the recognition 
of patterns or objects. Annotation often associates specific 

[Lei Qu, Fuhui Long, and Hanchuan Peng]

[Registration of microscopic images and its uses 

in segmentation and annotation]

3-D Registration 
of Biological Images 

and Models
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semantic properties such as the identities or categories to 
objects or patterns. Segmentation and annotation are critical to 
address important biological questions (e.g., quantification of 
gene expression patterns, generation of the ontology databases, 
and digital atlases of model animals). 

FROM IMAGE-TO-IMAGE REGISTRATION TO 
MODEL-TO-IMAGE REGISTRATION 
Registration is often needed to compare, fuse, or quantify 
objects or patterns in images. In many cases, registration is also 
required to map images to models and vice versa. In these latter 
situations, a model often consists of geometric shape descrip-
tion of the anatomy or spatial layout of biological objects in the 
respective images. 

IMAGE-TO-IMAGE REGISTRATION
Many system biology studies rely on aligning images of gene 
expressions in different cell populations [6]–[8] or specimens that 
correspond to different developmental times [9]. In several recent 
brain mapping projects of the Drosophila (fruit fly), it became crit-
ical to align a number of 3-D confocal images of the insect’s 
brains. Each fly had been genetically engineered to express fluo-
rescent proteins in a specific population of neurons, which were 
aligned to a standard space so that they could be compared with 
each other [Figure 1(a)]. The FlyCircuit project in Taiwan [10] and 
the FlyLight project at the Janelia Research Campus of the How-
ard Hughes Medical Institute [11] each generated tens of thou-
sands of 3-D fruit fly brain image stacks represented some of the 
biggest neuroscience efforts to date to understand the brain’s 
structure. In each of these brains, some neuron populations are 
labeled using genetic methods. In both projects, registration of 
brain images is crucial. Registering images that correspond to the 
same population is useful to quantify the intrapopulation variabil-
ity of neurons, which can further help define the meaningful neu-
ron types. Registering images that correspond to different 
populations is useful to quantify the spatial proximity of neurons 
and thus helps estimate the putative connectivity of neurons. Sim-
ilarly interesting results for the zebrafish (Danio rerio) were also 
reported recently [3], [4], [12].

Sophisticated volumetric image registration methods have 
been developed in the biomedical imaging field. Many methods, 
such as mutual information registration [13], spline-based elastic 
registration [14], invariant moment feature-based registration 
[15], and congealing registration [16], [17], have been widely used 
and extended to align molecular and cellular images. However, 
since many of them were originally designed for magnetic reso-
nance imaging and computer tomography data, in many cases it 
remains challenging to use them easily and effectively in aligning 
the microscopy images that have larger-scale and fuzzier contents. 

Two major challenges in biological image registration are the 
scale (in terms of the number and size of images) and variation of 
data (morphology or shape of patterns, image intensity, and noise 
level). For the first challenge, when the number of 3-D image 
stacks of brains increases to the order of tens of thousands and 
each image stack normally has the dimensions of 1,024 voxels (X) 

#  1,024 voxels (Y) #  a few hundreds of voxels (Z), it will become 
exceedingly expensive to ask human annotators to supply even 
some simple prior knowledge of the data. The huge amount of 
image stacks requires that a successful registration scheme be 
highly automated, robust, and computationally efficient. These 
requirements limit the immediate applicability of many intensity-
based registration methods in biomedical imaging field. 

The second challenge is that the acquired microscopy image 
data not uncommonly display substantial variation of the appear-
ance of the to-be-registered patterns. For instance, due to variable 
tissue labeling, light scattering, mismatching of reflective indexes 
of media along the light path, and many other issues in the auto-
mated image acquisition process, confocal microscopy data can 
exhibit a low signal-to-noise ratio. As in the fruit fly brain projects, 
an image normally comes with a neuropil staining that indicates 
the shape of the brain. Many times it is hard to threshold the neu-
ropil image to segment the brain region from the image back-
ground. Therefore, it is often impractical to adopt boundary 
registration methods as used in the medical imaging field (see [15] 
for an example). In addition, complicated and varying shapes can 
arise from the flexible nature of specimens along with the sample 
preparation (e.g., tissue fixation). All these factors pose challenges 
to the image registration problem.

Many efforts were carried out to tackle these challenges. In 
an early effort of the FlyCircuit project, a simple affine transfor-
mation was used to align fruit fly brain images [10]. Unfortu-
nately, the affine transformation is often not flexible enough to 
handle nonrigid deformations in images. In [18], 257 fruit fly 
brains are progressively registered using a method based on 
mutual information [19]. Such a method was also combined 
with multithreaded programming to accelerate the computa-
tion. However, nonsalient feature points used in registering dif-
ferent images can affect the accuracy of such a scheme. 

BrainAligner [20] and ViBE-Z [3] are two programs developed 
recently to register sophisticated image patterns. ViBE-Z focuses 
on the registration of zebrafish brains. In such an application case, 
the image patterns consist of mainly line- and planelike structures 
[3]. ViBE-Z utilizes this feature by employing a trainable, rotation-
invariant landmark detector. With 14 detected landmarks, a thin-
plate spline transformation was used to perform a coarse but also 
elastic registration. Then, an intensity-based registration was used 
to realize a fine-scale elastic registration. In addition, a graph-
based solver was used to determine the optimal deformation field 
in the fine elastic registration. This solver was shown to be efficient 
and less sensitive to local minima than commonly used gradient-
descent methods.

We developed BrainAligner to detect the corresponding land-
marks of any pair of images based on using a committee-machine 
algorithm [Figure 1(c)] to aggregate the feature matching results 
of a series of independent image feature analysis methods. In this 
way, the effect of pattern variation can be mitigated. The matched 
pairs of landmarks are further pruned using both the random sam-
ple consensus (RANSAC) algorithm [21] and tetrahedron pruning. 
RANSAC ensures all the corresponding landmark pairs form a 
globally consistent transform, which is the affine transform in our 
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[FIG2] Model-to-image registration and its use in standardization of articulated shapes that are often seen in microscopy images of 
model animals. This process is done via detecting the principal skeletons of these shapes followed by unbending the structures using 
a smooth warp. (a) Detecting the center “backbone” curve of a C. elegans image stack (top left) and straightening this image by 
restacking resampled image data (bottom) of all cross-sectional planes orthogonal to the backbone curve (top right). (b) Registering 
an initial model (green) of a fruit fly larval nervous system to two different confocal images of this animal. The red color indicates the 
final detected principal skeletons (the control nodes are marked as small circles). Note that the same model was used in both 
examples to generate the correct results. (c) Registering an initial model (green) of a fruit fly adult ventral nerve cord to a confocal 
image of this animal. The red color indicates the final deformed principal skeleton (the control nodes are marked as small circles).

case. Tetrahedron pruning eliminates the cases of local self-inter-
section of corresponding landmark pairs and thus reduces the like-
lihood of occurrence of nonsmooth transform during registration. 
In addition, a hierarchical interpolation scheme for the 3-D thin-
plate spline is employed in BrainAligner to quickly calculate the 
deformation field. Such an interpolation method considerably 
reduces both computation complexity and memory consumption 
of thin-plate spline warping. Together these components make 
BrainAligner robust to imperfect images (e.g., images of brains 
that have been partially damaged during sample preparation or 
images with fuzzy boundaries) and suitable for high-throughput 
processing. BrainAligner has aided a number of studies in fruit fly 
brain research by mapping neuron populations visualized using 
various genetic methods to a standard brain atlas model ([11], 
[20], [22]). This results in complete coverage of the fruit fly brain 
and a mesoscale connectome of the brain of the animal [23].

MODEL-TO-IMAGE REGISTRATION

PRINCIPAL SKELETON MODELS
Biological patterns often have highly curved, articulated, or 
branched structures. For instance, the bodies of C. elegans 
[Figure 2(a)] and zebrafish are usually curved. The fruit fly larval 
nervous system and ventral nerve cord of adult fruit fly have artic-
ulated shapes [Figure 2(b) and (c)]. The curved structure can be 
modeled as a lower-dimensional manifold pattern. A global affine 
transform is not suitable to globally register images of these pat-
terns. Without being able to globally align these images, more 
detailed registration at local image regions will become impossible.

When the biological objects have an articulation or an embed-
ded manifold, such patterns should be first globally standardized 
prior to the image-to-image registration (following the procedure 
discussed in the section “Image-to-Image Registration.”) 
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The standardization refers to unfolding the embedding-manifold 
structures or globally aligning the articulated components of 
objects so that they possess similar scales, positions, and directions.

 To standardize a shape in the image, we first explicitly 
model the curved or articulated shape. A principal skeleton 
model [24] is suitable for this goal. The principal skeleton is 
defined by a set of connected polylines with intrinsic shape con-
straints embedded (Figure 2). For different shapes, different 
principal skeleton models should be created. The principal skel-
eton model of a shape should correspond to the simplest skele-
ton that is complicated enough to capture the major structure 
and major deformation of this shape. In the simplest case, a prin-
cipal skeleton model consists of only a polyline without any 
branch, which is sufficient to capture the smoothly curved shapes 
in C. elegans [Figure 2(a)] or zebrafish. In a more complicated 
case, a connected multipolyline model is used to define the princi-
pal skeleton. This fits well the cases of fruit fly larval nervous sys-
tem and adult ventral nerve cord [Figure 2(b) and (c)] . 

A principal skeleton model can be deformed to best register to 
the image content. This skeleton model, however, may not be eas-
ily produced using many approaches such as [25]–[30]. For 
instance, when the boundary of the animal’s shape is not available 
[Figure 2(a)], a skeleton cannot be derived directly from the shape 
of the animal. Such cases are not uncommon in microscopy 
images. To solve this problem, we produced an optimized principal 
skeleton model for an image by iteratively mapping a predefined 
principal skeleton onto the image [24], [31]. Specifically, one can 
progressively update the control points in the principal skeleton 
while preserving the topology of the linkage between control 
points. To drive the deformation process, we defined a cost func-
tion to optimize two competing terms: one external force called 
image force and one internal force called model force. The image 
force is designed to push the principal skeleton to span as broadly 
as possible to cover the entire image pattern. This is realized by 
first generating the Voronoi partition using all control points and 
then minimizing the distance between each control point and the 
center of mass of its corresponding Voronoi region. The model 
force is designed based on the shape prior defined by the principal 
skeleton. Such a force is then minimized to attain the shortest 
overall length and the greatest smoothness of the principal skele-
ton. Figure 2 shows examples in which the initial model can 
deform to best register to images.

For multiple image patterns that have articulated structures, 
once their principal skeleton models have been generated, a 
thin-plate spline can be employed to warp these image patterns 
to a common coordinate system [24]. Such a method has been 
successfully applied to C. elegans, a fruit fly larval nervous sys-
tem, and ventral nerve cord image data to perform more accu-
rate global registration. Then local alignment methods such as 
BrainAligner can be used more effectively to generate high-res-
olution local registration.

SPATIAL LAYOUT ATLAS MODELS
In some cases, the model may need to be much more compli-
cated than the aforementioned principal skeleton. One piece of 

essential information is the complex 3-D spatial layout of 
objects. In addition, the model may also incorporate the objects’ 
identities or some statistical information such as cell shape, 
size, and position variation, etc. [32]. With a complex version of 
the model, the model-to-image registration can be further 
extended to solve segmentation and annotation problems.

Here we restrict our discussion on C. elegans cell segmenta-
tion and annotation. For neuron- and whole-organism-level seg-
mentation and annotation, we refer interested readers to [29], 
[33], and [34]. C. elegans is a model animal for a wide range of 
biological studies, from gene expression to brain function and 
even animal behavior [35]. This animal has an invariant number 
of cells, which also have invariant lineages during development. 
For the postembryonic C. elegans, a number of confocal images 
[Figure 3(a)] were segmented [32]. The results were further 
assembled as a 3-D digital atlas [Figure 3(b)] to describe the layout 
of cells at the single cell resolution [32]. This digital atlas can 
either be visualized in terms of a point-cloud [similar to Figure 
3(a)] or a “wiring” graph of cells’ relative locations [Figure 3(b)] in 
3-D. The atlas was then used as a model to guide the recognition 
of cells in newly scanned 3-D image stacks of this animal. 

Intuitively, recognition of these C. elegans cells could be 
achieved by first segmenting the cells in 3-D, followed by finding the 
correspondence between segmented cells in an image and the 
already standardized cells in the atlas model. Once cells have been 
segmented and recognized, useful information of cells, such as the 
expression level of specifically targeted cells, can be read out at these 
identified cellular locations. This routine was first developed in [36]. 
In the cell segmentation step, an optimized 3-D watershed algo-
rithm was used. In the recognition step, since the relative locations 
of most cells are conserved from animal to animal, a graph-match-
ing formulation of cell locations from the segmented cells to those 
recorded in the atlas was used. Both steps unavoidably had some 
errors. The biggest problem was that the information in the atlas 
(e.g., the number of cells, the variability of relative locations of cells) 
was not employed to help improve cell segmentation, which would 
also enhance the graph matching based recognition. In [37], the 
problem of over- and undersegmentation was alleviated by perform-
ing recognition on an abundant pool of segmentation hypotheses. 

Instead of separating cell segmentation and recognition as two 
isolated processes, an alternative method is to perform segmenta-
tion and recognition in a simultaneous way with prior knowledge 
considered in both steps [38]. In short, this strategy was realized 
by “registering” the atlas to the image directly. The atlas itself in 
this case is a complex model that encodes both the identities and 
relative locations of all cells. The registration process is defined as 
deforming the 3-D locations of all cells in the model to best fit the 
cells in the image while keeping their relative locations. The cell 
segmentation in this case is implicitly realized via assigning a dis-
tinct group of image voxels to each cell. 

To illustrate this idea, one may begin with a simplified case 
where there is only one cell in both the atlas and image. In this 
case, the best fit is apparently to move the cell’s location to the 
center of mass of the image [Figure 3(c)]. In a slightly more com-
plicated case where there are two cells (called u and v for 
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[FIG3] Three-dimensional segmentation and recognition of C. elegans cells. (a) Shown in the upper image is a 3-D confocal image stack of 
C. elegans, where different colors indicate different fluorescent labeling of cells;  (a) (bottom) shows the point cloud representation of the 
3-D segmentation result of this image stack, where different colors indicate different cells. The 3-D atlas is also often represented as a point 
cloud and visualized similar to the bottom of this picture. (b) A portion of the directed acyclic representation of the anterior-posterior 
location relationship in the 3-D atlas of C. elegans. The arrow from a cell U to a cell V means U’s location is always anterior of V in the atlas. 
Depicted in the middle of each circle (graph node) is the name of this cell. Similar left–right and dorsal–ventral graphs can be produced 
based on the atlas as well. (c) A schematic illustration of an image where there is only one cell and the optimal 3-D location of this cell 
should be the center of mass of image voxels. (d) A schematic illustration of an image where there are only two cells and the optimal 3-D
locations of these two cells should be the centers of mass of the Vonoroi regions. (e) Results of simultaneous-segmentation and recognition 
of C. elegans via deforming an atlas model of all cells to best register to the 3-D image, and a comparison with the 3-D watershed 
segmentation, which has both under- and oversegmentation at different regions. (Image taken from [38] and used with permission.) For 
more details on the C. elegans atlas and the algorithm, see [35] and [38], respectively.
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convenience) in the atlas and image [Figure 3(d)] and assuming 
the cell u is always in the left of the cell v. In this case, we would 
partition the image into two portions, each of which would be 
assigned to one cell, and move the cell’s location to the center of 
mass of the respective partition. Finally, the constraint for cells’ 
relative positions can be guaranteed by switching u and v if such a 
constraint is violated. 

Biologically, this approach is suitable for the C. elegans cell rec-
ognition problem because the number of cells of the worm is a con-
stant and the relative spatial locations of individual cells are highly 
constrained [35]. We formulated this approach into an algorithm 
called simultaneous recognition and-segmentation of cells [38]. Its 
optimization process consists of two iterative steps: 1) atlas-guided 
voxel classification and 2) voxel-classification-guided atlas deforma-
tion. A more detailed description is given in [38]. Interestingly, to 
make the algorithm more robust and efficient, several additional 
factors have also been considered [38]. First, because C. elegans is 
much more elongated along its anterior–posterior axis than the 
dorsal–ventral and left–right axes, the algorithm allows more flexi-
ble deformation of cells’ locations along the anterior–posterior axis 
than the two other axes. Second, a “temperature”-modulated deter-
ministic annealing optimization [39]–[41] was used to tackle the 
optimization problem by constraining the fuzziness of the classifi-
cation probabilities. Thanks to this annealing method, simultane-
ous segmentation and recognition can even handle 180° flipped 
images [38]. Finally, to cope with the challenge of (usually) having 
an enormous amount of image voxels in a 3-D image, we downs-
ampled the image before entering the iteration step. We also con-
sidered only sufficiently bright image pixels in the actual 
computation of likelihood and image partitioning (typically, only 
pixels with intensities greater than the average intensity of the 
image are included in the calculation). In the simultaneous seg-
mentation and recognition result, the partition of the foreground 
image naturally translates to the segmented regions of cells. 

Simultaneous segmentation and recognition has been applied 
to recognizing a number of cell types in C. elegans, including body 
wall muscle cells, intestinal cells, neurons, etc. It can recognize 
these cells reliably, even if the initial atlas of cells has a different 
orientation from the test image [38]. Simultaneous segmentation 
and recognition avoids many of the over- and undersegmentation 
problems [Figure 3(e)], compared to some widely used cell seg-
mentation methods such as the watershed based [36], [42], graph-
cut based [43], level-set based [44], and many other methods as 
mentioned in a recent review paper [5] and the many insight seg-
mentation and registration toolkit methods wrapped up in the 
FARSIGHT project (see [45]). Such a feature indicates that this 
model-to-image registration-based approach can be used to solve 
challenging image segmentation in some situations.

DISCUSSION AND CONCLUSIONS 
In this article, we introduced three cases of registration between 3-D 
images and models. We showed that registration-based approaches 
are useful for large-scale image alignment, as well as for the seg-
mentation and annotation of 3-D cellular microscopy images. It is 
noteworthy that the generalization of registration-based approach 

can be further applied to other bioimage analysis problems. These 
analyzed results could be further visualized or annotated by widely 
used manual tools such as Vaa3D (http://vaa3d.org) [46] and CAT-
MAID [47]. 

The model-to-image registration can be combined with image-
to-image registration in a pipeline, thus the articulated objects in a 
bioimage can be meaningfully aligned. Model-to-image registra-
tion can also be combined with image tracking, a whole field of 
methods not discussed in this article, to analyze two-dimensional 
or 3-D video-based animal motion or development (e.g., C. elegans
or zebrafish kinetic motion analysis). Another promising direction 
is to integrate all the steps of animal tracking, shape standardiza-
tion, cell segmentation, and recognition with microscope hardware 
control to build an “intelligent” system that can simultaneously 
perturb cells and screen corresponding behaviors in vivo. 

Despite the several examples we showed, we also found several 
challenges in registration methods and applications. There is also a 
lot of room to improve the related algorithms. For example, cell rec-
ognition and segmentation, despite the exploration of relative spatial 
location information and position variation statistics, still lacks an 
efficient method to use the cell shape and size priors embedded in 
the atlas. Sophisticated machine-learning techniques, such as 
supervised learning, can play interesting roles in its further develop-
ment. Not limited to registration, another key factor of consider-
ation in many bioimage analysis applications is whether or not the 
prior knowledge can be effectively modeled and utilized. We hope 
this article can inspire more research into signal processing, pattern 
recognition, and machine learning for robust bioimage analysis.
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H
istology is the microscopic 
inspection of plant or ani-
mal tissue. It is a critical 
component in diagnostic 
medicine and a tool for 

studying the pathogenesis and biology 
of processes such as cancer and 
embryogenesis. Tissue processing for 
histology has become increasingly auto-
mated, drastically increasing the speed 
at which histology labs can produce tis-
sue slides for viewing. Another trend is 
the digitization of these slides, allowing them to be viewed on a 
computer rather than through a microscope. Despite these 
changes, much of the routine analysis of tissue sections remains 
a painstaking, manual task that can only be completed by highly 
trained pathologists at a high cost per hour. There is, therefore, a 
niche for image analysis methods that can automate some 
aspects of this analysis. These methods could also automate tasks 
that are prohibitively time-consuming for humans, e.g., discover-
ing new disease markers from hundreds of whole-slide images 
(WSIs) or precisely quantifying tissues within a tumor. 

In this article, we aim to acquaint the signal processing 
researcher with histology and review the current approaches to 
the fascinating and important signal processing problems associ-
ated with histology image analysis. Throughout, we focus on slides 
stained with the ubiquitous hematoxylin and eosin (H&E) stain 
and imaged with brightfield microscopy.  

HISTOLOGY: THE 
PATHOLOGIST’S VIEW
The main goal of the surgical patholo-
gist in a diagnostic practice is to exam-
ine tissue and render a correct diagnosis 
that will ultimately translate to a thera-
peutic intervention for the patient. The 
therapeutic response may range from no 
action, in the case of a diagnosis of nor-
mal or unremarkable, to close follow-
up, local excision, medical treatment 

only (benign diagnoses), or radical chemo-
therapy and/or surgery (malignant diagnoses). 

Figure 1 presents the pipeline from tissue processing to diagno-
sis from the perspective of the diagnostic pathologist. Understand-
ing this process will give the reader an appreciation of how images 
are derived from tissue and the associated sources of variability, 
noise, and artifacts; this information is critical to designing auto-
mated image analysis systems. This portion of the article is based 
on standard histology texts [1], [2], as well as years of experience in 
the field of pathology. 

TISSUE COLLECTION
The clinical histology process begins when the treating physician, 
after assessing the patient by history, physical examination, and/or 
radiographic and laboratory studies, determines that treatment can 
proceed no further without histology confirmation. The treating 
physician then must obtain enough good-quality tissue to obtain a 
diagnosis. There are several possible approaches to tissue collection, 
including fine-needle aspiration, needle biopsy, excisional biopsy, or 
excision of the lesion in its entirety. The sensitivity (likelihood of 
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getting the correct diagnosis) and specificity (likelihood of not get-
ting the incorrect diagnosis) increase from fine-needle aspiration to 
excision of the entire lesion. This is because the larger biopsies pre-
serve more cellular context and allow the pathologist to examine 
multiple slides from different areas of the sample. 

After biopsy, the pathologist evaluates the tissue on the mac-
roscopic scale, measuring it and recording a description of its 
color and characteristics. For larger tissues (e.g., tumor resec-
tions or colon resections), the tissue must be trimmed to fit 
into the tissue cassettes (approximately 10 × 10 × 3 mm) that 
will contain it for the subsequent processing steps (Figure 2). 

PROCESSING
The next step in the diagnostic pipeline is tissue processing, which 
involves chemically and physically stabilizing the tissue. The tissue 
is first immersed into a fixative solution that is used to stop cells 
from breaking down and prevent microorganism growth. In gen-
eral, tissue is fixed for a few hours (small biopsies) to about 24 
hours (large biopsies). Fixation is critical because poorly fixed tissue 
leads to poor tissue sectioning and poor microscopic morphology. 

After fixation, the tissue is physically stabilized by one of sev-
eral methods (freeze drying, microwave, chemical) with the end 
goal of preserving the cellular morphology. The most commonly 
employed method involves the use of alcohols and xylene and is 
automated in most laboratories: First, the tissue is dehydrated, 
which clears the water and aqueous fixative from it. Next, the tis-
sue is cleared of the dehydrating agent, leaving the tissue ready 
for paraffin infiltration. Finally, the paraffin warms in the proces-
sor until it is liquefied, infiltrates the tissue under vacuum, and 
then cools so that the tissue becomes firm. This process takes 
approximately nine hours and, in many laboratories, is run over-
night. One of the end results of processing tissue in this manner 
is that the tissue section is slightly smaller than the original fresh 
or fixed tissue prior to processing. 

EMBEDDING
After processing, the tissue is embedded in a block of support 
material, as shown in Figure 3. To achieve this, the tissue is placed 
on the bottom of a mold and paraffin is poured over it. The original 
tissue cassette is placed over the mold and then onto a cooling 
plate to solidify the paraffin. The result is called a tissue block, tis-
sue that is impregnated with and surrounded by hardened paraffin. 
Because the tissue will be sliced parallel to the cassette, orientation 
of the tissue during embedding is key; see Figure 4 for an example. 

SECTIONING
Sectioning is cutting thin slices of tissue that are mounted on 
microscope slides (Figure 5). This is achieved with a tool called a 

microtome, which operates like a deli slicer. This step can be man-
ual, semiautomated, or automated. For example, the manual 
rotary microtome advances the block by a set amount with each 
turn of the wheel and thus produces a ribbon of tissue. Most tissue 
sections for diagnostic purposes are cut at 3–4-μm thickness. For 
certain applications (e.g., silver staining of kidney biopsies) thin-
ner sections are necessary; these are more difficult to obtain 
without damaging the tissue. Thicker sections tend to make stain-
ing dark and obscure nuclear detail. 

[FIG1] A block diagram of the histology process.

Tissue
Sample

Processing Embedding Sectioning Staining Visualization Diagnosis

(a) (b)

[FIG2] (a) A gross specimen is cut into smaller pieces and placed 
into (b) cassettes for further processing.

[FIG3] (a) Paraffinized tissue is oriented and embedded into a 
block of paraffin. (b) Tissue blocks after embedding.

(a) (b)

[FIG4] The importance of proper orientation during embedding. 
(a) A gross specimen shows an opened enteric duplication cyst 
(arrowhead) intimately joined to the bowl (arrow). (b) A
histology image of the cyst with normal bowel (arrow) abutting 
cyst wall (arrowhead) can only be observed when slicing occurs 
perpendicular to the wall.

(a) (b)
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These thinly cut sections are floated out onto a water bath 
heated to about 10 °C below the melting point of the paraffin. This 
allows dispersion of any wrinkles generated by the microtome 
blade at sectioning. Once the sections are cut and floated, they are 
placed onto 25 × 75 × 1 mm glass microscope slides. 

STAINING
At this point, the tissue slices are nearly invisible under a light 
microscope, so they must be stained to create contrast. Most stain-
ing procedures in the laboratory, aside from immunohistochemi-
cal (IHC) ones (antibody based), use chemicals or dyes that will 
bind or have affinity for certain components of the cells and extra-

cellular components. The chemical properties of these dyes pro-
duce the visual appearance that is seen under the microscope. 

The most widely used stains for both diagnostic and research 
histology are H&E. Hematoxylin stains nucleic acids and 
appears blue/purple, while eosin stains proteins and appears 
pink/red when visualized under a brightfield microscope. So for 
most tissues, cell nuclei are blue, while cytoplasm can vary from 
clear to red to purple depending on its constituents. The reason 
that H&E staining of tissue has persisted for decades as the pri-
mary tissue stain in diagnostic and research pathology is that 
these stains attach themselves to almost every cellular compo-
nent, allowing for the visualization of whole cells and all tissue 
components. Another reason is that these stains provide excellent 
contrast between cellular constituents by having chemical proper-
ties that produce colors at opposite ends of the visual spectrum. 
These color perceptions are helpful in diagnosis, though not 
entirely necessary, since, even in grayscale, distinctions between 
and within tissues can be made and diagnoses rendered. 

VISUALIZATION
Once stained, the slides must be visualized (Figure 6). A growing 
trend in pathology is to digitize slides so that pathologists can make 
diagnoses based solely on the digital image [3], [4]. The advent and 
refinement of whole-slide scanners have made rapid scanning and 
high-resolution WSIs commonplace. These systems are now 
offered by many companies and offer spatial resolutions using the 
40 × objective of approximately 0.23–0.25 μm/pixel. Storing digital 
images would be an attractive alternative to storing glass slides, 
since glass slides take considerably more space, can be damaged 
or lost, and fade over time, but currently institutions must keep 
their glass slides and tissue blocks for at least ten years. 

Despite these advantages, in most medical centers, the 
pathologists still rely on visualization of the slide through a 
microscope. According to pathologists, a microscope offers 
faster panning, faster focusing, and an intangible sense of being 
closer to the tissue. This last advantage is more difficult to 
explain, but the sense is that the eye can capture greater detail 
through the microscope than from a digital image on a moni-
tor. Even so, studies have shown no appreciable difference in 
diagnoses rendered by pathologists using digitized images com-
pared to diagnoses rendered using a microscope [5]–[8]. 

ANALYSIS
The goals of the pathologist in the clinical domain versus the 
research domain can be very different; we discuss each separately. 

CLINICAL PRACTICE
In the clinic, the goal of the pathologist is to render accurate and 
timely diagnoses. For a given slide, they analyze a wide variety of 
characteristics including tissue architecture, cellular color and 
texture (Figure 7), and cellular/nuclear morphometry (Figure 8) 
to produce diagnoses. Computer algorithms may automate some 
of these tasks. For example, in cytopathology, automated methods 
for screening Pap smear slides limit the number of cytotechnolo-
gists needed to complete these screenings. In the future, we could 

[FIG5] (a) During sectioning, the tissue block is sliced into 3–4-μm 
sections, which remain connected in a ribbon. (b) Collecting a 
ribbon from the water bath using a glass slide.

[FIG6] (a) Histology slides after staining. (b) The visualization 
setup including a microscope with attached camera and a 
desktop computer.

(a) (b)

(a) (b)

[FIG7] Some examples of important visual cues in histology. 
(a) In this teratoma section, color makes distinguishing cartilage 
(blue/gray, arrow) from bone (pink/red, arrowhead) easy, even 
at low magnification. (b) In this liver section of a child with 
mitochondrial disorder, texture is important. Under high 
magnification, cell borders are accentuated and cytoplasm shows 
tiny red granules representing abnormal mitochondria (arrow).

(a) (b)
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hope to automate or semiautomate histology screenings, e.g., of 
the gastrointestinal tract. Such automation could greatly reduce 
health-care costs and potentially provide pathologists more time 
for challenging cases and important research. 

RESEARCH
In the research domain, pathologists may aim to quantify differ-
ences between histology samples in terms of a variety of parame-
ters including cellular/nuclear morphometry, amount of stroma 
(the connective tissue cells that support the function of cells 
around them) present, types of tissue present, etc. Although some 
basic analyses can be readily performed using available image 
analysis software (e.g., Photoshop, ImageJ, MetaMorph), most 
quantification in pathology remains semiquantitative: staining 
intensity may be rated as low, moderate, or strong; the amount of 
a certain cell type may be visually estimated as 0–25%, 25–50%, or 
>50% of the total population; and morphometric descriptions of 
cells are limited to semantic descriptions such as larger, thick-
ened, pleomorphic, or cellular.

For some studies, this type of analysis is not accurate 
enough, because many biologically or clinically relevant fea-
tures cannot be easily captured and processed by the human 
visual system. For example, given two tumors, how would a 
pathologist support the claim that the average nucleus size is 
different between them? Similarly, how can pathologists quan-
tify, by eye, complex patterns such as chromatin distribution? 
Signal processing solutions to these quantification challenges 
would be extremely useful technology for researchers in almost 
any area of investigation that analyzes and quantifies observa-
tions from tissue specimens. 

SOURCES OF VARIABILITY
There are three main sources of variability in a histology-based 
diagnosis: biological variability, interobserver variability, and tech-
nical variability. Biological variability encompasses the normal vari-
ability among people and the myriad of pathological processes that 
can affect any tissue group. Due to biological variability, slides gen-
erated from the same tissue in different patients can look different. 
Interobserver variability contends that two pathologists can look at 
the same tissue and render different interpretations. Finally, tech-
nical variability is the variability in a slide’s appearance due to how 
it was prepared. We focus here on the details of technical variability. 

In the best case, the slide that is generated from the above 
tissue processing pipeline shows tissue that is properly oriented, 
sectioned, stained, and coverslipped. Unfortunately, each of 
these steps can introduce variability into the final product, and 
differences in protocol between labs can greatly alter the 
appearance of even biologically similar tissue samples. Some 
variables such as fixation, specimen orientation in the block, 
and microtome sectioning are heavily dependent on human 
skill, and even though tissue processing, staining, and coverslip-
ping are largely automated, they still depend on human moni-
toring, machine maintenance, and solution preparation. 

For automated analysis systems, each source of variability 
presents a significant obstacle. Tissue that is poorly fixed will not 

cut well and has a blurry appearance, removing important cues 
such as edges. Tissue that has been dried out will be shrunken 
and have poor morphology and stain contrast, similar to poorly 
fixed tissue. Sectioning artifacts are some of the most commonly 
encountered artifacts and can produce folds in the tissue, chatter 
artifacts from a dull blade (seen as alternating light and dark 
regions), or missing pieces of the tissue. 

Staining is a critical source of variability because it produces the 
color and contrast on the slide (Figure 9). Many different formula-
tions of H&E exist, each producing a slightly different appearance. 
The stain can also be applied in different manners. In progressive 
staining, the sample remains in the hematoxylin solution for a spec-
ified amount of time to render appropriate staining. In regressive 
staining, the sample remains in the hematoxylin long enough to 
overstain, and is then destained back to the desired contrast with an 
acid alcohol solution. Furthermore, both H&E solutions can have 
their staining capabilities altered by prolonged storage, contamina-
tion by other reagents or water, precipitation, and changes in pH. 
Staining artifacts can include light staining with either hematoxylin 
or eosin, precipitated hematoxylin (seen as blue chunks under the 
microscope), or lack of staining with either hematoxylin, eosin, or 
both. That these artifacts are well understood by pathologists is 
another reason why H&E remains so popular. 

AUTOMATED HISTOLOGY IMAGE ANALYSIS
In this section, we survey the current methods and signal process-
ing challenges in automated histology image analysis. We aim to 

[FIG9] An example of staining variability. Both (a) and (b) show 
images made of bone, but the color of the bone varies from (a) 
pink to (b) purple due to staining variability. Such color 
variations present a challenge for automated analysis systems.

[FIG8] Some examples of the importance of nuclear shape and 
distribution in colon screening. (a) In normal colon tissue, nuclei 
are regular in size and distribution around the colon gland 
(arrow). (b) In colitis, nuclei become much less regular (arrow).

(a) (b)

(a) (b)
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cover a broad range of signal processing topics, but we restrict the 
review to slides stained with the common and inexpensive H&E 
stain and imaged with brightfield microscopy. This is because H&E 
images are prevalent in clinical and research settings and because 
this focus allows us to survey a more coherent group of methods; 
we argue that the approaches to a single task, e.g., nucleus detec-
tion, vary considerably across staining and imaging modalities. 
This section is organized around a generalized block diagram of a 
hypothetical histology analysis workflow, shown in Figure 10. For 
each block in the diagram, we describe the signal processing chal-
lenge and review the current approaches in the literature. 

We are aware of three previous reviews of automated histology 
analysis. The first, [9], deals with analysis of histology images 
including H&E images as well as fluorescence and multispectral 
images. It covers preprocessing; segmentation of glands, nuclei, 
and other subcellular components; feature extraction; dimension-
ality reduction; and classification. The second, [10], tackles the 
broader field that the authors term computational pathology,
which includes histology as well as cytology analysis. It discusses 
issues of data and ground truth collection including variation 
among experts and publicly available data sets and describes auto-
mated analysis primarily from a statistical pattern recognition 
viewpoint. The third, [4], discusses histology WSI informatics, 
including quality control during image acquisition, feature extrac-
tion, region of interest (ROI) detection, and visualization. 

While our survey does not include every paper on automated 
histology, we aim to give the reader a sense of what has been tried 
for the various histology analysis tasks we present. We have given 
priority to recent journal papers except where necessary. Also, note 
that we do not focus on results of or comparison between meth-
ods. This is because, at this stage, automated histology research is 
diffuse: most methods are tailored to private data sets and there is 
no consensus on what quantitative metrics should be reported. 
Moving toward shared data sets and metrics will be a critical step 
forward in the field. 

PREPROCESSING
Histology images exhibit the same types of artifacts and noise as 
any digital microscopy image, as well as some novel ones intro-
duced by tissue processing. These can affect analysis unless 
removed with appropriate preprocessing. A good overview of noise 
and artifacts in digital microscopy and methods to correct them 

are discussed in [11]; in this section we focus on the issues specific 
to H&E images of tissue processed as described above. 

STAIN NORMALIZATION
As discussed in the section “Sources of Variability,” staining varia-
tions affect the appearance of histology images; such variations are 
problematic for automated analysis because color is a critical fea-
ture in histology. Stain normalization is the process of taking two 
H&E images that have staining variation between them and 
removing this variation. Doing so has been shown to improve his-
tology image segmentation [12], [13]. One approach to stain nor-
malization is to use color normalization techniques from 
photography such as histogram equalization; e.g., in [12], the rank 
statistics of the input image are scaled to match those of the refer-
ence image separately in each color channel. The method has 
been successfully used in other automated histology work, includ-
ing [14]. Such methods are especially suited for cases where the 
images to be normalized show approximately the same tissue, e.g., 
in the case of serial sections such as in [15]. 

An approach more specifically tailored for H&E image nor-
malization is to first separate the image into H-only and E-only 
images (sometimes called color deconvolution), then normalize 
these images separately and recombine. This approach better 
handles cases where, e.g., the hematoxylin stain is too intense but 
the eosin stain is too weak. When the stain colors are known, the 
color deconvolution method in [16] solves the separation. When 
they are not known, the problem becomes more challenging. The 
approach taken in [13], [17], and [18] is to estimate the stain col-
ors and deconvolve as before. In [17], the stain colors are esti-
mated using the fact that all stained pixels will lie on a wedge in 
color space; this is a special case of the nonnegative matrix factor-
ization problem studied elsewhere. Reference [18] uses expecta-
tion-maximization to find clusters in chromaticity space that 
correspond to stain colors, and [13] finds pixels stained with only 
one stain via supervised classification and uses their mean color 
to estimate the stain colors. A different approach is to estimate 
the single-stain images directly; e.g., [19] searches for an H-only 
image that removes most of the contrast from the red channel of 
the input, based on the assumption that most this contrast comes 
from the nuclei, which are stained only by hematoxylin. 

These separation methods all produce qualitatively fair results, 
but it is unclear which comes closest to the correct separation. 

[FIG10] A block diagram of a generic automated histology analysis workflow. Most current works address only one or a few of 
these blocks.
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We have recently released a stain separation benchmark data set 
based on chemical destaining [20]; our comparison indicates that 
the method of [17] is superior to that of [19], but we did not eval-
uate any of the more recent approaches. 

TISSUE DEFORMATION
Because the tissue slices are very thin, they can fold over on 
themselves during processing, creating a tissue area that is dou-
bly thick. The authors of [21] proposed detecting these folds by 
their high color saturation, and the authors of [22] devised a 
method for selecting a good saturation threshold for this detec-
tion, but, to our knowledge, no work addresses correcting tissue 
folds digitally. In the same vein, differences in the water content 
of different tissues can cause them to pull apart when the tissue is 
dehydrated during processing; the result is white cracks that are 
not biologically meaningful. Again, we are not aware of any work 
that addresses correcting these artifacts. 

STITCHING
High-resolution WSIs are often acquired by imaging several strips 
or tiles separately, which then must be stitched together to create 
the final image. Because the offsets between the strips or tiles are 
known, adequate stitching results are often provided by the micro-
scope/scanner software or can easily be achieved with simple com-
positing techniques. A more challenging stitching problem occurs 
when a large gross specimen must be sectioned and imaged as sev-
eral pieces. In [23], the authors describe a GUI that allows stitching 
of high-resolution images of such tissue fragments via hand-
selected control points and linear transformation. We are not aware 
of a work that addresses histology image stitching with automatic 
control point selection or explores a richer set of transforms. 

REGISTRATION
There are a variety of H&E histology image registration tasks, 
depending on the image modalities involved. In this section, we 
review three common registration tasks involving H&E images. 

H&E TO H&E
Given serial sections of a tissue sample, each stained with H&E, 
one aim is to register them to create a tissue volume. This 
three-dimensional (3-D) reconstruction can more fully show 
the extent of a pathological process or show relationships of tis-
sue types to one another. This is a difficult registration task: 
each slice undergoes nonrigid deformation during processing 
and may exhibit cracking or folding artifacts. The standard 
approach is to register in a coarse to fine manner as in [15], 
where the authors register images of serial tissue slices to 
explore the 3-D shape of cervical tumor fronts using a series of 
three registrations: 1) a rigid registration using a frequency 
domain method, 2) a polynomial registration using control 
points automatically selected with correlation matching on 
small patches, and 3) a registration consisting of unconstrained 
local displacements regularized by local curvature. An approach 
more tailored to histology is to use specific anatomical land-
marks; e.g., [24] registers based on blood vessels. 

H&E TO ANOTHER STAIN
One may also want to register images of two adjacent tissue slices 
that use different stains; e.g., H&E to IHC stains. This task is diffi-
cult because, by design, the stains will give contrast to different 
structures. One way to overcome this obstacle is with the selection 
of an appropriate pixel-wise similarity measure, e.g., the authors of 
[25] register H&E images to a variety of IHC images using mutual 
information and the elastix software package [26]. Another 
approach is given in [27], where distinctive landmarks such as 
blood vessels are segmented and used to compute the registration. 

H&E TO MRI
Compared to histology, magnetic resonance imaging (MRI) has low 
contrast and resolution, but has the advantage of being noninva-
sive; registering histology images to magnetic resonance (MR) 
images could help train radiologists, provide better noninvasive 
diagnoses, and enable the development of MRI-based computer-
aided design tools [28]. This task is difficult because MR images are 
3-D while histology images are two dimensional, MR images are 
lower resolution than histology images, and because the contrast 
in MR and histology images is generated in different ways. When 
considering MR images collected in vivo, registration is even more 
difficult because surgical extraction and histology processing can 
greatly deform the tissue. In [29], histology images are registered 
to in vivo MR images via two intermediates, the block face photo 
and the ex vivo MR image, with the idea that the deformations 
between these intermediate stages are less drastic and therefore 
easier to estimate. Each step of the registration is completed using 
mutual information as the metric and thin plate splines to deform 
the image with control points initialized by hand. In [28], histology 
images are registered to MR slices to create a histology volume, 
then the MR volume is registered in 3-D to the histology volume 
and resliced. The process is iterated until convergence. 

In each of these scenarios, comparison between methods is dif-
ficult because no ground truth exists. This problem is intensified 
in the first two scenarios because qualitatively good registrations 
may actually remove true differences between the adjacent tissue 
slices being registered. 

DISPLAY AND ANNOTATION
A fundamental problem in the display of histology images is that 
they can be huge, easily several gigabytes for uncompressed WSIs. 
As a result, commercial slide scanners often save images in a pro-
prietary format for which the manufacturers provides free viewing 
software, e.g., Aperio ImageScope. For the researcher interested in 
reading the images themselves, one solution is Openslide [30], a 
C library that aims to allow slides from any vendor to be opened, 
manipulated, or converted to other formats. One format that 
OpenSlide can convert to and is a natural fit for large histology 
images is the Deep Zoom (DZI) format, which creates from a large 
image a tiled image pyramid, allowing real-time viewing of images 
of arbitrary size, even streaming over the Internet. One example of 
this approach can be found in [31], which involves displaying 
WSIs from the Cancer Genome Atlas data set [32] on the Internet 
using the similar Zoomify format. The system in [33] is designed 
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specifically for viewing histology images and avoids the time-
consuming calculation of image pyramids by creating the current 
view in real time from image tiles. 

Beyond simply viewing large histology images, researchers may 
want to collect expert annotations for them for the purpose of train-
ing and testing their analysis algorithms. In the simplest case, the 
expert pathologist may label an entire image, e.g., as normal or 
cancer. For more fine-grained labeling, Aperio ImageScope, Sedeen 
Viewer, and Cytomine [34] provide freehand annotation tools for 
large images. The next step for histology image display and annota-
tion is systems allowing the pathologist to interact with automated 
analyses, teaching and correcting the system in real time. Some 
efforts have been made in this area: after the automated segmenta-
tion in [35], experts can click on nuclei to indicate that they either 
need to be split or merged, and Cytomine is beginning to include 
collaborative proofreading of automated cancer segmentation. 

ROI IDENTIFICATION
A single biopsy can generate dozens of high-resolution WSIs, how-
ever, often, only a small region of this vast quantity of tissue is diag-
nostically useful. There is, therefore, a need for fast computational 
methods that can identify these ROIs in while-slide histology 
images. Once identified, these regions can be passed to a patholo-
gist or to subsequent steps of a larger automated histology pipeline. 

One approach is to simply downsample the input; e.g., [36] uses 
a low-resolution input to extract features based on color and sparse 
coding of subpatches. These features are classified via a support vec-
tor machine (SVM) to detect ROIs. Another approach is to process 
the image at multiple scales, such as in [37], where WSIs of breast 
cancer tissue are recursively partitioned via color clustering at 
increasingly fine resolutions to efficiently identify tissue versus 
nontissue and lesion versus normal regions. Yet another approach 
is to detect objects such as glands and identify ROIs based on these 
[38]. There are generally fewer objects on a slide than pixels, so pro-
cessing objects can be more efficient than processing pixels. 

NUCLEUS DETECTION
Nuclei are prevalent in histology images and their size, shape, dis-
tribution, and texture are relevant for many analysis tasks such as 
identifying inflammation, identifying and grading cancer, and 

determining tissue type. Therefore, locating nuclei is a critical step 
in many histology analysis systems. Nucleus detection in histology 
images is challenging because nuclei can be tightly clustered 
(Figure 11) and vary in size, shape, and color depending on their 
cell type. Even within a single cell type, the stain may not pene-
trate all nuclei equally, leaving some darkly stained and others 
lightly stained. Finally, human nuclei are around the same scale as 
the thickness of the tissue slice (5 μm), meaning that, for some 
nuclei, only a portion appears on the slide. 

Basic approaches to nucleus detection involve color clustering of 
the pixels; e.g., the work in [39] uses clustering in the lab color space 
to identify four subcellular components—nuclei, cytoplasm, neuro-
pil, and background—and [40] uses expectation-maximization clus-
tering to identify regions of lymphocyte nuclei, stroma, cancer 
nuclei, and background. 

Using only local information omits the strong prior knowledge 
we have about nucleus size and shape. Approaches that move 
beyond local information include [36] and [40], which use active 
contours to refine their initial color segmentation, and [14], which 
uses a graph cut based on color and Laplacian of Gaussian fea-
tures. Similarly, the authors in [35] use Laplacian of Gaussian 
filtering with clever scale selection to detect nucleus seed points 
followed by local maximum clustering to form a rough segmen-
tation. Another approach is to frame nucleus detection as a clas-
sification problem; e.g., in [41], an SVM is trained to detect 
rectangular windows containing nuclei; the features used are 
pixel intensities and Laplacian of Gaussian edge intensities. 

Finally, several methods use heuristics to separate clustered 
nuclei, including the curvature-based reasoning in [14] and con-
cavity detection in [40]. The method in [35] separates nuclei via 
graph cuts (Figure 11). These approaches achieve impressive-
looking results even when nuclei are clustered, but large, hand-
annotated data sets will be necessarily to compare them and 
understand their strengths and weaknesses. 

CELL CLASSIFICATION
Most histology images contain cells of several types; moving 
beyond nucleus detection to cell classification can provide valu-
able diagnostic information. For example, the method in [42] 
classifies cells as centroblasts or normal, which is useful for can-
cer grading. It uses color and Fourier-based texture features with 
quadratic discriminant analysis as the classifier. The nuclei 
found in [40] are classified as belonging to lymphocytes or other 
based on their color. 

Other work focuses on detecting mitotic cells. Notably, [43] 
presents a contest data set for this task which comprises 50 
images collected on each of two different slide scanners as well 
as a multispectral scanner. The highest-scoring approach at the 
time of the contest was based on a deep convolutional neural 
network [44]. 

MULTICELLULAR STRUCTURE DETECTION
Cells in histology images are not solitary, rather they are part of 
organized structures (e.g., glands, acini). Detecting and analyzing 
these structures is a unique challenge in histology image analysis. 

(a) (b) (c)

[FIG11] The clustering of nuclei makes nucleus segmentation 
challenging. (a) In this grayscale, H-only image, the closely 
packed and overlapping nuclei cannot be separated with 
threshold-based clustering, resulting in (b) large connected 
components (yellow cluster). The method discussed in [35] 
breaks apart these clusters via graph cuts, resulting in (c) a good 
separation of nuclei. (Figure adapted with permission from [35].)
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Because there are many types of multicellular structures, these 
tasks tend to be more varied and application-driven than the ones 
we have discussed before, hence we give only a few examples here. 

Glands are a multicellular structure common to many tissue 
types (e.g., salivary, breast, prostate, pancreatic, sinonasal, gastro-
intestinal tissues), and changes in their morphology can be an 
important indicator of disease. In histology images, most glands 
appear as clear areas surrounded by cells. The method in [38] 
leverages the clear areas to find seed pixels and then uses region 
growing to segment the glands. Going further, [38] classifies 
glands as malignant or normal based on their size with a Markov 
random field to impose spatial smoothness. In [45], a graph is 
built on top of a colon tissue image with nodes corresponding to 
either nucleus or nonnucleus objects. The colon glands can then 
be described by subgraphs around a user-selected point at their 
center. Matching these subgraphs to reference ones from healthy 
or diseased glands allows classification of the input image. 

Some approaches to segmenting multicellular structures 
treat them like nuclei, e.g., [46] segments lymphoid follicles, 
which are organized groups of lymphoid cells, using active con-
tours. Detected regions are split based on curvature and false 
detections are further trimmed based on color. 

TISSUE SEGMENTATION
Tissues are organized groups of cells. Identifying them in an 
image is important for diagnosis or giving context to subsequent 
analyses. The wide variety of tissues and the complexity of their 
appearances makes this a challenging problem. The method in 
[47] uses local pixel intensities as features and is able to segment 
bone, cartilage, and fat tissue in teratoma tumor images. We pre-
sented a segmentation method [48] inspired by the lack of edges 
in histology images. It uses local color histograms rather than 
edge-based features and outperforms generic methods for tissue 
segmentation. The authors in [49] showed that segmentations 
seeking homogeneity of objects such as cells and crypts, rather 
than simply pixel homogeneity, perform well on colon tissue. 

Some tissue-level analyses amount to diagnoses; e.g., in [50], 
small subregions of a prostate tissue image are classified as nor-
mal, stroma, or prostatic adenocarcinoma. Normal regions are 
those around glands, which are simple to segment because of their 
white centers. Stroma and cancer regions are distinguished using 
Haralick texture features. Another group [51] used a graph-based 
methodology to segment regions of cancer in colon images, where 
features were based on the frequency of co-occurrence of nodes. 

DIAGNOSIS
Automated diagnosis is essentially image classification: given a his-
tology image, what disease does it represent? As such, most 
approaches follow the paradigm of feature extraction followed by 
classification. The authors in [52] address the problem of classifying 
subtypes of renal tumor in expert-selected ROIs. They use Fourier 
shape descriptors extracted from binary masks of nuclei, cytoplasm, 
and unstained regions as features and a series of SVM classifiers 
arranged in a directed acyclic graph to distinguish between three 
types of renal cell carcinoma and one benign tumor. Based on 

which shape descriptors are most distinguishing during classifica-
tion, the authors can identify which shapes are indicative of each 
tissue type. In [53], hand-selected ROIs of breast tissue are classified 
as normal, in situ cancer, or invasive cancer. They use generic fea-
tures including local binary patterns, co-occurence matrix statistics, 
and curvelet coefficient statistics. Classification proceeds in two 
stages, first a random subspace ensemble of SVMs, then a random 
subspace ensemble of neural networks. Each stage may either clas-
sify an image or reject it as too difficult. Images rejected from the 
first stage move on to the second, while images rejected from the 
second stage are viewed by a human expert. The method achieves 
accuracy of over 99% with a 1.94% rejection rate. The recent con-
ference paper [54] moves away from hand-designed features by 
learning features from the data using sparse representation. 

Grading is diagnosing the severity of a disease. Established 
grading scales are useful guides for algorithm development, and 
automated grading promises increased repeatability over human 
grading. The method in [36] grades breast cancer by analyzing the 
size, shape, and texture of the nuclei inside an ROI using a Bayes-
ian classifier. Another approach is to include some notion of cellu-
lar components without specifically segmenting nuclei. In, [55] 
grayscale thresholding and morphology are used to find blobs that 
are then classified based on intensity and size into three different 
nucleus types and stroma. The image is then segmented into areas 
of high and low nucleus density. Features including nucleus 
count, nucleus spacing, and tubule count are extracted for the 
high density areas only. The images are finally classified into grade 
one, two, or three with a quadratic classifier. In [39], Haralick fea-
tures are extracted from cytoplasm and neuropil regions and used 
to determine the differentiation level of neuroblastoma tumors. 
The classification step is an ensemble of seven different classifiers 
and dimensionality reduction methods combined via weighted 
voting. The method handles WSIs by splitting them into small 
tiles that are processed in parallel as well as first classifying a 
downsampled version of the tile and using higher resolution data 
only if the classification certainty is low. 

Finally, generic features can be used. In [56], prostate cancer 
is detected and graded based on color and color co-occurrence 
features and a random forest classifier. In [57], two different lung 
cancer subtypes are differentiated in images of tissue microar-
rays and hand-selected ROIs from full slides. The red and blue 
channels of the image are histogram-stretched to enhance the 
H&E contrast, and then Haralick and densitometric (e.g., mean 
pixel value, pixel center of mass, etc.) features are used in a 
boosting decision tree, achieving accuracy over 90%. 

CONCLUSIONS
Histology is a critical tool in medicine and therefore automated 
histology analysis could have a profound effect on health-care 
quality, availability, and cost. At the same time, the field provides 
a host of fascinating signal processing challenges. How can tis-
sue folds be detected and corrected? How can images of deform-
able tissue sections be registered to recover the 3-D shape of a 
tumor? What features are needed to explain the complex archi-
tecture of tissues such as skin? How can we detect rare cell types 
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with a scarcity of labeled data? And how can we run any of these 
methods efficiently on huge WSIs? 

We hope this discussion has served both as a useful primer and 
as a call to action. Much has been accomplished in this field, but 
these systems are far from clinical acceptance. To get there, we 
need algorithms that demonstrate robustness and that solve rele-
vant problems in medicine. Robustness will come from sharing 
data sets and algorithms so that they can be truly validated and 
compared. Relevance will depend on the continued efforts of 
pathologists and engineers to collaborate on defining and refining 
algorithms. Given the impact histology image analysis can make 
on the future of health care, it is well worth the effort. 
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L
ight offers a range of inter-
actions with tissue that give 
rise to an extensive list of 
methods to sense physical, 
chemical, or biological pro-

cesses. Combined with using safe and 
nonionizing radiation, optical imag-
ing is considered as a fundamental 
tool in the biomedical sciences [1].

Enabling optical imaging beyond 
the reach of microscopy depths has 
been considered for bringing unique 
optical contrast in visualizing small ani-
mals or human tissues in vivo [1]–[5]. Optical methods can offer 
label-free interrogation of various physiological, metabolic, or dis-
ease states. From cellular and vascular imaging to sensing of 
hemoglobin oxygenation, melanin, and other intrinsic tissue 
chromophores and genetic reporters, bio-optics can reveal a 
wealth of functional, disease, and drug efficacy biomarkers [6]. In 
addition, optical agents such as targeted fluorochromes and pho-
toabsorbing nanoparticles are investigated to impart contrast on 
specific cellular and subcellular tissue parameters [4], [7], [8]. 
The ability to resolve intrinsic chromophores, targeted agents 
and anatomical and functional characteristics in vivo is a particu-
larly strong feature of the optical methods. 

Visualizing versatile optical contrast in tissues is nevertheless 
confronted by photon diffusion, i.e., the random scattering of pho-
tons in tissue due to multiple elastic scattering events. Scattering 
rapidly reduces the imaging resolution that can be achieved with 
depth and complicates quantification. There are currently two 

main approaches in addressing photon 
diffusion beyond the microscopy pene-
tration limit. One strategy is to use 
ultrasonic detection in the form of opto-
acoustic methods to avoid the effects of 
photon scattering. The second is to 
numerically account for the effects of 
photon propagation to decompose diffu-
sion effects from the images generated. 

A common methodological approach 
exists in both imaging technologies: 
increased imaging accuracy is granted 
when using mathematical models of the 

underlying physical phenomena and of the excitation and detec-
tion processes. These models are often employed in the framework 
of image reconstruction approaches and offer significant imaging 
improvements over analytical solutions, such as filtered back-pro-
jection algorithms, by accounting for system related parameters 
and reducing imaging artifacts.

Optoacoustic tomography measures ultrasonic waves gener-
ated within tissues after absorption of light of transient intensity 
[9], [10]. The method forms optical absorption images with ultra-
sound resolution up to several millimeters to centimeters deep 
inside tissues. A number of optoacoustic imaging systems have 
been suggested ranging from microscopy [14] to tomographic sys-
tems for small animal imaging [2] or systems developed for clini-
cal translations [3]. A powerful feature of optoacoustic techniques 
is the ability to obtain images at multiple wavelengths and spec-
trally unmix the absorption signatures of various tissue chromo-
phores [4]. In particular, multispectral optoacoustic tomography 
(MSOT) offers remarkable anatomical, functional, and molecular 
imaging capabilities, enabling high-resolution visualization of 
photoabsorbing agents in tissues. 

[Pouyan Mohajerani, Stratis Tzoumas, Amir Rosenthal, and Vasilis Ntziachristos]

[Theory and current challenges for 

deep tissue imaging of optical contrast]
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Alternatively, images can be formed by utilizing optical detec-
tors, for example, charge-coupled device (CCD) cameras, instead 
of acoustic detectors. Fluorescence molecular tomography (FMT) 
has been developed for molecular imaging of tissues [5], [13], [15], 
[16]. FMT aims at noninvasive and quantitative imaging of the 
biodistribution of fluorochromes in deep tissue. Hybrid modalities 
combining FMT with computed tomography (CT) and magnetic 
resonance imaging (MRI) as well as other anatomical or functional 
modalities have also gained significant momentum in the past five 
years [5], [13], [16]. FMT has been further deployed for preclinical 
and clinical applications using both specific and nonspecific 
probes [5], [16]. 

MSOT and FMT technologies aim at resolving tissue biomark-
ers in vivo for biological discovery and clinical applications 

(Figure 1). They share a common excitation problem, as they uti-
lize light for the excitation of a secondary wave, which is eventu-
ally detected. Both technologies typically employ light in the 
near-infrared (NIR) range (650–900 nm) for excitation due to the 
relatively low tissue absorption in this region [17]. On the other 
hand, there are two major differences between the two modalities. 
First, MSOT typically applies extended illumination over a broad 
area allowing for real-time volumetric imaging, whereas FMT 
improves its accuracy by utilizing consecutive point illumination. 
Second, and most importantly, the nature of the secondary wave 
generated is different, i.e., ultrasound versus photon-density 
waves. This physical difference affects the numerical behavior of 
the inverse problem and largely defines the performance charac-
teristics of the two modalities. 

[FIG1] Principles of optical and optoacoustic tomography. (a) Themorelastic expansion of an optically absorbing object (black circle) 
within tissue (blue circle) upon illumination by pulsed laser beams. The object expands and contracts, due to temperature variation, 
and releases the absorbed energy as pressure waves (dotted circles). (b) Typical time-resolved optoacoustic signal detected using an 
ultrasound sensor. (c) A reconstructed transversal optoacoustic image of the abdominal region of a mouse, using a two-dimensional 
(2-D) circular measurement system geometry [11], [12]. (d) The principles of fluorescence, as electrons are excited to higher energy 
levels upon absorbing photons. Fluorescence photons are then emitted as the excited electrons vibrationally relax to their base states. 
(e) Fluorescence image acquired with a CCD camera from the dorsal side of a mouse. (f) A three-dimensional (3-D) image of a pancreatic 
tumor model reconstructed with concurrent X-ray CT and fluorescence molecular tomography (FMT-XCT), in 360° transillumination 
geometry [13]. 
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This article offers a tutorial review 
of the major features of optical and 
optoacoustic tomography using mod-
el-based implementations. It further 
aims to convey the major challenges 
and performance characteristics of 
the technologies in a comparative 
manner and to survey pioneering 
works that address such challenges 
using signal processing techniques. 
Recent comprehensive surveys have 
addressed the hardware and system 
design aspects [2], [10], [16] as well as 
the biomedical applications [5], [8] of these technologies in detail. 
Therefore, these aspects are not covered in this article. Thorough 
reviews have also addressed the physical aspects of optoacoustic im-
aging [9], [10] and photoacoustic microscopy [14], the theory of 
light propagation in tissue [17], as well as the nonfluorescent dif-
fuse optical tomography (DOT) [18]. These subjects are also accord-
ingly avoided in our review. Finally, as time- and frequency-domain 
FMT systems share inversion challenges of continuous-wave (CW) 
systems and due to the prevalence of the latter, our discussion here-
in is focused on CW FMT systems. 

MODEL-BASED TOMOGRAPHY
Tomographic imaging with optical and optoacoustic techniques 
involves excitation of the tissue with an optical source and the sub-
sequent measurement of the converted energy that is emitted as a 
consequence. The propagation of light in tissue is generally gov-
erned by the radiative transfer equation (RTE), which can be 
approximated by the diffusion equation (DE) when the scattering 
events occur much more frequently than the absorption events 
[17]. The propagation of excitation photons as well as the converted 
energy (acoustic wave or fluorescence) is then governed in the fre-
quency domain by the following partial differential equation (PDE): 

,E k E Q2 2d + = (1)

where k  is designated as the wave number, E  is the scalar field 
denoting the generated pressure wave or the emitted fluores-
cence intensity, and Q  is the initial pressure or optical source 
term. Real values for k  (valid for acoustic propagation in acousti-
cally homogeneous, nonattenuating medium) denote the con-
ventional Helmholtz equation. Complex values of k  (valid for 
optical propagation under the diffusion approximation) lead to 
Helmholtz-like PDEs.

The general mathematical model relating the underlying 
image X  to the measured emitted energy vector M  can be 
described by a forward operator F  as 

, { , } ,M F XD P= ^ h (2)

where P  denotes the set of all physical parameters of the tissue, 
such as energy conversion coefficients and optical or acoustic 
properties or constants. The set of spatial descriptions of the 

tissue, such as boundary conditions 
and measurement geometry, is fur-
ther denoted by D .

The forward operator F  can be 
highly nonlinear. Also, closed-form 
solutions of the underlying PDEs 
might not exist for arbitrary bound-
ary conditions. Consequently, volu-
metric discretization methods, such 
as the finite element method (FEM), 
are typically considered to numeri-
cally solve the PDEs. Since solving 
nonlinear inverse problems is partic-

ularly challenging, simplified assumptions are often preferred 
toward the linearization of .F  For instance, assuming an approxi-
mation of ,P  which in itself is often part of the solution to be esti-
mated, can be used to linearize .F  The linearized problem is then 
expressed as 

,M xW= (3)

where W  is referred to as the weight matrix and the x  is a dis-
cretized version of X  over the spatial grid or mesh employed. The 
derivation of the weight matrix W  is problem specific and is the 
subject of the sections “Optoacoustic Tomography” and “FMT.” 

 The inversion of (3) involves estimation of the unknown 
image ,x  given the measurement vector .M  When the model 
matrix W  is well-conditioned, iterative techniques solving (3) in a 
least square sense, like conjugate-gradient methods, may be used 
for inversion. Alternatively, the pseudoinverse of W  may be precal-
culated to define an inversion operator that is valid independent of 
the sample imaged. Conversely, for ill-conditioned ,W  as is often 
the case in optical tomography [17], the inverse problem is fre-
quently handled through approaches that limit the solution space, 
such as regularization methods. Tools from linear algebra are 
often utilized for characterizing the condition of the inverse prob-
lem and for imposing appropriate regularization. 

The regularized inverse problem in the linearized model-based 
approach can be generally formulated as

,arg minX x M LxG W p2 m= - +^ ^ h h (4)

where L  is called the regularization matrix, m  is the regulariza-
tion parameter, and G  is determined using noise statistics. The 
parameter p  defines the norm of the solution that is constrained 
through the regularization. The amount of regularization applied 
to the solution in the inversion is controlled by the parameter .m
Proper setting of ,m  often performed based on L-curve analysis or 
cross-validation techniques, poses an important challenge and 
constitutes a tradeoff between model-fitting accuracy and a 
desired property of the solution (such as  smoothness or sparsity).

OPTOACOUSTIC TOMOGRAPHY
The optoacoustic tomography problem aims at reconstructing the 
acoustic source distribution in a given volume from a set of acous-
tic measurements performed at multiple locations outside that 

FROM CELLULAR AND
VASCULAR IMAGING TO SENSING 
OF HEMOGLOBIN OXYGENATION, 
MELANIN, AND OTHER INTRINSIC

TISSUE CHROMOPHORES AND
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volume [19], [20]. Using the wave equation in the time domain, 
the pressure wave ,p tr^ h generated from an initial pressure dis-
tribution ,p t 0r =^ h can be written as [9], [21]

( , ) | ' |
( ', )

',p t v t
p t

d4
1 0

r r r
r

r
| ' | vtr r

2
2

r
=

-
=

- =

# (5)

where r  and t  are the spatial and temporal coordinates, respec-
tively. The integration is performed over a sphere with its center at 
r  and a radius of ,vt  with v  denoting speed of sound. Using other 
terminology, for a given value of , ,p tr r^ h is a projection of 

,p t 0r =^ h over a sphere. 
We restrict our discussion to the case in which the acoustic 

source distribution is a result of instantaneous energy deposition 
in the imaged object. We note that the acoustic inverse problem is 
agnostic to the nature of the energy deposited. Accordingly, the 
discussion herein is relevant to all fields of optoacoustics and ther-
moacoustics [19].

In the acoustic inverse problem, it is often assumed that 
,p t 0r =^ h is nonzero only within a given volume ,V  where 
,p tr^ h is known for all values of t  over a detection surface S  that 

encloses .V  Under these conditions, the inverse problem has a 
unique solution; i.e., ,p t 0r =^ h may be uniquely determined 
from ,p tr^ h [22]. When ,p tr^ h is 
known over a sphere, a cylinder, or a 
plane, explicit solutions to the 
inverse problem exist in the form of 
frequency-domain or time-domain 
(so called back-projection) recon-
struction formulas [23]. In other 
cases, although back-projection for-
mulas may still be applied as an 
approximate solution, they may also lead to deformed images or 
accentuated image artifacts. However, practical considerations 
often lead to optoacoustic systems in which the detection surface 
S  does not conform to the three detection geometries in which 
explicit solutions exist. In many cases S  is open, and a unique 
solution is not guaranteed [24]. Additionally, the acoustic detec-
tors employed in optoacoustic tomography are often larger than 
the typical acoustic wavelength of the signal, leading to projec-
tions that may not be well approximated by (5) [20], [25], [26]. 
Finally, in many cases, some a priori knowledge of the source is 
given, which may be valuable for improving the quality of the 
inversion. As an example, the quantity , ,p t 0r =^ h  as a measure 
of energy, is always nonnegative, a property that can be enforced 
in the inversion. However, such restrictions cannot be imposed on 
the source term when explicit solutions are used.

The mathematical operator that connects the source function 
and the projections is most often linear and therefore may be dis-
cretized to form a matrix .W  A matrix relation in (3) may then be 
applied for the optoacoustic system, for which M  is a column vec-
tor representing the acoustic fields measured at a set of positions 
and time instants and x  is a column vector representing the val-
ues of the initial pressure distribution on the grid. Each element 
of the weight matrix W  relates to the initial pressure ,p t 0r =^ h

at a position r  in the volume to the specific pressure signals 
,p trd^ h measured by the detector located at rd  at time point .t

To form the matrix ,W  the initial pressure distribution is 
approximated as a sum of interpolation functions

( , ) ( ) ,p t f x0r rjj

n
j1

,=
=
/ (6)

where , , , ,x p t r r0rj j n1 f= =^ h 6 @ are the grid points on which 
the image is represented and f rj ^ h are the interpolation functions 
[19], [27]. By substituting (6) in (5), we obtain

,m w xi ijj

n
j1

,
=
/ (7)

where , ,m p tri i i= ^ h  i.e., the pressure measured at a specific posi-
tion ri  and time instant ,ti  and 
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The matrix elements wij  thus represent the response mea-
sured at position ri  and time instant ti  for the interpolation func-
tion .f rj ^ h  If the interpolation functions , :f j n1rj =^ h  are 
chosen to have a finite support (i.e., to be spatially sparse), their 
corresponding pressure waves will be sparse in time and space. 

This property leads to sparsity in the 
matrix entries .wij

One of the main advantages of 
the model-based approach is the 
ability to include a model of the 
complete imaging system in the 
inversion process. This approach has 
been shown to increase image qual-
ity over the one obtained with 

explicit formulas in cases of nonstandard detection surfaces or 
detectors larger than the typical acoustic wavelength generated 
by the imaged object [25] [Figure 2(a)–(c)]. Additionally, linear 
propagation effects such as acoustic attenuation and acoustic het-
erogeneity may be included to increase imaging fidelity [28]. 
However, such extensions to the model require either the use of a 
priori information or additional measurements. The quality of the 
reconstruction is not only determined by the performance of the 
imaging hardware but also by the accuracy of the discretization 
that leads to (3). In particular, when ,p t 0r =^ h is approximated 
with a finite sum of base functions that are not sufficiently 
smooth, the time derivative in (8) may lead to imaging artifacts 
[27], [29]. Alternatively, using a Fourier-domain formalism to 
model the optoacoustic operator leads to a nonsparse model 
matrix W  and may lead to Gibbs-like artifacts owing to the finite 
number of harmonics used to approximate the Fourier transform 
[27]. Finite-support smooth interpolation functions have been 
therefore proposed to approximate ,p t 0r =^ h [27]. However, 
this approach comes at a price of longer calculation times com-
pared to the use of discontinuous base functions. 

Besides accurate modeling of system parameters, model-based 
tomography allows for imposing further restrictions in the inver-
sion step by means of regularization. While regularization is not 

ONE OF THE MAIN 
ADVANTAGES OF THE MODEL-

BASED APPROACH IS THE ABILITY 
TO INCLUDE IN THE INVERSION 

PROCESS A MODEL OF THE 
COMPLETE IMAGING SYSTEM.
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always an essential step in optoacoustic image formation, it may 
significantly enhance the quality of the reconstructed image, espe-
cially in cases of limited-angle view geometries or under high 
noise levels [20]. Accordingly, many regularization techniques 
have been applied for optoacoustic tomography, including Tik-
honov regularization (i.e., minimization of the L2  norm of the 
solution), limited-iteration least squares (LSQR), truncated singu-
lar value decomposition, multiscale techniques, and total-varia-
tion regularization [20]. In general, the ability to seamlessly apply 
algebraic regularization techniques is a clear advantage of the 
model-based approach and often leads to images with less noise 
and artifacts than the ones obtained by analytical formulations or 
back-projection methods.

Despite the high versatility of model-based inversion algo-
rithms, their use is far from ubiquitous. The reason is believed to 
be twofold. The first reason is the relative complexity involved in 
accurately modeling the optoacoustic setup. The use of a numeri-
cally inaccurate model may increase reconstruction error rather 
than decrease it. In contrast, many of the closed-form reconstruc-
tion formulas are very simple to implement. The second reason is 
the high computational complexity associated with inversion. In 
2-D reconstruction, the memory required to store the model 

matrix is typically several gigabytes, whereas in 3-D imaging it is 
in the hundreds of gigabytes or more. For many of the algebraic 
inversion algorithms, such matrix sizes can be computationally 
prohibitive. This limitation can be mitigated via on-the-fly calcula-
tion of matrix elements [31] and utilization of model-separability 
in wavelet-packet domain [32]. 

While early applications of model-based algorithms focused 
mostly on numerical examples and phantom measurements, 
much of the current work is focused on application in high-reso-
lution biological images [Figure 2(d)–(f)], which is an indication 
that the acceptance of these algorithms is on the rise. With the 
algorithms and computational resources available today, model-
based inversion is already a viable option for real-time 2-D image 
formation and an acceptable option for 3-D reconstructions, when 
high throughput is not required. With expected improvements of 
these aspects, the role of model-based reconstruction in opto-
acoustic tomography is likely to increase in the future.

FMT
FMT illuminates tissue at multiple point-source locations and 
measures the light exiting tissue at multiple detector locations. 
Both excitation and emission occur in the NIR range. Structured 
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[FIG2] Optoacoustic imaging under different reconstruction approaches (a)–(c) demonstrate the advantage of modeling system 
parameters (such as transducer shapes) using a pointlike source (human hair) with (a) filtered back-projection, (b) model-based 
inversion, and (c) improved model-based inversion incorporating the transducer shape. Tomographic reconstructions of a mouse head 
using (d) universal back-projection and (e) model-based inversion. (f) A high-pass filtered model-based image. While filtered back-
projection only retains the high frequency anatomical features, model-based inversion shown in (e) offers a considerably enhanced 
imaging accuracy of absorbed energy density. [(a)–(c) reprinted from [26], and (d) and (e) reprinted from [30] with permission.]  
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illumination using wide-field sources has been also proposed for 
FMT toward reducing imaging and inversion times [34]. The FMT 
forward model describes the relationship between the measure-
ments collected from all the source-detector pairs implemented 
and the unknown fluorescence biodistribution. It is noted that 
both the unknown fluorophore distribution and tissue optical 
properties have an effect on the propagation of the excitation and 
the fluorescence photons. Therefore, the FMT inverse problem is 
essentially nonlinear. By assuming the effect of the unknown fluo-
rophore distribution on the incident photon field to be negligible 
(as a Born-type approximation) and by assuming predetermined 
bulk values for endogenous tissue optical properties, the FMT 
problem can be linearized. In the linearized problem, the fluores-
cence fluence observed at the detector position rd  for illumination 
using the source located at rs  is given as

( , ) ( , ) ( , ) ( , ) ( ) ,a
D

C
g g x dr r r r r r r r r rf d s f

d s

V
f d x s

3z = # (9)

where x r^ h is the unknown fluorophore concentration and D  is 
the diffusion coefficient. The parameter af  relates to physical con-
stants, and ,C r rd s^ h denotes the total coupling of light from the 
source to tissue and from tissue to detector. , ,g gr r r rx s f d^ ^ ^h hh

denotes the transported excitation (fluorescence) light from the 
position r  to the source rs  (detector rd ) [35]. The fluorescence 
signal is often normalized by the measurement at the excitation 
wavelength, to avoid the necessity of estimating the physical 
parameters af  and ,C r rd s^ h in (9) [35], as 

( , ) :
( , )
( , )

( , )
( , ) ( , )

( ) ,
g

g g
x dr r

r r
r r

r r
r r r r

r rd s
x d s

f d s

x d s

f d x s

V

3z
z

z
b= = # (10)

where b  can be found by experimental calibration. The inverse 
problem defined using this normalization is often referred to as 
the inversion of the Born ratio in the literature [15], [17], [35], 
[36]. Equation (10) can be discretized using a spatial mesh with N
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[FIG3] A state of the art in hybrid optical molecular tomography: hybrid FMT–X-ray phase-contrast CT (PCCT) imaging of a pancreatic 
tumor using an 3va b -targeting NIR probe in a pancreatic adenocarcinoma mouse model; (a) 3-D and (b) 2-D FMT-PCCT reconstructions 
in the form of fluorescence signal (in orange transparency) over the grayscale PCCT slice. Arrows in (a) show tumor extremities and 
organs were segmented from the PCCT scan. (c) FMT-XCT reconstruction showing low accuracy due to low soft-tissue contrast of CT in 
this case. (d) Ex vivo validation results, where green marks fluorescence overlaid on a cryosection photograph (reprinted from and used 
courtesy of [33]). 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [94] JANUARY 2015

nodes. Assuming n  illumination points (sources) and m  detec-
tors, the mn N#^ h  linearized weight matrix W  for the Born 
ratio formulation is given as 

(( , ), ) ( , ) ( , ) / ( , ),s d k V g g gW r r r r r rk f d k x k s x d sb= (11)

where Vk  is the volume of the reconstruction voxel .k
The tissue optical properties are often assigned homogenous or 

organ-specific values using tabulated absorption and scattering val-
ues [37], which do not necessarily correspond to exact in vivo val-
ues. Hence, linearization of the FMT problem comes at the cost of a 
rather inaccurate model for light propagation. The effect of the for-
ward problem on the imaging accuracy has been investigated [35], 
[37]. The Born ratio formulation has been shown to improve the 
imaging accuracy in thepresence of strong absorption deviations of 
the actual optical absorption of the tissue in respect to the assumed 
values [17], [35]. Strong scattering heterogeneities, however, can-
not be compensated with Born ratio formulation [38]. For strong 
scattering heterogeneities, inversion solutions that use anatomical 
priors become accordingly important.

The FMT inverse problem consists of estimating the underlying 
fluorophore distribution x [(3)] from the surface optical measure-
ments M  [(3)], given the forward model W  [(11)], and is often a 
highly ill-posed problem [17]. Accordingly, statistical or determin-
istic prior knowledge about the fluorophore distribution is often 
used in the inversion to mitigate the ill-posed nature of FMT. Such 
a priori information arises from specific statistical properties of the 
underlying distribution or is derived from data acquired simultane-
ously or sequentially using anatomical modalities. [An example of 
hybrid FMT imaging combined with phase-contrast CT, called 
FMT-PCCT, for imaging a mouse model of pancreatic ductal adeno-
carcinoma (PDAC) is presented in Figure 3.]

Various regularization methods are conventionally used to 
mitigate the ill-posed nature of the FMT inverse problem by con-
straining the solution space. While various regularization alterna-
tives, or even regularization-free methods, have been proposed for 
FMT [16], the systems and methods developed and verified with in 
vivo data commonly use Tikhonov regularization or its variations 
[39], [40]. Moreover, FMT often uses target-specific probes, which 
generally localize in foci of disease and clear otherwise from 

healthy tissues. It is therefore possible to enforce the sparsity of 
the fluorophore distribution in the inversion process to increase 
imaging accuracy [41], [42]. Inversion based on minimization of 
the L1  norm or the total variation of the solution, have been pro-
posed as well. Nevertheless, the methods based on minimization of 
the L p  norm of the solution (or its gradient, in case of total varia-
tion methods) for  ,p 21  have been often limited to phantom 
data. Adapting these methods to in vivo applications presents an 
important opportunity for further development. 

Anatomical information, acquired simultaneously or sequen-
tially using anatomical modalities (predominantly CT, MRI, and 
ultrasound), have been used as soft or hard priors to mitigate the 
ill-posed nature of the FMT inverse problem by constraining the 
solution space [5], [13], [40], [43]. Hard priors indicate enforcing 
a piece-wise constant solution, where the distribution has a con-
stant value within each anatomical segment. Soft priors intro-
duce various solution norms within each segment into the 
inversion optimization problem. Two methods are commonly 
used to enforce soft priors [39], [40]. The first approach, called 
the method of weighted segments, assigns different regulariza-
tion values (segment weights) to the diagonal entries of the diag-
onal regularization matrix ,L  according to corresponding 
voxel-segment associations [13], [39]. The method of weighted 
segments relies on prior biological knowledge about preferential 
uptake of a given fluorescent probe in a specific volumetric seg-
ment (such as a lesion or organ delineable in the anatomical 
scans). Smaller regularization values are then assigned to voxels 
within that tissue segment, in comparison to other segments or 
the background tissue. The second approach makes use of the 
smoothness property within each segment, which can be 
enforced using the Laplacian operator [40]. Regularization based 
on the anisotropic diffusion function has been further proposed 
in conjunction with anatomic priors to preserve the anatomical 
boundaries in the reconstructed distribution [43].

Proper regularization based on anatomical priors can be a 
challenging task. The weighted-segments and Laplace-based 
methods are both prone to cause artificial accumulation or sup-
pression of fluorescence in anatomical segments or to lead to 
oversmoothing, respectively. Instead, two-step data-driven inver-
sion methods have been proposed to improve the approximations 
of the parameters of the structured regularization (Table 1). In 
these methods, the ill-posed nature of the FMT inversion is par-
tially alleviated by performing a first inversion using a lower-
dimensional 3-D inversion model (such as a low-resolution 3-D 
inversion mesh or a piecewise-constant model [39]). The results 
of the first inversion are then used to draw conclusions about the 
underlying fluorophore distribution. This knowledge is then used 
and enforced with the help of anatomical priors in a second step 
inversion performed on the full-resolution model [13], [39]. 

Statistical methods have been further applied toward FMT inver-
sion. A nonlinear Bayesian optimization scheme was presented for 
extracting several biomarkers, including optical properties and flu-
orescence, in tissue [44]. Nevertheless, simultaneous inversion of 
the optical map and the fluorescence distribution is yet to be com-
pared for in vivo data with application of predetermined 

[TABLE 1] TWO-STEP DATA-DRIVEN INVERSION FOR HYBRID
FMT; A FIRST STEP ESTIMATION USING A LOWER-DIMENSIONAL
WEIGHT MATRIX V  IS USED TO ESTIMATE A STATISTICAL
MOMENT (HERE, MEAN) OF THE DISTRIBUTION IN EACH OF
THE N ANATOMICAL SEGMENTS .Si  THESE ESTIMATES ARE 
THEN USED TO SHAPE THE REGULARIZATION MATRIX USING 
THE DECREASING FUNCTION t  (DEFINED IN STEP 3) [13], [39].

1) FIRST STEP ESTIMATION: ( )argminx x B xV1 2 2m= - +

2) CALCULATING AVERAGES: ( ) ( ),i x v v Smean i1 1 !n = ^ h

3) SHAPING THE REGULARIZER: 

, ( ) ( ) ,  ( ) ( )
( ) ( )

v max
max

v S w i
1

voxel
(*)

i 1
1

1

#
#

6 ! t n t n
n b n
b n

= =
+
+

^ h

4) SECOND STEP INVERSION:

.argmin x B w x Solution diagW 2 2m= - +^ ^ h h

(*) The parameter b  controls the dynamic range of the regularization values t  and is 
often set to a value close to 0.1.
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organ-specific optical properties—the common practice for in vivo
imaging using FMT. Successful simultaneous inversion of such 
endogenous and exogenous biomarkers is challenging task, envis-
aged to improve the molecular imaging accuracy of FMT. Maxi-
mum-likelihood inversion of FMT using a stochastic model of the 
Born ratio has shown improvement over deterministic inversion 
for in vivo data, by taking advantage of a priori information derived 
from the statistical properties of the measurements [36]. Combina-
tions of statistical inversion methods with anatomical priors offer 
as interesting possibility for further performance enhancement.

Due to the large data sizes in the FMT problem (tens of thou-
sands of voxels and millions of data points), the FMT inversion is a 
computationally challenging problem. As a result, deterministic 
and statistical inversion techniques are often handled iteratively 

through algebraic reconstruction techniques or conjugate-gradient 
type methods (instead of through direction inversion). Adaptive 
mesh refinements have been further proposed for improving the 
reconstruction accuracy around the region of interest, while reduc-
ing the computational burden [45]. Data compression across 
sources as well as detectors has been further proposed and applied 
to in vivo data toward expediting the inversion [34], [46].

NUMERICAL BEHAVIOR OF OPTOACOUSTIC
TOMOGRAPHY AND FMT 
A comparative examination of the numerical behavior of the opto-
acoustic and the FMT inverse problems can offer a unique insight 
to the particular challenges faced in each imaging approach. The 
numerical behavior of linear inverse problems can be analyzed 
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needed to capture 95% of the signal energy (in
the ideal case of a unitary matrix, this number is
equal to 95% of the total number of voxels).
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[FIG4] A comparative numerical analysis of the inversion in optoacoustic tomography and FMT: (a) schematic illustration of the 
optoacoustic tomography simulation configuration, where blue arches correspond to different time delays x   and (b) the FMT 
simulation configuration. The sensitivity pattern of FMT between the shown source and detector positions is shown in (b). (c) One 
minus the cumulative sum of singular values of the respective weight matrices (N  in abscissa is the number of nodes in the inversion 
grid). (d) Simulation settings and metrics are given. The results elucidate the ill-posed nature of the inverse problem in FMT compared 
to optoacoustic tomography.
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using the singular value decomposition 
(SVD) of the respective weight matrices.

Two simplified 2-D imaging scenar-
ios for optoacoustic tomography and 
FMT were accordingly analyzed (Figure 
4). For the optoacoustic tomography 
case, a sparse weight matrix was cal-
culated using the model-based 
approach presented in [27], while the 
FMT weight matrix was calculated 
using FEM-based discretization of the DE. A slower rate of 
decay in curves of Figure 4(c) corresponds to a larger number of 
useful (above the noise level) singular values and, hence, a bet-
ter behaved inverse problem. For the FMT case, the first 10% of 
the singular values comprise around 95% of the weight matrix 
energy and are significant. For optoacoustic tomography, the 
system energy increases almost linearly with the number of sin-
gular values and is, hence, close to the ideal case of a unitary 
weight matrix (89% of singular values comprise 95% of the 
total energy). It should be noted that the linear systems in both 
cases were overdetermined, as indicated in Figure 4(d). Never-
theless, the FMT system was still highly ill-conditioned. 

The numerical behavior of the associated inverse problems 
can be justified by examining the corresponding patterns of sen-
sitivity of measurements to the solution. The acoustic signal 
measured on a given transducer location and a specific time 
point in optoacoustic tomography is sensitive only to a narrow 
(fewer than 100 mn ) band of voxels [blue bands in Figure 4(a)]. 
This sparse sensitivity pattern leads to a well-behaved inverse 
problem. Conversely, a measurement point in FMT is sensitive 
to a much larger subset of voxels, due to strong tissue scatter-
ing. This fact leads to the substantially ill-posed nature of the 
FMT inverse problem, even given millions of data points 
acquired by CCD-based FMT systems.

QUANTITATIVE IMAGING AND 
MULTISPECTRAL UNMIXING
Molecular imaging aims at delivering an accurate mapping of 
the biodistribution of distinct molecules of biological interest. 
In this sense, the problem of differentiating between molecules 
for providing quantitative maps of molecular specificity is uni-
versal in the fields of optical and optoacoustic tomography. 
Spectroscopy techniques are commonly used in optical imaging 
to recover molecules according to their distinct spectral signa-
tures. Multispectral imaging has been explored in FMT for sepa-
rating the reporter molecules from the background 
fluorochromes to improve the molecular specificity [17]. Alter-
natively, the fluorescent lifetime contrast between different mol-
ecules can be used in time- or frequency-domain FMT to achieve 
molecular differentiation [47]. Conversely, multispectral tissue 
excitation plays a particularly important role for optoacoustic 
imaging since it is associated with both the functional (e.g., dif-
ferentiation between oxy- and deoxy-hemoglobin) and molecular 
(i.e., extraction and quantification of extrinsic contrast agents) 
imaging character of the technology. Quantification and spectral 

unmixing in MSOT are particu-
larly complex problems of non-
linear nature, as they are coupled 
to the description of light propa-
gation in tissue. 

OPTICAL FLUENCE AND 
SPECTRAL COLORING
Tissue absorption coefficient 

( , )ran m  at position r  and excita-
tion wavelength m  corresponds to a linear superposition of the 
concentrations of the local absorbers ,c ri ^ h  weighted by their 
wavelength-dependent absorption coefficients ( )if m  (absorption 
spectra):

, ( ) ( ) .cr ra i
i

in m f m=^ h / (12)

Given ( , ),ran m  the distinct tissue absorbers can be readily 
separated, and their concentrations c ri ^ h estimated using a lin-
ear regression method with the associated absorption spectra 

( ) .if m  In this way, valuable quantitative molecular information 
can be extracted. Physiological and metabolic information can be 
further inferred by computing the oxygen saturation of hemoglo-
bin (sO2) as the ratio between the oxygenated and total hemoglo-
bin concentrations. 

Multispectral optoacoustic images ( , )P r m  are proportional 
to the spatial distribution of tissue optical absorption ( , ),ran m

and the unknown space and wavelength dependent optical flu-
ence ( , )r mU  through the following relationship [48]:

, ( ) ( ) , , ,P Cr r r r ram m n mC U=^ ^ ^h h h (13)

where C r^ h is a space-dependent scaling factor associated with 
effects not accounted for during the reconstruction (e.g., the sys-
tem’s spatial impulse response or ultrasound attenuation) and 

rC^ h refers to the Grüneisen coefficient of tissue, which may vary 
with tissue type [48]. Finally, the term ( , ) ( , )r ran m mU  is equiva-
lent to the absorbed energy density (i.e., the energy per unit vol-
ume deposited in tissue), typically denoted as ( , ) .H r m

The spatial scaling factors , ,C r rC^ ^h h  and r 2U^ h  (the 
norm of optical fluence across )m  do not affect the underlying 
spectral responses, but rather the global intensity of the multi-
spectral images. As such, they have no direct effect on the compu-
tation of  sO2, as a ratiometric value, or on the accurate separation 
of the distinct absorbers in tissue. The particular complications of 
spectral unmixing are typically introduced due to the wavelength 
dependence of the optical fluence. Different excitation wave-
lengths are attenuated differently as light propagates in tissue. 
Hence, the spectral pattern of optical fluence at different tissue 
positions can become highly nonuniform. The wavelength depen-
dence of optical fluence alters the perceived spectral features with 
depth in a nonstraightforward manner. This change of spectral 
features, commonly referred in literature as spectral coloring [11], 
[48], depends on a multitude of parameters such as optical proper-
ties, imaging depth, and tissue physiology. 

QUANTIFICATION AND
SPECTRAL UNMIXING IN MSOT 
ARE PARTICULARLY COMPLEX

PROBLEMS OF NONLINEAR NATURE, 
AS THEY ARE COUPLED TO THE 

DESCRIPTION OF LIGHT
PROPAGATION IN TISSUE.
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QUANTIFICATION OF ABSORBING COMPONENTS
The separation of the unknown optical fluence ( , )r mU  from 

( , )rn ma  comprises the main challenge for accurately estimating 
tissue optical absorption and realization of accurate quantitative 
physiological and molecular imaging with MSOT. Quantification 
approaches seek to model the optical fluence ( , )r mU  using 
light propagation models or heuristic fluence characterization 
approaches. Such algorithmic approaches may operate in the 
single or the multiwavelength domain. In both cases, multi-
spectral excitation is favorable for obtaining bio-medically rele-
vant information. 

The problem of quantitative optoacoustic imaging is 
commonly formulated as a nonlinear optical property estimation 
problem [49], as the optical fluence ( , ; ( , ), ( , ))r r ra sm n m n mU  is 
related to the spatial distribution of the optical absorption ( , )ran m

and the reduced scattering coefficients of tissue ( , ) .rsn m  This 
relation is established with the help of a light propagation model 
such as the DE [49]. As such, estimations of ( , )ran m  and ( , )rsn m

can be acquired by solving the following optimization problem 
using an iterative nonlinear optimization approach:

 , , , ; , , , .arg min H r r r r r
, s 2a s

m n m m n m n mU-
n n

a a^ ^ ^ ^ ^h h h hh (14)

Model-based optical property estimation approaches may oper-
ate in the single wavelength domain by assuming known or uni-
form (reduced) scattering distribution .sn  Under this assumption, 
a fixed-point iteration approach [49] and a regularized Newton 
method [50] were proposed for acquiring ran ^ h values given 

.H r^ h  The assumption of known scattering may restrict the 
application of such methods in experimental images, since the 
optimization has been shown to diverge under an inaccurate 
selection of sn  [51]. Furthermore, it has been shown that differ-
ent combinations of ran ^ h and rsn ^ h may result in the same 

,H r^ h  implying nonuniqueness in the solution [52]. Additional 
information acquired from multispectral excitation, in combina-
tion with prior knowledge on tissue absorption spectra and the 
wavelength dependence of scattering has been shown to alleviate 
this effect, as shown in [52], where both ( , )ran m  [or, alternatively, 
the concentrations of tissue chromophores ]c ri ^ h  and ( , )rsn m

can be simultaneously estimated under (14) using a Gauss–New-
ton optimization approach. Combining acoustic and optical inver-
sion has also been considered for addressing further challenges 
related to the inaccurate estimation of the absorbed energy density 

( , )H r m  [53].
Model-based inversion approaches offer the advantage of rely-

ing on light propagation theory for solving the quantification 
problem. Proof-of-principle demonstration of their application has 
been showcased in phantom studies under a number of simplified 
assumptions [53]. However, the large number of unknown param-
eters as well as limitations in accurately estimating the absorbed 
energy density ( , ),H r m  may restrict their applicability in the gen-
eral case [48]. Hence, the adaptation of such methods to allow for 
robust application in structurally complex tissue images presents 
an important goal for further research. 

Alternatively, heuristic approaches may seek to separate rU^ h
from ran ^ h by relying on structural characteristic of the optical 
fluence rather than light propagation theory. By representing the 
optical fluence using a sparse Fourier basis and the absorption 
with a Haar wavelet basis, Rosenthal et al. achieved their separa-
tion using an orthogonal matching pursuit approach on the loga-
rithmic transformation of the image [51]. The application of the 
method was demonstrated on experimental phantom images. 
However, its general applicability may also be limited as the perfor-
mance of the method highly relies on the quality of the recon-
structed image.

DETECTION OF CHROMOPHORES WITH MSOT
Accurate quantification of the concentrations of all chromo-
phores within tissue presents a longstanding challenge in 
MSOT. However, multispectral excitation can be effectively used 
to extract molecular agents from the absorbing tissue back-
ground. When the spectral unmixing problem of MSOT is for-
mulated as a molecular target detection problem, the goal is to 
extract the biodistribution of an extrinsic chromophore in tissue 
with high sensitivity and specificity [11]. In this context, sensitivity 
is typically defined as the minimum agent amount necessary for 
detection, while specificity relates to the minimization of false pos-
itives in detection. Molecular target detection approaches aim at 
modeling the spectral variability of the target molecule as well as 
the spectral variability of tissue background. 

A straightforward approach to molecular contrast enhance-
ment is the subtraction of two optoacoustic images acquired at 
two different excitation wavelengths, where the target molecule 
demonstrates significant variation in absorbance. This method 
assumes minor spectral variation of background tissue absorption 
for these particular wavelengths. Alternatively, a number of studies 
use a linear approximation of (13) by assuming constant ( , )r mU
throughout tissue and invert (12) for unmixing several chromo-
phore using least squares methods [54]. Spectra of oxy- and deoxy-
genated hemoglobin are typically used for modeling the tissue 
absorption. Such simplifying assumptions may lead to inaccura-
cies thus, limiting the performance of such approximations in 
molecular target detection.

Blind source separation via independent component analysis 
(ICA) has also been considered in the context of multispectral 
optoacoustic imaging [55] and was found to outperform linear 
approximations due to the uncertainties associated with the opto-
acoustic spectral responses. In this respect, ICA and its variations 
[12] were used in a number of studies to extract molecular agents 
that were not detectable using conventional dual wavelength 
methods or linear approximations [one example is presented in 
Figure 5(b)]. 

More recently, statistical subpixel detection techniques were 
introduced in the context of MSOT and were shown to improve 
upon previous approaches in cases where the molecular target is 
sparsely present within the data (such as in tumor targeting or 
expression of fluorescent proteins) [11]. Statistical subpixel detec-
tion methods, like the adaptive matched filter (AMF), model the 
combined effect of tissue absorption and optical fluence, as well as 
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any other background spectral perturbations induced by noise 
and reconstruction artifacts, using a multivariate Gaussian 
model. The parameters of this model (i.e., the mean and covari-
ance matrix of the Gaussian distribution) are estimated from the 
available data with maximum likelihood. Furthermore, the AMF 
features a constant false alarm rate (CFAR) property that allows 
for the definition of an application-independent global detection 
threshold, enabling molecular imaging of high specificity [11]. 
The combination of high sensitivity with high specificity makes 
the statistical subpixel detection method a very promising 
approach for accurate molecular imaging, while the adaptation of 
such algorithms to the particular challenges of MSOT presents an 
interesting area for further research. 

TOWARD ROBUST MOLECULAR TOMOGRAPHIC IMAGING
MSOT and FMT are the two most extensively studied techniques 
currently employed for achieving in vivo optical molecular imag-
ing beyond the microscopic regime. As such, although character-
istically different in the detection process, the cross-examination 
of the two approaches holds promise for improving the respective 
imaging performances, for optimally selecting the most appropri-
ate modality based on the application, and for combining the two 
approaches for robust molecular imaging solutions. 

From a methodology standpoint, model-based tomographic 
reconstruction and tools stemming from linear and nonlinear inver-
sion theories, regularization, and compressed sensing are frequently 
utilized for improving the performance of both modalities. As quan-
titatively shown in Figure 4, the tomographic reconstruction prob-
lem of FMT is substantially more complex due to the different 
nature of light versus ultrasound propagation in tissue. In MSOT, on 
the other hand, the effects and challenges of light propagation are 
identified in the spectral unmixing and quantification steps. 

Light propagation in tissue defines complex nonlinear inver-
sion problems in both of MSOT and FMT modalities. Nevertheless, 
nonlinear optimization methods for the simultaneous inversion of 
optical properties and target molecules have often been limited to 

simulation and phantom studies and should be yet investigated for 
in vivo data. Due to the complexity of the nonlinear approaches, 
the inversion problems are often handled via linearized or statisti-
cal models that frequently rely on heuristic assumptions on the 
distribution of the molecular agents (e.g., the one of sparsity).

Optical properties of tissue significantly affect the performance 
characteristics of these modalities, in distinct manners (Table 2). 
FMT resolution and quantification are especially affected by light 
scattering while tissue absorption plays a lesser role and mainly 
affects sensitivity. Optical scattering and absorption play a minor 
role in accuracy of optoacoustic tomography as long as quantifica-
tion of the absorbers’ concentrations is not pursued. However, 
they largely affect the quantification and spectral unmixing step 
through the space- and wavelength-dependent optical flu-
ence. Robust quantification in multispectral optoacoustic imaging 
is considered an open problem and an active field of research. 
Moreover, detection of extrinsic molecules with high sensitivity 
is directly affected by high tissue absorption, which limits the sig-
nal-to-background interference ratio. Finally, molecular imaging 
sensitivity is also indirectly influenced by the wavelength-depen-
dent optical fluence that increases the spectral variability of back-
ground and target molecules.

The sensitivity of MSOT in detecting molecular agents depends 
on a number of parameters such as the depth and volume of the 
lesion [4], the absorption coefficient of the molecular agent, or the 
spectral unmixing approach utilized [11]. While a thorough 

(a) Epi-Illumination (b) MSOT Image (c) FMT-XCT Image (d) Ex Vivo Validation

[FIG5] Demonstrating the potential of optical and optoacoustic model-based tomography via consecutive in vivo imaging of an NIR
fluorescent protein (iRFP)-expressing brain tumor in a glioblastoma mouse model. (a) Epi-illumination fluorescence imaging. (b) MSOT 
transversal image with the unmixed iRFP signal (green transparency) overlaid to the anatomical optoacoustic image (gray). (c) FMT-XCT 
transversal image with the fluorescence signal (green transparency) overlaid on the CT image. (d) Ex vivo cryosectioning image, with 
the iRFP fluorescence signal (green transparency) overlaid on the color photograph of the cryosection. (Figure reprinted from and 
courtesy of [12].) 

[TABLE 2] ADVERSE IMPACT OF OPTICAL SCATTERING sn
AND ABSORPTION an  ON PERFORMANCE METRICS OF FMT 
AND MSOT (“—” STRONGLY NEGATIVE IMPACT, “–” NEGATIVE 
IMPACT, AND “O” NO EFFECT).

RESOLUTION SENSITIVITY QUANTIFICATION

an sn an sn an sn

FMT – — — – – —
MSOT O O — – — —
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analysis of the sensitivity capabilities 
of the technology is yet to be per-
formed, many studies report sensitiv-
ities in the lower micromolar scale 
for NIR fluorescent dyes such as ICG 
and IRDye [62]. Alternative contrast 
mechanisms like melanin or pho-
toabsorbing nanoparticles may offer 
two to three orders of magnitude bet-
ter sensitivity due to their high absorption coefficients [4]. FMT 
has demonstrated sensitivity in the nanomolar scale for in vivo 
studies [15]. This high sensitivity owes to the availability of very 
sensitive optical detectors and fluorescence agents with large 
quantum efficiency and binding affinity, as well as the low autoflu-
orescence of tissue in NIR. FMT sensitivity can vary with depth, 
due to excitation light attenuation, and can be adversely affected by 
background fluorescence. 

In summary, selecting or designing the right tool for the 
application at hand necessitates not only experimental evaluation 
of the different options but also a thorough theoretical and 
numerical cross-examination of the available technologies. Due 
to its high sensitivity and penetration depth, the role of FMT in 
the preclinical development and clinic is likely to grow in the 
future, especially as targeted probes for clinical use are under 
development. However, reliable deployment by the biologists 
depends upon robust inversion techniques and efficient incorpo-
ration of the anatomical priors to increase localization accuracy 
without introducing artifacts. Development and thorough evalua-
tion of methods that take advantage of the specific deterministic 
or statistical properties of the underlying target signal, in con-
junction with anatomical priors, are expected to further enhance 
performance and robustness of FMT. MSOT has for the first time 
enabled in vivo optical molecular imaging in deep tissue at high 
spatial resolution and localization accuracy. Such unique features 
are expected to offer new insights in preclinical molecular imag-
ing studies. Of high significance for the deployment of the tech-
nology are the molecular imaging sensitivity and specificity that 
can be achieved, which both largely rely on performance of the 
used algorithms. Quantification is another long-standing open 
problem that is yet to be treated with robust solutions for struc-
turally complex tissues.
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VIDEO QUALITY 
ASSESSMENT

T
his article describes 
how to perform a video 
quality subjective test. 
For companies, these 
tests can greatly facili-

tate video product devel-
opment; for universities, re-

moving perceived barriers to 
conducting such tests allows expand-

ed research opportunities. This tutorial as-
sumes no prior knowledge and focuses on 

proven techniques. (Certain commercial 
equipment, materials, and/or programs are 

identified in this article to adequately specify the ex-
perimental procedure. In no case does such identification 

imply recommendation or endorsement by the National Tele-
communications and Information Administration, nor does it imply 

that the program or equipment identified is necessarily the best available 
for this application.)

Video is a booming industry: content is embedded on many Web sites, delivered over 
the Internet, and streamed to mobile devices. Cisco statistics indicate that video exceeded 50% of total mobile 

traffic globally or the first time in 2012 and predict that over two-thirds of the world’s mobile data traffic will be video by 
2018 [1]. Each company must make a strategic decision on the correct balance between delivery cost and user experience. 
This decision can be made by the engineers designing the service or, for increased accuracy, by consulting users [2].

TECHNOLOGY PHOTO—© ISTOCK.COM/VIOLETKAIPA
FILM PHOTO—© ISTOCK.COM/F9PHOTOS
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Video quality assessment requires a combined approach that 
includes objective metrics, subjective testing, and live video mon-
itoring. Carefully conducted video quality subjective tests are 
extremely reliable and repeatable, as is shown in [3, Sec. 8]. This 
article provides an approachable tutorial on how to conduct a 
subjective video quality experiment. Our goal is to encourage 
more companies and universities to perform subjective tests.

A subjective video quality test uses a small set of short video 
sequences (e.g., 8–20 s) to measure people’s opinions of the quality 
of different video processing options. These tests focus on people’s 
current opinion, as opposed, e.g., to opinions of an entire movie. 
The goal is to make an impartial judgment about opinion trends. 
Example applications include choosing between different coding 
algorithms, comparing one coder at different bit rates, comparing 
two implementations of the same algorithm, optimizing coder 
parameters, improving an error concealment algorithm, or select-
ing a maximum packet loss rate for a service. Video quality subjec-
tive tests isolate one factor: video quality. Issues that might 
confound the experiment data should be excluded [e.g., audio, 
scene composition, aesthetics, display, environment, device inter-
face, two-way communication, and quality of experience (QoE)].

INTERNATIONAL TELECOMMUNICATIONS 
UNION RECOMMENDATIONS
The International Telecommunications Union (ITU) recommenda-
tions most directly applicable to this tutorial are ITU-R Rec. 
BT.500 (2012), Methodology for the Subjective Assessment of the 
Quality of Television Pictures; ITU-T Rec. P.910 (2008), Subjective 
Video Quality Assessment Methods for Multimedia Applications;
and ITU-R Rec. BT.1788 (2007), Subjective Assessment of Multiple 
Video Quality (SAMVIQ). ITU-R Rec. BT.500 focuses on video qual-
ity and image quality in a home television environment; ITU-T 
Rec. P.910 focuses on video quality, videotelephony, videoconfer-
encing, and storage/retrieval applications; and ITU-R Rec. BT.1788 
identifies one particular rating method. The current version of 
each recommendation is distributed freely on the ITU Web site 
(http://www.itu.int/). These procedures remove all distractions 
from the environment to eliminate variables that might bias the 
test. The environment is basically an idealized living room: quiet 
and devoted to this one task. These ITU recommendations assume 
the reader has some prior knowledge.

The scope of ITU-R Rec. BT.500 is broadcast television and, 
therefore, entertainment video in either standard-definition or 
high-definition format. BT.500 specifies highly controlled 
monitor calibration and lighting conditions (e.g., the ratio of 
luminance of inactive screen to peak luminance should be #
0.02). The monitor calibration techniques focus on the needs 
of broadcasters, so an amateur may have difficulty calibrating 
consumer-grade equipment.

ITU-T Rec. P.910 was designed for video systems at lower bit 
rates and quality than broadcast television. The wording of P.910’s 
focus may look odd today because terminology has changed. P.910 
is appropriate for high-definition television (HDTV) through quar-
ter common intermediate format (QCIF) resolution (176#144). 
P.910 specifies exact lighting conditions, but they are easier 

to recreate than BT.500’s lighting conditions. The monitor is not 
calibrated, which is more appropriate for computers, mobile 
devices, and consumer-grade televisions. ITU-R Rec. BS.1788 is 
commonly referred to by the acronym of its title: SAMVIQ. This 
recommendation defines a particular rating scale and method.

Work is underway in the ITU to develop recommendations better 
suited to new technologies. One example is the newly approved 
ITU-T Rec. 913 (2014) Methods for the subjective assessment of 
video quality, audio quality and audiovisual quality of Internet video 
and distribution quality television in any environment. This 
recommendation describes techniques for situations not covered by 
BT.500 and P.910, including the use of natural lighting or a 
distracting environment (e.g., a cafeteria or bus). Published at the 
end of 2014, [51] contains a summary of the differences between the 
traditional techniques found in this article and P.913. 

EXPERIMENT DESIGN

TERMS AND DEFINITIONS
■ Source sequence (SRC) is the unimpaired video sequence 
(i.e., the content).
■ Original refers to the original version of each SRC (e.g., 
broadcast quality).
■ Processed video sequence (PVS) is the impaired version of 
a video sequence.
■ Clip refers to any video sequence, SRC or PVS.
■ Hypothetical reference circuit (HRC) is a fixed combina-
tion of a video encoder operating at a given bit rate, network 
condition, and video decoder. The abbreviation HRC is pre-
ferred when vendor names should not be identified.
■ Full matrix design consists of n  SRCs and m  HRCs. All 
combinations of SRCs and HRCs are included in the experi-
ment for a total of n m#^ h PVSs.
■ Partial matrix design splits the experiment into two or more 
smaller matrixes. For example, a two-matrix experiment would 
have two scene pools (pool A and pool ,B with n A and nB

SRCs, respectively) and two HRC pools (pool A  and pool ,B
with m A and mB HRCs, respectively). All combinations of pool 
A SRC and HRCs are included, plus all combinations of pool B
SRC and HRCs, for a total of n m n mA A B B# #+^ h PVSs.

GOAL OF EXPERIMENT AND DESIGN CONSEQUENCES
The first goal of a video quality subjective test is to answer a spe-
cific question about video encoding, transmission, or decoding. 
These questions are typically posed as comparisons between one 
or more variables. The analysis will directly compare pairs of HRCs 
using identical SRCs, typically via a full matrix design. For exam-
ple, Younkin and Corriveau [4] use a full matrix design to analyze 
the impact of playback error severity on quality perception.

The full matrix design allows all HRCs to be directly compared 
and produces improved accuracy for some analysis techniques (see 
the section “Choosing a Subjective Scale”). The disadvantage is 
that less information is obtained about the impact of different 
source material on the HRCs. This is undesirable because codecs 
yield very different quality depending upon the scene content, as 
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can be seen in Figure 1, taken from [5]. The x-axis displays the bit 
rate, and the y-axis displays the mean opinion score (MOS). The 
boxes and whiskers in Figure 1 show the distribution of PVSs 
within an HRC. Some of the plotted HRCs span more than half of 
the absolute category rating (ACR) scale.

Twice as many SRCs can be included in a partial matrix design 
of two matrices, compared to a full matrix design. This alleviates 
the subjects’ boredom. The partial matrix design allows direct 
comparisons only of HRCs within an HRC pool. For example, 
HRCs from pool A cannot be directly compared with HRCs from 
pool B. Pinson et al. [5] use a partial matrix design to compare 
the quality of the H.264 and MPEG-2 coders, both with and with-
out packet loss.

Both full matrix and partial matrix designs depend upon two 
variables: SRC and HRC. A third variable—the environment—is 
needed to answer questions about interactions between the 
video signal and the viewing environment. For example, 
Brunnström et al. [6] explore the relationship between video 
quality and the viewing angle of the subject to the screen. Thus, 
Brunnström’s HRC definitions specified the viewing angle.

The second video quality subjective test goal is to train a metric 
or algorithm. For example, an objective video quality metric esti-
mates the quality ratings that would result from a subjective exper-
iment. The accuracy of the resulting metric depends upon the 
quantity and variety of training data. Thus, the optimal experiment 
design maximizes the number of SRCs and HRCs for the available 
number of PVSs. A random pairing of each SRC and a different 
HRC will accomplish this goal, though most engineers are trou-
bled by the asymmetry. Voran and Wolf [7] provide an example of a 
subjective experiment designed specifically to train a metric. A full 
matrix or the partial matrix design is usually less effective, because 
fewer SRC and HRC can be analyzed. Some experimenters choose 
a full or partial matrix design anyway, because they want to use the 
same subjective test for two purposes: to answer a question and to 
train a metric. Huynh-Thu and Ghanbari [8] provide an example.

The third video quality subjective test goal is to analyze the 
performance of an existing objective video quality metric or algo-
rithm. The constraint here is not the design of the test—both the 
full matrix and the partial matrix designs are suitable—but rather 
the fact that training data cannot be used to test the model’s per-
formance. Ideally, this prohibition includes scene content, coder 
implementations, and coder/network settings (e.g., packet loss 
rate, and bit rate). Voran and Catellier [9] provide an example of 
how to design a subjective test to both train and test a metric. 
This article describes a speech quality experiment; however, the 
experimental design issues are the same.

Video quality subjective tests can be used in combination 
with other subjective tests to understand larger quality implica-
tions. ITU-T Rec. P.1301 [10] demonstrates this idea for tele-
meeting systems, and an applied example can be found in [11].

SRC, HRC, AND PVS SELECTION
Video quality subjective tests typically use short sequences (e.g., 
8–10 s duration). Pinson et al. [12] provide guidance on choosing 
a balanced and well-designed set of scenes for a subjective test. 

This guidance includes avoiding offensive content, choosing 
scenes that evenly span a wide range of coding difficulty, deciding 
whether or not scene cuts should be allowed, and selecting scenes 
with unusual properties. It is important to use high-quality foot-
age because otherwise the quality impairments in the SRC can 
obscure any effects of the HRC in the test results. Niu and Liu [13] 
explain the differences between professional and amateur videog-
raphy and provide objective criteria for identifying professional 
video sequences. Amateur footage typically contains aesthetic 
problems that trigger low video quality ratings (e.g., focus control, 
color palette, camera motion, shot length, and visual continuity). 
The Consumer Digital Video Library (www.cdvl.org) provides free 
downloads of broadcast-quality footage for research and develop-
ment purposes. Another Web site that offers free footage is http://
www.irccyn.ec-nantes.fr/spip.php?article541. 

The range of PVS quality should span the scale used to con-
duct the test (see the section “Choosing a Subjective Scale”). 
Experiments that contain a narrow range of quality will be frus-
trating for the subjects and researcher alike since the data are 
unlikely to show any significant results. It is better to design 
experiments that span a wide range of quality—or at least a wide 
enough range that meaningful results can be found.

The goal of many subjective experiments is to compare and 
contrast the quality of various video impairments. This analysis 
is only possible when HRC creation is limited by two con-
straints: 1) the definition of each HRC is constant throughout 
the experiment and 2) if two HRCs are to be compared, then 
those HRCs must be paired with the same set of SRCs.

The term HRC implies that all PVSs associated with that HRC 
were created using a constant set of control parameters. A partic-
ularly popular HRC definition specifies codec A, profile B, con-
stant bit rate C, and packet loss rate D. As a side effect of this 
design, difficult-to-encode SRCs will yield a very wide range of 
quality (excellent to bad), while easy-to-encode SRCs will yield a 
narrow range of quality (excellent to fair). An alternative 
approach tries to produce equivalent quality for all PVSs 

Excellent

Good

Fair

Poor

Bad
2 6 10 14 18 Original

Bit Rate (Mbit/s)

M
O

S

[FIG1] For coding-only impairments, a quality comparison of 
H.264 (solid blue) and MPEG-2 (dotted red): the box-plot 
identifies minimum, 25%, mean, 75%, and maximum MOS. 
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associated with a single HRC. This can be done with variable bit 
rate encoding or a constant quantization profile value. The prob-
lem is that it becomes difficult to reach conclusions about the 
coder’s behavior at different bit rates.

TEST ENVIRONMENT
Traditionally, subjective video quality tests are performed in a 
controlled laboratory environment. This reduces the effect of 
extraneous variables on the experiment without requiring a spe-
cialized space or great expense. While the potential impact of 
some elements is debatable, the traditional controlled environ-
ment demonstrates your expertise to the research community.

■ Walls: The walls of the test chamber should be plain white 
and not show potentially distracting objects (e.g., pictures, 
clock, and wires). Windows must be covered with light-blocking 
curtains. Temporary room dividers encourage the illusion of 
a nondistracting chamber.
■ Floor: The floor should be a neutral, nondistracting color. 
Solid gray is traditional.
■ Furniture: Only necessary furniture should be in the test 
chamber. The chair provided to subjects should not have 
wheels. This will encourage the subject to keep a constant 
viewing distance throughout the test. An upright chair helps 
to encourage attention on the task.
■ Lighting: See ITU-R Rec. BT.500 clause 2.1 or ITU-T Rec. 
P.910 clause 7.1 for lighting conditions. The listed specifica-
tions can be met inexpensively using a light meter, full spec-
trum bulbs, and variable intensity lamp controls.
■ Viewing distance: See ITU-R Rec. BT.500 clause 2.1 or 
ITU-T Rec. P.910 clause 7.1 for details. For most experiments, 
the monitor and chair should be positioned at a defined view-
ing distance. The viewing distance is traditionally measured in 
picture heights: four to six times picture heights (H) for stan-
dard definition television (i.e., 4H to 6H), 2H to 3H for HDTV, 
and 8H for smartphones and other very small monitors [14].
■ Monitor: BT.500 encourages the use of a professional qual-
ity monitor to eliminate a potentially confounding variable. 
For P.910, choose a monitor that matches the application.
■ Background noise: The test chamber must be quiet, with 
minimum background noise. If a computer is used to play the 
videos, the computer should be outside the test chamber.
■ Bystanders: While a subject is running through the test, 
the chamber should be used for no other purpose. In some 
cases, the test chamber will have two or more subjects and 
the experimenter. People who are interested in seeing the test 
results come out a certain way should not interact with the 
subjects, perform the data analysis, or design the test (e.g., 
product managers).

NUMBER OF SUBJECTS, STIMULI, AND TEST SESSIONS
The reliability of ratings depends upon averaging the data across 
multiple subjects. While BT.500 recommends a minimum of 15 
subjects, a recent study by Pinson et al. [15] endorses a minimum 
of 24 subjects. Fewer subjects may be used to indicate trending.

Subjects have a limited attention span, and so the typical chal-
lenge is fitting all impairments of interest into a set of test ses-
sions that one person can reasonably watch. Preferably, each 
session should last no more than 20 min, and each subject should 
spend no more than 1 h rating video. Longer experiments require 
additional motivation or variety to keep the subjects alert. Pay-
ment is the traditional motivator. The best way to add variety into 
an experiment is to increase the number of SRCs.

Subjective experiments should use at least eight different SRCs. 
Differences between SRCs are a major variable for every subjective 
experiment. A large and varied pool of scenes minimizes the risk 
that the subjective experiment will reach an erroneous conclusion. 
This effect is demonstrated in Pinson et al. [12]. Whenever possi-
ble, we advocate the use of the partial matrix test design over a full 
matrix design. Each full matrix within the partial matrix test is 
associated with a different set of SRCs and HRCs. This adds much 
needed visual interest for the subject. HRCs that need to be 
directly compared should be put within the same matrix. 

CHOOSING A SUBJECTIVE SCALE
The choice of subjective scale is surprisingly contentious. Each 
scale has strengths and weaknesses. Choose the scale that best 
matches your goal. There different scales for single stimulus 
(SS) and double stimulus (DS) experiments. In an SS test, the 
subject watches and rates each video sequence separately. In a 
DS test, the subject watches two or more versions of the same 
source video sequence during the rating process.

LISTING OF SUBJECTIVE SCALES
For the ACR from ITU-T Rec. P.910, the subject watches a video 
sequence and then is asked to rate it on a discrete, five-level 
scale (see Figure 2). Each level is associated with a word and a 
number: excellent =  5, good =  4, fair =  3, poor =  2, and 
bad =  1. Variations of the scale include nine levels, 11 levels, 
and a continuous scale with labels only at the end points. A con-
tinuous scale is a continuous line when presented to the subject 
and converted to a 100-level scale for the purposes of data analy-
sis. Alternative labels may be needed for some experiments. 
ITU-T Rec. P.800, a speech quality subjective testing standard, 
provides alternate ACR wording examples for a listening-effort 
scale, and a loudness-preference scale. ACR is an SS method.

ITU-T Rec. P.910 identifies a variant, ACR with hidden refer-
ence (ACR-HR). In ACR-HR, each original is included in the 
experiment but not identified as such. The ratings for the origi-
nals are removed from the scores of the associated PVSs during 
data processing. High-quality originals are critical when using 
ACR-HR. If the quality of the original SRC drops from excellent 
(score 5) to fair (score 3), the available ACR-HR scale decreases 
from four to two units. This causes an inherent bias in the data, 
when comparing PVSs associated with two different SRCs.

View A Rate A

[FIG2] The ACR rating cycle: the subject watches video clip A and 
then rates A.
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The degradation category rating (DCR) method from P.910 
also appeared in an old version of BT.500 under the name DS 
impairment scale (DSIS). DCR presents stimuli to subjects in 
pairs (see Figure 3). The original is presented first, and the sub-
ject is told that this is the original. The stimulus to be rated is 
presented second. The subject rates the difference in quality on a 
discrete, five-level, impairment scale: imperceptible =  5, percepti-
ble but not annoying =  4, slightly annoying =  3, annoying =  2, 
and very annoying =  1. DCR is a DS method.

The pair comparison method from BT.500 also appears in 
P.800 under the name comparison category rating and in an 
old version of BT.500 under the name double stimulus compari-
son scale (DSCS). A pair of stimuli is presented to the subject; 
however, the order of stimuli is random (see Figure 4). If pair 
comparison is used to compare original and processed 
sequences (like DCR), then the original would be played first for 
approximately half of the trials, and the PVS would be played 
first for the rest of the trials. Pair comparison is the only 
method that can directly compare two different impaired ver-
sions of the same video sequence.

The subjects rate the quality of the second stimulus com-
pared to the quality of the first on a discrete, seven-level scale: 
much better =  3, better =  2, slightly better =  1, about the 
same =  0, slightly worse =  –1, worse =  –2, and much worse 
=  –3. Variations include a continuous scale (100 levels) and a 
discrete, two-level preference (better or worse).

The double stimulus continuous quality scale (DSCQS) 
method from BT.500 involves four presentations of two stim-
uli, A  and B (see Figure 5). One of these is the original, 
assigned randomly to position A  or B . The subject is pre-
sented with stimulus ,A  then ,B  then A  again, and then B
again. Afterward, the subject rates A  and B  separately, each 
on a continuous scale showing the ACR labels (excellent, 
good, fair, poor, or bad).

The SS continuous quality evaluation (SSCQE) method from 
BT.500 presents the subject with a stimulus of long duration 
(e.g., 5–30 min). The subject has a slider that is constantly 
moved to reflect the subject’s current opinion of the video qual-
ity (see Figure 6). Ratings are sampled every half second. 
SSCQE was intended for the analysis of monitoring applications 
and uses a continuous scale.

The SAMVIQ method from ITU-R Rec. BT.1788 uses a contin-
uous scale, marked with the ACR labels. The test uses a computer 
interface, which presents the subject with multiple versions of 
the same SRC (see Figure 7). The subject may play each stimulus 
multiple times and may choose the order in which stimuli are 
rated. One of the stimuli is the original and explicitly labeled as 
such. Another stimulus is a hidden reference—identical to the 
original, but not labeled. The subject rates each version of one 
SRC and adjusts the ratings relative to each other.

ANALYSIS OF SINGLE STIMULUS RATING METHODS
ACR with a five-level scale maximizes cognitive ease and the 
number of video sequences rated each minute [16]. ACR pro-
duces very repeatable subjective results, even across different 

groups of subjects, provided that the test design and instructions 
are carefully prepared [17]. Studies [16]–[18] compared ACR rat-
ings with ratings gathered from DSCQS, DCR, and SAMVIQ. The 
rating scale choice had a minor impact on data accuracy.

The SS methods (ACR and SSCQE) have two weaknesses. The 
first is that some types of impairments are difficult to detect 

View A View B
Rate

Preference

[FIG4] Pair comparison rating cycle: the subject watches video 
sequence A, then watches video sequence B, and rates B
relative to A.

View
A

View
B

View
A

View
B

Rate
A

Rate
B

[FIG5] The DSCQS rating cycle: the subject watches video clip A,
then B, A again, B again, and then rates A and B.

Watch for
Quality Change

Update
Rating

[FIG6] The SSCQE rating cycle: watch a long video sequence and 
continuously update a slider to reflect current opinion of the 
video quality.

Rate A, B, C, ...

View
SRCView

A

View
B

[FIG7] The SAMVIQ rating cycle: the subject watches several 
versions of one SRC in any order. The ratings are adjusted until 
the subject is satisfied.

View
Original

View
Processed

Rate Loss

[FIG3] The DCR rating cycle: the subject watches the original 
video, then watches a processed version of that video, and 
finally rates the level of impairment.
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without an explicit comparison between two video sequences. For 
example, small color shifts are difficult to detect using ACR tests.

The second weakness is that SS ratings do not differentiate 
between impairments in the SRC and impairments intentionally 
added to the processed sequence. SS scores are often biased by 
subjects’ opinions of the scene’s aesthetics, composition, produc-
tion quality, and subject matter, despite instructions to the con-
trary. ACR-HR offsets this flaw by removing the original video’s 
rating during data analysis. Thus, ACR-HR ratings look more like 
DS ratings (i.e., a score of “5” on the ACR-HR scale means that 
the original video and PVS have identical quality). This technique 
only works better with high-quality SRCs.

SSCQE has strengths and weaknesses similar to ACR. 
SSCQE has the potential for allowing the most evaluations from 
a single subject in a short time, because there are no pauses 
between stimuli for ratings. Pinson and Wolf [19] demonstrated 
that SSCQE can be as accurate as DSCQS and pair comparison 
for rating short video sequences by using multiple randomiza-
tions, hidden reference removal, and the SSCQE score at the 
end of each sequence. A variety of devices have been used to 
implement an SSCQE slider, including a game station steering 
wheel [20] and a sensory glove [21]. True SSCQE data analysis is 
complex, as it requires time series analysis.

ANALYSIS OF DOUBLE STIMULUS RATING METHODS
DS methods address both problems of the SS method, at least to 
some extent. DS methods ask one of two basic questions.

The first DS question is “Which of these two sequences do 
you like better?” Pair comparison is the only DS method that 
directly answers this question. Inversion errors can occur but 
seem to be rare (e.g., the subject marks “the second sequence is 
much better” when they intended to mark “the second sequence 
is much worse”). Pair comparison takes approximately twice as 
long as ACR for the same number of stimuli.

Pair comparison is the obvious choice for detecting very 
small differences between two different impaired versions of the 
same video sequence. Doherty et al. [22] demonstrate the use of 
pair comparison to detect differences between frame rate con-
version algorithms.

The second DS question is “How well does the impaired 
sequence reproduce the reference sequence?” DCR answers this 
question explicitly. DSCQS, SAMVIQ, and ACR-HR answer this 
question implicitly.

DCR takes approximately twice as long as ACR for the same 
number of stimuli. This is as fast as any DS method can claim, and 
inversion errors do not occur. Tominaga [16] concludes that DCR 
is more desirable than DSCQS or SAMVIQ, because of improved 
speed and ease of use, without loss of accuracy. DCR cannot be 
used to measure quality improvements—the rating scale does not 
allow a subject to say that the PVS is of higher quality than the 
source. DCR is the only method where subjects are unambigu-
ously instructed to rate the perceptual difference between an origi-
nal sequence and an impaired version of that sequence.

A quirk of DCR is that the original video will not be scored as 
perfect. That is, if the original video is played identically as both 

the “original” and “processed” video in Figure 3, the rating will 
be slightly lower than five. This imposes a systematic downward 
shift on all scores that bothers some researchers. (Pair compari-
son is the only subjective method that is likely to yield perfect 
scores for original video sequences.) This bias causes no prob-
lems for the data analysis.

DSCQS takes approximately four times as long as ACR for 
the same number of stimuli. The repeated viewings of stimuli A
and B  are intended to yield improved accuracy per subject for 
small quality differences, but this has not been proven.

Inversion errors are a problem for DSCQS. Inversion errors 
are impossible to detect and remove from the data, and this is 
perhaps the reason why DSCQS failed to show improved accu-
racy in [16] and [18]. It should be possible to avoid DSCQS 
inversion errors using an automated subjective testing system 
that swaps the order of the fourth and fifth steps in Figure 5.

SAMVIQ takes approximately twice as long as ACR for the 
same number of stimuli. SAMVIQ is slowed down by the ability 
of subjects to repeatedly play and compare sequences, yet sped 
up by presenting all versions of each SRC to the subject 
simultaneously. SAMVIQ is the only method that allows subjects 
to directly compare multiple versions of a single SRC.

The advantage of SAMVIQ is improved accuracy. SAMVIQ 
with 15 subjects is as precise as ACR with more than 22 subjects 
[17]. An open question is whether or not SAMVIQ’s improved 
accuracy per subject yields an additional advantage for an 
experiment that focuses on a narrow range of quality.

DISCRETE VERSUS CONTINUOUS
Discrete levels are used for ACR, DCR, and pair comparison. Con-
tinuous scales are used for SSCQE and DSCQS. Researchers have 
explored continuous scales and different numbers of discrete lev-
els for ACR and pair comparison. Tominaga et al. [16] showed that 
a five-level discrete scale provides a much easier cognitive task for 
the subject than an 11-level discrete scale or a continuous scale. 
Studies [16]–[18] demonstrate that the continuous scales do not 
improve measurement accuracy. This makes sense; research on 
human thought indicates that people can only hold about seven 
items in immediate memory [23]. (The Harvard Mind Brain 
Behavior Event Video Archive provides a nice summary of [23] at 
minute 8:30 of the video “The Cognitive Revolution at Fifty Plus 
or Minus One: A Conversation with Jerome Bruner, Susan Carey, 
Noam Chomsky, and George Miller—Part 1.”) 

When using a discrete scale, researchers disagree on whether 
or not the level numbers should be displayed to the subject. No 
consensus exists on this subject.

IMPLEMENTATION

PLAYING BROADCAST-QUALITY VIDEO 
ON A TELEVISION
The ideal video playback system plays uncompressed video flaw-
lessly. Why use uncompressed video? With uncompressed video 
and perfect rendering come the guarantee that the playback sys-
tem does not add new impairments to the video. 
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This ideal television playback/capture system costs about 
US$10,000 excluding the monitor, a cost that has been fairly con-
sistent for the past decade. The components consist of a multiple 
core computer, a redundant array of independent disks (RAID),  
and a specialized board to play video from the RAID to the serial 
digital interface (SDI) high-definition SDI (HD-SDI) or high-defini-
tion multimedia interface (HDMI). The following companies cur-
rently produce professional grade video capture and playback cards 
that are compatible with professional editing suites: AJA, Blue-
fish444, Blackmagic, and Matrox. Bit-perfect playback and capture 
must be proven, which requires two systems (i.e., system 1 plays 
the video, system 2 captures it, and then a pixel-by-pixel compari-
son is performed). Common problems include insufficient RAID 
speed, operating system interruptions, antivirus software interrup-
tions, and driver incompatibilities.

The alternative is to use dedicated hardware. There are too 
many professional-grade devices available to list in this article. 
Most of these devices compress the video slightly (e.g., four to 
ten times). Professional video devices ensure reliable video play 
and record capability, usually with no perceptual impairment.

PLAYING VIDEO ON A COMPUTER MONITOR
The ideal video playback system plays uncompressed, progressive 
video flawlessly from a computer hard drive to its monitor. If 
compressed playback is acceptable, the computer setup is simpli-
fied and the price drops. For some devices, only compressed video 
playback is easily available (e.g., smartphones), and reliable play-
back requires substantial compression (e.g., 30–250 times). Any 
added impairment from the coder, decoder, or display will con-
found the research data and may cause the data analysis to be 
misleading. To avoid this problem, identically compress all video 
sequences for the purposes of playback only. That is, after the vid-
eos have been impaired as specified in the experiment design, re-
encode all videos at the same (higher) bit rate for playback 
purposes. The goal is that any added playback impairments will 
be imposed identically on all videos.

When using a computer video playback system, you must 
calculate the appropriate level of compression yourself. The 
highest bit rate that guarantees flawless playback will minimize 
the perceptual impact of the recompression. To find this bit 
rate, encode a large variety of high-quality SRC, and play them 
to the target display repeatedly, while looking for playback prob-
lems (e.g., intermittent pauses and reduced frame rate).

THE TEST SESSIONS: AUTOMATED, 
EDITED, OR MANUAL
There are three options for playing video and recording scores 
during the actual subjective test: automated playback and scor-
ing, edited sessions, and manual sessions.

When playing uncompressed or lightly compressed progressive 
video to a computer monitor, automated software provides an elegant 
solution for subjective testing. The software should identify subjects 
by ID number (see the section “Conducting the Experiment”), gener-
ate a unique randomized order of sequence presentation for each 
subject, implement the chosen method’s rating cycle, ensure flawless 

playback for all subjects, present the rating scale after video playback 
finishes, record scores to a file, run each session separately, prompt 
for breaks, remove visual clutter from the screen, and either allow or 
disallow video replay. Three freely available software packages are 
AcrVQWin [24], Tally [25], and SubjectivePlayer [26].

If the subjects are allowed to replay the video, some subjects 
will, and this impacts the ratings. No consensus exists on the 
advisability of the replay option. Allowing replay provides the sub-
ject with an option other than guessing when their attention 
wandered—but conflicts arise with the usage paradigm for some 
video systems where rewind is not available. Thus, any article that 
describes a subjective test must specify whether or not videos 
could be replayed.

When subjective video quality testing began, the only option 
available was editing test tapes. Edited sessions work as well today 
as they did then, though the playback system is likely to be DVD, 
Blu-ray, three-dimensional (3-D) Blu-ray, or simply a long video 
file. No specialized software is required, and equipment costs are 
minimal. DVD or Blu-ray ensures consistent playback quality.

The concept is to edit together a long video sequence for each 
session. For example, when conducting an ACR test with 10-s 
sequences, the sequence would alternate between playing a 10-s 
sequence and playing 8 s of midlevel gray while the subject scores. 
This editing is simple yet prone to errors. A minimum of two differ-
ent sequence orderings must be created to minimize the impact of 
ordering effects (i.e., the quality of clip N influences the perceived 
quality of clip ) .N 1+  Order effects can be reduced by randomiz-
ing the sessions (e.g., one subject sees session A, B, and C; another 
subject sees session C, B, and A). Ratings are entered either on a 
paper score sheet or on a small mobile device. Unlike an automated 
test, the ratings are not synchronized with the video playback. The 
audio track and text overlays keep the subject synchronized (e.g., 
please score clip 1). Subjects will sometimes make a mistake, and 
get off by one in their scores (e.g., record the quality of clip 9 where 
they were supposed to score clip 8). Data entry errors can occur 
when copying paper rating sheets into a spreadsheet.

The last option is a fully manual experiment. The experi-
menter can manually play each sequence in the desired order, 
ask the subject to choose a rating aloud, and record that rating 
themselves. This approach seems inelegant and the experiment-
er’s behavior could influence ratings. It is, however, quite inex-
pensive and very practical.

We recommend playing midlevel gray between video 
sequences (i.e., Y =  128, Cb =  0, Cr =  0). The following MAT-
LAB code will create this JPEG image, for video graphics array 
(480#640):

imwrite(zeros(480,640,‘uint8’) + 128,  
‘Gray.jpg’, ‘jpg’);

PRETEST
The purpose of the pretest is to check the experiment design for 
flaws. The pretest allows design problems to be fixed before too 
much time and money have been invested in the subjective test. 
Start by viewing the PVSs yourself. The resulting distribution of 
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quality may show undesirable clusters. If you, the experiment 
designer, are unable to detect differences between most of your 
PVSs, the subjects will not either.

A pretest is often performed before some elements of the test 
are ready (e.g., no automation, no instructions, or an inappropriate 
environment). The pretest often includes only a subset of the 
scenes and impairments. A small, biased sampling of subjects (e.g., 
five to six coworkers or friends) is acceptable, because the goal is to 
look for design flaws. Example design flaws include problems sub-
jects experienced during the experiment, a narrow range of quality 
(e.g., no statistically significant conclusions can be reached), and 
data bunching (e.g., many clips with nearly identical quality). Con-
sider eliminating HRCs with nearly identical quality, when train-
ing or testing a model. Zieliński and Rumsey [27] identify potential 
sources of bias that should be considered during the pretest.

CONDUCTING THE EXPERIMENT
When administering the subjective test, the experimenter 
should not influence or bias any subject’s behavior. To the 
extent possible, each subject’s experience should be identical. 
The task of choosing an experiment administrator is very 
important. Good social skills and good communication skills 
are critical, as part of the administrator’s job is to put the sub-
jects at ease. The administrator must be guarded about the test 
itself and thus less likely to unintentionally influence the 
results. Questions that may influence the subject’s behavior 
should be answered only after the subject’s participation is over.

ETHICS AND INFORMED CONSENT
Awareness of ethical considerations in human testing arose from 
several infamous psychological and medical experiments. The 
Belmont Report [28], written in 1979 by the U.S. government, 
outlines the basic ethical principles in research involving human 
subjects. In 1991, the U.S. government published the Common 
Rule [29] for the protection of human subjects. While this policy 
applies only to U.S. Federal workers, it provides reasonable 
guidelines for ethical human testing and informed consent.

The first ethical consideration is privacy. Subjects’ names must 
be kept private, and the researcher must ensure that the rating data 
cannot be used to identify subjects, even accidentally. The easiest 
and safest way to accomplish this is to identify subjects by number 
and to never record the number/name association. Second, sub-
jects must be informed of potential risks. Video quality subjective 
experiments typically have no risk of benefit or harm. Third, sub-
jects should be given an informed consent form to read and sign. 
The Common Rule contains guidance on appropriate information 
to include, such as a brief summary of the purpose of the experi-
ment, the method used to keep people’s names confidential, any 
risk or benefit to the subject, notification that participation is vol-
untary, and who to contact with questions about research subjects’ 
rights or in the event of a research-related injury.

VISION TESTING
Vision testing is traditionally performed before the experiment 
begins. Unless you are an ophthalmologist, it is inappropriate to 

tell the subject whether or not they passed the vision test; all 
people should participate in the experiment, regardless of 
whether or not their data will be used.

ITU-R BT.500 and ITU-T P.910 require that subjects be 
screened for normal visual acuity (e.g., with glasses if worn) and 
normal color vision. Test the subject’s distance vision using the 
Snellen eye chart at a range similar to that used during the exper-
iment. Test color vision with the Ishihara Color Blindness plates 
under natural lighting (i.e., sunlight). The Ishihara plates should 
be replaced after about five years, because the colors fade, render-
ing the test inaccurate. These plates typically only test red–green 
color blindness, as that is the most common type.

There is some question as to whether there is a difference 
between ratings from people with normal vision and people who fail 
the distance vision or color vision test. Pinson et al. [15] found no 
significant difference in ratings; however, that was not the primary 
goal of the reported experiment. Moorthy et al. [30] present argu-
ments against the use of vision tests. Regardless, these vision tests 
convey to the subject that they are participating in an important sci-
entific experiment and should pay attention to their rating task.

SUBJECT DEMOGRAPHICS 
AND CONVENIENCE SAMPLING
The ideal in psychology is random sampling that perfectly matches 
the demographics of the population to be studied. This is most eas-
ily accomplished by outsourcing subject recruitment to a special-
ized company that performs market research through focus groups. 
The drawback is the high cost. Most video quality subjective tests 
use convenience sampling—i.e., a population of subjects that are 
easy to obtain. Universities tend to recruit students; large companies 
tend to recruit employees. To better represent the larger population, 
consider using a temporary hiring agency or online advertisements.

The problem with convenience sampling is that the research 
results may not generalize to the larger population. For video 
quality subjective testing, the relationships between variables 
will remain correct—but the MOS values will not be absolute 
(see Pinson et al. [15]). Be careful not to generalize your conve-
nience sampling results into absolute thresholds (e.g., MPEG-2 
at this bit rate will result in a quality of 4.0 or better).

INSTRUCTIONS, TRAINING SESSIONS, 
AND QUESTIONNAIRES
Instructions must be written out and agreed upon before the test-
ing begins. All subjects must receive the same instructions. This 
eliminates one potential source of subject bias. The instructions 
should describe the rating cycle, the quality scale, how to record 
ratings, quirks of your playback system or environment, behavior 
to be avoided, and the scenario (e.g., watching free video clips on 
a mobile device and watching a pay-per-view movie). The instruc-
tions should include: “Please do not base your opinion on the 
content of the scene or the quality of the acting.” Still, ratings 
inevitably include both the clip’s artistic quality and its technical 
quality. This is why subjective tests normally include the original 
video for comparison. After presenting the instructions, ask the 
subjects if they have any questions.
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The training session immediately follows the instructions. The 
training session serves two purposes. The first is to demonstrate 
the task. This is easily accomplished with two or three rating 
cycles. The second purpose is to familiarize the subject with the 
range of quality and type of impairments in the experiment. This 
may take much longer (e.g., 5–20 sequences). The SRC used for 
training session should not appear in the rest of the experiment.

A questionnaire can be used after the rating sessions, to 
gather additional information. Questionnaires can potentially 
provide feedback on problems the subject had with the test, 
whether or not the subject understood the task, and whether the 
subject noticed a problem with your test setup. A written ques-
tionnaire is preferable to asking questions aloud because people 
are more likely to be blunt and provide additional information. 
Questionnaires can also be used to understand QoE (see the sec-
tion “Data Analysis Techniques”). No standard questionnaire 
exists today.

WRITING THE REPORT
The ultimate goal of a video quality subjective test inevitably 
includes publishing the results, either internally or externally. The 
report of results should fully describe

■ the goal of the experiment
■ the environment (e.g., monitor brand and model, lighting 
level in lux, viewing distance in screen heights, and picture of 
environment)
■ the test methodology (e.g., ITU recommendation and any 
departures)
■ the rating method
■ the SRC (e.g., quantity and sample frames)
■ the HRC (e.g., quantity, coding algorithm, bit rate, and 
transmission error level)
■ the experiment design (e.g., full matrix or partial matrix or 
other, number of PVS)
■ the test sessions (e.g., number, duration, playback mecha-
nism, playback compression characteristics, and software 
used to control the test)
■ the subjects (e.g., number of, age and gender distribution)
■ the mechanism used to obtain subjects
■ the data analysis results.
Always include a picture of the viewing environment in the 

report. This will provide readers with an improved understanding 
of the environment (see Figure 8). Brunnström et al. [31] is an 
example of a superior experiment report. 

For privacy reasons, the names of subjects should not be 
mentioned in any report. Care should be taken when explicitly 
mentioning vendor names. If the experiment was not designed 
to directly compare the quality of those vendors’ equipment, a 
comparative analysis might be biased. In such cases, the vendor 
names should be omitted from external reports.

DATA ANALYSIS TECHNIQUES
Any data analysis is divided into three specific steps: clean the 
data, choose the correct analytical technique (this step should 
be done before the subjective study is run), and interpret the 

results. Each step’s method has to fit the problem under investi-
gation. To begin, key statistical concepts will be described.

MEASUREMENT SCALES, AGREEMENT, 
AND ASSOCIATION
The values related to a particular variable (e.g., bit rate) can be 
measured in different ways [32]. Measurement scales are classi-
fied and divided into four types: ratio, interval, ordinal, and nom-
inal. For each type of measurement scale, correct statistical 
techniques exist and should be used. The ratio measurement 
scale makes it possible to define a distance between any two val-
ues and compute their ratio. For example, the distance between 
3 Mbit/s and 6 Mbit/s is 3 Mbit/s, and the second bit rate is two 
times larger than the first. With the interval measurement scale, 
the distance between each point is the same but the measured 
numbers are arbitrary. For example, consider encoder bit rate 
setup categorized to three values 1= 3 Mbit/s, 2= 5 Mbit/s, and 
3= 7 Mbit/s). The measured values 1, 2, and 3 cannot be com-
pared using a ratio (i.e., 3 does not have bit rate three times as 
high as 1), but the distance between 1 and 2 is the same as the 
distance between 2 and 3. With an ordinal measurement scale, 
an order of values can be found but exact distances cannot. For 
example, bit rate category “medium” has a higher bit rate than 
“low” and lower than “high.” Nevertheless, with an ordinal scale, 
we cannot determine whether a value “low” has the same dis-
tance to “medium” as “medium” to “high.” With nominal, each 
value is different and an order cannot be determined. For exam-
ple, encoders A, B, and C cannot be ordered without focusing on 
a specific feature, like price or encoding speed. 

Agreement means that subjects should give the same quality 
ratings, and we only tolerate differences that are caused by a ran-
dom distribution of measurement noise. On the other hand, associ-
ation requires only that subjects follow the same pattern. So, if two 
subjects agree, they also associate, but the opposite is not true [33]. 
For example, if subject one is always scoring one point lower than 
subject two (where possible), they do not agree at all but they do 
associate perfectly. For subjective experiments focused on quality, 

[FIG8] A picture of the viewing environment should be 
included in the final report. This sample environment shows 
a sound isolation booth. A Blu-ray player outside the room 
plays audiovisual sequences on a broadcast-quality monitor 
and speakers.
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agreement is not expected, since a subject can be more or less dis-
criminating. On the other hand, if there is no association it can be 
explained only if a subject is more tolerant than average for some 
impairments and less for others. This is not impossible, but an 
experimenter may choose to consider a subject who does not asso-
ciate with others to be irrelevant. Perhaps the rating task was too 
difficult or was not understood properly.

CLEANING THE DATA
Before using any statistical technique, the data has to be 
cleaned. This involves first detecting irrelevant subjects and sec-
ond detecting errors in the experiment setup. Detecting an 
irrelevant subject depends on the way the test was run. It is 
usual to monitor a subject in a lab; in this case, we can be sure a 
subject did the test. If this does not happen, the first screening 
technique is focused on finding out whether a subject actually 
did the test. Gardlo et al. [34] describe some techniques such as 
adding content questions, e.g., “Was a car present in the scene?” 
Such questions reveal whether a subject actually saw a particu-
lar sequence. If a test is run in a controlled environment, 
detecting whether a subject did the test is usually trivial. Never-
theless, the subject could misunderstand the test, the test could 
be too difficult, or the subject might not pay attention. There-
fore, screening is still a necessary and important step.

The screening technique described in the ITU-R Rec. BT-500 
is based on the subject agreement and measuring scale being 
ratios. The basic concept is to measure how often a subject’s 
answers do not fit the confidence interval created by the other 
subjects’ answers. (A MATLAB code for performing this test can 
be found at http://www.its.bldrdoc.gov/resources/video-quality-
research/guides-and-tutorials/subject-screening-overview.aspx.)
Subjects do not have to agree among themselves, so we will focus 
on techniques based on association rather than agreement.

The most popular way to measure association is the Pear-
son correlation. This technique was used to screen subjects in 
the Video Quality Experts Group (VQEG) HDTV validation test 
plan [35]. The Pearson correlation is based on the assumption 
that the measurement scale is a ratio, and Pearson correlation 
interpretation and tests generally assume the data have a nor-
mal distribution. If the quality scale is short (e.g., ACR), the 
Pearson correlation should be changed to the Spearman corre-
lation, which is based on the weaker assumption that the mea-
surement scale is ordinal. For a short scale, it is difficult to 
assume that the answer distribution is close to normal (espe-
cially if most answers are close to one of the scale borders) and 
that the distances between answers are the same. Computing 
the Pearson or Spearman correlation requires two vectors: ui

(a single subject’s ratings) and ui  (average of the other sub-
jects’ ratings) for all sequences. The MATLAB Statistics Tool-
box functions are as follows: 

a=corr (ui, udashi, ‘Type’, ‘Pearson’);
b=corr (ui, udashi, ‘Type’, ‘Spearman’);

where ui is denoted by ui and ui  is denoted by udashi.

The question is: At what threshold should a subject be dis-
carded? A correlation that is statistically greater than zero does 
not guarantee that a subject is relevant. A good example 
occurred during a VQEG HDTV test [35], the goal of which was 
to choose the best objective metric for HDTV. For an experi-
ment that used edited sessions on Blu-ray discs, the scoring 
time was too short for one subject, so he did not see the first few 
seconds of some sequences. The Pearson correlation was statis-
tically significantly higher than zero (0.633) but much lower 
than for other subjects’ correlation (the lowest being 0.784 and 
the average 0.877). The VQEG rule is that a subject should be 
discarded if the correlation is below 0.75 for television (TV) and 
mobile applications. The disadvantage of using correlation for 
data cleaning is that the correct threshold must be found exper-
imentally, based on how difficult it is for subjects to evaluate a 
particular service. The 0.75 threshold cannot simply be used for 
new services (e.g., 3-D TV, ultraHD) or a different association 
metric (e.g., Spearman correlation).

These two methodologies (i.e., as described in Rec BT.500 and 
based on Pearson correlation analysis) are by far the most com-
monly used to detect irrelevant subjects. They rely on the ratio 
measuring scale. Since subjective experiments are often per-
formed on a short measuring scale, which is ordinal rather than 
ratio, some different methods are needed. Adejumo et al. [33] and 
Gibbons [36] provide descriptions of numerous different agree-
ment and association metrics. A commonly used agreement met-
ric using an ordinal scale is named Cohen’s Kappa coefficient. It 
is widely used by the psychology community when subject agree-
ment is especially important. The Kappa coefficient can be com-
puted using the MATLAB function created by Cardillo [37]. No 
more details are presented in this article since association rather 
than agreement metrics should be used in case of quality tests. 
Nevertheless, the interested reader can find details in [33].

Kendall’s tau can be an alternative solution when an associa-
tion metric is needed and the measuring scale is ordinal. Kendall’s 
tau is the difference between the probability of concordance cr

and discordance dr , given by: .c dx r r= -  Kendall’s tau is an 
easy to interpret parameter, since it refers to concordance and dis-
cordance between two vectors. Gibbons [36] provides more details 
on when Kendall’s tau should be used. The MATLAB function is 

a=corr (ui, udashi, ‘Type’, ‘Kendall’);

A subject can have a low association with other subjects 
because the subject did not pay attention to the task or because 
an error occurred in the experiment setup. While an experiment 
is being run, many different problems can occur. An intermittent 
video playback problem in the test interface can cause occasional 
added visual impairment (e.g., freezes during a sequence that 
should have played smoothly). Video clips can be played in the 
incorrect order, so that the written video clip/rating association is 
incorrect (e.g., an editing error in a prerecorded sequence, a cod-
ing bug in automated playback software). Some sequences can be 
different from the description (e.g., encoded at the wrong bit 
rate). A time synchronization error can occur between subject 
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ratings and videos (e.g., a subject scoring on paper rating sheets 
scores clip N in the box for clip N+1). All of these problems have 
been observed by the authors of this article.

Specific problems call for specific solutions, so it is impossible to 
describe a general procedure. Nevertheless, our experience shows 
that the following three steps are very helpful. First, if prerecorded 
sequences are used, the results obtained for a PVS should be statisti-
cally the same when it appears in different recordings. Second, the 
quality ratings can be compared to the experimenter’s expectations, 
and sequences with large differences should be checked. Third, the 
association between users within sessions should be checked. If a 
user is well associated with others for one session and poorly for 
another, this indicates a problem with that session.

The most difficult problems to detect are rare interface failures 
resulting in degradation of the watched video (e.g., the automated 
test software pauses during video playback for 2% of the sequences). 
This problem is best detected during the pretest (e.g., the experi-
menter takes the pretest, and then compares his or her scores to the 
expected quality). Intermittent playback failures will cause all sub-
jects to score atypically low quality for a few, random clips. One way 
to find such inconsistencies is to compare a user’s association with 
other users for all sequences with that user’s association with other 
users for a subset of sequences. If the percentage of errors in a subset 
is higher than in the whole set it is easier to detect them. 

If the data cleaning eliminates more than two or three subjects, 
something may be wrong with your test procedure. To put this into 
perspective, only one of the 214 subjects in [15] was eliminated for 
being irrelevant (see [38] to view the individual subject ratings).

DATA ANALYSIS
After screening subjects and ensuring that all of them performed 
the experiment properly, the final and most important analysis 
can be run. The section “Goal of Experiment and Design Conse-
quences” described the different reasons to run subjective experi-
ments. These different reasons call for different data analyses.

ANSWERING A QUESTION
An experiment designed to answer a question contains different 
conditions, which are most often different HRCs but could also be 
different subjects or different SRCs. Different conditions generate 
groups of results that can be compared to answer specific ques-
tion. Therefore, answering a question can be reduced to compar-
ing subsets of subjective experiment results. The most common 
way to compare two groups is to answer the question of whether 
the results are statistically the same or not. This question will be 
answered with a specific significance level. Most often, 5% signifi-
cance (i.e., 95% confidence) is chosen. This is the default in many 
MATLAB statistical tests and is specified as 0.05.

The most popular technique for comparing two groups is 
the Student’s t-test. The goal of the Student’s t-test is to vali-
date if the difference between the mean values of two groups 
has a particular value. For example, if our goal is to validate 
whether the quality obtained for HRC 1 and HRC 2 are the 
same we should compare vectors u 1  and .u 2  Each element of 
the ui  vector is a value obtained for the same HRC with 

different other conditions (e.g., SRCs or repetitions). It is very 
important to have the same order of conditions in both vec-
tors. The MATLAB function for computing the Student’s t-test is: 
[h, p]=ttest(u1-u2); where h is one if the difference is 
statistically different from zero and zero if it is not, and p is the 
corresponding p-value, which has to be larger than 0.05 to con-
clude that the obtained difference is not statistically significant.

If the goal is to compare multiple groups, then the method-
ology and significance level must be adjusted to maintain the 
same significance level for a group as for single comparison. 
The commonly used methodology for comparing multiple 
groups is one-way analysis of variance (ANOVA). The MATLAB 
anova1 computes one-way ANOVA. A handy way to call this 
function is to specify a vector of all compared values (e.g., 
MOSs) and a vector of tags describing groups. For example, u=
[2.3,3.2,1.2,2.4,3.2] and g=[‘A’,’B’,’B’,’A’,’C’] 
means that the first and fourth values belong to group A, the sec-
ond and third to group B and the last one to group C. anova1 is 
called using: p = anova1(u,g); where u is the compared val-
ues vector, g is the grouping vector, and output p is the p-value. 
Similarly to ttest, a value of p smaller than 0.05 indicates that 
at least one group is different.

The disadvantage of both the Student’s t-test and ANOVA is 
the assumption that the data come from a normal distribu-
tion, i.e., they follow a specific distribution and can be mea-
sured on a ratio or interval scale. This can be validated by the 
Kolmogorow–Smirnow (small sample) or chi square (large 
sample) test. If one of those assumptions is not met, different 
statistical methods should be used. The Student’s t-test should 
be changed to the Mann–Whitney U-test and the one-way 
ANOVA should be changed to the Kruskal–Wallis test. The 
Mann-Whitney U-test compares medians not means, and as 
such it needs only an ordinal measuring scale. The equivalent 
of this test in MATLAB is [p, h] = ranksum(u1, u2);
where the p, h, u1, and u2 parameters are the same as for 
the ttest function but ordered differently. The multiple-group 
comparison version of the Mann–Whitney U-test is the Kruskal–
Wallis test, which can be called similarly to the anova1
function: p = kruskalwallis(u,g);

The discrimination powers of the Student’s t-test and the 
ANOVA test are greater than those of the Mann–Whitney U-test 
and the Kruskal–Wallis test. The cost for this increased discrim-
ination is the requirement of a normal distribution and interval 
measuring scale. Choosing the Mann–Whitney U-test or Krus-
kal–Wallis test leads to more conservative conclusions. If a test 
with the weaker assumption shows differences between groups, 
then the Student’s t-test and ANOVA will show it as well. The 
opposite is not necessarily true.

A useful MATLAB tool for comparing multiple groups is the 
multcompare function. Both anova1 and kruskalwallis
functions can return more than one parameter. After three 
parameters are returned, multcompare can be run by using 

[p,table,stats] =  kruskalwallis(u,g); 
multcompare(stats);
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This function generates a handy interactive plot that makes it 
easy to compare groups.

TRAINING A METRIC OR ALGORITHM
Subjective experiments maximize measurement accuracy, but 
also increase cost and time taken. They cannot be used to moni-
tor a service. Therefore, it is a common practice to build a met-
ric that objectively emulates a video quality (i.e., MOS). When 
training a metric or algorithm, the goal is to find a function 
that links explanatory variables to a dependent variable. Exam-
ple explanatory variables are bit rate, packet loss ratio, quality 
estimation parameters extracted from the video, and subject 
age. The dependent variable is most often video quality.

The easiest solution is to design a linear model using linear 
regression. A linear model is a linear function of model param-
eters, but not necessary a linear function of explanatory vari-
ables. Nonlinearities in the explanatory variables are detected 
and removed (e.g., using square or square root functions), and 
it is common to use interactions between explanatory vari-
ables (e.g., the product of two explanatory variables). Accord-
ing to the above description an example linear model is given 
by the equation ,log logu a a b a ta a b ta0 1 2 3= + + +  where u
is estimated MOS, ai are model parameters, b  is a bit rate, 
and ta  is the temporal activity of the SRC. A linear model can 
be estimated in MATLAB by the glmfit function, which 
returns both the estimated values and the p-values of each 
estimated parameter.

While training the linear model, the researcher examines and 
understands the relationship between the candidate explanatory 
variables and the dependent variable. Example techniques include 
examining the ability of a single explanatory variable to predict 
the dependent variable (e.g., using the Pearson correlation or 
root mean square error), and plotting the explanatory variable 
against the dependent variable to find nonlinearities or outliers. 
Fox [39] provides instruction on techniques for applying linear 
regression analysis. The advantage of linear regression is that the 
resulting linear model is typically easy to explain and understand.

Alternatives to classical linear regression are methods based 
on machine learning. Many techniques are available. In this 
article, only three are mentioned. Genetic programming-based 
symbolic regression analyzes a large number of different mod-
els, thus helping to build a model that is similar to a linear 
model [40]. The advantage of this technique is that the output is 
easy to interpret. Partial least squares regression is more diffi-
cult to interpret but has the advantage of optimizing explana-
tory variables. Because of the use of principal component 
analysis, the final output is as simple as possible for a given pre-
diction accuracy using explanatory variables that contain the 
most significant information [41]. Random neural networks are 
even more difficult to interpret but can approximate different 
nonlinear functions [42].

Machine-learning algorithms must be used with care to not 
over train the model. A typical machine-learning model con-
tains lots of parameters, and relatively little subjective data are 
typically available to train a video quality metric.

All of the previously presented solutions model MOS (i.e., the 
average of many ratings), not the actual subjective ratings. If 
quality is measured on a scale with a small number of levels, each 
rating level’s probability can be predicted using the generalized 
linear model (GLM). GLM is able to model multinomial distribu-
tion. A detail description of using GLM is given in [43].

ANALYZING A METRIC OR ALGORITHM
To analyze a metric, its predictions and subjective results have 
to be compared. The algorithm that fits the subjective data best 
should be chosen. This analysis has to address two specific reali-
ties of subjective experiments. Previous research shows that two 
instances of the same subjective experiment repeated in two dif-
ferent laboratories can have high association (measured by cor-
relation) but the results are not identical [3], [15]. Since the 
results of the two subjective experiments results have high asso-
ciation but not necessarily agreement, a metric should associate 
with the validation subjective experiment but it does not have to 
agree (i.e., an offset is possible).

The final conclusion is that metrics should be validated by 
association rather than by agreement, or agreement should be 
measured for the metric after the values have been transferred 
to a common scale. In addition, two metrics can differ due to 
randomness related to the subjective experiment. Such metrics 
should be called “the same” even if the agreement or association 
metric is superior for one of them. The methodology for 
addressing the problems described above is used by VQEG and is 
described in ITU-T Rec. P.1401.

THOUGHTS ON QUALITY OF EXPERIENCE
We have provided detailed information for conducting video 
quality subjective tests. Video quality is one aspect of a larger 
topic—QoE. Compared to video quality testing, QoE testing 
is in its infancy, and no step-by-step tutorial is available at 
this time. Instead, this final section summarizes some QoE 
definitions and frameworks. This overview points out limita-
tions of video quality subjective tests and identifies areas 
where QoE issues impact experiment design, monitor selec-
tion, subject demographics, post-test questionnaires and, as 
a consequence of these choices, the strength of the conclu-
sions that can be reached.

Video quality is just one aspect of QoE. According to Le Callet 
et al. [44], QoE is the degree of delight or annoyance the user 
receives from an application or service. It results from the fulfill-
ment of the user’s expectations (in light of his or her personality 
and current state) with respect to the utility and/or enjoyment of 
the application or service. More succinctly, QoE is a measure of 
how well a service or an application meets the user’s expectation 
of quality (EoQ) [45]. Different artifacts arising along an end-to-
end service delivery chain may result in QoE that does not meet a 
user’s EoQ. However, each service provider is expected to aim at 
the condition QoE = EoQ [46], ensuring revenues, reducing 
churn, and increasing customer satisfaction.

Today, each of us is a consumer of multimedia services and 
knows how many variables influence our EoQ. Therefore, a 
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holistic QoE approach should span the whole telecommunica-
tion ecosystem combining user behavior, technical issues, and 
business models as proposed in [44] and [47].

Batteram et al. [45] propose three dimensions that can be used 
to express QoE: service availability, service responsiveness, and 
media quality (i.e., audio and video quality). Service availability is a 
measure of whether the user can use the desired service, while 
responsiveness is the time to get the service answer. Media quality 
relates to all artifacts generated by compression and packet net-
work delivery that deteriorate the user’s perception. Audio and 
video quality subjective tests measure media quality, but fail to 
quantify the impact of service availability and responsiveness.

On the other hand, Marez and Moor [46] point out that QoE 
may depend on many service context-of-use factors (i.e., the 
actual conditions under which an application is used). The ser-
vice has to be paid for through some provider-defined business 
mode (e.g., transaction, subscription, and advertisement). The 
underlying network technology (e.g., wired, wireless, and satel-
lite) impacts QoE, as do other technological factors. Personal, 
social, cultural, and education issues are influential, and a user’s 
EoQ is modified by the location or device used for service con-
sumption. There is interest in extending video quality subjective 
testing techniques but as of yet no established solution (e.g., a 
way to measure MOS that accounts for screen size differences).

The multivariate structure of QoE may suggest initially that, 
from the QoE analytical modeling point of view, numerous 
analysis models could be deployed to understand the relation-
ships between variables and their relevance to the actual QoE 
problem being studied [44]. An expert panel [46] found about 60 
multidisciplinary methods (both qualitative and quantitative) 
suited for QoE investigations.

While the rating scales in the section “Ethics and Informed 
Consent” are intervals (which define the ratio, interval, ordinal, 
and nominal measurement scales), QoE variables are often ordi-
nal (e.g., satisfied, neutral, and dissatisfied) or nominal (e.g., gen-
der, user profile, device, and content type). These category 
variables differ radically from interval variables because distances 
between categories are not defined and subjects can interpret the 
categories differently. Thus, most of the techniques from the sec-
tion “Data Analysis Techniques” are inappropriate. The proper 
tool for dealing with such unmeasurable variables is categorical 
data analysis (i.e., multicategory logit models). These techniques 
are more complicated, and the results derived are a bit more diffi-
cult to interpret.

Customer satisfaction surveys solve this problem by using a 
variety of latent trait models (LTMs). For example, the Item Rasch 
Theory is the simplest LTM model. The LTM is a powerful approach 
as it can relate manifest variables (i.e., service features that can be 
readily judged by a tester) with latent traits (i.e., the tester’s experi-
ence with a service)—provided that the questionnaire is properly 
designed. The LTM approach was recently suggested by [48] and 
[49] as a proper tool for 3-D video quality analysis.

In summary, QoE uses multiple dimensions to measure dif-
ferent users’ experiences of service received and relate their 
experiences to parameters of a service delivery chain and a 

service context-of-use. A reliable QoE measurement calls for a 
multidisciplinary approach (e.g., operations research, customer 
satisfaction surveys, and sociology), because of the different 
nature of the variates involved. Users’ experiences may differ 
even if they use the application in the same context and under 
the same network conditions. Therefore, to arrive at a valid QoE 
assessment, it is necessary to conduct tests with large numbers 
of subjects. Although such subjective tests are time and 
resource consuming, emerging crowdsource QoE assessment 
has recently appeared as a solution [50]. QoE is gaining increas-
ing momentum among researchers, service providers, and net-
work operators; this may eventually result in the implementation 
of user-centric services.
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Human–Machine Interfacing by Decoding 
the Surface Electromyogram

H
uman–machine interfacing 
(HMI) uses biological sig-
nals, such as brain signals, 
and translates them into 
control commands for exter-

nal devices. An exciting application of HMI 
is the active control of robotic limbs that 
substitute lost body parts (bionic recon-
struction). Despite recent progresses in 
brain–computer interfacing [1], muscle 
electrical potentials are still the most im-
portant input for clinical HMI. The en-
semble electrical activity of a muscle, the 
electromyogram (EMG), is generated by 
the neural activation of the motor neu-
rons innervating the muscle and thus con-
tains information on the neural control of 
movement. Muscle recordings can be per-
formed noninvasively (surface EMG) by 
electrodes located on the skin to record 
the electrical activity of the underlying 
muscle fibers. This recording modality has 
advantages compared to other HMI mo-
dalities, such as those based on implanted 
electrodes, in terms of long-term stability, 
biocompatibility, reduced risks of infec-
tions, and ethical constraints.

While traditional surface EMG process-
ing exploited the neural origin of the EMG 
indirectly, in this column we introduce a 
direct approach for accessing the neural 
code present in the signal. We discuss a 
novel concept of HMI that uses the behav-
ior of individual motor neurons extracted 
from noninvasive muscle signals, rather 
than from direct nerve interfacing. This 
interface has broad applicability since it 
could be used to decode the activity of 
any nerve, either via its naturally inner-
vated muscle or via reinnervation of new 
muscles [targeted muscle reinnervation 

(TMR)]. This HMI offers high potential for 
neurotechnologies, e.g., active prostheses 
or rehabilitation robotics, and as a gen-
eral-purpose HMI, e.g., in sports science 
or gaming. In the following, we will dis-
cuss the models, processing methods, and 
results that show the feasibility for this 
novel HMI concept.

BACKGROUND
The surface EMG is the electrical mani-
festation of the activity of muscle fibers. 
Muscle fibers are not controlled individu-
ally but in groups of tens to hundreds that 
form the muscle units. Each muscle unit 

is innervated by a single motor neuron [2], 
and the motor neuron and its innervated 
muscle fibers constitute the smallest vol-
untary unit in a movement—the motor 
unit (MU). Because each action potential 
discharged by a motor neuron corre-
sponds to an action potential in the inner-
vated muscle fibers, the muscle 
transforms neural action potentials into 
compound potentials of the muscle unit. 
In this transformation, the information on 
the time instants of motor neuron activa-
tions is unaltered. Therefore, the electrical 
signals recorded over or inside a muscle 
may be seen as an amplified version of the 

corresponding neural signals of the effer-
ent nerve fibers. In this regard, the gener-
ative model of the EMG signal is the same 
as the model of the ensemble activity of 
efferent nerve fibers, i.e., the sum of con-
volutions of delta functions and determin-
istic waveforms. The EMG signal can be 
seen as a neural recording from a periph-
eral organ—the muscle—that biologically 
amplifies the signal, as schematically 
shown in Figure 1. The source of neural 
information is in the ensemble of activa-
tion times of the nerve action potentials, 
whereas the waveforms of the muscle fiber 
action potentials reflect peripheral muscle 
properties. The concept of biological 
amplification of nerve activity is artificially 
exploited within the TMR procedure [3]. 
In TMR, nerves that normally would 
innervate missing muscles following an 
amputation are surgically directed into 
accessory muscles, used exclusively as 
sources to detect the nerve activity and to 
form a neural interface with the human 
body [3].

The activation of spinal motor neurons 
constitutes the ultimate neural represen-
tation of human movement because this 
activation is then transformed into muscle 
forces and motion. This last neural signal 
in the chain of neural processing stages 
for the generation of a voluntary move-
ment is often termed the neural drive to 
the muscle. The link between the EMG 
and the neural output from motor neu-
rons has been extensively used by extract-
ing properties of the neural code from 
transformations of the raw EMG signals 
[4]. For example, the intensity of the neu-
ral drive to a muscle is often estimated as 
the amplitude of the EMG, i.e., the square 
root of the power, whereas the EMG spec-
tral moments have been used for inferring 
properties of the active motor neurons [4]. 
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CHALLENGES IN DECODING 
THE SURFACE EMG
Extracting the neural information from an 
EMG signal directly corresponds to identi-
fying the trains of delta functions that 
drive the occurrence of muscle fiber action 
potentials (Figure 1). Each motor neuron 
innervates a different group of muscle 
fibers and, therefore, in principle deter-
mines the occurrence of a unique surface 
action potential waveform. This waveform 
repeats over time and constitutes an elec-
trical signature of the activity of that spe-
cific motor neuron. It is intuitive—and 
will be evident when discussing EMG 
models in the following section—that a 
basic condition for distinguishing sources 
from the surface EMG is that the surface 
action potentials discharged by the same 
MU have a shape of greater similarity than 
those discharged by different MUs. With 
respect to other decomposition problems, 
e.g., spike sorting of neural recordings or 
of intramuscular EMG [7], the waveforms 
of the surface action potentials character-
izing each source are, however, relatively 
similar. This problem is related to the 
bandwidth of the surface EMG signal that 
is substantially limited by the effect of the 
tissues interposed between the electrodes 

and the muscle fibers, i.e., the volume 
conductor. The effect of the volume con-
ductor is that of a low-pass filter with cut-
off frequency inversely related to the 
distance from the sources. For long dis-
tances, a relatively large amount of dis-
criminative information on the shape of 
the action potentials is filtered out by the 
volume conductor so that the action 
potentials generated by different sources 
appear similar. Accordingly, simulation 
studies have shown that, out of a popula-
tion of hundreds of MUs, the majority 
may have surface action potentials “iden-
tical” (within experimental noise vari-
ability) to those of at least one other MU 
[8]. The solution to this problem of non-
uniqueness in the electrical signature of 
different MUs is to record more than one 
EMG signal by sampling the electrical 
potential at the surface of the skin at sev-
eral sites (as schematically represented 
in Figure 1). The spatial sampling 
increases the differences between action 
potential waveforms—in the multichan-
nel domain—so that, for a sufficient 
number of channels, the representative 
action potential of each source differs 
from all others [8]. For the above rea-
sons, the decomposition of the surface 

EMG is theoretically possible under gen-
eral conditions, yet only when using 
multichannel or high-density surface 
electrode systems [8].

With respect to other spike sorting 
problems, a second challenge in the 
decomposition of the surface EMG is the 
higher level of time superimposition of 
action potentials. This is due to the larger 
number of sources that significantly con-
tribute to the signal compared with other 
recording modalities, such as intramuscu-
lar EMG, and thus to the selectivity of the 
recording. The rate at which the action 
potentials overlap in time can be estimated 
as ( ),DR d I I l2 $ $ $ -  where DR  is the 
average discharge rate [pulses per second 
(pps)] of the active sources, d  is the aver-
age duration (s) of the action potentials, 
and I  is the number of sources contribut-
ing to the signal [9]. This equation indi-
cates that the rate of overlap depends 
quadratically on both the discharge rate 
and the number of active sources. For 
example, with all other conditions being 
equal, the MU action potential (MUAP) 
overlap rate in a surface EMG signal that 
comprises 30 significantly contributing 
MUs is approximately 150 times greater 
than the rate in a selective intramuscular 
EMG signal comprising three main 
sources (these numbers are typical). With 
these rates of overlap, the procedures based 
on segmentation of the signal into inter-
vals containing individual waveforms and 
clustering of these waveforms—these pro-
cedures are common for spike sorting of 
neural recordings [7]—cannot be used for 
surface EMG decomposition. Indeed, under 
most conditions, the occurrence of an 
MUAP waveform isolated in time from all 
the others in a surface EMG recording is an 
extremely rare event, much less likely than 
the superimposition of several waveforms. 
Therefore, blind source separation meth-
ods are preferred as they are minimally 
influenced by the MUAP overlap rate [5].

SURFACE EMG
GENERATION MODEL
In this article, we focus on an EMG 
decomposition approach based on multi-
channel surface EMG recordings. These 
recordings can be modeled by a multiple-
input, multiple-output (MIMO) system [5]: 

[FIG1] A schematic representation of the generation of the surface EMG signal. In 
this example, two muscles are represented. The muscles are driven by the neural 
drive transmitted by the motor neuron pools. Each activation instant of a motor 
neuron corresponds to the generation of the compound action potential of the 
innervated muscle fibers, the MU action potential (MUAP). The surface EMG is 
recorded on the skin overlying the muscles. In this example, a grid of 7 # 6 surface 
EMG electrodes is shown representatively. The grid provides a spatial sampling of 
the electric potential generated by the activity of the muscle fibers.
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( ) ( ) ( )t t tEMG Bs ~= +r (1)

where ( ) [EMG ( ), , EMGt tEMG M1 f=

( )]t T  is a vector of M EMG  signals, 
( ) [ ( ), , ( )]t t tM

T
1 f~ ~ ~=  is an additive 

noise vector, and ( )tsr  is the source vec-
tor to be estimated that contains the 
information about the neural drive to 
the muscle.

The matrix B  represents the volume 
conductor filters and the model is, thus, 
convolutive [5]. It contains the action 
potential waveforms from N  MUs as 
detected by all EMG channels: 
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where the vector ( )tm ,i j denotes the L
samples long action potential of the jth
MU, as measured by the ith  uptake elec-
trode at the time instant .t

The vector [ , ,t s t s t 1s 1 1= -r^ ^ ^h h h

, ,sR, , ,s t L s t s t t1 11 2 NRf f- + -^ ^ ^ ^h h h h

]s t L 1 T
NRf - +^ h  contains blocks of L

consecutive samples from N  motor neu-
ron spike trains [5]. Each spike train ( )tjs
is modeled as a binary sequence of zeros 
and ones (Figure 1), describing the dis-
charge pattern of the jth  motor neuron.

Although sparse, the data model (1) is 
typically undercomplete, with more 
sources than measurements, and thus dif-
ficult to invert. The number of EMG chan-
nels depends on the acquisition system, 
but it is typically limited to several tens, 
whereas there are potentially hundreds of 
MUs active during a motor task. However, 
the sources that contribute action poten-
tials of relatively small energy can be 
included into the noise term so that the 
number of sources is reduced, with a con-
comitant decrease in the signal-to-noise 
ratio (SNR). Surface EMG decomposition 
consists of estimating the source vector 

( )tsr   given the measurements .( )tEMG

BLIND SOURCE IDENTIFICATION 
FROM THE SURFACE EMG
A few algorithms have been proposed for 
inversion of the data model (1) and, thus, 
estimation of the neural drive to the muscle 
from surface EMG signals. Among them, 
the convolution kernel compensation 

(CKC) method [5] performs a computation-
ally efficient compensation of the shapes 
of the MUAP and directly estimates the neu-
ral information from the surface EMG 
(Figure 2). The method works sequentially 
for each MU, computing the following lin-
ear minimum mean-square estimator 
(LMMSE) of a MU spike train:

( ) ( ),s t tc C EMGj s
T 1

EMG EMGj= -t t (3)

where ( ) ( )E t tC EMG EMGT
EMG = ^ h  is 

the correlation matrix of the EMG signals, 
j ( ) ( )E s t tc EMGs

T
EMG =j ^ h is the cross-

correlation vector between the jth  MU 
spike train and the vector ( ),tEMG  and 

( )E $  stands for statistical expectation. The 
cross-correlation vector c s EMGj  can be 
estimated either by the sequential probabil-
istic approach introduced in [5] or by the 
gradient optimization technique presented 
in [13]. The resulting estimate of the MU 
spike train is exemplified in Figure 2 where 

the output spikes are estimates of the MU 
discharges, whereas the baseline jittering 
combines the impact of physiological and 
instrumental noises.

The CKC technique also allows for an 
efficient and reliable assessment of accu-
racy in the identification of each MU 
spike train. As demonstrated in [10], the 
ratio between the energies of the spikes 
and the baseline jittering in the spike 
train estimate (Figure 2) strongly corre-
lates with the accuracy in identification 
of the MU discharges. Therefore, this 
energy ratio enables a signal-based valid-
ation of EMG decomposition and, thus, 
an automatic selection of the most reli-
able information. 

HMI
Interfacing muscles with noninvasive pro-
cedures for HMI does not suffer from limi-
tations due to biocompatibility, chronic 
stability or risks of infections typical for 

[FIG2] A schematic representation of the working principle of the CKC algorithm for 
surface EMG decomposition [5]. The algorithm first compensates the MUAP shapes 
as detected by the grid of surface electrodes and then iteratively estimates the 
spike trains of individual MUs. For each identified MU, the ratio between the 
energy of spikes and the baseline jittering is used to efficiently estimate the 
accuracy in the identification of MU discharges [10].
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implanted devices and can be used for 
both short interventions (e.g., therapy) 
and chronic applications. For these rea-
sons, with respect to other types of neural 
interfacing, such as direct nerve or brain 
recordings, the use of muscles as sources 
of biological activity for HMI is currently 
feasible in large-scale clinical applications, 
as, e.g., in active prostheses [11]. 

The classic approach for HMI with 
surface EMG is based on extracting 
global variables of the signal. For exam-
ple, time-domain features from remnant 
muscles in amputees can be classified 
into motions for multifunctional advanced 
prosthetic devices [11]. With respect to 
these approaches, we previously described 
the possibility of decoding EMG signals 

into individual motor neuron activities 
where the spike trains of motor neurons 
are directly estimated. In an HMI, these 

spike trains can be translated into com-
mands of external devices. 

The extraction of spinal motor neuron 
behaviors by means of muscle recordings 
has several advantages over alternative 

approaches of interfacing the peripheral 
nervous system for decoding motor neu-
ron output. For example, the SNR and 
quality of the EMG signal is superior to 
current direct nerve recordings. Moreover, 
the number of motor neurons whose 
activities can be concurrently decoded is 
usually larger from muscle than from 
nerve recordings. Although muscles may 
not always be present for direct inter-
facing, the TMR procedure allows for the 
decoding of any efferent nerve activity by 
redirecting the nerve to appropriate acces-
sory muscles or specifically transferred 
muscle tissue [3]. Thus, decoding the EMG 
is a very general neural interface. On the 
whole, with respect to nerve interfacing, 
decoding the efferent nerve activity can be 

[FIG3] The decomposition of multichannel surface EMG signals recorded from a patient with a high-level amputation of the 
right arm due to shoulder disarticulation. The patient underwent a TMR procedure approximately one year prior to these 
measurements. In this representative task, the patient attempted execution of the elbow flexion with the missing limb. Surface 
EMG signals were recorded in single differential derivations with six grids of 64 electrodes each (8 # 8 electrodes, 10-mm 
interelectrode distance), labeled as M1 to M6. For reasons of clarity, only one EMG signal per grid is depicted in blue. During the 
task, significant muscle activity was recorded only in two of the six grids used for recording (indicated as M1 and M4). An ECG
artefact is evident in the signals from grids M2 and M3. The signals from the two active grids M1 and M4 were independently 
decomposed by the CKC method. For clarity, the decomposition results are reported only for M1 that yielded the activity of  
14 MUs (the identified MU discharges are depicted by vertical bars). The sums of MUAP trains, identified from the presented 
channels, are depicted in red to show qualitatively the difference between the original EMG signal and the one obtained by 
decomposition. (Figure reproduced from and used courtesy of [12].) 
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performed from muscle recordings in an 
easier, more robust, and noninvasive way. 
Of course, nerve interfacing involves the 
possibility of stimulating nerve afferent fib-
ers that cannot be done directly from mus-
cles and is beyond the scope of this article.

Figure 3 represents an example of 
decoding single motor neuron activity 
from a patient who underwent a TMR pro-
cedure. The decoded neural drive indicates 
the efferent signal traveling from nerves to 
newly innervated muscles and represents 
the neural code for the attempted move-
ment—elbow flexion. The accessory mus-
cles are used only for amplifying the nerve 
activity and detecting EMG signals that 
are then decomposed into the constituent 
spike trains. The decoded spike trains cor-
respond to the natural neural commands 
sent by nerves to the missing muscles of 
the amputated limb. Therefore, the 

decoding of the activity from the main 
nerves contributing to the task allows the 
extraction of the last neural code for the 
movement, even in the case of absence of 
all relevant muscles for the task. This neu-
ral code can then be translated into 
actions or commands to run an external 
device, such as a robotic limb [12].

The example shown in Figure 3 repre-
sents a potential use of the proposed HMI 
for the control of active prostheses. It 
underlines the generality of the approach 
that can be applied to nonstationary sig-
nals extracted by muscles with different 
anatomy and structure [12]. A second 
example of use of this novel HMI will be 
presented next to underline the generality 
of the technique to conditions under 
which the neural information has proper-
ties different from the normal physiologi-
cal activation of motor neurons.

Under pathological tremor conditions, 
the voluntary muscle activation is superim-
posed to a pathological oscillatory activity 
of the motor neurons. This pathological 
contribution is due to a combination of 
central oscillatory activity, reflex loops, and 
limb properties, generating a typical oscil-
latory behavior of the limb at 4–12 Hz. The 
behavior of motor neurons in tremulous 
contractions is characterized by high levels 
of short-term synchronization—implying 
a high correlation between the sources—
and the presence of irregular discharges. 
These characteristics are detrimental for 
general source separation methods that 
often assume that the sources are indepen-
dent or uncorrelated, and for which the 
regularity in MU discharges can be used as 
a priori information. Despite these com-
plex statistical properties of the sources, 
accurate decomposition of the surface 

[FIG4] The decomposition of multichannel surface EMG recorded with two-dimensional grids of electrodes (each comprising 
12 # 5 electrodes, with 8-mm interelectrode distance) from wrist extensors and wrist flexors in an essential tremor patient during 
the arms outstretched task. For clarity, only one representative EMG signal per grid is depicted in blue. In total, 21 and 16 MUs 
were identified by the CKC algorithm from the extensors and flexors, respectively. Their discharges (denoted by colored vertical 
bars) are highly synchronized and demonstrate rather dissimilar bursts of muscle activity (separated by vertical dashed lines). The 
bursts in extensors and flexors are out of phase, causing the mechanical oscillations of the wrist. Interestingly, in flexors this 
pathological tremor pattern is not clearly evident from the raw EMG signals, but is revealed by surface EMG decomposition.
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EMG during a pathological tremor is possi-
ble with the CKC method, as recently dem-
onstrated [13]. 

Figure 4 shows an example of this 
approach and the detection of a relatively 
large population of motor neurons from 
signals recorded in a tremor patient. The 
possibility of decoding motor neuron 
behavior in tremor patients has opened 
novel perspectives in understanding the 
neural factors responsible for pathological 
tremor as well as in the diagnosis of tremor 
conditions. Moreover, based on the results 
representatively shown in Figure 4, an HMI 
can be built that uses the behavior of indi-
vidual MUs to extract the phase and fre-
quency of the pathological tremor oscilla-
tions online and employs this information 
to trigger peripheral electrical stimulation 
for tremor suppression (neuromodulation) 
in a wearable neuroprosthesis.

The two HMI examples just provided 
are representative of the type of informa-
tion that can be extracted from muscle 
signals and used for controlling external 
devices for function substitution or neu-
romodulation. Several other applications 
of the proposed HMI concept are being 
explored, such as functional electrical 
therapy and biofeedback. 

OUTLOOK 
To develop more robust muscle interfaces 
suited for a broader range of clinical appli-
cations, there is the need for improved 
electrode technology. Textile systems are 
promising and would allow an easy place-
ment of high-density electrode grids; 
other solutions, however, may be more 
suitable for specific applications, e.g., sili-
con-based electrodes to be embedded into 
prosthesis sockets. For chronic applica-
tions, the methods that have been 
described could be applied through epimy-
sial implants of high-density electrode sys-
tems, with the advantage of minimal 
change in the relative position between 
electrodes and sources. Further develop-
ments of nonobtrusive and noninvasive 
acquisition systems, when combined with 
the signal processing techniques pre-
sented in this article, offer a considerable 
potential in numerous applications, such 
as ergonomics, rehabilitation, training of 
athletes, or gaming. In these applications, 

the information extracted from muscles 
can, for example, be used for the assess-
ment of muscle activation, force, and cen-
tral and peripheral fatigue. 

Unlike the use of global EMG features, 
the decoding of groups of MUs has the 
advantage that the properties of the group 
are largely invariant with the set of 
detected neurons. The motor neurons 
receive, in fact, a large amount of com-
mon synaptic input that constitutes the 
effective drive to the muscle. The common 
input determines relative high degrees of 
correlation between the activation of 

motor neurons so that the number of 
motor neurons that need to be identified 
for understanding the behavior of the full 
motor neuron pool is relatively small. The 
exact number depends on the level of syn-
aptic noise and on the time resolution 
needed in the HMI. Despite these consid-
erations, there are no sufficient studies for 
estimating the number of motor neurons 
that are needed for a stable interface.

Finally, the mapping of the motor neu-
ron behavior into the commands to an 
external device for HMI is still an open 
area of research. This regression problem 
should be addressed with the HMI user in 
the loop, in online studies where both the 
subject and the mapping adapt to each 
other. The first steps toward a solution 
have already been taken with algorithms 
allowing for online decomposition of the 
surface EMG [6]. However, open chal-
lenges remain that could be addressed 
with adaptive machine-learning methods 
supporting the bidirectional adaptation of 
the system and the user. 
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HAVE ALREADY BEEN 

TAKEN WITH ALGORITHMS
ALLOWING FOR ONLINE

DECOMPOSITION OF 
THE SURFACE EMG.
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Signal Processing in the Workplace 

ccording to the U.S. Bureau of 
Labor Statistics, during 2013 
employed  Amer i cans 
“worked an average of 7.6 
hours on the days they 

worked,” and “83% did some or all of 
their work at their workplace” [1]. Under-
standing processes in the workplace has 
been the subject of disciplines like organi-
zational psychology and management for 
decades. In particular, the study of non-
verbal communication at work is funda-
mental as “face-to-face interaction with 
superiors, subordinates, and peers con-
sumes much of our time and energy” [2] 
and a variety of phenomena including job 
stress, rapport, and leadership can be 
revealed by and perceived from the tone 
of voice, gaze, facial expressions, and body 
cues of coworkers and managers [2].

In parallel to these developments, 
progress in audio-visual sensing and 
machine perception is making the 
extraction of several of these nonverbal 
cues feasible and scalable. This trend 
creates opportunities toward improving 
the scientific understanding of phenom-
ena in organizations and to develop 
technology that supports individuals 
and groups at work. Furthermore, it 
defines a domain where signal process-
ing researchers can find new problems 
while working with social scientists.

In this column, a framework devel-
oped with collaborators in organizational 
psychology is described, aimed at infer-
ring high-level constructs of interest in 
the workplace from nonverbal behavior. 
We summarize our experience tackling 
two tasks: identifying emergent leaders in 
small groups and assessing the hirability 

of candidates in employment interviews. 
The examples discussed in this column 
have been recorded in a standard lab set-
ting [9], in which sensors are fixed in a 
specific environment that volunteer par-
ticipants have to visit, but also in moder-
ately in-the-wild settings, where a 
portable sensing solution has been used 
to bring participants to quiet indoor envi-
ronments for recordings [5], which gives 
flexibility for volunteer recruits. Sensors 
have included Webcams and commercial 
microphone arrays for the portable case 
and high-resolution cameras and Micro-
soft Kinect for the lab case. As the interac-
tions take place around a table in real 
workplaces, we have exploited this setting 
for sensor placement. One specific goal of 
our work with psychologists has been the 
deployment of the sensing lab in their 

institution, with the goal of promoting a 
wider and more frequent use of the tech-
nology in their discipline.

This column’s material is adapted 
from [5] and [9] (refer to the original 
papers for details). 

A FRAMEWORK FOR 
SOCIAL INFERENCE FROM 
NONVERBAL BEHAVIOR
The computational framework we have 
developed is shown as a diagram in 
Figure 1 [5], [9]. It follows a supervised 
machine-learning approach, where training 
and test phases are defined to automatically 
infer variables of interest (hirability in job 
interviews or emergent leadership in small 
groups) from dyadic or group interactions. 
At the onset, experiments are designed 
jointly by psychologists and engineers and 

A

[FIG1] The computational framework to study work-related tasks.
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involve the selection and deployment of 
sensing technology, the design of the spe-
cific interaction to be recorded, a battery of 
questionnaires to be completed by study 
participants, and human coding tasks to be 
completed by external observers.

Questionnaire data completed by par-
ticipants and additional coding data pro-
vided by external observers are used both 
for psychology research and as ground-
truth data for computational analysis. 
Questionnaires, designed and validated by 
psychologists, are often adapted from pre-
vious literature and administered to par-
ticipants in the experiments. Additional 
coding data can be produced by trained 
psychology students or experts. The man-
ual annotation process in Figure 1 
involves the postprocessing of the above 
data to define ground truth in amenable 
form for machine-learning tasks. Con-
cretely, hirability scores in job interviews 
provided by trained coders can be used to 
define a regression task (e.g. estimate the 
actual score) or a classification task (e.g., 
high versus low score levels); further-
more, questionnaire data provided by the 
participants in a group discussion about 
the perceived leadership of each team 
member can be aggregated to define the 
ground truth in a task whose goal is to 
identify one person in each group.

The nonverbal feature extraction pro-
cess has involved both the development of 
new techniques to extract cues from 
audio and video and the use of existing 
modules. Cues related to speaking activity, 
prosody, body and head activity, and gaze 
have been used in the work described here 
(facial expressions have been used in 
other instances of our work.) The bidisci-
plinary approach has influenced our 
choices regarding the extraction of behav-
ioral cues previously documented in psy-
chology research with respect to their 
predictive value for the variables of inter-
est (hirability or emergent leadership.) 
This has facilitated placing the results of 
our studies in the context of previous lit-
erature. At the same time, machine learn-
ing gives the possibility to extract new 
features, some of which might not be 
readily interpretable but effective for auto-
matic inference. Moreover, the use of 
machine-learning methods [e.g., support 

vector machines (SVMs)] can spur con-
structive dialog with psychologists, who 
are less familiar with these methods and 
in contrast are more acquainted with clas-
sical statistical methods and especially 
interested in interpretable approaches.

EMERGENT LEADERSHIP
IN SMALL GROUPS
In the context of groups, the so-called ver-
tical dimension of social relations includes 
constructs like dominance, status, and 
leadership, all referring to the position 
that members occupy in a group [3]. In 

particular, research on leadership in orga-
nizational psychology and management 
has characterized leadership styles used to 
direct groups as well as emerging phe-
nomena. Emergent leaders are individuals 
who rise among the members of a group 
and gain power from the group members 
themselves, instead of doing so from 
external entities (e.g., upper management) 
[4]. As much work today is done in 
groups, identifying emergent leaders is 
relevant in practice for recruitment, train-
ing, and development in organizations.

Connections between nonverbal be-
havior and emergent leadership have 
been studied for several decades [4]. 
While an extensive discussion is not pro-
vided here, different studies have found 
connections between ratings of perceived 
emergent leadership and manually coded 
cues like speaking time, arm movements, 
and gaze (including given and received 
gaze and joint patterns of looking/speak-
ing.) Some of these cues have also been 
linked to dominance, a similar but not 
identical concept related to a tendency to 
control others via observable acts [3].

In [5], we followed the approach 
described in Figure 1 to identify the 

emergent leader in three- to four-person 
groups. We used two Webcams and a Dev-
Audio Microcone microphone array as 
sensors. Each camera covers two people, 
and the Microcone provides audio for 
prosody feature extraction while generat-
ing a segmentation of the speech of each 
person (Figure 2). Groups of unacquainted 
people were asked to play the “winter sur-
vival task,” a commonly used exercise to 
study group decision making and perfor-
mance. In the task, participants need to 
rank a list of items according to their rele-
vance for survival in a hypothetical plane 
crash in winter. Individuals first generate 
their own rankings and then discuss and 
collectively agree on a final list, the inter-
action eliciting the possible emergence of 
a leader. After concluding the list, partici-
pants were asked to fill out questionnaires 
to characterize the other group members, 
including variables like perceived leader-
ship, perceived dominance, and perceived 
competence. The resulting emergent lead-
ership (ELEA) corpus includes audio, 
video, and questionnaire data for 40 
groups (148 individuals) and is publicly 
available for academic research.

Standard speech processing and com-
puter vision methods were used to extract 
a variety of nonverbal cues. From the audio 
track for each participant, this included the 
amount of speaking time, number and 
average length of speaking turns, number 
of interruptions, speech spectral flatness, 
energy variation, and pitch variation. From 
video, features included a head activity 
measure obtained from a head tracker and 
optical flow estimates and a body activity 
measure based on an improvement of clas-
sic motion templates (motion energy 
images). Details can be found in [5]. In 
subsequent work [6], head pose (as a proxy 
for gaze) and joint looking/speaking pat-
terns were also extracted using visual 
trackers based on particle filtering. 

A correlation analysis of the perceived 
variables from the questionnaires first 
showed that the emergent leader was sig-
nificantly perceived as a dominant person, 
with a second, less strong correlation 
effect between perceived leadership and 
competence. This is an interesting finding 
that relates different organizational con-
structs with one another. Furthermore, a 

THE NONVERBAL 
FEATURE EXTRACTION 

PROCESS HAS INVOLVED 
BOTH THE DEVELOPMENT

OF NEW TECHNIQUES
TO EXTRACT CUES FROM 
AUDIO AND VIDEO AND 

THE USE OF EXISTING 
MODULES.
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correlation analysis between the perceived 
questionnaire variables and the nonverbal 
features showed that emergent leadership 
is linked to participants who talk more, 
take more turns, interrupt more, and 
move their body more. This motivated the 
automatic recognition approach from 
these cues. Using standard classification 
techniques (SVMs or ranked feature 
fusion), the method identified the emer-
gent leader in a group with accuracy 
between 70 and 85% depending on the 
modalities and classifiers used. Two 
results relevant for signal processing are 
that the cues derived from the audio track 
were more discriminant than the visual 
cues, and when combined, visual cues can 
bring a slight performance improvement.

HIRABILITY IN JOB INTERVIEWS
Interviews are an integral part of the 
recruitment process and, as such, they have 
been extensively studied in organizational 

psychology and management [7], [8]. From 
the social computing perspective, employ-
ment interviews are an important subject 
of study because of their impact on a per-
son’s life, their expressiveness, and the vol-
ume with which they are generated. 
Automatic analysis could be used to provide 
feedback to candidates, to support training 
programs, or to summarize large volumes 
of data in big organizations.

Previous literature on nonverbal com-
munication has studied links between a 
number of features and job interview per-
ceptions and outcomes. Interviewers most 
often do not meet the applicants in person 
before the interview; they interact on the 
basis of previous information provided by 
the applicant (resume, reference letters, 
LinkedIn profiles) and the behavior during 
the interview itself. Interviewers form 
impressions of a number of attributes of 
the candidate, hirability being one of 
them, and use these impressions and 

other available information to make deci-
sions. Studies based on manually coded 
cues have found that candidates who are 
perceived as more hirable and competent 
(or who are actually hired) display an 
array of cues including smiling, eye con-
tact, nodding, reduced interpersonal dis-
tance, body posture (oriented toward the 
interviewer), and specific speaking pat-
terns [7], [8]. Taken together, this so-
called immediacy behavior might convey a 
sense of larger availability or closeness, 
which as some literature suggests can lead 
to positive impressions on interviewers 
and, as a consequence, more positive 
assessments of candidates.

In [9], we analyzed job interviews fol-
lowing the approach in Figure 1. We first 
collected a corpus of 62 interviews where 
candidates applied for a real (albeit short) 
paid job, related to recruiting volunteers 
on the street for future psychology experi-
ments. The job itself had connections to a 
sales position. We used Microsoft Kinect 
and high-resolution cameras to collect 
video, and the Microcone to collect audio 
(Figure 3). The interviews were structured 
(i.e., they consisted of a fixed number of 
questions, asked in the same order to each 
candidate) and behavioral (i.e., the ques-
tions were designed to elicit behavioral 

[FIG3] An interviewer and a candidate 
in a job interview. (Photo taken from 
and used courtesy of [9].)

[FIG2] A photo from the ELEA corpus. (Photo taken from and used courtesy of [5].)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


[social SCIENCES]continued

IEEE SIGNAL PROCESSING MAGAZINE [124] JANUARY 2015

responses from the candidates). Inter-
views lasted 11 min on average. Among a 
variety of questionnaire and manual cod-
ing data that were collected, a hirability 
measure was provided by a psychology 
student who watched the interview using 
audio and video from both the candidate 
and the interviewer and who was trained 
at the task.

Regarding nonverbal cues, in addition 
to audio features similar to the ones 
described in the previous section, we 
developed methods to extract head nods 
[10] and body cues [11]. In [10], we dem-
onstrated the advantages in terms of per-
formance of a multimodal approach for 
nodding recognition, in which the obser-
vation of the (self-) speaking state of a per-
son (speaking or silent) is used to learn 
two separate nodding/non-nodding classi-
fiers, one for each speaking state.  In [11], 
we developed a method to extract body 
cues from RGB video, by first detecting  a 
person’s face and hands, then inferring an 
approximation of the three-dimensional 
(3-D) pose of the upper body, and finally 
using this representation to do recogni-
tion of basic conversational cues like self-
touch and gestures (see Figure 4). These 
approaches were later extended to use the 
depth information from Kinect.

The suite of nonverbal cues was used 
in [9] both for correlation analysis and a 
regression task, where the hirability mea-
sure provided by the trained student was 
the variable to be predicted. Regarding 
correlation, the results showed that candi-
dates who spoke longer and faster and 

who took longer speaking turns received 
higher hirability scores. Visual features 
related to the amount of head motion also 
showed positive effects with hirability. For 
the regression task, using the coefficient 
of determination ( )R2  as performance 
measure, the approach achieved a best 
result of .0 36R2 =  using ridge regression 
and all features extracted from a candi-
date. This initial result shows promise, but 
overall the problem is challenging. As in 
the case of emergent leadership, cues from 
the audio track were more discriminative 
compared to video cues. Finally, some of 
the cues of the interviewer turned out to 
be predictive of hirability, which suggests 
that the behavior of the interacting part-
ner can also be informative about the self, 
and highlights the importance to think 
about this problem in contextual terms. 

PERSPECTIVES
This column summarized our experience 
studying two research problems in orga-
nizational psychology using automati-
cally measured nonverbal behavior and 
machine learning. More generally, how 
can research at the boundaries between 
signal processing and organizational psy-
chology be expanded? Three possible 
directions are the following.

First, we need to communicate the 
possibilities of multimodal signal process-
ing and machine-learning methods within 
the social and organizational psychology 
communities, creating further partner-
ships where common goals can be defined 
and pursued. In their discipline, our 

collaborators have advocated for the bene-
fits of this approach in their specific 
research and have shared experiences on 
how similar work could be incorporated 
into other research lines [12]. As with 
other examples of multidisciplinary work, 
there are important issues of language, 
methodology, expectations, and practices 
that need to be sorted out.  Should engi-
neers only be service providers for psy-
chology labs? What is the level at which 
automation should stop? What is the 
value (and the place) of computational 
approaches for recognition that are high 
performing but less interpretable? What is 
the level of experimental control that a 
discipline is willing to lose to conduct 
experiments in the wild? These are a few 
questions that we have encountered in 
our own work.

Second, from the perspective of ubiq-
uitous applications, interactivity is key. 
Some aspects of the methodology pre-
sented here could be embedded in real-
time awareness tools to support sectors in 
industry where privacy-sensitive feedback 
at work would be positive. This includes 
hospitality, sales, and public communica-
tion. Another relevant dimension is train-
ing [13]. In addition to smartphones, the 
current surge of wearable devices includ-
ing wristbands, smart watches, and 
glasses are opening new ways to sense 
and interact. Ethics and privacy need to 
be a fundamental part of future designs.

Finally, as new studies from the lab 
toward real workplaces become possible, 
computational models to handle longitudi-
nal and relational data are needed. While lab 
studies are intrinsically localized in time, 
future work that aims at understanding 
teams in the workplace over days, weeks, or 
months require thinking about time and 
relations in a different way (for example, 
dynamic graphs with multidimensional 
attributes at multiple time scales.) This is a 
direction where signal processing methods 
could be especially useful, both via adapta-
tion of existing techniques and through the 
development of new frameworks.
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[FIG4] Interview frames with face and hands detection outputs, recognized activity, 
and estimated 3-D upper body pose. (Photo taken from and used courtesy of [11].) 
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embeddings. Then, the challenge is how to 
effectively embed the full structure in the 
appropriate semantic space. If this is done 
well, the speech recognition component of 
the overall system will have powerful con-
straints to exploit, leading to the reduction 
of its language model’s perplexity and 
improvement of its recognition accuracy.

Sejnoha: I think that the signal acquisi-
tion, making sense out of a very noisy 
world, is a very important challenge and 
something we have to continue working 
on. The fundamental modeling and model-
ing language—I think we’re making good 
progress in these areas. When it comes to 
extraction and knowing what to do, that 
borders on AI. How do you define the goal 
of an interaction with a user in a way that 
it is efficient and where unexpected intelli-
gent things happen? I think that’s still a 
fairly novel area. You will see a lot of prog-
ress there. 

The big challenge is connecting to the 
myriad of forms of content and services 
that people want to interact with, and 
part of that is an engineering issue and 
part of it is the fundamental problem of 
the promise of the semantic web. We 
have lots of stuff out there, but it is 
siloed, it’s opaque. It doesn’t advertise its 
capabilities, or describe its knowledge in 
machine understandable terms. As we get 
closer to the real Internet of Things, we 
will do better on that front. When you tell 
your virtual assistant to turn down your 
thermostat, they can talk to each other.

IEEE SPM: What qualifications would 
be needed for engineers interested in spe-
cializing in speech technology? What skill 
sets would be most helpful?

Sejnoha: The field has huge multidis-
ciplinary demands. Some background in 
digital signal processing and modeling is 

important. Of course, AI and machine 
learning. Also, software development. 
And linguistics.

RESEARCHERS INTERVIEWED
Li Deng is the principal re-
searcher and manager of re-
search of the Deep Learning 
Technology Center at 
Microsoft Research.

Vlad Sejnoha is the chief 
technology off icer of 
Nuance Communications.

Editor’s Note: This interview was con-
ducted by Ron Schneiderman, a regular 
contributor to IEEE SPM.
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[dates AHEAD]

Please send calendar submissions to:  
Dates Ahead, c/o Jessica Barragué  
IEEE Signal Processing Magazine  
445 Hoes Lane  
Piscataway, NJ 08855 USA  
e-mail: j.barrague@ieee.org
(Colored conference title indicates 
SP-sponsored conference.)

2015
[APRIL]
Data Compression Conference (DCC)
7–9 April, Snowbird, Utah, United States.
URL: http://www.cs.brandeis.edu/~dcc/index.
html

14th IEEE International Conference  
on Information Processing in Sensor 
Networks (IPSN)
13–17 April, Seattle, Washington, 
United States.
General Chair: Suman Nath 
URL: http://ipsn.acm.org/2015

First IEEE Conference on Network 
Softwarization (NetSoft)
13–17 April, London, United Kingdom.
General Cochairs: Prosper Chemouil 
and George Pavlou
URL: http://sites.ieee.org/netsoft/

12th IEEE International Symposium  
on Biomedical Imaging (ISBI)
16–19 April, Brookyln, New York, 
United States.
General Chairs: Elsa Angelini and 
Jelena Kovacevic 
URL: http://biomedicalimaging.org/2015/

IEEE International Conference  
on Acoustics, Speech, and
Signal Processing (ICASSP)
19–24 April, Brisbane, Australia.
General Cochairs: Vaughan Clarkson 
and Jonathan Manton
URL: http://icassp2015.org/

[MAY]
31st Picture Coding Symposium (PCS)
31 May–3 June, Cairns, Australia. 
General Chairs: David Taubman 
and Mark Pickering
URL: http://www.pcs2015.org

[JUNE]
Third IEEE International Workshop on 
Compressed Sensing Theory and Its 
Applications to Radar, Sonar, and 
Remote Sensing (CoSeRa)
22–24 June, Pisa, Italy.
General Chairs: Fulvio Gini 
and Joachim Ender
URL: http://www.cosera2015.iet.unipi.it/

16th IEEE International Workshop on 
Signal Processing Advances in Wireless 
Communications (SPAWC)
28 June–1 July, Stockholm, Sweden.
General Chairs:  Joakim Jaldén and Björn 
Ottersten
URL: http://www.spawc2015.org/

IEEE International Conference on 
Multimedia and Expo (ICME)
29 June–3 July, Turin, Italy.
General Chairs: Enrico Magli, 
Stefano Tubaro, and Anthony Vetro
URL: http://www.icme2015.ieee-icme.org/
index.php

[JULY]
Third IEEE China Summit and 
International Conference on Signal and 
Information Processing (ChinaSIP)
12-15 July, Chengdu, China. 
General Chairs: Yingbo Hua and Dezhong Yao 
URL: http://www.chinasip2015.org/

[AUGUST]
12th IEEE International Conference  
on Advanced Video- and Signal-Based 
Surveillance (AVSS)
25–28 August, Karlsruhe, Germany.
General Chairs: Jürgen Beyerer 
and Rainer Stiefelhagen
URL: http://avss2015.org

[SEPTEMBER]
Sensor Signal Processing  
for Defence (SSPD)
9–10 September, Edinburgh, 
United Kingdom. 
http://www.see.ed.ac.uk/drupal/udrc/sspd/

IEEE International Conference  
on Image Processing (ICIP)
28 September–1 October, Quebec City, 
Quebec, Canada. 
URL: http://www.icip2015.org/

[OCTOBER]
IEEE International Workshop on 
Multimedia Signal Processing (MMSP)
19–21 October, Xiamen, China.
General Chairs: Xiao-Ping Zhang, 
Oscar C. Au, and Jonathan Li 
URL: http://www.mmsp2015.org/

[DECEMBER]
IEEE 6th International Workshop  
on Computational Advances
in Multisensor Adaptive
Processing (CAMSAP)
13 –16 December, Cancun, Mexico.

IEEE Workshop on Automatic Speech 
Recognition and Understanding (ASRU)
13–17 December, Scottsdale, Arizona, 
United States.
URL: http://www.asru2015.org/

IEEE Global Conference on Signal and 
Information Processing (GlobalSIP)
14–16 December, Orlando, Florida, 
United States. 
General Chairs: José M. F. Moura 
and Dapeng Oliver Wu

2016
[MARCH]
41st IEEE International Conference on 
Acoustics, Speech and Signal 
Processing (ICASSP)
21–25 March, Shanghai, China.
URL: http://dmlab.sjtu.edu.cn/icassp/
icassp2016.html

[APRIL]
Ninth IEEE Sensor Array and 
Multichannel Signal Processing 
Workshop (SAM) 
10–13 July, Rio de Janeiro, Brazil.
General Chairs: Rodrigo C. de Lamare 
and Martin Haardt 
URL: http://delamare.cetuc.puc-rio.br/
sam2016/index.html
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The 16th IEEE International Workshop on Signal Processing Advances in
Wireless Communications, June 28 – July 1, Stockholm, Sweden

The SPAWC series of  yearly workshops is dedicated to the latest advances in sig-
nal processing for wireless communications, and is sponsored by the IEEE Signal
Processing Society. SPAWC 2015 will be held at the Main Campus of  KTH Royal 
Institute of  Technology in central Stockholm, Sweden, from June 28 – July 1, 2015.
Carrying on the tradition of  prior years, SPAWC 2015 will feature a combination 
of  plenary talks, tutorials, invited as well as contributed poster sessions, present-
ed in an environment that is conducive to discussions and the exchange of  ideas.

Prospective authors are invited to submit papers in the following areas:

Deadlines:

IEEE reserves the right to exclude a paper from distribution after the conference (e.g. removal
from IEEE Xplore) if  the paper is not presented at the conference.
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IEEE TRANSACTIONS ON
COMPUTATIONAL IMAGING

The new IEEE Transactions on Computational Imaging seeks original manuscripts for publication. This new 
journal will publish research results where computation plays an integral role in the image formation process. 
All areas of computational imaging are appropriate, ranging from the principles and theory of computational 
imaging, to modeling paradigms for computational imaging, to image formation methods, to the latest innova-
tive computational imaging system designs. Topics of interest include, but are not limited to the following:

Imaging Models and 
Representation

Statistical-model based methods
System and image prior models
Noise models
Graphical and tree-based models
Perceptual models

Computational Sensing

Coded source methods
Structured light
Coded aperture methods
Compressed sensing
Light-field sensing
Plenoptic imaging
Hardware and software systems

Computational Image Creation

Sparsity-based methods
Statistically-based inversion methods, 
Bayesian regularization
Super-resolution, multi-image fusion
Learning-based methods, Dictionary-
based methods
Optimization-based methods; proximal 
iterative methods, ADMM

Computational Photography

Non-classical image capture, General-
ized illumination
Time-of-flight imaging
High dynamic range imaging
Focal stacks

Computational Consumer 
Imaging

Cell phone imaging
Camera-array systems
Depth cameras

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopic 
Imaging

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic imaging
Terahertz imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

Editor-in-Chief: W. Clem Karl, Boston University. 
To submit a paper go to: https://mc.manuscriptcentral.com/tci-ieee
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PAPERS

Secrecy Transmission on Parallel Channels: Theoretical Limits and Performance of Practical Codes
http://dx.doi.org/10.1109/TIFS.2014.2348915 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Baldi, F. Chiaraluce, N. Laurenti, S. Tomasin, and F. Renna 1765

Mobile User Authentication Using Statistical Touch Dynamics Images http://dx.doi.org/10.1109/TIFS.2014.2350916 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Zhao, T. Feng, W. Shi, and I. A. Kakadiaris 1780

Proof-Carrying Cloud Computation: The Case of Convex Optimization http://dx.doi.org/10.1109/TIFS.2014.2352457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Xu, C. Wang, K. Ren, L. Wang, and B. Zhang 1790

A Novel Gain Invariant Quantization-Based Watermarking Approach http://dx.doi.org/10.1109/TIFS.2014.2355912 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Zareian and H. R. Tohidypour 1804

On the Secrecy Throughput Maximization for MISO Cognitive Radio Network in Slow Fading Channels
http://dx.doi.org/10.1109/TIFS.2014.2356339 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Wang and H.-M. Wang 1814

Permission Use Analysis for Vetting Undesirable Behaviors in Android Apps http://dx.doi.org/10.1109/TIFS.2014.2347206 . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhang, M. Yang, Z. Yang, G. Gu, P. Ning, and B. Zang 1828

Frontal Gait Recognition From Incomplete Sequences Using RGB-D Camera http://dx.doi.org/10.1109/TIFS.2014.2352114 . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Chattopadhyay, S. Sural, and J. Mukherjee 1843

Scalable Compression of Stream Cipher Encrypted Images Through Context-Adaptive Sampling http://dx.doi.org/10.1109/TIFS.2014.2352455 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhou, O. C. Au, G. Zhai, Y. Y. Tang, and X. Liu 1857

Exploring Permission-Induced Risk in Android Applications forMalicious Application Detection http://dx.doi.org/10.1109/TIFS.2014.2353996 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Wang, X. Wang, D. Feng, J. Liu, Z. Han, and X. Zhang 1869

Revisiting Optimistic Fair Exchange Based on Ring Signatures http://dx.doi.org/10.1109/TIFS.2014.2354986 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Wang, M. H. A. Au, and W. Susilo 1883

A Pragmatic Per-Device Licensing Scheme for Hardware IP Cores on SRAM-Based FPGAs http://dx.doi.org/10.1109/TIFS.2014.2355043 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Zhang and C.-H. Chang 1893

DNSRadar: Outsourcing Malicious Domain Detection Based on Distributed Cache-Footprints http://dx.doi.org/10.1109/TIFS.2014.2357251 . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Ma, J. Zhang, J. Tao, J. Li, J. Tian, and X. Guan 1906

Synthesis and Evaluation of High Resolution Hand-Prints http://dx.doi.org/10.1109/TIFS.2014.2357757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Morales, R. Cappelli, M. A. Ferrer, and D. Maltoni 1922

An Effective Method for Detecting Double JPEG Compression With the Same Quantization Matrix
http://dx.doi.org/10.1109/TIFS.2014.2359368 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Yang, J. Xie, G. Zhu, S. Kwong, and Y.-Q. Shi 1933

Nothing is for Free: Security in Searching Shared and Encrypted Data http://dx.doi.org/10.1109/TIFS.2014.2359389 . . . . . . . . . . . .. . . . . . . . . . . Q. Tang 1943
http://dx.doi.org/10.1109/TIFS.2014.2355495 . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y.-F. Liu, J.-M. Guo, C.-H. Hsia, S.-Y. Su, and H. Lee 1953
Differential Game-Based Strategies for Preventing Malware Propagation in Wireless Sensor Networks

http://dx.doi.org/10.1109/TIFS.2014.2359333 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Shen, H. Li, R. Han, A. V. Vasilakos, Y. Wang, and Q. Cao 1962
Contactless Palm Vein Recognition Using a Mutual Foreground-Based Local Binary Pattern http://dx.doi.org/10.1109/TIFS.2014.2361020 . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W. Kang and Q. Wu 1974

Framework for Active Clustering With Ensembles http://dx.doi.org/10.1109/TIFS.2014.2359369 . . . . . . . . J. R. Barr, K. W. Bowyer, and P. J. Flynn 1986
On Evaluating ECG Biometric Systems: Session-Dependence and Body Posture http://dx.doi.org/10.1109/TIFS.2014.2360430 . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wahabi, S. Pouryayevali, S. Hari, and D. Hatzinakos 2002
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The 2015 IEEE Workshop on Applications of Signal Processing to Audio and 
Acoustics (WASPAA’15) will be held at the Mohonk Mountain House in New 
Paltz, New York, and is supported by the Audio and Acoustic Signal Processing 
technical committee of the IEEE Signal Processing Society. The objective of this 
workshop is to provide an informal environment for the discussion of problems 
in audio and acoustics and signal processing techniques leading to novel solu-
tions. Technical sessions will be scheduled throughout the day. Afternoons will 
be left free for informal meetings among workshop participants. Papers describ-
ing original research and new concepts are solicited for technical 
sessions on, but not limited to, the following topics:

Acoustic Signal Processing

Audio and Music Signal Processing

Audio and Speech Coding

Hearing and Perception

Workshop Committee
General Chairs

Telecom ParisTech

Technical Program Chair
Bryan Pardo

Finance Chair

Far East Liaison
Nobutaka Ono

National Institute of Informatics (Japan)

Publ. Chair & Industry Liaison
John Hershey

Local Arrangements Chair
Juan Bello

Registration Chair

Important Dates
Submission of papers

April 10, 2015

June 26, 2015

Early registration until
August 14, 2015

Workshop
October 18-21, 2015

 www.waspaa.com
Mohonk Mountain House 

New Paltz, New York 
October 18-21, 2015

2015 IEEE Workshop on Applications of Signal Processing to 
Audio and Acoustics (WASPAA’15)
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PAPERS

Compression and Coding

Rate-Distortion Optimized Mode Switching for Error-Resilient Multi-View Video Plus Depth Based 3-D Video Coding
http://dx.doi.org/10.1109/TMM.2014.2331013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P. Gao and W. Xiang 1797

Enabling Geometry Based 3-D Tele-Immersion With Fast Mesh Compression and Linear Rateless Coding
http://dx.doi.org/10.1109/TMM.2014.2331919 . . . . . . . . . . . . . . . . . . . . . . . R. Mekuria, M. Sanna, E. Izquierdo, D. C. A. Bulterman, and P. Cesar 1809

Relevant Window-Based Bitmap Compression in P2P Systems: Framework and Solution http://dx.doi.org/10.1109/TMM.2014.2340795 . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Li, B. Zhang, C. Chen, and D. M. Chiu 1821

Depth-Based Multiview Distributed Video Coding http://dx.doi.org/10.1109/TMM.2014.2342201 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Petrazzuoli, T. Maugey, M. Cagnazzo, and B. Pesquet-Popescu 1834

Iterative Pricing-Based Rate Allocation for Video Streams With Fluctuating Bandwidth Availability
http://dx.doi.org/10.1109/TMM.2014.2343943 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Yang, T. Groves, N. Zheng, and P. Cosman 1849

Standard-Compliant Low-Pass Temporal Filter to Reduce the Perceived Flicker Artifact http://dx.doi.org/10.1109/TMM.2014.2347257 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Jiménez-Moreno, E. Martínez-Enríquez, V. Kumar, and F. Díaz-de-María 1863

Watermarking, Encyrption, and Data Hiding

Coding Structure and Replication Optimization for Interactive Multiview Video Streaming http://dx.doi.org/10.1109/TMM.2014.2332139 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. Ren, S.-H. Gary Chan, G. Cheung, and P. Frossard 1874

3-D Audio/Visual Processing

Normalized Correlation-Based Quantization Modulation for Robust Watermarking http://dx.doi.org/10.1109/TMM.2014.2340695 . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. Zhu, J. Ding, H. Dong, K. Hu, and X. Zhang 1888

Example-BasedVideo StereolizationWith Foreground Segmentation andDepth Propagation http://dx.doi.org/10.1109/TMM.2014.2341599 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Wang and C. Jung 1905
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System Optimization

http://dx.doi.org/10.1109/TMM.2014.2337834 . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Duan, J. Sun, L. Yan, K. Chen, and Z. Guo 1915

Multimodal Perception, Integration, and Multisensory Fusion

Point of Interest Detection and Visual Distance Estimation for Sensor-Rich Video http://dx.doi.org/10.1109/TMM.2014.2330802 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Hao, G. Wang, B. Seo, and R. Zimmermann 1929

Multimedia Interfaces and Interaction

3-D Interfaces to Improve the Performance of Visual Known-Item Search http://dx.doi.org/10.1109/TMM.2014.2333666 . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Schoeffmann, D. Ahlström, and M. A. Hudelist 1942

Multimedia Search and Retrieval

Near-Duplicate Subsequence Matching Between the Continuous Stream and Large Video Dataset
http://dx.doi.org/10.1109/TMM.2014.2342668 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C.-Y. Chiu, T.-H. Tsai, Y.-C. Liou, G.-W. Han, and H.-S. Chang 1952

A Low Transmission Overhead Framework of Mobile Visual Search Based on Vocabulary Decomposition
http://dx.doi.org/10.1109/TMM.2014.2345026 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Qi, M. Stojmenovic, K. Li, Z. Li, and W. Qu 1963

Predicting Failing Queries in Video Search http://dx.doi.org/10.1109/TMM.2014.2347937 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. K 1973

Social and Web Multimedia

Social Image Analysis From a Non-IID Perspective http://dx.doi.org/10.1109/TMM.2014.2342658 . . . . . . . . . . . . . . . Z. Xu, Y. Zhang, and L. Cao 1986

Consumer Electronics and Entertainment

Using Audio-Derived Affective Offset to Enhance TV Recommendation http://dx.doi.org/10.1109/TMM.2014.2337845 . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. E. Shepstone, Z.-H. Tan, and S. H. Jensen 1999

Multimedia Streaming and Transport

On a Hashing-Based Enhancement of Source Separation Algorithms Over Finite Fields With Network Coding
Perspectives http://dx.doi.org/10.1109/TMM.2014.2341923 . . . . . . . . . . . . . I.-D. Nemoianu, C. Greco, M. Cagnazzo, and B. Pesquet-Popescu 2011

Social Media Comuting and Networking

Multi-Source-Driven Asynchronous Diffusion Model for Video-Sharing in Online Social Networks
http://dx.doi.org/10.1109/TMM.2014.2340133 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Niu, X. Fan, V. O. Li, Y. Long, and K. Xu 2025

Wireless/Mobile Multimedia

ParCast+: Parallel Video Unicast in MIMO-OFDMWLANs http://dx.doi.org/10.1109/TMM.2014.2331616 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X. L. Liu, W. Hu, C. Luo, Q. Pu, F. Wu, and Y. Zhang 2038

Multimedia Algorithms, Systems, and Interfaces

Image Alignment by Piecewise Planar Region Matching http://dx.doi.org/10.1109/TMM.2014.2346476 . . . . . . . . . . . . . . . . . Z. Lou and T. Gevers 2052

Multimedia and Crowdsourcing

Mining Crowdsourced First Impressions in Online Social Video http://dx.doi.org/10.1109/TMM.2014.2346471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J.-I. Biel and D. Gatica-Perez 2062

CORRESPONDENCE

http://dx.doi.org/10.1109/TMM.2014.2347268 . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Gottlieb, G. Friedland, J. Choi, P. Kelm, and T. Sikora 2075
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Call For Papers 
Special Issue of IEEE Transactions on Multimedia 

“Multimedia: The Biggest Big Data” 

SUMMARY 
Multimedia is increasingly becoming the “biggest big data” as the most important and valuable source for insights and 
information. It covers from everyone’s experiences to everything happening in the world. There will be lots of multimedia 
big data --- surveillance video, entertainment and social media, medical images, consumer images, voice and video, to 
name a few, only if their volumes grow to the extent that the traditional multimedia processing and analysis systems cannot 
handle effectively. As such, multimedia big data will emerge as the next "must have" competency in our society, and is 
spurring on tremendous amounts of research and development of related technologies and applications. As an active and 
inter-disciplinary research field, multimedia big data also presents a great opportunity for multimedia computing in the big 
data era. The challenges and opportunities highlighted in this field will foster some interesting future developments in the 
multimedia research and applications.  

SCOPE 
The goal of this special issue is to provide a premier forum for researchers working on the aforementioned multimedia big 
data aspects to present their recent research results. It also provides an important opportunity for multidisciplinary works 
connecting big data to multimedia computing. Topics of interest include, but are not limited to  

New theory and models for multimedia big data computing 
Ultra-high efficiency compression, coding and transmission for multimedia big data 
Content analysis and mining for multimedia big data 
Semantic retrieval of multimedia big data 
Deep learning and cloud computing for multimedia big data 
Green computing for multimedia big data (e.g., high efficiency storage) 
Security and privacy in multimedia big data 
Interaction, access, visualization of multimedia big data 
Multimedia big data systems 
Novel and incentive applications of multimedia big data in various fields (e.g., search, healthcare, transportation, 
and retail) 

IMPORTANT DATES 
Submission deadline: February 28, 2015      First notification: April 28, 2015
Revision due: May 31, 2015        Final notification of acceptance: July 5, 2015 
Camera-ready manuscript due: July 21, 2015      Tentative publication date: August 2015 

SUBMISSION PROCEDURE 
Papers should be formatted according to the IEEE Transactions on Multimedia guidelines for authors (see: 
http://www.signalprocessingsociety.org/tmm/tmm-author-info/). By submitting/resubmitting your manuscript to this 
transactions, you are acknowledging that you accept the rules established for publication of manuscripts, including 
agreement to pay all over-length page charges, color charges, and any other charges and fees associated with publication of 
the manuscript. Manuscripts (both 1-column and 2-column versions are required) should be submitted electronically 
through the online IEEE manuscript submission system at http://mc.manuscriptcentral.com/tmm-ieee. When selecting a 
manuscript type, the authors must click on BigMM Special Issue. All the submitted papers will go through the same review 
process as that for the regular TMM paper submissions. Referees will consider originality, significance, technical 
soundness, clarity of exposition, and relevance to the special issue topics above. 

GUEST EDITORS 
Shu-Ching Chen, Florida International University, USA (chens@cs.fiu.edu) 
Ramesh Jain, University of California, Irvine, USA (jain@ics.uci.edu) 
Yonghong Tian, Peking University, China (yhtian@pku.edu.cn) 
Haohong Wang, TCL Research America, USA (haohongwang@gmail.com) 
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OCTOBER 2014 VOLUME 8 NUMBER 5 IJSTGY (ISSN 1932-4553)

EDITORIAL

Introduction to the Issue on Signal Processing for Large-Scale MIMO http://dx.doi.org/10.1109/JSTSP.2014.2337232 . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, D. Gesbert, and R. Zhang 739

PAPERS

http://dx.doi.org/10.1109/JSTSP.2014.2317671s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang 742

Pilot Contamination Elimination for Large-Scale Multiple-Antenna Aided OFDM Systems http://dx.doi.org/10.1109/JSTSP.2014.2309936 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Zhang, B. Zhang, S. Chen, X. Mu, M. El-Hajjar, and L. Hanzo 759

Blind Pilot Decontamination http://dx.doi.org/10.1109/JSTSP.2014.2310053 . . . . . . . . . . . . . . . . . R. R. Müller, L. Cottatellucci, and M. Vehkaperä 773
Pilot Beam Pattern Design for Channel Estimation in Massive MIMO Systems http://dx.doi.org/10.1109/JSTSP.2014.2327572 . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Noh, M. D. Zoltowski, Y. Sung, and D. J. Love 787

Downlink Training Techniques for FDD Massive MIMO Systems: Open-Loop and Closed-Loop Training With Memory
http://dx.doi.org/10.1109/JSTSP.2014.2313020 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Choi, D. J. Love, and P. Bidigare 802

Low-Complexity Polynomial Channel Estimation in Large-Scale MIMO With Arbitrary Statistics
http://dx.doi.org/10.1109/JSTSP.2014.2316063 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . N. Shariati, E. Björnson, M. Bengtsson, and M. Debbah 815

Channel Estimation and Hybrid Precoding for Millimeter Wave Cellular Systems http://dx.doi.org/10.1109/JSTSP.2014.2334278 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Alkhateeb, O. El Ayach, G. Leus, and R. W. Heath 831

Channel Hardening-Exploiting Message Passing (CHEMP) Receiver in Large-Scale MIMO Systems
http://dx.doi.org/10.1109/JSTSP.2014.2314213 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T. L. Narasimhan and A. Chockalingam 847

Linear Precoding Based on Polynomial Expansion: Large-Scale Multi-Cell MIMO Systems http://dx.doi.org/10.1109/JSTSP.2014.2322582 . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Kammoun, A. Müller, E. Björnson, and M. Debbah 861

Scheduling http://dx.doi.org/10.1109/JSTSP.2014.2313808 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Nam, A. Adhikary, J.-Y. Ahn, and G. Caire 876
Maximum-SNR Antenna Selection Among a Large Number of Transmit Antennas http://dx.doi.org/10.1109/JSTSP.2014.2328329 . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Gkizeli and G. N. Karystinos 891

Low-Complexity Iterative Detection for Large-Scale Multiuser MIMO-OFDM Systems Using Approximate Message
Passing http://dx.doi.org/10.1109/JSTSP.2014.2313766 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Wu, L. Kuang, Z. Ni, J. Lu, D. D. Huang, and Q. Guo 902

Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations http://dx.doi.org/10.1109/JSTSP.2014.2313021 . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Wu, B. Yin, G. Wang, C. Dick, J. R. Cavallaro, and C. Studer 916

Large-Scale MIMO Versus Network MIMO for Multicell Interference Mitigation http://dx.doi.org/10.1109/JSTSP.2014.2327594 . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K. Hosseini, W. Yu, and R. S. Adve 930
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Dealing With Interference in Distributed Large-Scale MIMO Systems: A Statistical Approach
http://dx.doi.org/10.1109/JSTSP.2014.2322583 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Yin, D. Gesbert, and L. Cottatellucci 942

http://dx.doi.org/10.1109/JSTSP.2014.2309942 . . . . .
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Power Scaling of Uplink Massive MIMO Systems With Arbitrary-Rank Channel Mean http://dx.doi.org/10.1109/JSTSP.2014.2324534 . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Zhang, S. Jin, K.-K. Wong, H. Zhu, and M. Matthaiou 966

http://dx.doi.org/10.1109/JSTSP.2014.2332977 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . J. Pan and W.-K. Ma 982
An ESPRIT-Based Approach for 2-D Localization of Incoherently Distributed Sources in Massive MIMO Systems
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DECEMBER 2014 VOLUME 21 NUMBER 12 ISPLEM (ISSN 1070-9908)

LETTERS

Superoscillations with Optimal Numerical Stability http://dx.doi.org/10.1109/LSP.2014.2339731 . . . . .. . . . . D. G. Lee and P. J. S. G. Ferreira 1443
Exact BER Performance Analysis of Link Adaptive Relaying with Noncoherent BFSK Modulation
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A Decoupled Jacobi-Like Algorithm for Non-Unitary Joint Diagonalization of Complex-Valued Matrices
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http://dx.doi.org/10.1109/LSP.2014.2340396 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . C. Zheng, R. Peng, J. Li, and X. Li 1462

Iterative Frequency-Weighted Filtering and Smoothing Procedures http://dx.doi.org/10.1109/LSP.2014.2341641 . . . . . . . .. . . . . . . . G. A. Einicke 1467
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Analysis of Vocal Tract Constrictions using Zero Frequency Filtering http://dx.doi.org/10.1109/LSP.2014.2341645 . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users

http://dx.doi.org/10.1109/LSP.2014.2343971 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Z. Ding, Z. Yang, P. Fan, and H. V. Poor 1501

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_____________________

http://www.signalprocessingsociety.org
http://dx.doi.org/10.1109/LSP.2014.2339731
http://dx.doi.org/10.1109/LSP.2014.2339934
http://dx.doi.org/10.1109/LSP.2014.2339891
http://dx.doi.org/10.1109/LSP.2014.2343213
http://dx.doi.org/10.1109/LSP.2014.2340396
http://dx.doi.org/10.1109/LSP.2014.2341641
http://dx.doi.org/10.1109/LSP.2014.2343251
http://dx.doi.org/10.1109/LSP.2014.2342198
http://dx.doi.org/10.1109/LSP.2014.2341645
http://dx.doi.org/10.1109/LSP.2014.2338911
http://dx.doi.org/10.1109/LSP.2014.2333737
http://dx.doi.org/10.1109/LSP.2014.2341651
http://dx.doi.org/10.1109/LSP.2014.2343971
http://www.ieee.org/sp/index.html
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


                                                                              www.signalprocessingsociety.org     [19]  JANUARY 2015

Hierarchical Fusion in Clustered Sensor Networks with Asynchronous Local Estimates http://dx.doi.org/10.1109/LSP.2014.2341637 . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. Song, W.-A. Zhang, and L. Yu 1506

A New Class of Low Complexity Low-Pass Multiplierless Linear-Phase Special CIC FIR Filters
http://dx.doi.org/10.1109/LSP.2014.2343212 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . D. N. Milić and V. D. Pavlović 1511
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Xiamen, China, October 19 – October 21, 2015
http://www.mmsp2015.org

Tentative Call for Papers

MMSP 2015 is the 17th International Workshop on Multimedia Signal Processing. The workshop is
organized by the Multimedia Signal Processing Technical Committee of the IEEE Signal Processing
Society. This year’s event has a Heterogeneous Big Data Analytics in Multimedia theme. The workshop
will bring together researchers and developers in multimedia signal processing and applications to share
their latest achievements and explore future directions and synergies in these exciting areas.

Papers are solicited in (but not limited to) the following topics, covering this year’s theme and the
general scope of multimedia signal processing:

Theories and applications for heterogeneous big media data analytics

Semantic extraction and knowledge mining from heterogeneous big media data

Massive-scale media detection and recognition

Content-based analysis, retrieval and annotation for big media data

Feature learning for heterogeneous big media data representation

Multimedia security, forensic, privacy for big data

Multimedia quality assessment and enhancement

Affective computing and cross-media sentiment analysis

Media algorithm optimization and complexity analysis

Multimedia in economics, finance, business analytics

Multimedia signals in geomatics

Image/video coding and processing

Speech/audio recognition and processing

Multimedia communications and interactions

Top 10% Paper Award
This award is granted to as many as 10% of the total paper submissions, and is open to all accepted
papers. Papers will be evaluated based on originality, technical contribution, and presentation quality
during the workshop.

Paper Submission
Prospective authors should submit full-length papers of 6 pages in two-column IEEE format, including
author affiliation and address, figures, tables and references, to the submission website. Only electronic
submissions are accepted. Paper submission implies the intent of at least one of the authors to register and
present the paper, if accepted.

Important Dates
Proposals for Special Sessions: March 20, 2015
Submission of Paper: May 28, 2015
Notification of acceptance: July 6, 2015

General Chairs

Xiao-Ping Zhang – Ryerson U, Canada

Oscar C. Au – HKUST, Hong Kong

Jonathan Li – Xiamen U, China

Technical Chairs

Tao Mei –Microsoft Research Asia

Gene Cheung – NII, Japan

Special Session Chairs

John Paisley – Columbia U, USA

Yap-Peng Tan – NTU, Singapore

Overview Chairs

Homer Chen–NTU, Taiwan

Anthony Vetro –MERL, USA

Local Arrangement Chair

Xinghao Ding –Xiamen U, China

Rongrong Ji – Xiamen U, China

Finance Chairs

Chia-Wen Lin – NTHU, Taiwan

Yue Huang – Xiamen U, China

Publications Chairs

Vicky Zhao – U. Alberta, Canada

Delu Zeng – Xiamen U, China

Publicity Chairs

Lina Stankovic – U. Strathclyde, UK

Ivan Bajic – Simon Fraser U,. Canada

Registration Chair

Liujuan Cao – Xiamen U, China

Demo Chair

Wenxin Hong – Xiamen U, China

Industry Liaison

Alexander Loui – Kodak, USA

North America Liaison

Antonio Ortega, USC, USA

Asia Liason

Feng Wu – USTC, China

Europe Liaison

Fernando Pereira – IST-IT, Portugal
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Call for Papers
The International Conference on Image Processing (ICIP), sponsored by the IEEE Signal Processing 
Society, is the premier forum for the presentation of technological advances and research results in 
the fields of theoretical, experimental, and applied image and video processing. ICIP 2015, the twenty 
second in the series that has been held annually since 1994, brings together leading engineers and 
scientists in image and video processing from around the world. Research frontiers in fields ranging 
from traditional image processing applications to evolving multimedia and video technologies are 
regularly advanced by results first reported in ICIP technical sessions. 

Topics include, but are not limited to: 
Image/video coding and transmission: Still-image and video coding, stereoscopic and 3-D 
coding, distributed source coding, source/channel coding, image/video transmission over 
wireless networks; 
Image/video processing: Image and video filtering, restoration and enhancement, image 
segmentation, video segmentation and tracking, morphological processing, stereoscopic and 
3-D processing, feature extraction and analysis, interpolation and super-resolution, motion 
detection and estimation, color and multispectral processing, biometrics; 
Image formation: Biomedical imaging, remote sensing, geophysical and seismic imaging, 
optimal imaging, synthetic-natural hybrid image systems; 
Image scanning, display, and printing: Scanning and sampling, quantization and half toning, 
color reproduction, image representation and rendering, display and printing systems, image-
quality assessment; 
Image/video storage, retrieval, and authentication: Image and video databases, image and 
video search and retrieval, multimodality image/ video indexing and retrieval, authentication and 
watermarking; 
Applications: Biomedical sciences, mobile imaging, geosciences & remote sensing, astronomy 
& space exploration, document image processing and analysis, other applications. 

Paper Submission: Authors are invited to submit papers of not more than four pages for 
technical content including figures and references, with one optional page containing only references. 

Call for Tutorials: Tutorials will be held on Sunday, September 27, 2015. Proposals should be 
submitted by January 15, 2015 to tutorials@icip2015.org and must include title, outline of the tutorial 
and its motivation, short description, contact information and credentials for each presenter including 
name, affiliation, email, mailing address, and a two-page resume. 

Call for Special Sessions: Proposals should be submitted by November 27, 2014 in a single 
PDF document sent to specialsessions@icip2015.org. Please include title, motivation for the special 
session topic, potential authors and titles of papers, as well as contact information and credentials for 
each organizer including name, affiliation, email, mailing address, and a short resume.

Important Dates  
Special Sessions Proposals: 27 November 2014
Regular Papers Submission:  15 January 2015
Tutorials Proposal: 15 January 2015

Visit icip2015.org for details on paper submission, social events, no-show policy, and more.

Organizing Committee

General Co-Chairs
Jean-Luc DUGELAY

André MORIN

Technical Program Chairs
Fabrice LABEAU 

Jean-Philippe THIRAN

Finances
Jean FORTIN

Plenary Sessions
Stéphane COULOMBE

Kenneth ROSE
Special Sessions 

Oscar C. AU
Éric DUBOIS

Tutorials
Janusz KONRAD

André ZACCARIN
Local Arrangements

Paul FORTIER

Registration
Xavier MALDAGUE

Exhibit/Industry
Khaled EL-MALEH

Branislav KISACANIN

Publicity 
Aishy AMER

Publications
Mireille BOUTIN

Electronic Media
Abdulmotaleb EL SADDIK

Benoît HUET
International Liaison

Carlo S. REGAZZONI
Wan-Chi SIU

Student Activities
Sylvie DANIEL
Guoliang FAN

Awards 
Phil CHOU
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Please PRINT your name as you want it to appear on your membership card and IEEE 
correspondence. As a key identifier for the IEEE database, circle your last/surname.

PERSONAL INFORMATION

To better serve our members and supplement member dues, your postal mailing address is made available to 
carefully selected organizations to provide you with information on technical services, continuing education, and 
conferences. Your e-mail address is not rented by IEEE. Please check box only if you do not want to receive these 
postal mailings to the selected address. 

Start your membership immediately: Join online www.ieee.org/join

Name & Contact Information1

I have graduated from a three- to five-year academic program with a university-level degree.    
 Yes      No

This program is in one of the following fields of study:
Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

This academic institution or program is accredited in the country where the institution 
is located.     Yes      No      Do not know

I have ______ years of professional experience in teaching, creating, developing, 
practicing, or managing within the following field:

Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

Attestation2

I hereby apply for IEEE membership and agree to be governed by the 
IEEE Constitution, Bylaws, and Code of Ethics. I understand that IEEE 
will communicate with me regarding my individual membership and all 
related benefits. Application must be signed.

Signature Date

Please Sign Your Application4

3 Please Tell Us About Yourself

 Male  Female           Date of birth (Day/Month/Year) /     /

Please complete both sides of this form, typing or printing in capital letters.
Use only English characters and abbreviate only if more than 40 characters and 
spaces per line. We regret that incomplete applications cannot be processed.

(students and graduate students must apply online)

A. Primary line of business
1. Computers
2. Computer peripheral equipment
3. Software
4. Office and business machines
5. Test, measurement and instrumentation equipment
6. Communications systems and equipment
7. Navigation and guidance systems and equipment
8. Consumer electronics/appliances
9. Industrial equipment, controls and systems

10. ICs and microprocessors
11. Semiconductors, components, sub-assemblies, materials and supplies
12. Aircraft, missiles, space and ground support equipment
13. Oceanography and support equipment
14. Medical electronic equipment
15. OEM incorporating electronics in their end product (not elsewhere classified)
16. Independent and university research, test and design laboratories and

consultants (not connected with a mfg. co.)
17. Government agencies and armed forces
18. Companies using and/or incorporating any electronic products in their

manufacturing, processing, research or development activities
19. Telecommunications services, telephone (including cellular)
20. Broadcast services (TV, cable, radio)
21. Transportation services (airline, railroad, etc.)
22. Computer and communications and data processing services
23. Power production, generation, transmission and distribution
24. Other commercial users of electrical, electronic equipment and services

(not elsewhere classified)
25. Distributor (reseller, wholesaler, retailer)
26. University, college/other educational institutions, libraries
27. Retired
28. Other__________________________

Over Please

B. Principal job function
9. Design/development 
  engineering—digital

10. Hardware engineering
11. Software design/development
12. Computer science
13. Science/physics/mathematics
14. Engineering (not elsewhere

specified)
15. Marketing/sales/purchasing
16. Consulting
17. Education/teaching
18. Retired
19. Other

1. General and corporate management
2. Engineering management
3. Project engineering management
4. Research and development 
  management
5. Design engineering management
  —analog
6. Design engineering management
  —digital
7. Research and development
  engineering
8. Design/development engineering
  —analog

D. Title
1. Chairman of the Board/President/CEO
2. Owner/Partner
3. General Manager
4. VP Operations
5. VP Engineering/Dir. Engineering
6. Chief Engineer/Chief Scientist
7. Engineering Management
8. Scientific Management
9. Member of Technical Staff

10. Design Engineering Manager
11. Design Engineer
12. Hardware Engineer
13. Software Engineer
14. Computer Scientist
15. Dean/Professor/Instructor
16. Consultant
17. Retired
18. Other 

C. Principal responsibility 
1. Engineering and scientific management
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Information for Authors
(Updated/Effective September 17, 2014)

The IEEE TRANSACTIONS ON SIGNAL PROCESSING is published online twice per month
(semimonthly) covering advances in the theory and application of signal processing. The
scope is re ected in the EDICS: the Editor’s Information and Classi cation Scheme.
Please consider the journal with the most appropriate scope for your submission.
Authors are encouraged to submit manuscripts of Regular papers (papers which pro-

vide a complete disclosure of a technical premise), or Comment Correspondences (brief
items that provide comment on a paper previously published in the TRANSACTIONS).
Submissions/resubmissions must be previously unpublished and may not be under con-
sideration elsewhere.
Every manuscript must (a) provide a clearly de ned statement of the problem being

addressed, (b) state why it is important to solve the problem, and (c) give an indica-
tion as to how the current solution ts into the history of the problem, including bib-
liographic references to related work rather than restating established algorithms and
scienti c principles.
In order to be considered for review, a paper must be within the scope of the journal

and represent a novel contribution. A paper is a candidate for an Immediate Rejection
if it is of limited novelty, e.g. a straightforward combination of theories and algorithms
that are well established and are repeated on a known scenario, no new experimental
data or new application. Experimental contributions will be rejected without review if
there is insuf cient experimental data. The TRANSACTIONS are published in English.
Papers that have a large number of typographical and/or grammatical errors will also be
rejected without review.
By submission/resubmission of your manuscript to this TRANSACTIONS, you are ac-

knowledging that you accept the rules established for publication of manuscripts, in-
cluding agreement to pay all overlength page charges, color charges, and any other
charges and fees associated with publication of the manuscript. Such charges are not
negotiable and cannot be suspended.
New and revised manuscripts should be prepared following the “Manuscript Sub-

mission” guidelines below, and submitted to the online manuscript system ScholarOne
Manuscripts. After acceptance, nalized manuscripts should be prepared following the
“Final Manuscript Submission Guidelines” below. Do not send original submissions or
revisions directly to the Editor-in-Chief or Associate Editors; they will only access your
manuscript electronically via the ScholarOne Manuscripts system.

Manuscript Submission. Please follow the next steps.
1. Account in ScholarOne Manuscripts. If necessary, create an account in the on-line
submission system ScholarOne Manuscripts. Please check rst if you already have
an existing account which is based on your e-mail address and may have been
created for you when you reviewed or authored a previous paper.

2. Electronic Manuscript. Prepare a PDF le containing your manuscript in double-
column, single-spaced format using a font size of 10 points or larger, having a
margin of at least 1 inch on all sides. For a regular paper, the manuscript may not
exceed 13 double-column pages, including title; names of authors and their com-
plete contact information; abstract; text; all images, gures and tables, appendices
and proofs; and all references.
Upload this version of the manuscript as a PDF le “double.pdf” to the Schol-

arOneManuscripts site. You are encouraged to also submit a single-column, double-
spaced version (11 point font or larger), but page length restrictions will be deter-
mined by the double-column version.
For regular papers, the revised manuscript may not exceed 16 double-column

pages (10 point font), including title; names of authors and their complete contact
information; abstract; text; all images, gures and tables, appendices and proofs;
and all references.
Proofread your submission, con rming that all gures and equations are visible

in your document before you “SUBMIT” your manuscript. Proofreading is critical;
once you submit your manuscript, the manuscript cannot be changed in any way.
You may also submit your manuscript as a PostScript or MSWord le. The system
has the capability of converting your les to PDF, however it is your responsibility
to con rm that the conversion is correct and there are no font or graphics issues
prior to completing the submission process.

3. Additional Documents for Review. Please upload pdf versions of all items in the
reference list which are not publicly available, such as unpublished (submitted)
papers. Other materials for review such as supplementary tables and gures may
be uploaded as well. Reviewers will be able to view these les only if they have
the appropriate software on their computers. Use short lenames without spaces
or special characters. When the upload of each le is completed, you will be asked
to provide a description of that le.

4. Multimedia Materials. IEEE Xplore can publish multimedia les (audio, images,
video) and Matlab code along with your paper. Alternatively, you can provide
the links to such les in a README le that appears on Xplore along with

Digital Object Identi er 10.1109/TSP.2014.2358875

your paper. For details, please see http://www.ieee.org/publications_standards/
publications/authors/authors_journals.html#sect6 under “Multimedia.” To make
your work reproducible by others, the TRANSACTIONS encourages you to submit
all les that can recreate the gures in your paper. Files that are to be included
with the nal paper must be uploaded for consideration in the review process.

5. Submission. After uploading all les and proofreading them, submit your manu-
script by clicking “Submit.” A con rmation of the successful submission will open
on screen containing the manuscript tracking number and will be followed with an
e-mail con rmation to the corresponding and all contributing authors. Once you
click “Submit,” your manuscript cannot be changed in any way.

6. Copyright Form and Consent Form. By policy, IEEE owns the copyright to the
technical contributions it publishes on behalf of the interests of the IEEE, its au-
thors, and their employers; and to facilitate the appropriate reuse of this material
by others. To comply with the IEEE copyright policies, authors are required to sign
and submit a completed “IEEE Copyright and Consent Form” prior to publication
by the IEEE.
The IEEE recommends authors to use an effective electronic copyright form

(eCF) tool within the ScholarOne Manuscripts system. You will be redirected to
the “IEEE Electronic Copyright Form” wizard at the end of your original submis-
sion; please simply sign the eCF by typing your name at the proper location and
click on the “Submit” button.

Comment Correspondence.Comment Correspondences provide brief comments on
material previously published in the TRANSACTIONS. A comment correspondence may
not exceed 2 pages in double-column, single double-spaced format, using 9 point type,
with margins of 1 inch minimum on all sides, and including: title, names and contact
information for authors, abstract, text, references, and an appropriate number of illus-
trations and/or tables. Comment Correspondences are submitted in the same way as
regular manuscripts (see “Manuscript Submission” above for instructions).
Manuscript Length. Papers published on or after 1 January 2007 can now be up to 10

pages, and any paper in excess of 10 pages will be subject to over length page charges.
The IEEE Signal Processing Society has determined that the standard manuscript length
shall be no more than 10 published pages (double-column format, 10 point type) for
a regular submission. Manuscripts that exceed these limits will incur mandatory over
length page charges, as discussed below. Since changes recommended as a result of
peer review may require additions to the manuscript, it is strongly recommended that
you practice economy in preparing original submissions.
Exceptions to manuscript length requirements may, under extraordinary circum-

stances, be granted by the Editor-in-Chief. However, such exception does not obviate
your requirement to pay any and all over length or additional charges that attach to the
manuscript.
Resubmission of Previously Rejected Manuscripts. Authors of manuscripts re-

jected from any journal are allowed to resubmit their manuscripts only once. At the time
of submission, you will be asked whether your manuscript is a new submission or a re-
submission of an earlier rejected manuscript. If it is related to a manuscript previously
rejected by any journal, you are expected to submit supporting documents identifying
the previous submission and detailing how issues raised in the previous reviews have
been addressed. Papers that do not disclose connection to a previously rejected paper or
that do not provide documentation as to changes made may be immediately rejected.
Full details of the resubmission process can be found in the Signal Processing So-

ciety “Policy and Procedures Manual” at http://www.signalprocessingsociety.org/
about/governance/policy-procedure/.
Author Misconduct.
Author Misconduct Policy: Plagiarism includes copying someone else’s work without

appropriate credit, using someone else’s work without clear delineation of citation, and
the uncited reuse of an authors previously published work that also involves other au-
thors. Plagiarism is unacceptable.
Self-plagiarism involves the verbatim copying or reuse of an authors own prior work

without appropriate citation; it is also unacceptable. Self-plagiarism includes duplicate
submission of a single journal manuscript to two different journals, and submission of
two different journal manuscripts which overlap substantially in language or technical
contribution.
Authors may only submit original work that has not appeared elsewhere in a journal

publication, nor is under review for another journal publication. Limited overlap with
prior journal publications with a common author is allowed only if it is necessary for the
readability of the paper. If authors have used their own previously published work as a
basis for a new submission, they are required to cite the previous work and very brie y
indicate how the new submission offers substantively novel contributions beyond those
of the previously published work.
It is acceptable for conference papers to be used as the basis for a more fully devel-

oped journal submission. Still, authors are required to cite related prior work; the papers
cannot be identical; and the journal publication must include novel aspects.
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Author Misconduct Procedures: The procedures that will be used by the Signal Pro-
cessing Society in the investigation of author misconduct allegations are described in
the IEEE SPS Policies and Procedures Manual.
Author Misconduct Sanctions: The IEEE Signal Processing Society will apply the

following sanctions in any case of plagiarism, or in cases of self-plagiarism that involve
an overlap of more than 25% with another journal manuscript:
1) immediate rejection of the manuscript in question;
2) immediate withdrawal of all other submitted manuscripts by any of the authors,
submitted to any of the Society’s publications (journals, conferences, workshops),
except for manuscripts that also involve innocent co-authors; immediate with-
drawal of all other submitted manuscripts by any of the authors, submitted to
any of the Society’s publications (journals, conferences, workshops), except for
manuscripts that also involve innocent co-authors;

3) prohibition against each of the authors for any new submissions, either individually,
in combination with the authors of the plagiarizing manuscript, or in combination
with new co-authors, to all of the Society’s publications (journals, conferences,
workshops). The prohibition shall continue for one year from notice of suspension.

Further, plagiarism and self-plagiarism may also be actionable by the IEEE under the
rules of Member Conduct.

Submission Format.
Authors are encouraged to prepare manuscripts employing the on-line style les

developed by IEEE. All manuscripts accepted for publication will require the authors
to make nal submission employing these style les. The style les are available on the
web at http://www.ieee.org/publications_standards/publications/authors/authors_jour-
nals.html#sect2 under “Template for all TRANSACTIONS.” (LaTeX and MS Word).
Authors using LaTeX: the two PDF versions of the manuscript needed for

submission can both be produced by the IEEEtran.cls style le. A double-spaced
document is generated by including \documentclass[11pt,draftcls,onecolumn]
{IEEEtran} as the rst line of the manuscript source le, and a single-spaced
double-column document for estimating the publication page charges via
\documentclass[10pt,twocolumn,twoside]{IEEEtran} for a regular submission, or
\documentclass[9pt,twocolumn,twoside]{IEEEtran} for a Correspondence item.

Title page and abstract: The rst page of the manuscript shall contain the title,
names and contact information for all authors (full mailing address, institutional
af liations, phone, fax, and e-mail), the abstract, and the EDICS. An asterisk *
should be placed next to the name of the Corresponding Author who will serve
as the main point of contact for the manuscript during the review and publication
processes.
An abstract must be a well-written stand-alone paragraph 150-250 words long,

with no displayed equations, footnotes, references or tabular material. The abstract
should indicate the scope of the paper and summarize the author’s conclusions,
making it a useful tool for information retrieval. Visit http://www.signalprocess-
ingsociety.org/publications/periodicals/tsp/tsp-author-info/ for speci cations and
description.
EDICS:All submissionsmustbeclassi edby theauthorwith anEDICS(Editors’ In-
formationClassi cationScheme) selected from the list ofEDICSpublishedonlineat
http://www.signalprocessingsociety.org/publications/periodicals/tsp/TSP-EDICS/

newmanuscript, please choose the EDICS categories that best suit yourmanuscript.
Failure to do so will likely result in a delay of the peer review process.

rst page—i.e., the title and abstract
page—of the manuscript.
Illustrations and tables: Each gure and table should have a caption that is intel-
ligible without requiring reference to the text. Illustrations/tables may be worked
into the text of a newly-submitted manuscript, or placed at the end of the manu-
script. (However, for the nal submission, illustrations/tables must be submitted
separately and not interwoven with the text.)
Illustrations in color may be used but, unless the nal publishing will be in color,

the author is responsible that the corresponding grayscale gure is understandable.
In preparing your illustrations, note that in the printing process, most illustrations

are reduced to single-column width to conserve space. This may result in as much
as a 4:1 reduction from the original. Therefore, make sure that all words are in a
type size that will reduce to a minimum of 9 points or 3/16 inch high in the printed
version. Only the major grid lines on graphs should be indicated.
Abbreviations: This TRANSACTIONS follows the practices of the IEEE on
units and abbreviations, as outlined in the Institute’s published standards. See
http://www.ieee.org/portal/cms_docs_iportals/iportals/publications/authors/
transjnl/auinfo07.pdf for details.
Mathematics: All mathematical expressions must be legible. Do not give deriva-
tions that are easily found in the literature; merely cite the reference.

Final Manuscript Submission Guidelines.

nalmaterials required for publicationwill be sent to theCorrespondingAuthor. Finalized
manuscripts should be prepared in LaTeX or MS Word, and are required to use the
style les established by IEEE, available at http://www.ieee.org/publications_standards/
publications/authors/authors_journals.html#sect2.

Instructions for preparing les for electronic submission are as follows:
nal manuscript may not exceed 16 double-column pages

(10 point font), including title; names of authors and their complete contact infor-
mation; abstract; text; all images, gures and tables, appendices and proofs; and
all references. Without expressed approval from the Editor-in-Chief, papers that
exceed 16 pages in length will not publish.

RANSACTIONS, the name of the author,
and the software used to format the manuscript.

les into the text le of your nalized manuscript (although
this is acceptable for your initial submission). If submitting on disk, use a separate
disk for graphics les.

les of the text.

les should be separate from the text, and not contain the caption text,
but include callouts like “(a),” “(b).”

le names should be lower case and named g1.eps, g2.tif, etc.

needs to be at least 600 dpi (400 dpi for color).

this will be at the expense of the author. Without other indications, color graphics
will appear in color in the online version, but will be converted to grayscale in the
print version.

IEEE supports the publication of author names in the native language alongside the
English versions of the names in the author list of an article. For more information,

org/publications_standards/publications/authors/auth_names_native_lang.pdf
Additional instructions for preparing, verifying the quality, and submitting graphics

and multimedia les are available via http://www.ieee.org/publications_standards/
publications/authors/authors_journals.html.

Open Access.
This publication is a hybrid journal, allowing either Traditionalmanuscript submission

to have your manuscript be an Open Access article, you commit to pay the discounted
$1,750OAfee ifyourmanuscript isaccepted forpublication inorder toenableunrestricted
public access. Any other application charges (such as over-length page charge and/or
charge for theuseof color in theprint format)will bebilled separately once themanuscript
formatting is complete but prior to the publication. If you would like your manuscript to
be a Traditional submission, your article will be available to quali ed subscribers and
purchasers via IEEE Xplore. No OA payment is required for Traditional submission.

Page Charges.
Voluntary Page Charges.

thor(s) or his/her/their company or institution will be asked to pay a charge of $110 per
page to cover part of the cost of publication of the rst ten pages that comprise the stan-
dard length (six pages, in the case of Technical Correspondences until their publication
will be discontinued).
Mandatory Page Charges. The author(s) or his/her/their company or institution will

be billed $220 per each page in excess of the rst ten published pages for regular papers
and six published pages for technical correspondence until their publication will be dis-
continued. These are mandatory page charges and the author(s) will be held responsible
for them. They are not negotiable or voluntary. The author(s) signi es his willingness to
pay these charges simply by submitting his/her/their manuscript to the TRANSACTIONS.
The Publisher holds the right to withhold publication under any circumstance, as well as
publication of the current or future submissions of authors who have outstanding manda-
tory page charge debt.
Color Charges. Color gures which appear in color only in the electronic (Xplore)

version can be used free of charge. In this case, the gure will be printed in the hardcopy
version in grayscale, and the author is responsible that the corresponding grayscale gure
is intelligible. Color reproduction in print is expensive, and all charges for color are the
responsibility of the author. The estimated costs are as follows. There will be a charge
of $62.50 for each gure; this charge may be subject to change without noti cation. In
addition, there are printing preparation charges whichmay be estimated as follows: color
reproductions on four or fewer pages of the manuscript: a total of approximately $1045;
color reproductions on ve pages through eight pages: a total of approximately $2090;
color reproductions on nine through 12 pages: a total of approximately $3135, and so on.
Payment of fees on color reproduction is not negotiable or voluntary, and the author’s
agreement to publish the manuscript in the TRANSACTIONS is considered acceptance of
this requirement.
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Information for Authors
(Updated/Effective September 2014)

The IEEESIGNAL PROCESSINGLETTERS is amonthly, archival publication de-
signed to provide rapid dissemination of original, cutting-edge ideas and timely,
signi cant contributions in signal, image, speech, languageandaudioprocessing.
The scope of the journal is re ected in the EDICS, listed in the

page: http://www.signalprocessingsociety.org/publications/periodicals/letters/
letters-edics/. These EDICS are used as the Editor’s Information and
Classi cation Scheme. Please consider the journal with the most appropriate
scope for your submission.
Every manuscript must (a) provide a clearly de ned statement of the problem

being addressed, (b) state why it is important to solve the problem, and (c) give
an indication as to how the current solution ts into the history of the problem,
including bibliographic references to related work rather than restating estab-
lished algorithms and scienti c principles.
All submissions are prescreened prior to the peer review process to verify if

they meet the publication criteria explained next. The Editor in Chief determines
if the paper will be assigned to an Associate Editor, who will handle the peer
review process and make a nal decision, or if it becomes a candidate for an Im-
mediate Rejection (IR), which is the case if the paper is: (a) out of scope for the
journal (a paper with few or no citations to recent signal processing publications
is a good suspect); (b) limited in novelty (i.e. there is no new theory, algorithms,
or experimental data); (c) incomplete, and based on insuf cient numerical (sim-
ulation/experiment) data and comparisons, inadequate bibliography, or poor de-
scription of the context of the work; (d) incomprehensible, poorly written (e.g.
has a large number of grammatical errors, illegible gures, etc.).
Furthermore, a paper that is a resubmission (revised version) of a previously

rejected manuscript from any journal must include a supporting document in-
dicating the previous submission and summarizing substantial changes made to
address reviewer comments in order to be considered for publication. Otherwise,
it is a candidate for an Immediate Reject exclusively on the basis of this omission.
TheEditor in Chief decisions regarding the paper are supported by recommen-

dations by the Senior Area Editor who prescreens the paper, or by recommenda-
tions coming from the Associate Editor selected to handle the peer review. By
submission/resubmission of yourmanuscript to theLETTERS, you are acknowl-
edging that you accept the rules established for publication of manuscripts.
New and revised manuscripts should be prepared following the New

Manuscript Submission guidelines below, and submitted to the online sub-
mission system ScholarOne Manuscripts. Submissions/resubmissions must
be previously unpublished and may not be under consideration elsewhere.
After acceptance, nalized manuscripts should be prepared following the Final
Manuscript Submission Guidelines below. Do not send original submissions
or revisions directly to the Editor-in-Chief or Associate Editors; they will only
access your manuscript electronically via the ScholarOne Manuscripts system.

Manuscript Submission. Please follow the next steps.
1. Account in ScholarOne Manuscripts: If necessary, create an account in the
on-line submission system ScholarOne Manuscripts. Please check rst if
you already have an existing account which is based on your e-mail ad-
dress and may have been created for you when you reviewed or authored
a previous paper. All co-authors must have valid private ScholarOne ac-
counts, and manuscripts lacking this will be summarily rejected.

2. Electronic Manuscript: Prepare a PDF le containing your manuscript in
double-column single-spaced format using a font size of 10 points or larger,
having a margin of at least 1 inch on all sides. For a LETTERS submission,
the main body of the manuscript may not exceed 4 double-column single-
spaced pages, including title; names of authors and their complete contact
information; abstract; text; all images, gures and tables, appendices and
proofs. A fth page containing references is permitted. Upload this version
of the manuscript as a PDF le "double.pdf" to the ScholarOneManuscripts
site. You are encouraged to also submit a single-column, double-spaced
version (11 point font or larger), but page length restrictions will be deter-
mined by the double-column version. The section below entitled “Submis-
sion Format” provides further details and support for generating a paper in
the correct format.
Proofread your submission, con rming that all gures and equations

are visible in your document before you SUBMIT your manuscript.
Proofreading is critical; once you submit your manuscript, the manuscript
cannot be changed in any way. You may also submit your manuscript as a

Digital Object Identi er 10.1109/LSP.2014.2361592

Post-Script or MS Word le. The system has the capability of converting
your les to PDF, however it is your responsibility to con rm that the con-
version is correct and there are no font or graphics issues prior to completing
the submission process.

3. Additional Documents for Review: Please upload pdf versions of all items
in the reference list which are not publicly available, such as unpublished
(submitted) papers.Othermaterials for review such as supplementary tables
and gures may be uploaded as well. Reviewers will be able to view these
les only if they have the appropriate software on their computers.Use short
lenames without spaces or special characters. When the upload of each
le is completed, you will be asked to provide a description of that le.

4. Multimedia Materials: IEEE Xplore can publish multimedia les (audio,
images, video) and Matlab code along with your paper. Alternatively, you
can provide the links to such les in a README le that appears on
Xplore along with your paper. For details, please see IEEE Author Digital
Toolbox under "Multimedia." To make your work reproducible by others,
the TRANSACTIONS encourages you to submit all les that can recreate
the gures in your paper. Files that are to be included with the nal paper
must be uploaded for consideration in the review process.

5. Submission: After uploading all les and proofreading them, submit your
manuscript by clicking “Submit.” A con rmation of the successful submis-
sion will open on screen containing the manuscript tracking number and
will be followed with an e-mail con rmation to the corresponding and all
contributing authors. Once you click “Submit,” your manuscript cannot be
changed in any way.

6. Copyright and Consent Form: By policy, IEEE owns the copyright to the
technical contributions it publishes on behalf of the interests of the IEEE,
its authors, and their employers; and to facilitate the appropriate reuse of
this material by others. To comply with the IEEE copyright policies, au-
thors are required to sign and submit a completed IEEE Copyright and
Consent Form prior to publication by the IEEE.
The IEEE recommends authors to use an effective electronic copyright

form (eCF) tool within the ScholarOne Manuscripts system. You will be
redirected to the IEEE Electronic Copyright Form wizard at the end of your
original submission; please simply sign the eCF by typing your name at the
proper location and click on the “Submit” button.

Manuscript Length. No manuscript can be more than 5 double-column
single-spaced published pages, 10 point type, with the fth page containing no
material save references. We will immediately request that longer submissions
be shortened and they will not be given an of cial reception date; this applies
even to papers that have been accepted as part of the review process but whose
length turns out to be excessive for publication.
Resubmission of Previously Rejected Manuscripts.
Authors of rejected manuscripts are allowed to resubmit their manuscripts

only once. The Signal Processing Society strongly discourages resubmission
of rejected manuscripts more than once. At the time of submission, you will
be asked whether you consider your manuscript to be a new submission or a
resubmission of an earlier rejected manuscript. If you choose to submit a new
version of your manuscript, you will be asked to submit supporting documents
identifying the previous submission number and detailing how your new version
addresses all of the reviewers’ comments.
Full details of the resubmission process can be found in the Signal Processing

Society "Policy and Procedures Manual".
Author Misconduct.
Author Misconduct Policy: Plagiarism includes copying someone else’s work

without appropriate credit, using someone elses work without clear delineation
of citation, and the uncited reuse of an authors previously published work that
also involves other authors. Plagiarism is unacceptable.
Self-plagiarism involves the verbatim copying or reuse of an author own prior

work without appropriate citation; it is also unacceptable. Self-plagiarism in-
cludes duplicate submission of a single journal manuscript to two different jour-
nals, and submission of two different journal manuscripts which overlap sub-
stantially in language or technical contribution.
Authors may only submit original work that has not appeared elsewhere in a

journal publication, nor is under review for another journal publication. Limited
overlap with prior journal publications with a common author is allowed only if
it is necessary for the readability of the paper. If authors have used their own pre-
viously published work as a basis for a new submission, they are required to cite
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the previous work and very brie y indicate how the new submission offers sub-
stantively novel contributions beyond those of the previously published work.
It is acceptable for conference papers to be used as the basis for a more fully

developed journal submission. Still, authors are required to cite related prior
work; the papers cannot be identical; and the journal publication must include
novel aspects.
Author Misconduct Procedures: The procedures that will be used by the

Signal Processing Society in the investigation of author misconduct allegations
are described in the IEEE SPS Policies and Procedures Manual.
AuthorMisconduct Sanctions:The IEEESignal Processing Societywill apply

the following sanctions in any case of plagiarism, or in cases of self- plagiarism
that involve an overlap of more than 25% with another journal manuscript:
1. immediate rejection of the manuscript in question;
2. immediate withdrawal of all other submitted manuscripts by any of the au-
thors, submitted to any of the Society’s publications (journals, conferences,
workshops), except for manuscripts that also involve innocent co-authors;

3. prohibition against each of the authors for any new submissions, either in-
dividually, in combination with the authors of the plagiarizing manuscript,
or in combination with new co-authors, to all of the Society’s publications
(journals, conferences, workshops). The prohibition shall continue for one
year from notice of suspension.

Further, plagiarism and self-plagiarism may also be actionable by the IEEE
under the rules of Member Conduct.
Submission Format. Authors are encouraged to prepare manuscripts

employing the on-line style les developed by IEEE. All manuscripts ac-
cepted for publication will require the authors to make nal submission
employing these style les. The style les are available on the web at
http://www.ieee.org/publications_standards/publications/authors/authors_jour-
nals.html#sect2 under Template for all TRANSACTIONS. (LaTeX and MSWord),
with the caveat that the paper submitted should t into 4 double column pages
and that the Author’s Biographies are omitted in the LETTERS.
Authors using LaTeX: the two PDF versions of the manuscript needed for

submission can both be produced by the IEEEtran.cls style le. A double-spaced
document is generated by including /documentclass[11pt,draftcls,onecolumn]
{IEEEtran} as the rst line of the manuscript source le, and a single-spaced
double-column document for estimating the publication page charges via
\documentclass[10pt,twocolumn,twoside]{IEEEtran}.

Title page and abstract: The rst page of the manuscript shall contain the
title, names and contact information for all authors (full mailing address, in-
stitutional af liations, phone, fax, and e-mail), the abstract, and the EDICS.
An asterisk should be placed next to the name of the Corresponding Au-
thor who will serve as the main point of contact for the manuscript during
the review and publication processes. An abstract limited to 100 words is
required. The abstract should not only indicate the scope of the paper but
should also summarize the author’s conclusions so that the abstract by it-
self may be useful in information-retrieval systems.
EDICS: All submissions must be classi ed by the author with an
EDICS (Editors Information Classi cation Scheme) selected from the
list of EDICS published online at: http://www.signalprocessingsociety.
org/publications/periodicals/LETTERS/LETTERS-edics/.

mission of a new manuscripts, please choose the EDICS categories that
best suit your manuscript. Failure to do so will likely result in a delay of
the peer review process.

ar on the rst page — i.e., the title and
abstract page of the manuscript.
Illustrations and tables: Each gure and table should have a caption that is
intelligible without requiring reference to the text. Illustrations/tables may
be worked into the text of a newly-submitted manuscript, or placed at the
end of the manuscript. (However, for the nal submission, illustrations/
tables must be submitted separately and not interwoven with the text.)
Illustrations in color may be used but, unless the nal publishing will be
in color, the author is responsible that the corresponding grayscale gure
is understandable.

In preparing your illustrations, note that in the printing process, most
illustrations are reduced to single-column width to conserve space. This
may result in as much as a 4:1 reduction from the original. Therefore, make
sure that all words are in a type size that will reduce to a minimum of 9
points or 3/16 inch high in the printed version. Only the major grid lines
on graphs should be indicated.
Abbreviations: The LETTERS follows the practices of the IEEE on units
and abbreviations, as outlined in the Institutes published standards. See
http://www.ieee.org/documents/auinfo07.pdf for details.
Mathematics: All mathematical expressions must be legible. Do not give
derivations that are easily found in the literature; merely cite the reference.
Native Language Author Names: IEEE supports the publication of Chi-
nese, Japanese, and Korean (CJK) author names in the native language
alongside the English versions of the names in the author list of an article.
Chinese authors may use either Simpli ed or Traditional characters.
Authors must provide the native language name in unicode characters to
be displayed in the byline of the article, in parentheses, after the English
version of the name. The manuscript can be prepared using the “Insert

For more information, see http://www.ieee.org/publications_standards/
publications/authors/auth_names_native_lang.pdf.

Final Manuscript Submission Guidelines
a manuscript for publication, instructions for providing the nal materials
required for publication will be sent to the Corresponding Author. Finalized
manuscripts should be prepared in LaTeX or MS Word, and are required to
use the style les established by IEEE, available at http://www.ieee.org/pub-
lications_standards/publications/authors/authors_journals.html#sect2 under
Template for all LETTERS. Instructions for preparing les for electronic
submission are as follows:

an be no pointers to your system
setup.

ETTERS, the name of the
author, and the software used to format the manuscript.

les of the text.

les should be separate from the text, and not contain the caption
text, but include callouts like (a), (b).

le names should be lower case and named g1.eps, g2.tif, etc.

ted for author photographs
only). The provided resolution needs to be at least 600 dpi (400 dpi for
color). Additional instructions for preparing, verifying the quality, and
submitting graphics are available via http://www.ieee.org/publications_
standards/publications/authors/authors_journals.html.

Open Access.
This publication is a hybrid journal, allowing either Traditional manuscript

submission or Open Access (author-p
submission, if you choose to have your manuscript be an Open Access article,
you commit to pay the discounted $1,750 OA fee if your manuscript is accepted
for publication in order to enable unrestricted public access. Any other applica-
tion charges (such as over- length page charge and/or charge for the use of color
in the print format) will be billed separately once the manuscript formatting is
complete but prior to the publication. If you would like your manuscript to be
a Traditional submission, your article will be available to quali ed subscribers
and purchasers via IEEE Xplore. No OA payment is required for Traditional
submission.

Page Charges.
Voluntary Page Charge: ptance of a manuscript for publication, the

author(s) or his/her/their company or institution will be asked to pay a charge
of $110 per page to cover part of the cost of publication of the rst four pages
that comprise the standard length.
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