
[VOLUME 31 NUMBER 4 JULY 2014]

Contents    |    Zoom in    |    Zoom out    Search Issue    |    Next PageFor navigation instructions please click here    

Contents    |    Zoom in    |    Zoom out    Search Issue    |    Next PageFor navigation instructions please click here    



Plastic
Ceramic

$199
from ea.(qty.  1000)DC  - 20 GHz2W ATTENUATORS

Ultra Small 2x2mm

RoHS compliant

Save PC board space with our new tiny 2W fixed value 
absorptive attenuators, available in molded plastic or high-rel 
hermetic nitrogen-filled ceramic packages. They are perfect 
building blocks, reducing effects of mismatches, harmonics, and 
intermodulation, improving isolation, and meeting other circuit 
level requirements. These units will deliver the precise attenuation 
you need, and are stocked in 1-dB steps from 0 to 10 dB, and 
12, 15, 20 and 30 dB.

The ceramic hermetic RCAT family is built to deliver 
reliable, repeatable performance from DC-20GHz under 
the harshest conditions. With sample prices starting at 

only $4.95 ea. (qty. 20), these units are qualified to meet 
MIL requirements including vibration, PIND, thermal shock, 
gross and fine leak and more, at up to 125°C!

The molded plastic YAT family uses an industry proven, high 
thermal conductivity case and has excellent electrical performance 
over the frequency range of DC to 18 GHz, for prices as low as 
$2.99 ea. (qty. 20). 

For more details, just go to minicircuits.com – place your   
order today, and you can have these products in your hands 

as soon as tomorrow!

http://www.modelithics.com/mvp/Mini-Circuits/

FREE Simulation Models!

515 rev D

Mini-Circuits®

www.minicircuits.com    P.O. Box 35 166, Brooklyn, NY 11235-0003   (718) 934-4500   sales@minicircuits.com

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

______________

http://www.qmags.com/clickthrough.asp?url=www.minicircuits.com&id=18923&adid=PCOVER 2A1
http://www.qmags.com/clickthrough.asp?url=http://www.modelithics.com/mvp/Mini-Circuits/&id=18923&adid=PCOVER 2A2
http://www.qmags.com/clickthrough.asp?url=www.minicircuits.com&id=18923&adid=PCOVER 2A3
mailto:sales@minicircuits.com
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [1] JULY 2014

Digital Object Identifier 10.1109/MSP.2014.2311859

15 FROM THE GUEST EDITORS
Joachim Ender, Moeness G. Amin, 
Gianfranco Fornaro,
and Paul A. Rosen

16 WIDE-ANGLE SYNTHETIC 
APERTURE RADAR IMAGING
Joshua N. Ash, Emre Ertin,
Lee C. Potter, and Edmund G. Zelnio

27  SPARSITY-DRIVEN SYNTHETIC 
APERTURE RADAR IMAGING
Müjdat Çetin, Ivana Stojanović,  
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[from the EDITOR]
Abdelhak Zoubir

Editor-in-Chief 
zoubir@spg.tu-darmstadt.de

http://signalprocessingsociety.org/
publications/periodicals/spm 

O
n 10 April 2014, I received 
an e-mail from Petar M. 
Djuric ́ that was sent to all 
members of the IEEE Sig-
nal Processing Society 

(SPS), with the subject title, “The Power of 
a Name” [1]. The message provides a brief 
description of the evolution of the Society 
before suggesting that the time has come 
for another Society name change.  

At the Board of Governors meeting in 
December 2013, a committee was formed 
(Philip Chou, Walter Kellermann, Antho-
ny Kuh, Anna Scaglione, and Petar M. 
Djuric ´) to explore the possibility of chang-
ing the Society’s name, an issue that has 
been a topic of discussion for quite a long 
time. But what is the motivation for such 
a change? 

There has been a series of columns and 
editorials published in IEEE Signal Pro-
cessing Magazine (SPM) over the last 
decade that have addressed the important 
issue of what signal processing conveys for 
a layperson [2], [3]. More recently, in the 
new SPM column, “Reflections,” José M.F. 
Moura et al. shared their “reflections” on 
this thought-provoking topic, i.e., signal 
processing inside [4]. 

There is no doubt in my mind that we 
must do something to increase awareness 
about our profession among the public at 
large. The fundamental question we 
should ask is whether a name change 
alone would achieve this goal. Clearly, a 
change of name would help, but to what? 
The e-mail Petar M. Djuric ´ sent on behalf 
of the committee can be found in [1]. It 
invites all SPS members to provide feed-

back on this topic and offers suggestions 
for some new names. 

I took the time to read the many com-
ments made by colleagues, and I found the 
exercise worthwhile. Some of the critics 
provide good arguments as to why the 
Society should stick with the name “Signal 
Processing.” One strong argument against 
a name change is that “The public (as a 
whole) has little awareness of what most 
professions really involve, or what they’re 
called. That is no reflection on the names 
or the crafts involved, and very clearly 
doesn’t matter…” The many in favor of a 
name change argue that they are “in favor 
of changing the name if the name chosen 
is broadening the domain of interest of 
SPS members in the sense of representing 
current (and eventually future) research 
and professional activities…” 

The page is still available for com-
ments, and we are interested in receiving 
feedback. So far, there seems to be interest 
in adding the word “Information” to “Sig-
nal.” It is the committee’s responsibility to 
evaluate the many comments provided 
and to draw conclusions.

My personal view is that a name change 
would help, indeed. More importantly, 
however, is to raise awareness about our 
profession among the laypeople. In my 
editorial in the May 2013 issue of SPM [5], 
I wrote, “My personal view is that we have 
to be more active in disseminating success 
stories of signal processing, not only to the 
decision makers, but also to the public at 
large.” One of the commentators in [1] 
wrote, “When people ask ‘What is SP?’ I say 
it is everything that goes on inside a smart-
phone and their eyes suddenly light up.” 

Our mandate is to increase awareness 
to the point where the public no longer 
questions what signal processing is. If we 

were to change the name, and the public 
still does not know what our profession 
involves, it would solidify what the observ-
er before wrote, “The public (as a whole) 
has little awareness of what most profes-
sions really involve.” This would not help 
the Society, and we would start the very 
same exercise years down the road. The 
real challenge is to actively promote our 
discipline so that just the mention of sig-
nal processing without any explanation 
would cause the public’s eyes to light up.

SPM is an outstanding vehicle to raise 
awareness among professionals in signal 
processing and among professionals in 
cognate areas through columns, forum, 
and the eNewsletter. It gives me great 
pleasure to introduce the new area editor 
(eNewsletter), Dr.-Ing. Christian Debes, 
whose mandate is to reshape the eNews-
letter in this new area of communication. 
He will replace Z. Jane Wang, whom I 
thank for her hard work as area editor and 
who will support SPM in her new role as a 
member of the Senior Editorial Board. 

REFERENCES
[1] P. M. Djuric ́. The Power of a Name. [Online]. Avail-
able: http://www.signalprocessingsociety.org/uploads/
email/power_of_a_name.html

[2] K. J. R. Liu, “Signal processing inside?” IEEE Sig-
nal Processing Mag., vol. 21, no. 5, p. 2, Sept. 2004.

[3] J. M. F. Moura, “What is signal processing?” IEEE 
Signal Processing Mag., vol. 26, no. 6, p. 6, Nov. 2009. 

[4] J. M. F. Moura, J. L. Flanagan, and N. S. Jayant, 
“The discipline of signal processing,” IEEE Signal 
Processing Mag., vol. 30, no. 6, pp. 174–176, Nov. 2013.

[5] A. M. Zoubir, “Dissemination of research findings: 
What role can we play?” IEEE Signal Processing Mag.,
vol. 30, no. 3, p. 2, May 2013. 
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Alex Acero 
2014–2015 SPS President

a.acero@ieee.org

At the Forefront in Technical Publications

T
he IEEE publishes nearly one 
third of the world’s technical 
literature in electrical engi-
neering, computer science, 
and electronics. This includes 

more than 154 transactions, journals, and 
magazines published annually. The IEEE 
Signal Processing Society (SPS) produces 
seven of those publications: IEEE Trans-
actions on Signal Processing, IEEE Sig-
nal Processing Magazine, IEEE Transac-
tions on Image Processing, IEEE Signal 
Processing Letters, IEEE Transactions on 
Audio, Speech, and Language Processing, 
Journal on Selected Topics on Signal Pro-
cessing and IEEE Transactions on Infor-
mation Forensics and Security.

Included in the tier-2 Society mem-
bership fee of US$35 a year, you receive 
electronic access to all seven of these 
publications. In 2013, these seven publica-
tions produced 20,052 pages, a significant 
increase over the 14,419 pages published 
in 2008.  

All of these IEEE journals are hybrid 
open access, meaning that authors of 
manuscripts accepted for publication are 
given the choice of paying to have their ar-
ticles made freely available to all readers. 
These open access papers go through the 
identical peer-reviewed quality standards 
as conventional articles. This mechanism 
is valuable for authors whose research was 
funded by a government grant that re-
quires open access publications. 

The SPS is the fourth-largest Society 
by membership and second in publishing 
volume. This is a huge enterprise that 
requires many authors submitting manu-
scripts, numerous volunteers reviewing 
them, and staff putting it all together. I 
would like to offer my most sincere “thank 
you” to all. For those of you who are 

experts in one of our published fields, we 
welcome your assistance in helping us 
review qualified papers.

While quantity is an important metric, 
quality is even more important. Quality is 
a multidimensional assessment evaluated 
with metrics such as timeliness and 
impact factor. Timeliness is measured as 
average time from submission to publica-
tion. The impact factor of a journal is the 
average number of citations received per 
paper published in that journal during the 
two preceding years. The IEEE is also 
using additional metrics to measure the 
stature of a journal in a field. 

The IEEE Periodicals Review Commit-
tee is tasked with ensuring quality, review-
ing all IEEE journals and magazines 
every five years. In 2014, it was our turn. 
This process started with a thorough 
report prepared by the Society’s vice pres-
ident of publications, publications board, 
and staff. In February, the Review Com-
mittee reviewed the reports and spent 
about 45-min per publication asking 
questions of the Society leadership and 
the publications’ editors-in-chief. Their 
overall feedback was quite positive. Many 
of our publications have an impact factor 
over “3,” while IEEE Transactions on Sig-
nal Processing ranks fifth in total cita-
tions and IEEE Signal Processing Maga-
zine has consistently been in the top five 
in impact factor. The average time from 
submission to publication across all our 
periodicals is under a year, with the fastest 
being about three months for IEEE Sig-
nal Processing Letters. The Review Com-
mittee was also complimentary of our 
publications processes, especially our 
recent policy of allowing papers in IEEE 
Signal Processing Letters to be presented 
at conferences.

In addition to our own publications, 
SPS manages IEEE Transactions on Multi-
media, and we cosponsor other periodicals 

covering topics such as cloud computing, 
big data, wireless communications, sen-
sors, life sciences, the Internet of Things, 
and much more. 

Reflecting the needs of our members in 
a fast-growing field, we have obtained 
approval for a new 2015 journal: IEEE 
Transactions on Computational Imaging.
The IEEE Engineering in Medicine and 
Biology, IEEE Circuits and Systems, and 
IEEE Geoscience and Remote Sensing 
Societies are participating with us in this 
new journal, which we will manage. 
According to its approved scope, “The 
IEEE Transactions on Computational 
Imaging will publish articles where com-
putation plays an integral role in the image 
formation process. Papers will cover all 
areas of computational imaging ranging 
from fundamental theoretical methods to 
the latest innovative computational imag-
ing system designs. Topics of interest will 
include advanced algorithms and mathe-
matical techniques, model-based data 
inversion, methods for image and signal 
recovery from sparse and incomplete data, 
techniques for nontraditional sensing of 
image data, methods for dynamic informa-
tion acquisition and extraction from imag-
ing sensors, software and hardware for 
efficient computation in imaging systems, 
and highly novel imaging system design.” I 
encourage all interested authors to submit 
high-quality papers to this journal.

Unwilling to rest on our laurels, I con-
tinue to appreciate your suggestions for 
further improving our publications pro-
cesses and content.

[SP]
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IEEE SIGNAL PROCESSING MAGAZINE [8] JULY 2014

Top Downloads in IEEE Xplore

T
his issue’s “Reader’s Choice” 
column contains a list of 
articles published by the 
IEEE Signal Processing 
Society (SPS) that ranked 

among the top 100 most downloaded 
IEEE Xplore articles through December 
2013. The table below contains the cita-
tion information for each article and the 
rank obtained in IEEE Xplore. The 

highest rank obtained by an article in 
this time frame is indicated in bold. Your 
suggestions and comments are welcome 
and should be sent to Associate Editor 
Michael Gormish (gormish@ieee.org).

Digital Object Identifier 10.1109/MSP.2014.2312184

Date of publication: 13 June 2014

TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS ABSTRACT

RANK IN IEEE TOP 100  
(2013)

N TIMES
IN TOP

100 (SINCE
JAN 2011)DEC NOV OCT SEP AUG JUL

A TUTORIAL ON PARTICLE FILTERS
FOR ONLINE NONLINEAR/NON-
GAUSSIAN–BAYESIAN TRACKING
Arulampalam, M.S.; Maskell, S.;
Gordon, N.; Clapp, T.;
IEEE Transactions on Signal Processing
vol. 50, no. 2, 2002, pp. 174–188

This paper reviews optimal and suboptimal 
Bayesian algorithms for nonlinear/
non-Gaussian tracking problems, with a 
focus on particle filters. Variants of the 
particle filter are introduced within a 
framework of the sequential importance 
sampling (SIS) algorithm and compared 
with the standard EKF.

8 6 25 8 4 4 33

AN INTRODUCTION TO
COMPRESSIVE SAMPLING
Candes, E.J.; Wakin, M.B.
IEEE Signal Processing Magazine
vol. 25, no. 2, Mar. 2008, pp. 21–30

This article surveys the theory of 
compressive sampling, also known as 
compressed sensing or CS, a novel 
sensing/sampling paradigm that goes 
against the common wisdom in data 
acquisition.

10 11 10 15 13 19 35

IMAGE QUALITY ASSESSMENT:
FROM ERROR VISIBILITY TO
STRUCTURAL SIMILARITY
Wang, Z.; Bovik, A.C.; Sheikh, H.R.; 
Simoncelli, E.P.
IEEE Transactions on Image Processing  
vol.13, no. 4, 2004, pp. 600–612

This paper introduces a framework for 
quality assessment based on the 
degradation of structural information. 
Within this framework a structure similarity 
index is developed and evaluated. MATLAB 
code available. 

28 24 33 37 38 30 15

IMAGE SUPER-RESOLUTION VIA
SPARSE REPRESENTATION
Yang, J.; Wright, J.; Huang, T.S.;  
Ma, Y.
IEEE Transactions on Image Processing
vol. 19, no. 11, 2010, pp. 2861–2873

This paper presents an approach to 
single-image superresolution, based upon 
sparse signal representation of low- and 
high-resolution patches.

31 44 51 51 82 68 7

SUPER-RESOLUTION IMAGE
RECONSTRUCTION: A TECHNICAL
OVERVIEW
Cheol Park, S.; Kyu Park, M.; Gi Kang, M.
IEEE Signal Processing Magazine
vol. 20, no. 3, 2003, pp. 21–36

This article introduces the concept of super 
resolutions (SR) algorithms and presents a 
technical review of various existing SR 
methodologies and models the low-
resolution image acquisition process.

34 45 90 16
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TITLE, AUTHOR, PUBLICATION YEAR
IEEE SPS PUBLICATIONS

ABSTRACT RANK IN IEEE TOP 100  
(2013)

N TIMES
IN TOP

100 (SINCE
JAN 2011)DEC NOV OCT SEP AUG JUL

COMPRESSIVE SENSING
[LECTURE NOTES]
Baraniuk, R.G.
IEEE Signal Processing Magazine 
vol. 24, no. 4, 2007, pp. 118–121

This lecture note presents a new method 
to capture and represent compressible 
signals at a rate significantly below the 
Nyquist rate. This method, called 
compressive sensing, employs nonadaptive 
linear projections that preserve the 
structure of the signal; the signal is then 
reconstructed from these projections using 
an optimization process.

39 58 60 95 71 9

SCALING UP MIMO: OPPORTUNITIES
AND CHALLENGES WITH VERY LARGE
ARRAYS  
Rusek, F.; Persson, D.; Buon Kiong L.; 
Larsson, E.G.; Marzetta, T.L.; Edfors, O.; 
Tufvesson, F.
IEEE Signal Processing Magazine 
vol. 30, no. 1, 2013, pp. 40–60

The more antennas the transmitter/receiver 
is equipped with, and the more degrees of 
freedom that the propagation channel can 
provide, the better the performance in 
terms of data rate or link reliability. This 
article quantifies the relibality and 
acheivable rates.

43 75 73 10

THE DISCIPLINE OF SIGNAL PROCESSING: 
PART 2 [REFLECTIONS]  
Kwasinski, A; Kaveh, M.; Deng, L.
IEEE Signal Processing Magazine
vol. 31, no. 1, 2014, pp. 157–159

This article discusses the field of signal 
processing engineering and reports on 
applications and technologies supported 
by its use.

62 1

IMAGE PROCESSING USING SMOOTH
ORDERING OF ITS PATCHES 
Ram, I.; Elad, M.; Cohen, I.
IEEE Transactions on Image Processing
vol. 22, no. 7, 2013, pp. 2764–2774

This paper extracts overlapping image 
patches, orders these patches and applies 
one dimensional filtering to the reordered 
set of pixels. These techniques are applied 
to denoising and inpainting.

63 90 36 12 9 15 7

IMAGE INPAINTING: OVERVIEW
AND RECENT ADVANCES  
Guillernot, C.; Le Meur, O.
IEEE Signal Processing Magazine
vol 31. no. 1, 2014, pp. 127–144

A survey of the processes of restoring 
missing or damaged areas in an image.

94 1

VECTOR-VALUED IMAGE PROCESSING
BY PARALLEL LEVEL SETS  
Ehrhardt, M.J.; Arridge, S.R.
IEEE Transactions on Image Processing
vol. 23, no. 1, pp. 9–18

This paper considers the components of an 
image as a vector. By minimizing large 
angles, parallel level sets are obtained and 
used for demosaicking.

98 1

ROBUST PART-BASED HAND GESTURE
RECOGNITION USING KINECT SENSOR  
Ren, Z.; Yuan, J.; Meng, J.; Zhang, Z.
IEEE Transactions on Multimedia
vol. 15, no. 5, 2013, pp. 1110–1120

This paper focuses on building a robust 
part-based hand gesture recognition 
system using Kinect sensor. To handle the 
noisy hand shapes obtained from the 
Kinect sensor, we propose a novel distance 
metric, finger-Earth mover’s distance, to 
measure the dissimilarity between hand 
shapes.

93 1

A GENERALIZED MEMORY
POLYNOMIAL MODEL FOR DIGITAL
PREDISTORTION OF RF POWER
AMPLIFIERS
Morgan, D.R.; Ma, Z.; Kim, J.;
Zierdt, M.G.; Pastalan, J.
IEEE Transactions on Signal Processing
vol. 54, no. 10, 2006, pp. 3852–3860

This paper reviews predistortion models 
based on memory polynomials and 
proposes a new generalized memory 
polynomial with results measured using a 
real 30-W, 2-GHz power amplifier.

1 1
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John Edwards
[special REPORTS]

IEEE SIGNAL PROCESSING MAGAZINE [10] JULY 2014 1053-5888/14/$31.00©2014IEEE

Signal Processing: On the Edge of Astronomy’s New Frontier

D
igital signal processing 
(DSP) plays several impor-
tant roles in modern radio 
astronomy, such as pro-
cessing data to create high-

resolution radio images, isolating weak 
emissions from celestial sources, and 
reducing distortions in incoming sig-
nals. DSP can also manage beam-
forming, a complex process that allows 
radio signals to be received from across 
the sky from any direction, and even 
multiple directions simultaneously.

Many astronomy projects are now 
relying on advanced signal processing 
techniques to probe the edges of the uni-
verse to extend humanity’s understand-
ing of its origins, scan the skies to image 
exoplanets—worlds outside our solar 
system—and investigate many of the 
major outstanding questions in astron-
omy. Here’s a look at two of them.

MORE ANTENNAS, MORE RECEIVERS
Radio astronomy is currently undergoing 
a fundamental change, perhaps its most 
important development since amateur 
radio operator and pioneer radio astrono-
mer Grote Reber built the first parabolic 
dish radio telescope (measuring 9 m in 
diameter) in his Illinois backyard in 1937. 
In the years that followed, very large tele-
scope dishes became icons of radio 
astronomy research.

Now, however, radio astronomy is 
moving toward antennas systems concen-
trated among individual receivers. The 
2010 Low Frequency Array (LOFAR) proj-
ect, for example, uses approximately 50 
stations, each consisting of at least 96 low 
band antennas and 768 high band anten-
nas concentrated among approximately 

48 receiving stations. Extending this 
approach even further is the Square Kilo-
metre Array (SKA), planned for full oper-
ation by 2030.

SKA’s designers anticipate deploying 
somewhere in the neighborhood of 50,000 
networked receivers and perhaps as many 
as 2.5 million antennas. Many of the 
receivers will be located inside an inner 
core measuring approximately 100 km in 
length. Some receivers, however, will be 
arranged into a set of spiral arms measur-
ing 1,500 km in length. With the help of 
interferometry signal processing, a collec-
tion of relatively small radio telescopes 
will be able to operate as single, gigantic 
“virtual” instrument possessing a maxi-
mum reception area equal to the com-
bined area of the individual dishes (which 
for SKA, as its name indicates, is a square 
kilometer) (Figure 1). The system’s base-
line—a measure of the telescope’s resolv-
ing power—will be equal to the distance 
between the furthest individual compo-
nents, roughly 200 km. “We have about 
350 people involved in the current phase, 
the preconstruction phase, and we have a 
huge amount of interest from industry, 
from signal processing companies—com-
panies that make field-programmable gate 
arrays (FPGAs), for example,” says Tim 
Cornwell, SKA’s architect.

SKA will be built in the southern 
hemisphere with cores in South Africa 
and Australia, locations where the view 
of the Milky Way Galaxy is best and radio 
interference is less of a problem. Upon 
completion, SKA promises to be approxi-
mately 50 times as sensitive as existing 
radio telescopes and capable of surveying 
the sky about 10,000 times faster. The 
telescope is also expected to generate a 
torrent of data—up to 160 Gb/s second 
from each antenna. Much of that infor-
mation will be used to help researchers 

find answers to some of the biggest out-
standing questions in astronomy. SKA is 
being designed, for example, to help 
astronomers search for gravitational 
waves, the ripples in the structure of 
space–time predicted by Albert Einstein’s 
general relativity. “If you have a large 
number of pulsars all over the sky, you 
can use them to look for gravitational 
waves,” Cornwell shares. “That’s one of 
the projects that will be done, a survey of 
the entire sky looking for pulsars.”

The system also promises to allow 
more astronomers to join the hunt for 
exoplanets, using an investigative tool 
with far greater resolving power than 
existing radio telescopes. Even more tan-
talizing is the prospect of using SKA to 
look back in time to the universe’s so-
called Dark Ages—a period extending up 
to some 400 million years after the Big 
Bang—an era of darkness that existed 
before the first stars and galaxies were 
formed and about which very little is 
directly known.

WHAT’S OLD IS NEW
Utilizing interferometry as a technique 
to enhance a radio telescope’s resolving 
power isn’t a new idea. Many existing 
radio telescopes, including LOFAR, are 
integrated into such networks. SKA, 
however, takes the approach to a new 
level. Planners envision a Very Long 
Baseline Interferometry Network (VLN) 
that will combine telescopes separated 
by thousands of kilometers to form a 
radio interferometer with resolution 
comparable to a single dish measuring 
thousands of kilometers in diameter. 
“Digital signal processing will enable us 
to collect the very large amount of data 
that we need and to process it to get all 
the information out,” Cornwell notes. 
“Radio astronomy has always been at the 
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forefront of digital signal processing 
because of this very factor.”

Interferometry is used to obtain high-
resolution information about a particular 
radio source. “At its heart, interferometry 
is just a statistical technique,” Cornwell 
explains. “The noise signals at two or 
more antennas are correlated via one of a 
number of techniques (mostly digital/
computer now).” If the signals are totally 
correlated then there must be a small 
source on the sky producing the same 
signal in different antennas. “The differ-
ence in time between the signal landing 
at each telescope gives information about 
the location of the radio source on the 
sky,” Cornwell says. If the correlation 
shows more complex behavior then the 
source itself must be complicated. “A two-
dimensional inverse Fourier transform 
(FT) will produce and image of the 
source,” Cornwell remarks.

Data from each SKA telescope will be 
transmitted to a system central correlator 
linked to high-speed computers that are 
designed to merge signals from multiple 
telescopes. The correlator will be situated 
near the array’s core, where the data will 
be combined and synchronized. Filters 
will then be used to separate the radio fre-
quency signals required for astronomy 
from any interfering radio frequency sig-
nal that would contaminate the data. 

“Basically in radio, if you want to see 
objects at a very great distance, you have 
to deal with very faint signals and you 
have to collect a lot of those signals,” 
Cornwell says. “In modern processing, 
we find that to get high-accuracy infor-
mation out, we have do DSP,” he adds.

Data from the correlator will be sent 
to another location for processing. “In 
South Africa one option would be in 
Cape Town,” Cornwell says. “In Cape 
Town there will be a supercomputer, and 
it will take all of this data and make an 
image from the information over the 
region you’re looking at.”

Images will also have to be stored 
inside a massive database, a system that 
has yet to be developed. “The astronomer 
will connect to the archive and download 
the image and look at it and do astrophys-
ics,” Cornwell says “By the time we’re up 
and running on our network internally, 

we’ll have something like an order of 
magnitude more data flowing than is on 
the entire global Internet today.”

SKA will also utilize beamforming, 
the critical signal processing technique 
used in radio astronomy to observe radio 
signals from specific regions of the sky. 
While radio dishes mechanically turn to 
observe an area of sky, SKA’s aperture 
array antennas will have no moving 
parts, so the beams must be electroni-
cally steered to allow the observation of 
specific sky regions.

SKA will also use signal processing to 
automatically detect the repetitive 
pulsed signal of objects such as pulsars 
buried in the data. Besides pulsars, the 
SKA will be able to automatically detect 
transient astronomical events, including 
supernovae, gamma-ray bursts, and 
microlensing events, which can tempo-
rarily brighten objects in the far reaches 
of the universe due to the gravity of a 
foreground object acting as a lens. Both 
methods of autodetection are time-
frequency-based observations and 
require high time resolution data.

Cornwell notes that SKA will chal-
lenge signal processing algorithm devel-
opment in two key areas. Faster and 
better ways will have to be developed to 
make the high dynamic range images 
required for SKA science (a ratio of 
10^6:1 to 10^7:1). Effective radio inter-
ference mitigation algorithms will also 
be needed to enable observations across 
wide segments of the radio spectrum. 
The algorithms used will need to be as 

efficient as possible to process the huge 
amounts of data expected to pour 
through the system.

SKA’s signal processing will require 
exceptionally high-speed computer sys-
tems that must meet budget, processing, 
and thermal requirements. Four micro-
processing platforms capable of support-
ing signal processing are currently being 
developed and tested by the astronomy 
engineering community as potential 
solutions: general-purpose processors, a 
graphics processing unit, FPGAs, and an 
application-specific integrated circuit.

Cornwell says he spends a great deal 
of time thinking about the massive 
amounts of data that SKA will generate. 
“Processing that involves going from the 
data that’s emitted from the correlator 
through to images—that’s very complex 
processing, and for SKA 1 [the project’s 
first phase] it requires a supercomputer 
running at about 100 petaflops,” he says. 
“I think that’s going to be one of the real 
challenges of this project: to get our 
methods, our algorithms, and our soft-
ware to work on that scale.”

EXOPLANET EXPLORATION
Last year, with the help of a basic signal 
processing technique, a team of Massa-
chusetts Institute of Technology (MIT) 
researchers announced that they had dis-
covered an Earth-sized exoplanet, 
Kepler 78b, a world that orbits around its 
host star in only 8.5 hours—one of the 
shortest orbital periods ever detected. The 
planet has an orbital radius only about 

[FIG1] An artist’s rendition of the SKA dish arrays in operation at night. Using a technique 
known as interferometry, they will be able to combine their data to create an image that 
would be the same as one created by a much larger single aperture instrument. (Photo 
courtesy of the SKA Organisation.)
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[special REPORTS]continued

three times the radius of the star. Such 
close proximity to its host results in an 
estimated surface temperature as high as 
3,000 °K, or more than 5,000 °F. “Some 
people have taken to calling these really, 
really close-in Earth-sized planets ‘lava 
worlds,’ even though we don’t know what 
they’re made of, or what their surfaces 
look like,” says Josh Winn, an associate 
professor of physics at MIT (Figure 2) and 
a member of the team led by physics pro-
fessor emeritus Saul Rappaport.

To discover Kepler 78b, the team 
pored through more than 150,000 stars 
monitored by the Kepler Telescope, a 
space observatory launched by NASA in 
2009 to discover Earth-like planets orbit-
ing other stars. The goal for the MIT 
researchers was to look for Earth-sized 
planets with very short orbital periods. 
To find such worlds, the team scrutinized 
light data from thousands of stars, look-
ing for dips indicating that a planet may 
be periodically passing in front of a star.

Yet other types of periodic stellar phe-
nomena can also affect light emission, 
such as a star eclipsing another star. To 
detect only signals specifically associated 
with actual planets, physics graduate stu-
dent Roberto Sanchis-Ojeda searched 
through the set of periodic light curves 

looking for frequent smaller dips in the 
data midway between the planetary tran-
sits. “We take kind of a shortcut,” Winn 
says. “We look for the planets that happen 
to be eclipsing their stars so that, as they 
go around, their orbit is lined up with the 
Earth just so, and as the exoplanet’s orbit 
takes it right in front of the star, it blocks 
a tiny amount of its light and we can reg-
ister that dimming.”

Still, detecting tiny dips among tens 
of thousands of light curves is lengthy, 
painstaking work. To accelerate the pro-
cess, the researchers turned to signal 
processing in the form of an FT search. 
“Signal processing is very much a part of 
what we do,” Winn says.

The standard algorithm for transit 
searching is the box least squares (BLS) 
algorithm, which generally offers the 
greatest efficiency for transits with a 
duration that is short in comparison to 
the orbital period. Yet BLS also presents 
some drawbacks. One critical problem is 
that the BLS spectrum includes peaks at 
multiples of the orbital period and at 
multiples of the orbital frequency, com-
plicating attempts to determine the cor-
rect period. Winn notes that BLS 
spectrum computation is basically a 
time-domain method. “It is essentially a 
matched filter for the transit signal (an 
inverse boxcar function),” he explains. “A 
detection statistic is computed after 
searching a range of candidate orbital 
periods, transit phases, and transit 
depths.” The researchers also found that 
the standard BLS algorithm generates 
spurious signals at periods that are inte-
ger multiples of the Kepler sampling 
period of close to half an hour.

Winn credits Rappaport with suggest-
ing the Fourier approach. “He was really 
the one who had the insight that we 
could get much further just by using the 
plain old FT as opposed to the very com-
plicated wavelet-based matched filter,” 
Winn says. “He’s retired, but he’s spend-
ing his retirement finding planets with 
Kepler data.”

The spurious peaks often lead to sig-
nificant noise background in searches for 
planets with periods less than half a day. 

While a method exists to partially sup-
press the spurious peaks, the researchers 
felt that the introduction of an additional 
step would complicate the search. The 
team was also reluctant to follow in the 
footsteps of several other exoplanet re-
search projects that scoured the Kepler 
database using a BLS algorithm.

Winn and his colleagues were able to 
take advantage of the fact that FTs can be 
computed so quickly that it was practical 
to repeat the search of the entire data-
base many times while the code was 
being developed. Although the FT of a 
transit signal has power that is divided 
among several harmonics, the number of 
significant harmonics below the Nyquist 
limit declines as the orbital period is 
decreased. The FT is therefore quite sen-
sitive to the shortest-period planets.

According to the researchers, the 
ratio of transit duration to period, or 
duty cycle, varies as P−2/3 (where P is the 
planet’s orbital period) and is as large as 
20% for ultra-short-period planets, in 
which case the efficacy of the FT search 
is nearly equivalent to that of the BLS. 
Additionally, it’s rather simple to detect a 
peak in the FT and its equally spaced 
harmonics, either by means of an auto-
mated algorithm or by eye. Meanwhile, 
the absence of any subharmonics is a 
useful and important property of a true 
planet transit as opposed to a back-
ground blended binary.

In retrospect, Winn is pleased that 
taking a seemingly counterintuitive 
approach led the researchers to an 
important discovery. “The nice thing 
about the FT is that it’s as simple as any-
thing that you learn in your first signal 
processing class in college, and we’re 
able to compute them extremely 
quickly,” he says. “Even though it’s not 
what the orthodox procedure would be, 
it turned out to work really well because 
it was so fast and so simple, and we could 
really tune it to the specific problem.”

AUTHOR
John Edwards (jedwards@johnedwards
media.com) is a technology writer based 
in the Phoenix, Arizona area.

[FIG2] Josh Winn, associate professor of 
physics at MIT, discovered an exoplanet 
with the help of a basic signal processing 
technique. (Photo courtesy of MIT.)
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D
espite barriers relating to 
regulation, patient accep-
tance, and privacy concerns, 
market researchers estimate 
the growth of the mobile 

health-care market at US$9 billion in 
2014. Looking ahead, analysts are project-
ing growth in the mHealth sector at a 
compound annual growth rate of nearly 
40% over the next six years. Equally 
impressive, mHealth has the potential to 
dramatically reduce the cost of health care.

But the sector has become a moving 
target, with rapid changes in mobile device 
technology and technical standards with 
design cycles that are longer than most 
wireless products, mainly due to regulatory 
approval requirements. Then there’s the 
market itself—it’s becoming more con-
sumer centric, intensifying competition 
among the market’s incumbent players.

One of the most influential organiza-
tions in the field is the Continua Health 
Alliance, an international nonprofit organi-
zation enabling end-to-end, plug-and-play 
connectivity of personal health devices and 
services with more than 220 member com-
panies, including medical device, telecom, 
health tech service, and health-care indus-
try leaders, working to develop new stan-
dards in medical electronics and take 
advantage of existing standards. While not 
formally a standards organization itself, 
Continua also works to identify and resolve 
gaps in standards to ensure that mHealth 
devices are interoperable.

The alliance has been a major contrib-
utor to technical standards developed by 
the IEEE Standards Association (IEEE-
SA), including the development of the 
IEEE 802.11 family of standards, and has 

worked with the Wi-Fi Alliance to facilitate 
and promote the adoption of Wi-Fi tech-
nology in connected health applications. 
Since its approval as a formal standard, 
802.11 has become the dominant wireless 
area network technology, while Bluetooth, 
ZigBee, and near-field communications 
(NFCs) continue to gain market share in 
mHealth products.

For this second in a series of Q&A fea-
tures for IEEE Signal Processing Maga-
zine (SPM), we talked to Michael Kirwan 
(Figure 1), technical operations director 
of Continua, about its relationship with 
the IEEE-SA, its collaboration with other 
health organizations, and changes in its 
new design guidelines for mHealth origi-
nal equipment manufacturers. 

IEEE SPM: You recently signed an agree-
ment to collaborate with other health 
industry organizations. What’s that about? 

Michael Kirwan: Continua recently 
partnered with the newly formed Personal 
Connected Health Alliance (PCHA). This is 
a collaboration with Continua, the 
mHealth Summit, and Healthcare Infor-
mation and Management System Society 
(HIMSS) to establish a global nonprofit al-
liance representing the consumer voice in 
personal connected health. PCHA will pro-
mote personal connected health solutions 
featuring interoperable, plug-and-play de-
vices and systems, such as mhealth tools, 
remote monitoring devices, and sensors. 
Each member organization brings its own 
perspective to the collaboration, but this 
will strengthen Continua’s international 
expansion efforts. The Continua brand is 
unchanged. Our vision and mission re-
main the same, with the same processes, 
events, and working groups. We will con-
tinue to focus on standards.

We have also signed a strategic agree-
ment with IEEE Standards to help 

accelerate and broaden the adoption of 
globally relevant standards-based tech-
nologies for the health-care arena. IEEE 
Standards developed the IEEE 11073 
family of standards designed for the 
entire health-care continuum for per-
sonal health device communications. The 
collaboration follows the U.S. Food and 
Drug Administration (FDA) announce-
ment in November 2013 that it recog-
nized the importance of interoperability 
in standards and published what it called 
its “final guidance” for developers of 
mobile medical devices last year in Sep-
tember. The agency said it will oversee 
apps that function like medical devices, 
but it does not expect manufacturers to 
submit premarket review applications or 
to register and list their apps with the 
FDA. It also listed 25 standards that help 
support medical device interoperability, 
including 12 IEEE 11073 standards.

IEEE SPM: Will the PCHA have any 
influence on the development of IEEE 
11073 standards updates?

Kirwan: Absolutely. Continua mem-
bers are also members of the IEEE Stan-
dards working groups that developing 

Health Alliance Boosts Influence in Standards Development

Ron Schneiderman

Digital Object Identifier 10.1109/MSP.2014.2315332

Date of publication: 13 June 2014  

[FIG1] Michael Kirwan is the technical
operations director of the Continua Health 
Alliance. (Photo courtesy of the Continua 
Health Alliance.)
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[special REPORTS]continued

these standards. Of course, other organi-
zations are involved with the IEEE-SA, 
such as universities, that are not mem-
bers of Continua. 

IEEE SPM: You publish Continua 
Design Guidelines every year to facili-
tate the interoperability and efficient 
use of smartphones and tablets for con-
nected health. What can we expect in 
the newest version of the guidelines?

Kirwan: Going forward, we’re now 
working on what we refer to internally as 
Genome. This will be our 2015 version, 
and it will add additional device special-
ization from IEEE Standards, and addi-
tional functionality,  along with 
improvements to the existing guidelines 
as well. The guidelines also include new 
initiatives, such as NFCs in smartphones, 
the adoption of a RESTful (RESTful, or 
“representational state transfer,” is gener-
ally described as the underlying architec-
ture for the Web. Focusing on data 
elements in its construction, it has been 
used to develop Web services) style archi-
tecture to better engage app developers, 
and SMS-based capability, which can 
wake up a device to receive data. Conti-
nua requires that anything in our guide-
lines matches up with IEEE standards.

The Continua Design Guidelines have 
been adopted by the International Tele-
communications Union (ITU) and have 
been translated into six different lan-
guages. The ITU has given final approval of 
a new standard, Recommendation ITU-T 
H.810, that is now part of the Continua 
Design Guidelines. As a next step, Conti-
nua will submit testing specifications for 
ITU-T H.810 for approval by ITU-T’s Study 
Group 16. This will allow devices to be 
tested for conformance to the standard.

The guidelines specifically focus on 
plug-and-play connectivity across hubs 
(a common connection point for 
devices in a network), local area net-
works, personal area networks, wide 
area network interfaces, and health 
records networks. Continua certifica-
tion indicates that a mobile device can 
communicate simply and securely with 
any other Continua certified product 
across networks as well as with health 
records networks.

IEEE SPM: Other than the IEEE Stan-
dards Association and ITU, do you work 
with any other organizations involved 
in standards development?

Kirwan: One is the Bluetooth Special 
Interest Group (SIG). I work with them 
almost daily. I also work with the ZigBee 
Alliance, the NFC Forum, the USB group 
on occasion, and others.

IEEE SPM: Who has access to the Con-
tinua Design Guidelines?

Kirwan: It’s free from Continua. And 
it’s free to the ITU. All you have to do is 
tell us who you are and we’ll send you a 
copy through a link over the Internet.

IEEE SPM: Do you see any technology 
bottlenecks in the health-care industry?

Kirwan: Regulation is often an issue. 
We have a regulatory work group, and we 
weren’t getting enough guidance from 
the FDA, and then last year it came out 
with its “final guidance” for developers of 
mobile medical devices, giving IEEE stan-
dards recognition that its 11,073 stan-
dards are relevant to interoperability of 
medical devices, and how apps should be 
treated on mobile phones.

Another area we worked on for some 
time was the shift from an earlier version 
of Bluetooth that Continua had adopted, 
which was a health device profile standard 
by the Bluetooth SIG that was difficult for 
some companies to implement. The SIG 
has since switched from that to what is 
now Bluetooth Low Energy that Continua 
has adopted and included in its design 
guidelines. Everyone, including the IEEE, 
is now on board with the new [Bluetooth] 
standard, and companies are now design-
ing their products to that standard. We’re 
also working with Google directly on 
Android to try to get them to support Con-
tinua standards.

IEEE SPM: What’s the impact of “big data” 
technology on the health-care industry?

Kirwan: Our job is to get the data. 
Without Continua, you’re stuck in propri-
etary channels. You’re not going to 
achieve big data that way. The way you 
achieve big data is by making your blood 
pressure cuff work with everything, and 
to go into every manufacturer’s back-end 

system, or in the cloud. You have to do 
that as a standard, and you can do that 
with Continua. Then, you can have multi-
ple blood pressure cuffs, produced by 
multiple manufacturers, located around 
the world, sending data to multiple 
mobile devices.

IEEE SPM: The Internet of Things and 
machine-to-machine (M2M) technologies 
are getting a lot of attention in the indus-
try. Is sensor technology currently up to 
the task of meeting the requirements of 
mHealth, or so-called connected health, 
applications?

Kirwan: We’re working with the ITU 
on M2M. The ITU established a Focus 
Group on the M2M Service Layer early in 
January 2012 that would provide a cost-
efficient platform, and could be easily 
deployed. Continua is also a member of 
oneM2M [a global organization launched 
in 2012 by seven international standards 
development organizations, the Associa-
tion of Radio Industries and Business, 
the Telecommunications Technology 
Committee of Japan, the Alliance for 
Telecommunications Industry Solutions, 
the Telecommunications Industry Asso-
ciation of the United States, the China 
Communications Standards Association, 
the European Telecommunications Stan-
dards Institute, and the Telecommunica-
tions Technology Association of Korea], 
which is doing similar work and is prob-
ably a lot more interesting. oneM2M is 
expected to have its first [standards] 
release in July of this year. They’re devel-
oping a new architecture to help every-
one build their Internet of Things from 
apps to systems in a similar way. Conti-
nua is helping them create a model of 
what they should be developing in the 
future, which would eventually be 
turned into a formal standard.

IEEE SPM: Is Continua focusing on any 
one area at the moment?

Kirwan: In terms of standard develop-
ment activity, the clinical and personal 
health devices groups are the busiest right 
now. But most of our focus in the last year 

(continued on page 148)
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Recent Advances in Radar Imaging

R
adar imaging reaches back to 
the patent on synthetic aper-
ture radar (SAR) by John 
Wiley in the year 1954. From 
the early days of SAR when 

imaging was performed using photo-
graphic film technology, to modern times 
where enormous images can be formed 
on a single computer in practically no 
time with exquisite accuracy and resolu-
tion, there have been tremendous advanc-
es in the field. These advances have been, 
to some degree, motivated by the increas-
ing availability of high-quality SAR data 
from the ever-expanding fleet of interna-
tional airborne and spaceborne SAR sys-
tems in both the civilian and military 
sector. In the civilian sector alone, the Na-
tional Aeronautics and Space Administra-
tion’s (NASA’s) SEASAT in 1978, followed 
by the NASA shuttle imaging radars SIR-A,
SIR-B, and SIR-C, initiated a remarkable 
development of international radar mis-
sions including Canada’s RADARSAT mis-
sion, Japan’s Earth Resources Satellite 
(JERS) and Advanced Land Observing Sat-
ellite (ALOS) missions, Europe’s European 
Remote Sensing (ERS) and Environmen-
tal Satellite (ENVISAT), and NASA’s Shut-
tle Radar Topography mission (SRTM), as 
well as Germany’s TerraSAR-X satellite. 
These, in turn, have led to a new generation 
of missions with even greater sophistication 
in modes and operational characteristics. 
Airborne SAR test beds that offer even 
greater resolution and mode diversity 
often support the satellite programs. The 
multidecade time series of data these 
missions provide have inspired research-
ers to develop exciting new processing 
technologies for exploitation, which con-
tinue to evolve.

SAR systems are now capable of pro-
viding resolutions comparable to optical 
systems while operating in all weather and 
times, which are features of key impor-
tance for many applications. SAR data pro-
vide key information about the imaged 
area, unique and distinct from what opti-
cal systems can provide in that the SAR is 
sensitive to the electrical and roughness 
characteristics of the scene rather than its 
chemical properties. The ability to control 
the illumination source gives a range of 
diversity in observations—polarization, 
phase-time, and frequency dependence—
enabling broad applications including 
classification and change detection, for-
estry, soil characterization, monitoring of 
areas subject to natural and anthropo-
genic hazard, and many others.

Air- and space-based sensors that have 
been realized span frequencies extending 
from very high frequency to the upper mil-
limeter wave region, offering deep explora-
tion of scattering phenomenology and 
insights into the nature of targets and sur-
faces. Extended SAR capabilities, such as 
the Shuttle Radar Topographic mission 
cross-track interferometer, the TanDEM-X 
satellite pair and the Constellation of Small 
Satellites for the Mediterranean Basin 
Observation (COSMO)/SKYMED constella-
tion, have expanded applications of SAR in 
unique and important ways, including 
across/along track and repeat pass interfer-
ometry techniques for topographic map-
ping, velocity estimation of moving targets, 
and accurate deformation monitoring, as 
well as multiband operations and polari-
metric exploitation: options that add to 
the almost incredible improvements in 
geolocating fine-resolution images through 
precision data processing. Today’s SAR 
technology offers a cost-effective alterna-
tive to traditional techniques, capable of 
reaching accuracy and measurement 

density that are starting to be comparable 
to lidar systems while retaining synoptic 
view and global coverage advantages. 

This special issue of IEEE Signal Pro-
cessing Magazine (SPM) provides an over-
view of recent developments in SAR 
imaging and delineates potential research 
avenues for further progress in this area. It 
covers the relevant topics of high-resolu-
tion and multistatic SAR imaging, SAR 
imaging of complex scenarios and buried 
targets, SAR interferometry, SAR tomogra-
phy and polarimetric SAR, and multipath 
mitigation and exploitation in SAR. The 
intent is to provide readers with a breadth 
of topics in the theory and applications of 
SAR processing, capturing recent develop-
ments and highlighting new frontiers.

The first article by Ash et al. addresses 
the issue of overcoming limitations of tra-
ditional SAR imaging based on narrow-
band/narrow angle acquisition. It provides 
an overview of the methods used for wide-
angle SAR imaging and deals with prob-
lems related to anisotropic scattering and 
the deviation from point scattering assump-
tions and their effects on data interpretation 
and processing. 

Çetin et al. provide an overview of recent 
research on SAR imaging for increased re-
solvability of point scatterers, reduced speck-
le, proper segmentation, and robustness 
to limitations in data quality and quantity.

The article by Fornaro et al. focuses on 
the developments of SAR interferometry, 
which has enabled the monitoring of ground 
deformations with applications to natural 
hazards as in revealing seismic and volca-
nic risks and landslides and underground 
excavation/withdrawal. It also addresses 
the developments of SAR tomography that 
turns interferometric into multidimen-
sional (space–time) imaging methods. 

Digital Object Identifier 10.1109/MSP.2014.2312464
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dvances in radar hardware have enabled the sensing of 
ever-wider synthesized apertures. In this article, radar 
video—a sequence of radar images indexed on sub-

aperture—is discussed as a natural, convenient, 
and revealing representation to cap-

ture wide-angle scattering behavior of com-
plex objects. We review the inverse 
problem of recovering wide-angle 
scene reflectivity from synthetic 
aperture radar (SAR) mea-
surements, survey signal 
processing approaches for 
its solution, and intro-
duce a novel Bayesian es-
timation method. Exam-
ples from measured and 
simulated scattering data 
are presented to illustrate 
scattering behavior conve-
niently revealed by the SAR 
video framework. 

INTRODUCTION
Radar performs echo-location using a band-
pass signal by measuring time delays due to reflecting 
objects. This is illustrated in Figure 1, where the red curve 
shows the envelope of the echo. The echo provides a one-
dimensional projection of the three-dimensional (3-D) scene; 
points along concentric spheres collapse into a single position 
in the measurement. The radar bandwidth provides timing 
accuracy, and hence gives range resolution. To form a spatial 
map of scene reflectivity, the scene is viewed from a diversity of 
viewing angles; this is accomplished by moving the transmitter, 
here colocated with the receiver, to synthesize an aperture 

much larger than the antenna’s physical size. Measurement 
positions along a notional synthetic aperture are depicted by 
dots in Figure 1. A small diversity of viewing angles can provide 
significant spatial resolution; for example, for a 3-cm wave-

length, approximately 3° of azimuth suffices to 
achieve 1-ft resolution [1]. 

    Technological advances in digital 
hardware, radio frequency signal 

generation, and navigation have 
facilitated the use of ever-

larger synthetic apertures in 
airborne radars [2]–[5]. 
Wide-angle SAR may be 
defined as employing any 
synthesized aperture 
whose azimuthal angular 
extent exceeds the sector 

required for equal resolu-
tion in range and cross-

range. That is, a wide-angle 
aperture has extent exceeding 

/ ( )BWsin f2 2 c
1- ^ h  radians, where 

BW and fc  are the bandwidth and center 
frequency of the radar, in Hertz. However, 

reflector geometry, shadowing, and coherent scintillation 
cause scattering behavior that can be strongly dependent on view-
ing angle. With the scattering dependent not only on space, but 
also on viewing angle, measurement over a large aperture invites 
the question, “What is a wide-angle radar image?” In this tutorial 
article, the viewpoint is that SAR video, a map of reflectivity as a 
function of both space and viewing angle, is a natural signal pro-
cessing choice. An image product from SAR video is illustrated in 
Figure 2. The red circle on the left graphically depicts frequency-
domain radar measurements on a polar grid where radius corre-
sponds temporal frequency and angle corresponds to the 
azimuthal viewing angle. Simulated far-field echoes here are col-
lected for a 360° circular aperture, 640-MHz bandwidth and 

[Joshua N. Ash, Emre Ertin, Lee C. Potter, and Edmund G. Zelnio]
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10-GHz center frequency [6]. Images are computed for a sequence 
of subapertures, possibly overlapping, to produce images of reflec-
tivity, ( , )r zW  indexed on both spatial location, ,r  and azimuth 
angle, .z  [For reference, a mesh model of the reflecting object is 
given in Figure 3(a).] 

A wide aperture greatly increases information about objects 
of unknown orientation [7]. Given the specular nature of radar 
returns from man-made objects, the wide-angle aperture cap-
tures more glints and yields a higher probability of capturing 
the most discriminating features. In addition, for reflectors that 

persist across angle, a wider aperture provides improved spatial 
resolution [1]. For reflectors that do not persist, a wide aperture 
allows detection of the anisotropic behavior. 

Table 1 lists the classes of signal processing approaches 
surveyed in this article for reconstruction of a sequence of 
aspect-dependent images, ( , ) .r zW  Across a wide aperture, 
scattering is aspect dependent, and the reconstruction of a 
single image therefore obscures the anisotropic behavior. We 
first survey the subaperture, or windowed, approach in which 
the wide aperture is divided into smaller subapertures on 

[FIG1] (a) A radar measures the Fourier transform of echoes observed from a given viewing angle. (b) The combination of viewing 
angles forms a synthetic aperture that determines the portion of k-space transduced by the measurements.

[FIG2] A coherent 360° two-dimensional image is an invertible baseband representation that retains all 3-D information, but poses 
significant storage, processing, and interpretation challenges. SAR video (three example 15 m × 15 m frames are extracted to the right) 
provides a compact real-time representation enabling postprocessing of wide-angle information.
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which scattering is more nearly homogeneous; on each sub-
aperture, a single subimage is formed. For subaperture 
methods, we review a recursive linear imaging procedure and 
survey several nonlinear techniques that have been proposed 
for sharpening the resolution of the individual subimages. 
We next survey three inversion approaches that jointly pro-
cess the wide-aperture data to explicitly reconstruct scatter-
ing as a function of both space and viewing angle. Before 
proceeding to the survey, we provide an elementary state-
ment of the image reconstruction problem. Following the 
survey, we discuss the benefits of SAR video and contrast the 
merits of the various approaches. 

INVERSE SCATTERING
Traditional transmitters employ linear FM chirp waveforms for 
a constant envelope transmission; a receiver, after mixing and 
filtering, directly yields the in-phase and quadrature samples of 
the Fourier transform of the complex-baseband echo signal. 
Thus, far-field measurements can be indexed by the frequency 
and viewing angle, as illustrated in Figure 1. 

For decades, airborne radar systems have typically operated 
with a small diversity of wavelengths and viewing angles. Two 
consequences result for imaging [1], [8]. First, the point scatter-
ing assumption that reflectivity is constant across frequency and 
angle may be used with great success. Second, the small aperture 
allows for a plane-wave (far-field) assumption to hold across a 
large scene. Together, these approximations render the 

[TABLE 1] A SURVEY OF ANISOTROPIC IMAGING PROCEDURES.

METHOD EXAMPLE 
REFERENCES

SUBAPERTURE METHODS

LINEAR: RECURSIVE BACKPROJECTION [11]

NONLINEAR: FILTER BANKS [12]–[15]

NONLINEAR: REGULARIZED
LEAST-SQUARES

[17]–[20]

FULL-APERTURE METHODS

PARAMETRIC MODELING [21]–[25]

REGULARIZED LEAST-SQUARES [26]–[27]

BAYESIAN [29]

Backhoe
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[FIG3] Subaperture X-band imaging of a backhoe with 600-MHz bandwidth. (a) A mesh model, (b) composite backprojection image 
color-coded to aziumth angle of peak response across 11 subapertures, (c) composite backprojection image from maximum amplitude 
across 11 subapertures, (d) backprojection image from a single 20° subaperture, (e) nonlinear imaging to deconvolve sidelobes from 
a single 20° subaperture, and (f) reference image from a single 20° subaperture and 4-GHz bandwidth. In (c)-(f), color encodes the top 
40 dB of response amplitude.
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measurements to be simply samples of the Fourier transform of 
the scene reflectivity; the rectangular coordinates in Figure 1, 
( , , ),k k kx y z  are these spatial frequencies. Thus, imaging via Fou-
rier transformation results in an image that is bandlimited in spa-
tial frequency. Backprojection with convolution [8] yields the 
same result, and backprojection alone serves to approximate an 
inverse operator by the adjoint operator. This adjoint operator is 
the matched filter for ideal point scattering. 

Taking a closer look, electromagnetic scattering from a 
scene may be fully described as a function of spatial location, 
viewing geometry, frequency, and polarization. For monostatic 
data collection, the scattered electric field from an object can be 
described by a 2 2#  polarimetric scattering matrix, 

, , ,r r fmW^ h (1)

where ( , , )r x y z=  is the object location, r Rm
3!  is the mth 

measurement location, and f is frequency. The measured fields 
are modeled by [1] 

( , ) , ,

/ .exp

E r r r

E
r r r

r

r r
f f

j f c d

1

2 2

r
m

m
m

i
m m

4

# r

W=

- -

-
^ h

' 1

#

(2)

The 2 1#  complex-valued vector Ei  is the incident field for a 
given polarization basis, and the two-way propagation time rela-
tive to the scene center, ,r 0=  is / .r r r c2 m m- -^ h  In this 
linear (Born) model, only backscatter is modeled; any nonlinear 
interactions in actual scattering must be accounted for in the 
linear model by additional, spurious reflectors or “artifacts.” 

Via traditional imaging, a two-dimensional or 3-D spatial rep-
resentation is formed of the multivariable function .W  Conse-
quently, some behaviors may be obscured. A linear aperture leaves 
unresolvable any displacement orthogonal to the slant plane con-
taining the aperture and the scene center. Thus, for a linear aper-
ture the viewing position may be parametrized by one angle, and 
location by two variables. In addition, with a narrowband assump-
tion, the frequency variable is eliminated to arrive at scattering as 
a function of three real variables, , , ,x y zW^ h  where z  is the azi-
muth angle. Traditional imaging techniques further abandon the 
angle dependence [1], [8], yielding a function of two variables 
readily depicted as a two-dimensional map, , .x yW^ h  Finally, a 
far-field plane-wave propagation assumption yields a linearization 
of the differential range, ,r rm -  and 

( , ) ,

/
( )

.exp cos
cos sin

E

E

f x y

j f c
x y

dx dy2 2

,x y

i#

.z

r i
z z

W

+

^ h

' 1

#

(3)

The plane wave assumption yields the simplicity of Fourier pro-
cessing for inversion of (3) but results in a predominantly qua-
dratic phase error due to wavefront curvature; this error is 
limited by restricting the image scene size to be small relative 
to the standoff distance. For example, for a linear aperture sub-
tending 30°, a 10-GHz center frequency, and a 15-km standoff 

distance, the scene radius must be less than 28 m to limit qua-
dratic phase error to /4r  radians. Backprojection imaging, and 
its fast variations [5], apply with or without the far-field approxi-
mation, while Fourier imaging requires the phase linearization 
provided by the approximation. 

In contrast to a linear aperture, a curvilinear aperture can dis-
ambiguate reflector locations in three spatial dimensions [1]. A spe-
cial case is circular SAR (CSAR), in which the aperture positions lie 
on a circle of constant altitude, and a wide-beam antenna persis-
tently illuminates a scene within the projection of the circle onto 
the ground below. Multiple circular orbits can further diversify 
viewing geometry and improve the 3-D resolution, e.g., using inter-
ferometric approaches [9], [10]. Experimental demonstration of 
3-D reconstructions, ( ),rW  has been reported at X-band [2], VHF 
[4], and L-band [5]. For either linear or circular apertures, SAR 
video introduces an angle index, ,z  to reconstruct ( , ) .r zW  Exam-
ples below consider both linear and circular apertures. 

SUBAPERTURE METHODS
We first survey the subaperture, or windowed, approach: the 
wide aperture is divided into smaller subapertures on which 
scattering is more nearly homogeneous. On each subaperture, a 
single subimage is formed. Nonlinear techniques have been pro-
posed for deconvolving the sidelobes, or “sharpening,” of the 
individual subimages. 

RECURSIVE BACKPROJECTION
A sequence of subaperture images may be linearly constructed by 
recursive implementation of backprojection imaging. The recur-
sive approach offers computational advantage in memory and 
peak-processing requirements, versus a block-processing strategy. 
In traditional block processing, a set of echoes across a contiguous 
set of aperture positions are filtered, weighted, and then backpro-
jected to an imaging surface to form a complex-valued map of 
reflectivity. Fast backprojection algorithms reduce computational 
load (e.g., [5]). An aperture weighting provides suppression of the 
image point spread function sidelobes due to the finite aperture, 
but at the cost of a modest increase in the mainlobe width. Tradi-
tional block-processing image formation computes an aperture-
weighted backprojection image, ( ),r

( )t
WX  at slow-time azimuth 

position .t  The image is made using the synthetic aperture 
defined by the J  most recent pulses and takes the form 

( ) ( ),r w B
( )t

j
j

J

t j
0

1

}W =
=

-

-
X / (4)

where t}  is the echo at aperture position ,t B  is the filter-and-
backproject operator, and ,w j , , ,j J0 1f= -  is an aperture 
weighting sequence, such as that provided by a Taylor or 
Hanning window. In SAR video applications requiring the pro-
duction of a sequence of t-indexed images, the block-processing 
approach suffers from high memory and peak computation 
overhead, both proportional to the aperture size .J

In contrast, a recursive approach [11] to the computation (4) 
can offer nearly identical imagery with orders of magnitude 
reduction in memory and peak processing requirements, 
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thereby enabling real-time SAR video imaging of large scenes. 
The recursion is given by 

( ) ( ) ( ),r r B
( ) ( )t

m
m

M t m
t

1
a b }W W= +

=

-X X/ (5)

where M J11  is the recursion order, and { },ma b  are con-
stants controlling the effective weighting sequence. An example 
is provided in Figure 4 illustrating that a third-order recursion 
provides an excellent match to a Hanning window for aperture 
weighting. The recursive imaging provides SAR images at a 
frame rate equal to the pulse repetition frequency. 

NONLINEAR RESOLUTION ENHANCEMENT
The processing of subapertures presents a tradeoff between spa-
tial cross-range resolution and the blurring of scattering changes 
versus aspect angle. The same tradeoff is encountered, e.g., in the 
use of the short-time Fourier transform for time-series analysis. 
Nonlinear processing procedures have been applied in radar to 
enhance the resolution of a single subaperture image. The meth-
ods implicitly assume nearly isotropic reflectivity across the small 
subaperture and result in a spatially varying point spread func-
tion. We briefly survey two classes of such approaches: filter 
banks and regularized least-squares. 

FILTER BANKS
The linear image formation techniques noted above can be viewed 
as fixed filter banks, where the image at location r  is a linear com-
bination of the vector y  of data samples, ( ) .r w yr

HW =t  Nonlinear 
sharpening techniques used in SAR are largely adapted from the 
rich literature of spectrum estimation; see [12] for an expansive 
survey. For adaptive filter bank methods, the weight vector itself is 
a function of the data. The data adaptive approaches reduce both 

speckle and sidelobes at the expense of the processing gain in the 
target-to-clutter ratio (TCR). Let ar  denote the ideal, noiseless 
modeled response from location ;r  an isotropic point is the ubiqui-
tous modeling choice. The minimum variance method (MVM) [12] 
seeks to minimize the expected energy, {| ( ) | },rE 2Wt  subject to a 
unity gain constraint, .w a 1r r

H =  The solution to the linearly con-
strained quadratic optimization yields 

.w
a R a

R a
r r

r
r H 1

1
= -

-

The covariance matrix, ,R  is estimated as the sample covari-
ance matrix computed from multiple overlapping data subaper-
tures. Variations on the MVM approach include diagonal 
regularization of the covariance, ,R In+  and a rank-1 modifi-
cation [13]. The high-definition imaging (HDI) approach [14] 
modifies MVM to constrain the angle between wr  and .ar  Each 
of these MVM variations have a computational complexity that 
is cubic in the number of pixels. 

Adaptive sidelobe reduction (ASR) [12] provides a computa-
tional complexity that is merely linear in the number of pixels; a 
single snapshot viewpoint is adopted, and, implicitly, a rank-1 cova-
riance assumption. Data-adaptive weights are used to modify a 
matched-filter image via a spatially varying finite impulse response 
filter. The filter is constrained to be real valued, symmetric, have 
center tap equal to one, and to have all other taps yield sum of 
squares less than a prescribed constant. The constrained filter taps 
are then adapted to minimize the output energy. The approach is 
further simplified in spatially variant apodization (SVA), whereby 
the filtering is separable, uses only the two neighboring pixels in 
each direction, and imposes a coefficient positivity constraint. To 
suppress sidelobes, the SVA approach relies on the oscillatory struc-
ture of a separable sinc point response. 

Other spectrum estimation approaches have been proposed, as 
well, such as the use of a smoothed Wigner–Ville distribution, 
rather than short-time Fourier transform, in cross-range [15]. 

REGULARIZED INVERSION
To enhance the resolution of a single subaperture image, side-
lobes may be deconvolved via a regularized least-squares inver-
sion of the linear, isotropic scattering model. Adopting W  as a 
vectorized representation of the discrete pixels in ( ),rW  the 
inversion may be expressed 

,min A ysubject to0 2
2 # eW W W= -

W
X (6)

where the 0,  pseudo-norm · 0  counts nonzero entries in a 
vector and expresses the preference for an image dominated by 
a few strong reflectors (or, more generally, sparse in some 
basis). Greedy methods, such as CLEAN and orthogonal 
matched pursuit (e.g., references in [10] and [16]) have been 
widely used and can solve this NP-hard problem with suitable 
restrictions on both the correlation in columns of A  and the 
sparsity of ;W  likewise, the 0,  pseudo-norm can be relaxed to 
an p,  quasi-norm, .

/

np n
p p1

WW = $ ./  Authors have used 

[FIG4] Recursive backprojection imaging enables orders of 
magnitude reduction in memory and peak computation for 
typical SAR video scenarios [11]. Here a third-order recursion 
well approximates a Hanning sequence for cross-range 
sidelobe control.
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,p 1=  resulting in a convex problem, and also p0 11 1  [17], 
[18] in the nonconvex formulation 

.min A y p
p

2
2 nW W W= - +

W
X (7)

A fixed-point iteration has appeared in the literature as a solution 
technique (e.g., [19] and [20]) for (6); and, a conjugate gradient 
(CG) procedure has been applied to (7) with good success [17]. 
Moreover, in the CG framework, the objective can be generalized 
from pW  to (| |)D pW  with a differentiable function D  pro-
viding an edge-preserving region enhancement in the recovered 
imagery [17]. Lagrange multipliers, such as the n  in (7), are tun-
able algorithm parameters and may significantly impact resulting 
imagery. The use in radar imaging of greedy and optimization-
based approaches for sparse linear inversion predates the theoret-
ical underpinnings provided by compressive sensing [16]; 
however, the recent explosion of work in the area of compressive 
sensing has given rise to many good convex programming algo-
rithms for numerical solution of (6) relaxed to pW  for .p 1=

SUBAPERTURE PROCESSING EXAMPLES
We next illustrate the application of subaperture methods, provid-
ing visualization of both aspect-dependent scattering and the 
ability of nonlinear processing to deconvolve sidelobes. For the 
examples, synthetic monostatic scattering data are generated for 
a backhoe model, illustrated in Figure 3(a), using a high-fre-
quency computational electromagnetics code [6]. The center fre-
quency is 10 GHz, and the bandwidth is 600 MHz unless 
otherwise noted. A linear aperture in the far field is used, with 45° 
depression angle at the center of the aperture. 

In Figure 3(b) and (c), a 110° aperture is processed as a 
sequence of 11 overlapping subapertures, each of 20°. False color 
encodes the center azimuth angle of the subaperture at which the 
maximum amplitude occurs in (b), and in (c) encodes the maxi-
mum amplitude across the subapertures. Note that the nonco-
herent combination of subaperture images as in (c) can be 
interpreted as a generalized likelihood ratio test for a single 
reflector with 20° persistence and an unknown orientation 
aligned to one of the 11 subapertures. 

Figure 3(d)–(f) illustrates nonlinear sidelobe deconvolution 
applied to a single 20° subaperture. The point spread function is 
displayed in the upper right-hand corner of (d) and reveals a finer 
resolution in cross-range than range, as expected. Also note that 
the orientation of the impulse response points towards the center 
of the 20° synthetic subaperture. Linear backprojection processing 
results in (d); at this orientation the glint due to the backhoe shovel 
appears prominently, seen at the far left. Deconvolution processing 
[17] of the coherent data, with .p 0 7=  and .0 1n =  in (7), results 
in (e), yielding many features that are more clearly delineated than 
in (d). For comparison, a reference image is shown in (f); the refer-
ence is based on a large 4,000-MHz bandwidth, integration over the 
same 20° subaperture, and formed via backprojection as in (d), 
without deconvolution processing. 

The choice of very large subapertures for nonlinear deconvo-
lution of the point spread function (psf) offers no benefit; the 

modeled psf implicit in the deconvolution algorithm can 
become increasingly mismatched to actual scattering as the 
subaperture is extended. Hence, the bias due to model mis-
match can result in undesired imaging artifacts. 

FULL-APERTURE METHODS
In contrast to the subaperture methods that presume nearly con-
stant reflectivity versus azimuth angle across a small subaperture, 
the class of full-aperture methods models scattering as a function 
of both space and azimuth angle across the full aperture. By explic-
itly adopting azimuth angle as an independent variable, the dimen-
sionality of the image object, ( , )r zW  grows, which therefore 
invites some form of regularization to recover the image from the 
sampled data. Here we survey three such approaches: parametric 
modeling, regularized linear inversion, and Bayesian estimation. 

PARAMETRIC MODELING
Parametric modeling approaches explicitly posit a parametric 
model for the scattering behavior and compute a nonconvex 
least-squares fit. These approaches are computationally expen-
sive, especially considering the need to estimate a model order. 
Representative examples of this approach include sinc behavior 
in aspect [21]–[23], and Gaussian aspect dependence [24]. A 
larger family of canonical scattering objects has likewise been 
employed [25]. 

As an example of the parametric model fitting approaches, 
Figure 5 shows a 3-D reconstruction comprising even bounce 
(red) and odd bounce (blue) reflectors with a sinc response in 
azimuth, as predicted by physical optics approximation to high-
frequency scattering [23], [25]. The reconstruction is computed 
via nonlinear least-squares estimation from the Gotcha X-band 
airborne measurements [2] using eight circular apertures and 
copolarized data measurements. The extent of a sinc response in 
azimuth is inversely related to the length of the reflector given 
in the visualization. In (a), a model of the Ford Taurus wagon 
vehicle is superimposed on the estimated reflectors, and the 3-D 
backprojection image is displayed in (b). 

REGULARIZED INVERSION
The regularized least-squares approach in (7) has been explicitly 
extended from ( )rW  to the anisotropic model, ( , ) .r zW  For 
example, in [26], a large dictionary of angle-dependent returns 
in the matrix A  is managed by an iterative selection of a subset 
of columns. In [27], an angle-indexed image, ( , , )x y zWX  is 
explicitly recovered using two regularization terms. The first is 
a total variation norm on the aspect dependence of pixel magni-
tudes, to promote correlation in scattering behavior versus 
viewing angle. The second is a q-norm on the scattering 
strength at a given spatial location, to promote sparse reflectors 

( , , )

( , , ) ( , , ) .

min A y x y

x y x y
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BAYESIAN INVERSION
Here, we introduce an alternative wide-angle imaging technique 
that extends the regularized least-squares philosophy to a Bayes-
ian estimator. The approach makes the modeling assumptions 
explicit, reports posterior confidence in inferred scattering behav-
ior, and can provide automated tuning of algorithm parameters. 

For wide-angle collections, the generation of azimuth-
indexed SAR imagery has a natural interpretation as a state-
space estimation problem within a dynamical system. In this 
context, a state vector C( )t N!W  encodes the reflectivity at N
spatial points of interest within the scene and when viewed from 
a particular azimuth angle ,tz  measured at time .t  The state 
vector may be considered as a spatial image, and the collection 
{ , , , }( ) ( ) ( )T1 2 fW W W  comprises a time-series of images captur-
ing the azimuth-dependent scattering behavior that we wish to 
recover from radar measurements, 

.y F( ) ( ) ( ) ( )t t t teW= + (9)

Here, ,y C( )t M! , , ,t T1 f=  denotes the k-space measure-
ments obtained at time ,t  and F( )t  is the Fourier operator 
accounting for the radar bandwidth, sampling, and platform 
position at time .t  It is assumed that the measurements are 
corrupted by additive noise, assumed to be zero-mean complex 
circular Gaussian, to be independent across time and space, and 
to have variance .2ve  This is denoted ~ ( , ) .I0CN( )t 2ve e

When the state dynamics governing the evolution of ( )tW  are 
known, we may employ classical methods to generate filtered 
estimates of ,( )tW  based on linear measurements { , , },y y( ) ( )t1 f

or smoothed estimates, based on measurements { , , } .y y( ) ( )T1 f

A thorough review of classical state-space estimation may be 
found, e.g., in [28] and references therein. However, for the 

anisotropic SAR problem, recent results in large-scale Bayesian 
inference of sparse time series are more appropriate. This field 
is generally referred to as dynamic compressive sensing (DCS) 
within the compressive sensing literature [29]. In wide-angle 
scenarios, sparsity is not only important because radar backscat-
ter is often spatially sparse, but also because anisotropic behav-
ior implies sparsity in the azimuth dimension as well. 

The DCS problem considers the estimation of a sparse time 
series { }( )tW  from linear measurements { }y( )t  and exploits two 
forms of structure. First, the sparsity pattern of the signal is 
expected to change slowly over time (azimuth), and second, the 
nonzero coefficients (reflector amplitudes) vary slowly with 
time, as prescribed by an a priori model [29]. Incorporating the 
dynamics of amplitude and sparsity evolution enables DCS algo-
rithms to outperform “snapshot” approaches based on solving a 
sequence of standard compressive sensing problems over a set 
of subapertures. Further, DCS problems may be considered in a 
completely Bayesian setting where both the time-varying ampli-
tudes and the supports are estimated with posterior uncertainty. 
As such, the Bayesian DCS approach to wide-angle imaging is 
distinct in two respects from SAR video formed by independent 
processing of overlapping subapertures. First, the azimuth-
indexed state estimates utilize all available data (in the case of 
smoothing), as opposed to a limited integration window with 
size selected by the user. In the Bayesian setting, an a priori
model for reflector persistence implicitly controls the effective 
azimuth extent attributed to a scattering location. Second, the 
Bayesian DCS approach produces a measure of confidence to 
accompany the sequence of azimuth-indexed images. Specifi-
cally, the approach generates an estimate of the posterior mar-
ginal distribution of reflectivity as a function of scattering 
location and azimuth look angle. Knowledge of this uncertainty 

[FIG5] (a) A 3-D parametric modeling of wide-angle scattering data [2] as a sum of dihedrals (red) and flat plates (blue). Lengths of 
estimated reflectors are inferred from the anisotropy of the azimuthal responses. A facet model of the Ford Taurus wagon is 
superimposed on the estimated reflectors for visual comparison. (b) The SAR image from same measurements processed by 3-D
backprojection.
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is useful for subsequent exploitation tasks, such as automated 
target recognition, that utilize the wide-angle measurements. 

APPROXIMATE BELIEF PROPAGATION
In the context of wide-angle SAR imaging, we review in this sec-
tion a Bayesian approach to DCS based on approximate message 
passing [29]. An auxiliary time series { , , , }s s s( ) ( ) ( )T1 2 f  is intro-
duced, where { , }s 0 1( )t N!  indicates the nonzero support at 
time .t  That is, if the nthpixel of ,( )tW ,( )

n
tW  has nonzero ampli-

tude, then ,s 1( )
n
t =  otherwise .s 0( )

n
t =  A second time-varying 

random process ,a C( )t N! , , ,t T1 f=  is introduced represent-
ing the amplitudes of the nonzero elements of .( )tW  Combined, 
the sparsity s( )t  and amplitudes a( )t  fully characterize the reflec-
tivity of the nthpixel at time-t  as 

.s a( ) ( ) ( )
n
t

n
t

n
tW = (10)

The support and amplitudes are both hidden vector-valued ran-
dom processes that we wish to estimate from radar measure-
ments. To impose the notions of sparsity and smoothness 
described above onto the model, the { },s( )t  and { };a( )t  processes 
are imbued with certain a priori dynamical structures. 

The support structure is modeled as a first-order Markov chain 
where the value of s( )

n
t  only depends on its temporal ancestor 

.s( )
n
t 1-  Independent Markov chains are used for , , ,n N1 f=

although spatial correlation across n  is possible. The Markov 
chains are fully defined by the initial probability that the nth  pixel 
is nonzero ( )s 1prob ( )

n1
1_m =  and the transition probabilities 

( | )s s1 0prob,
( ) ( )
n
t

n
t

1 0
1_m = =-  and ( |s s0prob,

( ) ( )
n
t

n
t

0 1
1_m = =-

) .1  The m-probabilities fully control the sparsity assumptions in 
the model. For example, small values of ,,1 0m  and large values 
of ,,0 1m  favor short sequences of nonzero support. This would 
be appropriate to model specular reflectors with limited persis-
tence [3], [9]. 

Smooth structure in the amplitude parameters is captured 
using a first-order Gauss–Markov model 

,a a( ) ( ) ( )
n
t

n
t

n
t1a g= +- (11)

where the scaling factor a  and zero-mean Gaussian process 
noise ( , )0CN( )

n
t 2

proc+g v  control the temporal dynamics, with 
the initial state assumed to be Gaussian, ( , ) .a 0CN( )

n
1 2

init+ v

Large values of | | ,a  and small process variance ,2
procv  favor a 

slowly varying radar cross section (RCS) across azimuth look 
angle. Conversely, small | |a  and large 2

procv  imply rapidly vary-
ing RCS across azimuth with little correlation between adjacent 
look angles. As with the support variables, independent scalar 
processes are assumed for , , .n N1 f=

The models for azimuth-dependent scattering dynamics 
combine with the radar measurement model (9) to form a com-
plete dynamical model describing the posterior distribution of 
the state space variables 

({ }, { }, { } | { })s a yp ( ) ( ) ( ) ( )t t t t ?W

( | ) ( | , ) ( | ) ( | ),y s a s s a ap p p p( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

t

T
t t t t t t t t t

1

1 1W W
=

- -% (12)

where ( | ) ( )s s sp p( ) ( ) ( )1 0 1_  and ( | ) ( )a a ap p( ) ( ) ( )1 0 1_  correspond 
to the initial prior distributions. The model (12) is illustrated 
graphically by the factor graph in Figure 6. In the graph, square 
nodes represent factors in the posterior distribution, and circles 
represent random variables, with shaded circles correspond-
ing to observed random variables. From (9), the measurement 
factors are ( | ) ( ; , ),y y F Ip CN( ) ( ) ( ) ( ) ( )t t t t t

e
2vW W=  and from (10), 

( | , ) ( ),s a s ap ( ) ( ) ( ) ( ) ( ) ( )t t t t t tdW W= -  where d  denotes the Dirac 
delta function applied element-wise. 

Apparent in the factor graph is that the model describes a 
coupled dynamical system where the support variables form a 
hidden Markov model that is coupled to the linear dynamical 
system describing the amplitude process through the jointly 
dependent linear measurements { },y( )t  governed by the radar 
system. Inference in coupled systems is generally difficult, and 
tackled, for example, by structured variational approximations. 
Alternatively, recent DCS work [29] leverages approximate mes-
sage passing algorithms [30] and loopy belief propagation to 
efficiently generate approximate marginal state estimates for 
the exact system model, (12). 

EXAMPLE
Figure 7 illustrates the results of applying the approximate mes-
sage passing approach to measured circular SAR data of a Ford 
Taurus wagon, similar in orientation to the model shown in 
Figure 5. The measured SAR data comes from the X-band Gotcha
data set [2] with 640 MHz of bandwidth. In (a), a backprojection 
image is illustrated utilizing the entire 360° in the circular collec-
tion. The vehicle is oriented such that its front corresponds to 
approximately 45° azimuth, and the passenger broadside is at 
approximately 315°. This wide-angle image displays scattering 
from all aspect angles, but does not reveal the anisotropic behav-
ior of the constituent scatterers on the vehicle. In contrast, the 
two plots in (b) illustrate the azimuth-dependent posterior mean 

s (1) s (2) s (3) s (T )

a (1) a (2) a (3) a (T )

y (1) y (2) y (3) y (T )

ψ (1) ψ (2) ψ (3) ψ (T )

. . .

. . .

[FIG6] The factor graph model representing the Bayesian state-
space interpretation of wide-angle SAR imaging includes two 
coupled Markov chains: a hidden Markov model governing the 
sparsity dynamics { },s( )t  and a linear dynamical system 
governing amplitude dynamics { };a( )t  both are coupled through 
the radar measurements { } .y( )t
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state estimates for two particular points on the vehicle. The state-
space includes a uniform grid of spatial points covering the vehi-
cle, although the figure only presents results for two locations: 
the first, P1, is from the front of the vehicle, and the second, P2, 
is from the passenger broadside. 

The state-space estimates exhibit sparsity and low noise as 
expected. Further, the posterior state estimates correctly iden-
tify the dominant response directions: approximately 45° for the 
front of the vehicle (P1), and approximately 315° for the passen-
ger broadside (P2). The P1 response also appears with lower 
amplitude, and broader, than P2. This is consistent with dihe-
dral scattering approximations to vehicle sides [23], where the 
relatively longer broadside induces a larger RCS, but with 
shorter persistence, relative to the front of the vehicle. 

DISCUSSION

WHY SAR VIDEO?
For wide-angle radar imaging, SAR video can provide maximum 
TCR and is a revealing format for analysis of scattering signatures. 

First, for a signal detection application, SAR video can pro-
vide maximum TCR. Application of the radar range equation 
yields the TCR 

,T
TTCR

0 oc

ot

v d
v= (13)

where v  is the target’s radar cross section, 0v  is the probabilis-
tic clutter return power per unit area, and d  is the pixel area, 
given by the product of range and cross-range resolutions. The 

variables Tot  and Toc  are the time (equivalently, aperture extent) 
on target and clutter, respectively. All other radar range equa-
tion terms, such as radiated power, antenna area, and energy 
spreading, cancel in the ratio. The TCR equation predicts the 
behavior shown in Figure 8 for a reflector with limited angular 
persistence. In the denominator of (13), an increase in the clut-
ter integration time is offset by finer cross-range resolution; in 
the numerator, received power at a pixel increases with increas-
ing integration aperture, until the reflector ceases to persist. For 
example, at 10 GHz a dihedral reflector 30 cm in length with 
base parallel to the xy  plane has azimuth angular response that 
persists only 5°, as measured by the 6-dB beam width [25]. 
Thus, in SAR video, TCR is maximized for any subaperture inte-
gration angle greater than .Tot  Pixel amplitude histograms from 
measured Ku-band data illustrate the effect experimentally in 
Figure 8. Histograms are computed from clutter pixels and tar-
get pixels for coarse-resolution (30 cm) and fine-resolu-
tion (3.75 cm) images. The two histograms correspond to the 
two points highlighted on the TCR curve. The 8 × 8 reduction in 
pixel area results in 10 64 18log dB10 =  shift in the clutter his-
togram, as predicted by (13). 

Second, for fine-scale analysis of target signatures, SAR 
video provides a revealing format for automated or human-
aided interpretation of scattering physics, owing to several 
effects. For high-frequency radar, energy in a target signature is 
dominated by specular returns, which are highly directional. 
These dominant returns can obscure other scattering behaviors; 
a sequence of subaperture images serves to combat this 
dynamic range issue. Additionally, the number of strong 
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[FIG7] Bayesian state-space processing for wide-angle measured X-band data. (a) A traditional 360° backprojection image of a Ford 
Taurus wagon. (b) Dynamic compressive sensing reveals dominant scattering on the front of the vehicle (P1) at an azimuth angle of 
~45° and from the passenger broadside of the vehicle (P2) at ~315°.
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reflectors present in a single subaperture is less than across the 
full aperture, resulting in a more parsimonious, or more sparse, 
signature that is more amenable to nonlinear sharpening meth-
ods which deconvolve sidelobes. Moreover, the aperture index 
provides a simple data structure for using the anisotropic 
behavior of the scattering to improve object classification [7]. 
Thus, several physical behaviors provide rationale for the use of 
SAR video format in the signature analysis context. 

MERITS
Of the imaging procedures outlined in Table 1, the recursive 
backprojection is simple, low complexity, linear, and robust to 
modeling assumptions. Further, pulse-by-pulse autofocus can 
be embedded using a closed-form procedure. The recursive 
backprojection procedure is well suited to wide-area coverage, 
and the analysis illustrated in Figure 8 informs proper choice of 
the subaperture extent. Several conclusions can be drawn for 
the subaperture nonlinear sharpening techniques. The model 
fitting and spectrum estimation techniques are computationally 
demanding, and therefore are only applicable for the processing 
of small regions of interest. In addition, the plane-wave assump-
tion can limit the applicability of the spectrum estimation tech-
niques. However, the nonlinear sharpening technique has been 
empirically demonstrated to provide a modest improvement in 
object classification due to resolution enhancement (e.g., see 
[10] and references therein). 

The full-aperture procedures operate on the entire wide-
aperture data record; consequently, they are inherently more 
computationally costly than the subaperture techniques and 

offer less opportunity for efficient parallelization. The applicabil-
ity of the full-aperture techniques is therefore limited to the 
processing of small regions of interest. The Bayesian approach 
avoids difficulties in both order selection for parametric tech-
niques and Lagrange multiplier choice for regularized inversion. 

CONCLUSIONS
Radio frequency scattering varies not only with spatial location, 
but also with viewing angle, polarization, and frequency. Techno-
logical advances have allowed for a more comprehensive mea-
surement of this behavior. Interpretation of the measurements 
can be formulated as an inverse task to provide a rich character-
ization of scattering behavior across dimensions beyond simply 
two or three spatial coordinates, as depicted in traditional imag-
ery. The signal processing tools surveyed in this article provide 
aspect-dependent characterization of scene reflectivity. 
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T
his article presents a survey of recent research on 
sparsity-driven synthetic aperture radar (SAR) imag-
ing. In particular, it reviews 1) the analysis and synthe-
sis-based sparse signal representation 
formulations for SAR image for-

mation together with the associated im-
aging results, 2) sparsity-based 
methods for wide-angle SAR im-
aging and anisotropy charac-
terization, 3) sparsity-based 
methods for joint imaging 
and autofocusing from 
data with phase errors, 
4) techniques for exploit-
ing sparsity for SAR imag-
ing of scenes containing 
moving objects, and 5) re-
cent work on compressed 
sensing (CS)-based analysis and 
design of SAR sensing missions. 

INTRODUCTION
SAR imaging and sparse signal representation 
are well-established distinct lines of research. That said, spar-
sity has been of interest for SAR imaging implicitly over many 
years, and more explicitly within the last 15 years or so. In fact, a 
considerable fraction of recent developments for SAR imagery have 
been driven by moving from a purely Fourier transform type pro-
cessing paradigm to one that couples physics-motivated sensing 
models with some form of sparsity-based priors. Ideas based on 
sparse signal representation, proposed by a number of research 
groups, have recently led to advanced image formation 

methods offering a number of benefits for SAR, including increased 
resolvability of point scatterers, reduced speckle, easier-to-segment 
regions, and robustness to limitations in data quality and quantity. 

Furthermore, the sparse signal representation per-
spective has provided inspiration for new ways 

to think about and produce solutions 
for several important problems for 

SAR, which are also motivated 
by a number of emerging SAR 

data collection scenarios. 
These problems include 
autofocusing, wide-angle 
imaging, interferometry, 
SAR tomography (Tomo-
SAR), through-the-wall 
radar imaging, multiple-in-

put, multiple-output (MIMO) 
radar imaging, passive radar 

imaging, and moving target 
imaging, among others. Finally, 

recent results on CS, built upon sparse 
signal representation, have generated con-

siderable interest in radar waveform design as 
well as analysis and design of radar sensing scenarios under 

data collection constraints. Pursuing this overall new line of inqui-
ry on SAR imaging leads to the discovery of a variety of technical 
problems that fall outside the standard domain of sparse signal 
representation, but that involve issues of critical concern for 
SAR imaging. The result is a rich, new area of research that has 
already shown its promise but that also motivates interesting 
lines of inquiry for the future. In this article, we present an over-
view of the recent line of research pursued by several research 
groups on sparsity-driven SAR imaging. Our article shares some 
aspects of two recent survey papers [1], [2]. The first of these pa-
pers [1] provides a broad introduction to the use of CS in radar, 
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and considers three applications: pulse compression, radar imag-
ing, and air space surveillance with antenna arrays. The second 
paper [2] provides an overview and examples of how central 
themes in sparsity and CS have been present in the array pro-
cessing literature in general, and in radar imaging in particular, 
over many years. Our article complements these papers in sever-
al ways and presents a focused and up-to-date picture of sparsity-
driven radar imaging. In particular, we provide a comprehensive 
coverage of recent use of sparsity in a variety of radar imaging 
scenarios, with a signal processing focus and perspective. Appli-
cations and connections covered include wide-angle imaging, 
autofocusing, moving target imaging, as well as CS. 

ANALYSIS AND SYNTHESIS-BASED 
SPARSE RECONSTRUCTION FOR SAR
SAR imaging can be viewed as a linear inverse problem in which 
an unknown spatial reflectivity field is reconstructed from noisy 
measurements of waves backscattered from a scene. After cer-
tain steps of preprocessing of the radar returns, the resulting 
data can be related to the underlying reflectivity field through a 
discretized model of the following form, which essentially 
involves a spatial Fourier transform: 

( , ) ( , ) ( , ),r f s x y e n f( )cos sin
k l

m

M

m m
j c

f x y
k l

1

4 k
m l m li i= +

r
i i

=

- +/ (1)

where c  denotes the speed of light. We can stack the entire set 
of noisy phase history measurements ( , ),r fk li  and the noise 

( , )n fk li  at all available frequencies ,fk , , ,k K1 f=  and view-
ing angles ,li , , ,l L1 f=  as well as the reflectivity function or 
scattering response ( , )s x ym m  at all spatial locations ( , ),x ym m

, ,m M1 f=  (which include all the points containing the non-
negligible scatterers), into vectors to obtain the following 
observation model: 

,r Hs n= + (2)

where s  denotes the underlying, complex-valued reflectivity 
image and H  is the mathematical model of the observation pro-
cess described by (1). While this model and the ideas described in 
this article can be used in the context of a variety of SAR operat-
ing modes, for basic SAR imaging we will mostly assume spot-
light-mode operation for concreteness. Given limitations in the 
bandwidth of the measured data and in the diversity of look 
angles, as well as the inherently noisy nature of the measurement 
process, the inverse problem in (2) is ill posed. To generate a solu-
tion, implicit or explicit assumptions need to be made. Principled 
ways to incorporate such assumptions, in the form of constraints 
or prior information, include regularization and Bayesian estima-
tion methods. Within this context, the information or constraint 
that the underlying reflectivity field admits a sparse representa-
tion has proved to be a very useful asset for SAR imaging. The 
simplest form of sparsity (or compressibility) to exploit would be 
a scene consisting of a small number of dominant scatterers (e.g., 

man-made metallic objects). Exploitation of this type of sparsity 
has led to superresolution imaging in SAR (see Figure 1) [56]. 
More generally, the scene could be sparse in a different domain, 
as we discuss in more detail below. The remainder of this section 
provides an overview of analysis and synthesis-based sparse signal 
representation methods applied to SAR imaging. 

In an analysis model, sparsity is imposed on some transfor-
mation or features of the signal of interest, and, in this case, is 
often called cosparsity. Such an approach for SAR imaging was 
proposed in [3], where an estimate of s  is obtained by minimiz-
ing the following cost functional: 

( ) .J s r Hs s sp
p

p
p

2
2

1 2 dm m= - + + (3)

Here · p  denotes the p, -norm, d  is a discrete approximation to 
the two-dimensional (2-D) derivative operator (gradient), | |s
denotes the vector of magnitudes of the complex-valued vector ,s
and 1m  and 2m  are scalar parameters. For p 21  we have promo-
tion of sparsity, which gets weaker as we approach .p 2=  The val-
ues used for p  in sparsity-driven SAR imaging are around 1, so the 
second and third terms enforce sparsity. The relative contribution 
of these two terms are determined through the choice of the 
hyperparameters 1m  and .2m  The second term indicates a prefer-
ence for spatially sparse reflectivity fields. The third term enforces 
sparsity on the gradient of the reflectivity magnitudes, indicating a 
preference for piecewise smooth reflectivity magnitude fields. 
Such piecewise smoothness constraints have a long history in real-
valued image restoration and reconstruction, under various names 
including edge-preserving regularization and total variation resto-
ration. Within the context of SAR imaging, such smoothness is 
expected within homogenenous natural terrain types and within 
some man-made structures. Even in homogeneous regions, the 
phases of the reflectivities in spatially neighboring pixels however 
are generally uncorrelated, hence no such smoothness is expected 
in phase. As a consequence, we need to impose sparsity on | | ,sd
and not on ,sd  as the latter would lead to smoothing of the real 
and imaginary parts of the reflectivity field, which may not lead to 
the desired smoothing effect on the magnitudes. 

Another perspective on sparsity-driven SAR imaging is that it 
can be used to preserve and enhance features that might be used 
in decision making based on SAR images, such as automatic tar-
get recognition. With this perspective, the image formation 
approach of (3) was called feature-enhanced imaging in [3], with 
a dominant second term leading to point-enhanced imaging and 
a dominant third term leading to region-enhanced imaging.
Point-enhanced imaging provides improved resolvability in 
sparse scenes, an example of which is provided in Figure 1. 
Region-enhanced imaging imposes sparsity on spatial gradients 
and leads to images with reduced speckle and easier to segment 
regions. Such improvements have partially been quantified in 
terms of feature extraction accuracy and object classification per-
formance [4], [5]. 

Having to use a penalty on the magnitudes makes the optimi-
zation problem in (3) more challenging than its counterparts in 
real-valued sparse signal recovery problems. Efficient algorithms 
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matched to this problem structure have been developed [3]. These 
algorithms are based on half-quadratic regularization, and can be 
viewed as quasi-Newton methods with a specific Hessian update 
scheme. Another interpretation is that the overall nonquadratic 
problem is turned into a series of quadratic problems, each of 
which is efficiently solved in each iteration using conjugate gradi-
ents. The special case of point-enhanced imaging can be solved by 
a variety of algorithms developed for sparse signal representation. 
In [6], a fast and adaptive sequential basis selection strategy is 
employed for point-enhanced imaging. Rather than solving a basis 
pursuit type optimization problem for point-enhanced SAR imag-
ing, an alternative is to use a greedy matching pursuit algorithm, 
as in [7] and [8]. While the development of computationally effi-
cient algorithms matched to the problem structure has been and 
continues to be an important line of research, at the fundamental 
level, the cost of solving the optimization problems involved in 
sparsity-driven SAR imaging is significantly higher than conven-
tional processing. Hence there is certainly a price to be paid for 
potential improvements obtained in image quality. We should also 
note that many cost functionals considered in sparsity-driven SAR 
imaging are nonconvex. Throughout the work surveyed in this 
article, local optimization algorithms aiming to find the local min-
ima of such cost functionals are used. 

Now let us turn to synthesis-based models for sparse represen-
tation. In a synthesis model, the formulation is based on repre-
senting the signal of interest in terms of a dictionary and 
imposing sparsity on the dictionary coefficients. Let us just focus 
on one appealing feature of a synthesis model in the context of 
SAR imaging. We note that (3) uses two different regularization 
terms, one imposing the spatial sparsity of the field, and the other 
its piecewise smoothness. (One could combine the two terms into 
a single terms using a “tall” operator carrying out both analysis 
operations.) These two terms are used together to handle cases in 
which one of these terms does not serve as a good enough con-
straint throughout the scene. However, (3) imposes these two 
potentially conflicting constraints jointly everywhere in the 
scene, leading to some degree of inconsistency with the stated 
objective. This issue may be handled in a more consistent manner 

within a synthesis model. In particular, one can form an over-
complete dictionary consisting of atoms corresponding to the dif-
ferent types of features represented by the two constraints in (3). 
As the atoms can also exhibit spatial locality, one or the other type 
of feature can be “active” at a particular location in the scene, 
avoiding simultaneous use of potentially conflicting constraints. 
This could lead to a sparser representation for scenes exhibiting 
different types of features at different spatial locations. Based on 
these thoughts, a synthesis model for sparsity-driven SAR imag-
ing has been proposed in [9]. As in (3), what admits sparse repre-
sentation is the magnitude of the reflectivity field .s  Hence we 
are interested in a representation of the form | | ,s Da=  where D
is an overcomplete dictionary with the coefficient vector .a  Let 
us also write | | ,s sU=  where U  is a diagonal matrix, the ith
diagonal element of which is ,e j ic  with ic  indicating the 
unknown phase of the ith  scene element .si  Based on this nota-
tion, we can rewrite the observation model as 

.r Hs n H D naU= + = + (4)

Letting z  be a vector consisting of the diagonal elements of ,U
we can write the following cost functional to be minimized for 
SAR imaging: 

( , ) . . .J s t i1r H D p
p

i2
2 6a a az m zU= - + = (5)

We note that the variables to be optimized involve the phase of 
the field, and the representation coefficients of its magnitude. 
This problem can be solved using the coordinate descent algo-
rithm developed in [9]. Figure 2 contains a sample reconstruc-
tion using a wavelet transform-based dictionary based on 
TerraSAR-X data [57]. For examples of other dictionaries used in 
this framework, including ones that are better matched to the 
task of representing reflectivity magnitudes, see [9]. This 
approach provides the capability to preserve and enhance multi-
ple distinct features on different spatial regions of the scene uti-
lizing combinations of a variety of standard and custom-made 
signal dictionaries including contourlets, combination of spikes 

(a) (b) (c)

[FIG1] The reconstructions of the slicy target from the MSTAR data set [56]. (a) The reference image reconstructed from high-
bandwidth data. (b) The conventional image reconstructed from limited-bandwidth data. (c) The sparsity-driven, point-enhanced 
image reconstructed from limited-bandwidth data.
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(the canonical basis to represent strong point scatterers) and 
edges, as well as dictionaries of various geometric shapes 
matched to the expected scene structure. Furthermore, the syn-
thesis-based approach can be used to combine a standard dic-
tionary with a learning-based dictionary. For example, [10] 
combines spikes with a learned dictionary. The reconstructed 
SAR scene would then be a composite image that can be decom-
posed into multiple components represented by each dictionary, 
as illustrated in Figure 3. 

While the sparsity-driven SAR imaging problem was formu-
lated as a regularized optimization problem above, it could alter-
natively be viewed as a maximum a posteriori (MAP) estimation 
problem with a Bayesian perspective, in which the sparsity con-
straint turns into a heavy-tailed prior distribution for the features 
of interest. Continuing with the Bayesian perspective, one could 
also be interested in choosing other costs, leading to other esti-
mators than MAP, or characterizing the posterior density rather 
than finding just a point estimate. There has been some explora-
tion in this direction [11], [12]. There also exists some prelimi-
nary work on automatic regularization parameter selection for 
sparsity-driven SAR imaging [13]. 

Sparsity-driven SAR imaging has been extended to and 
applied in emerging sensing scenarios in which the sensing 
aperture or the data are limited or sparse in some sense (see the 
section “Compressed Sensing-Based Analysis and Design of SAR 
Sensing Missions”), as well as in multistatic active and passive 
radar [14] including MIMO architectures [15]. The benefits pro-
vided by sparsity-driven imaging are even greater in such non-
conventional sensing scenarios. Sparsity-driven imaging has 
also been used for the problem of inverse SAR (ISAR) imaging 
of rotating targets [16], as well as for through-the-wall radar 
imaging [17]. It has also been extended to interferometric SAR 
[18] and SAR tomography (TomoSAR) [19] adding the elevation 
direction into the problem for 3-D imaging, as well as to four-
dimensional (4-D) (differential, i.e., space-time) TomoSAR [20]. 
Sparsity-driven three-dimensional (3-D) image formation has 
also been used to initialize the process of geometric feature 
extraction from SAR data collected over arbitrary, monostatic or 
bistatic SAR apertures [21]. 

WIDE-ANGLE SAR IMAGING 
OF ANISOTROPIC SCATTERING
Wide-angle SAR, a SAR modality in which radar returns are col-
lected over a large azimuth extent or long aperture, has become 
possible due to advances in navigation and avionics that permit 
aircraft to follow precise routes for long distances. In theory, the 
wider the aspect angle covered by the synthetic aperture is, the 
finer the resolution of images in the cross-range direction can be. 
However, there are two main issues that arise in wide-angle SAR 
image formation. First, the sampling pattern of the collected 
radar returns in the frequency domain takes on an arch shape. 
However, the conventional Fourier transform-based polar format 
algorithm [22] is predicated on the polar frequency sampling pat-
tern being a good approximation to a rectangular sampling pat-
tern, which is violated with wide-angle apertures. Violation of this 
assumption leads to an irregular point spread function and to 
artifacts in imagery formed by conventional processing. 

The second issue, and the main point of discussion in this sec-
tion, is that when objects are viewed from diverse aspect angles, 
they have different scattering behaviors, i.e., the scattering response 
is a function of the azimuth angle. Imagine an upright flat metal 
plate; it will reflect radar signals back to the receiver strongly when 
viewed straight on but weakly when viewed obliquely. Angle-depen-
dent scattering, termed angular anisotropy, is only prominent with 
wide-angle apertures, not narrow-angle apertures, in which case it 
is a reasonable assumption that scattering amplitude is constant 
over the aperture. The failure to model anisotropy in conventional 
image formation algorithms results in an averaging of scattering 
response over angle, leading to inaccurate scattering estimates in 
the formed imagery. Moreover, as anisotropy of scatterers is not 
characterized, one misses the opportunity of using it as a feature for 
automatic target recognition and scene understanding. 

The problems of detecting, estimating, and modeling aspect-
dependent scattering behavior have recently been studied. Anisot-
ropy characterization methods may be broadly categorized into 
those employing parameterizations for angle-dependent scatter-
ing in the phase history domain, multiaperture methods that 
operate in the image domain, and sparsity-driven nonparametric 
image formation and anisotropy characterization methods. 
Within the third category, techniques either apply sparse recon-
struction methods described in the previous section indepen-
dently on a set of (possibly overlapping) small subapertures [8], 
[23]–[25] or jointly process wide-aperture data by incorporating 
prior information on aspect-dependent scattering [26]–[28]. The 
independent processing methods have similarities with image 
domain multiaperture methods. In the remainder of this section, 
we describe one example formulation of a sparsity-driven subap-
erture approach and two formulations of joint processing: one 
analysis based and one synthesis based. 

Let us consider the following discrete version of the mea-
surement model with anisotropy: 

( , ) ( , ; ) ( , ),r f s x y e n f( )cos sin
k l

m

M

m m l
j c

f x y
k l

1

4 k
m l m li i i= +

r
i i

=

- +/ (6)

(a) (b)

[FIG2] Reconstructions of a scene based on TerraSAR-X data [57]. 
(a) A conventional image. (b) A synthesis-based sparsity-driven 
image reconstructed using a multiresolution wavelet dictionary. 
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where , , ,k K1 f=  and , , .l L1 f=  The difference from the 
previous section is the scattering response now being a function 
of the viewing angle ( , ; ) .s x ym m li  In the narrow-angle setting, 
the entire set of phase history measurements ( , )r fk li  is 
inverted to obtain the isotropic scattering response ( , ) .s x ym m

For the wide-angle case, if we assume isotropic scattering 
within small ranges of azimuth angles, we can perform the 
inversion separately on intervals of i  to obtain I  separate sub-
aperture images ( , )s x ym miiu  centered at angles ,iiu , ,i I1 f=

[23]. The ranges of angle, which may overlap from one subaper-
ture image to the next, lead to I  linear systems of equations 

,Hr s ni i i i= +i i i iu u u u  where r iiu  represents the subset of phase his-
tory measurements corresponding to the subaperture centered 
at ,iiu H iiu  is the corresponding subset of forward operations, 
and s iiu  is the ith  subaperture image we would like to find. 
Using methods described in earlier sections, one can recon-
struct point-enhanced subaperture images by minimizing 

( ) , , , .J i I1s r H s s p
p

2
2

i i i i i fm= - + =i i i i iu u u u u (7)

The resulting set of subaperture images can then be stacked and 
viewed as a 3-D volume in the two spatial dimensions and the 
angular dimension. Also, in a generalized likelihood ratio test 
fashion, a composite image can be formed by taking the maxi-
mum magnitude (over angles) at each pixel location [23], on 
which one might also use color coding to display dominant angu-
lar response directions of scatterers. Noncoherent combination of 
subaperture images is also studied in [24]. Motivated by a number 
of applications including foliage penetration (FOPEN) radar, this 
approach has also been shown to be effective on data with fre-
quency-band omissions. The idea of independent processing of 
small subapertures described above has recently been applied in 
the context of 3-D circular SAR with little elevation diversity, 
where improved image quality is attributed to scattering center 
sparsity that is incorporated into the algorithms [5], [8], [25]. A 
sample 3-D imaging result from [25] is shown in Figure 4. 

The forming of independent subaperture images fails to take 
prior information about the expected angular behavior of scatter-
ers into account. In particular, point scatterers resulting from 
natural and man-made objects tend to have contiguous intervals 
of strong scattering response as a function of angle. Although 
each scatterer has limited persistence over the full wide-angle 
aperture, there exists a high correlation in magnitude response at 
closely spaced aspect angles within its persistence interval. There-
fore, an improvement over independent reconstruction of sub-
apertures is joint reconstruction of all subaperture images with 
an additional regularization term penalizing the q, -norm, 

,q 1#  of the change in scattering magnitude at each spatial 
location across subaperture images [27]. The cost functional for 
such analysis-based joint (point-enhanced) processing is 

( , , ) | ( , ) |

| | | | ,

J s x ys s r H s

s s

/

i

I

m m

p

m

M

i

I

q
q

i

I

2
2

1
1

2
2

11

2
1

1

I i i i i

i i

1

1

f m

m

= - +

+ -

i i i i i i

i i

===

=

-

+

u u u u u u

u u

e o///

/ (8)

where p is chosen to be around 1 to promote sparse solutions. 
The second term imposes spatial sparsity on the total scattering 
magnitude response collected over all aspect angles, whereas 
the third term enforces piecewise smoothness of the scattering 
magnitude in the angular dimension. 

An alternative synthesis-based joint processing to take the 
prior information on contiguity of angular persistence into 
account constructs an overcomplete dictionary representation 
for the angular dimension with atoms that are zero over some 
aspect angles and positive-valued over contiguous ranges of 
aspect angles [26]. There are no subaperture images in this 
approach. Specifically, for a single spatial location, the anisotro-
pic scattering function is expanded as  

( , ; ) ( ),s x y a b,m m l m n
n

N

n l
1

i i=
=

/ (9)

[FIG3] Reconstruction of a scene from the MSTAR data set [56] using a synthesis-based sparse representation approach combining the 
canonical (spike) dictionary with a learned dictionary. (a) A composite image containing six military vehicles and three corner reflectors. 
(b) A component consisting of strong scatterers represented by the spike dictionary. (c) A component represented by the learned 
dictionary. (Figure used with permission from [10].)  

(a) (b) (c)
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where the a ,m n  are coefficients and the ( )bn li  are atoms. For each 
spatial location, there is one atom for each possible angular persis-
tence width within the wide-angle aperture and each possible cen-
ter angle. With such a dictionary construction, the number of 
atoms per spatial location is quadratic in ,L  the number of aspect 
angles in the aperture. Substituting the dictionary expansion (9) 
into the anisotropic phase history expression (6), and stacking all 
data points into vector form yields an underdetermined system of 
linear equations of the form ,r aW=  where a  is a vector of all 
coefficients in the problem. The overcomplete dictionary at each 
spatial location can represent all contiguous angular scattering 
functions with a single atom. Hence in addition to spatial sparsity, 
the anisotropic scattering at each pixel can, in principle, be 
sparsely represented as well. So the problem is solved using spar-
sity regularization by minimizing 

( ) ,J a r a a p
p

2
2W m= - + (10)

where p  is chosen to be around 1. Because of the quadratic num-
ber of atoms in the number of aspect angles, it is not tractable to 
optimize (10) directly, however the nesting structure of the dic-
tionary allows the optimization to be approximated using a greedy 
graph search procedure [26]. Another challenge posed by a very 
large dictionary is that the problem becomes more underdeter-
mined and it becomes harder to guarantee perfect recovery. The 
atomic decomposition allows for a direct interpretation of the 
coefficients in terms of the persistence and center angle of scatter-
ing centers. This idea can be taken a step further by setting the 
dictionary atoms to be canonical scattering response magnitudes 
from typical object geometric configurations [28]. 

Image formation and anisotropy characterization from wide-
aperture data collection using sparsity-driven approaches leads to 
improved results over conventional Fourier-based methods. We 
illustrate this point by showing results on a 110˚ aperture data set 
corresponding to a scene containing a backhoe loader [58]. 
Numerical quantifications of algorithm performance may be 
found in the respective papers [23], [26], and [27]. In this data set, 
the radar signals are generated using a high fidelity electromag-
netic scattering code. Backhoe results from the conventional, 
independent point-enhanced subaperture, joint subaperture 

reconstruction, and overcomplete dictionary algorithms are 
shown in Figure 5 (b)–(e), respectively. The image formed by con-
ventional processing is quite unresolved and full of artifacts—it is 
difficult to even discern that the scene contains a backhoe. The 
backhoe is much more recognizable in the sparsity-driven results. 
Among the sparsity-driven approaches, joint processing gives finer 
resolution of the scattering behavior. The approaches we have 
described produce more than 2-D reflectivity images, in particular, 
these methods essentially reconstruct an angular scattering 
response at each pixel, leading to anisotropy characterization. This 
is demonstrated in Figure 6 for the analysis-based joint processing 
approach of [27]. The figure shows varying persistence of scat-
tering as a function of angle in different parts of the backhoe. 
Such information could not be recovered by conventional 
image formation methods and could serve as an important fea-
ture for automatic target recognition and scene understanding. 

IMAGING AND AUTOFOCUSING 
IN THE PRESENCE OF PHASE ERRORS
Phase errors in SAR phase history data arise due to errors in the esti-
mation of the time required for the transmitted signal to propagate 
from the SAR platform to the scene and back. The most common 
causes of inaccuracies on the roundtrip propagation time are 
SAR platform position uncertainties and propagation induced 
errors due to atmospheric effects. The implication of such errors 
on conventional SAR imagery is the convolution of the image 
with a blurring kernel. Because of the defocusing effect of such 
errors, techniques developed for removing phase errors are called 
autofocus techniques. Existing well-known autofocus techniques 
commonly postprocess conventionally reconstructed defocused 
images to estimate the phase errors. One of these state-of-the-art 
techniques is mapdrift autofocus [29] which uses subaperture 
data to estimate the phase errors. Subaperture based techniques 
are suitable mostly for quadratic and slowly varying phase errors 
across the aperture. One of the most widely used autofocus tech-
niques, phase gradient autofocus (PGA) [30], estimates phase 
errors using the data obtained by isolating several defocused tar-
gets via center-shifting and windowing operations. Another well-
known approach for autofocusing is based on the optimization of 
a sharpness metric. Commonly used metrics are entropy or 
square of the image intensity. A relatively new autofocus tech-
nique, multichannel autofocus, is based on a noniterative algo-
rithm that finds the focused image in terms of a basis formed 
from the defocused image, relying on a condition on the image 
support to obtain a unique solution. 

The SAR autofocus problem has recently been handled in the 
context of sparsity-driven imaging as well. In [31], phase error 
estimation is performed by comparing and aligning sparsity-
driven images produced from a sequence of smaller coherent 
processing intervals, for which motion errors can be assumed to 
be tolerable. For sparse aperture ISAR imaging, [32] proposes 
first to remove the phase errors by a weighted eigenvector-based 
phase correction method and then to form the image by spar-
sity-driven imaging. The study in [33] demonstrates the effects 
of phase errors on sparsity-driven imaging and presents results 

(a) (b) (c)

[FIG4] Sparsity-driven 3-D SAR imaging of a car. (a) Isometric 
view. (b) Side view. (c) Top view. (Figure used with permission 
from [25].)
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obtained by implementing PGA on sparsity-driven reconstruc-
tions. In these pieces of work, the process of sparsity-driven 
imaging and that of autofocusing are rather isolated. 

Going one step further, one can perform autofocusing and 
imaging simultaneously in a sparsity-driven framework, which 
has been shown to produce promising results [5], [34]–[37]. As 
an example of such an approach, the sparsity-driven autofocus 
(SDA) method [34] for an isotropic scattering scenario is based 
on the following observation model in which phase errors are 
considered as model errors: 

( ) .r H s ne= + (11)

Here, ( )H e  denotes the model matrix that takes the phase errors 
e  into account. Assuming spatial sparsity of the reflectivity field, 
the following cost functional is minimized over both the field and 
the phase errors using a coordinate descent approach: 

( , ) ( .)J S r H s s2
2

1e e m= - + (12)

Hence, SDA estimates the phase errors and performs sparsity-
driven imaging jointly by solving this optimization problem. SDA 
has been used to compensate a variety of commonly encountered 
types of phase errors. A sample result on the backhoe data for a 
case involving randomly varying phase errors along the aperture 

with a uniform distribution in [ , ],r r-  is displayed in Figure 7. 
Note that this is a wide-angle imaging scenario and SDA is applied 
on subapertures within the framework of the wide-angle imaging 
method of [23]. Figure 7(a) and (b) show the reconstructions 
obtained by conventional imaging, and direct application of spar-
sity-driven imaging without phase error compensation, respec-
tively. The result of joint sparsity-driven imaging and phase error 
compensation through SDA is shown in Figure 7(c), which dem-
onstrates the effectiveness of SDA in removing phase errors and 
reconstructing a high-quality image. The experimental analysis in 
[34] also shows how SDA provides improvements over existing 
autofocus methods. 

More recently, [35] and [36] have used similar ideas to 
achieve autofocusing of undersampled SAR data. The method 
proposed in [35] is based on minimizing a constrained version 
of the cost functional in (12). Optimization is performed 
through a three-block relaxation approach by using an extra 
surrogate parameter for the field to guarantee convergence. In 
[36], motion compensation and image reconstruction are per-
formed for SAR data obtained at a fraction of the Nyquist rate 
using reduced rate analog-to-digital converters. A total variation 
penalty on the field is incorporated into the optimization prob-
lem as well. In [37], the idea of joint sparsity-driven imaging 
and autofocusing is used for 3-D imaging based on undersam-
pled linear array SAR data. 

(b)(a)
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[FIG5] Wide-angle SAR imaging of a backhoe loader. (a) A CAD model. (b) Conventional reconstruction. (c) A composite independent 
subaperture image. (d)  A composite joint subaperture image imposing piecewise smoothness in angular scattering. (e) A composite 
joint subaperture image based on an overcomplete dictionary for angular scattering. (Images used courtesy of [26] and [27].)
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MOVING TARGET IMAGING
Joint SAR imaging and ground moving target localization has 
proven to be an important but challenging task due to an inher-
ent ambiguity in target geolocation and velocity. While the com-
ponents of the received signal belonging to a particular stationary 
target have the same phase in successive radar returns, the phase 
of a moving target varies due to its varying range. Hence, to the 
conventional SAR imager working under the assumption that the 
scene is stationary during aperture synthesis, motion amounts to 
phase errors and results in defocusing and even displacement of 
moving target energy. On the other hand, if the SAR imager 
assumes a particular nonzero scene motion, the moving target 
with a matching velocity appears focused, while all stationary and 
velocity mismatched targets appear defocused. 

A common approach for SAR moving target imaging is first to 
find the smeared imagery of moving targets in a conventionally 
formed image and then perform phase error estimation and com-
pensation for the corresponding image parts. Space-time adaptive 
processing uses data obtained from multiple channels to suppress 
clutter and separate moving targets from the background. Velocity 
SAR exploits phase information from multiple receive antennas, 
whereas dual-speed SAR processes the data collected by a platform 
flying with two different speeds in the radar observation duration. 

Sparsity-based methods have recently made their way into 
moving target SAR imaging. In [38]–[41], sparse representation 
techniques are used to search for a solution over an overcom-
plete dictionary that consists of atoms for several velocity-posi-
tion combinations. The overcomplete dictionary approach 
amounts to linearizing the nonlinear problem of target scatter-
ing and motion estimation and subsequently to solving the prob-
lem as a larger, unified regularized inversion problem involving 
sparsity constraints. A sample multistatic imaging result from 
[38] is illustrated in Figure 8. When a scene consisting of a 

stationary, a slowly moving, and a fast-moving target [shown in 
Figure 8(a) at time zero] is conventionally imaged under a zero-
velocity assumption, the slowly moving target is defocused, while 
the fast-moving target disappears [Figure 8(b)]. The conventional 
reconstruction over a set of hypothesized velocities accurately 
localizes the moving targets, albeit with residual blur. Finally, 
Figure 8(d) shows that target features can be recovered by the 
sparsity-enforcing overcomplete dictionary approach [38]. In 
[40], a similar optimization problem to the one in [38] is solved 
after a clutter cancellation procedure is applied to the data. 

Based on the observation that radar returns from a scene with 
motion can be viewed as data from a stationary scene, but with 
phase errors due to motion, a recently proposed idea is to view 
moving target imaging as a generalized, spatially variant autofo-
cusing problem. The work in [42] does just that and extends the 
SDA framework, described in the previous section, to the problem 
of moving target imaging. Due to the spatially variant nature of 
the defocusing (due to the possibility of targets with different 
velocities at different locations), the number of unknowns is much 
greater than a basic autofocusing problem, making this a very ill-
posed problem, requiring effective constraints for a successful 
solution. Based on this observation, [42] not only exploits the 
sparsity of the reflectivity field, but also imposes a constraint on 
the spatial sparsity of the phase errors based on the assumption 
that motion in the scene will be limited to a small number of spa-
tial locations. The phase errors corresponding to all points in the 
scene, for all aperture positions are incorporated into the problem 
using the vector ,b  whose elements are in the form of .e sj \e  The 
following cost functional is minimized jointly with respect to the 
field and the phase errors: 

( , ) ( )

. . ( ) .

J

s t i i11
s r H s s2

2
1 1

2 1 6

b b m

m b b

= - +

+ - = (13)

(b)(a)

[FIG6] Anisotropy characterization for a subset of pixels in the backhoe loader using joint subaperture reconstruction imposing 
piecewise smoothness in angular scattering. The individual small plots in (b) have subaperture angle iu  as the abscissa and the 
scattering magnitude | ( ) |s iu  as the ordinate. They are arranged to match the pixel locations in (a).
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Here, 1 is a vector of ones. Assuming that the number of mov-
ing points constitutes a small percentage of the total number of 
points in the scene, most of the e  values are zero, and subse-
quently most of the elements in the vector b  are one. There-
fore, this sparsity on the phase errors is incorporated into the 
problem formulation by using the regularization term 

.1 1b -  Results of an experiment on a synthetic scene con-
taining two moving targets are shown in Figure 9. The six 
pointlike targets are stationary. To simulate the SAR returns 
from the two large targets moving with constant cross-range 
velocities, quadratic phase errors with a center to edge ampli-
tude of r  radians and .2 5r  radians have been added to the data 
of these particular targets. These phase errors correspond to 
velocities of 2 m/s and 5 m/s, respectively, for the SAR system 
used in this experiment. Figure 9(a) and (b) show the results of 
conventional imaging and sparsity-driven imaging without 
phase error compensation, respectively. The result of sparsity-
driven moving target imaging [42], displayed in Figure 9(c), 
shows the effectiveness of the method in removing the phase 
errors due to motion, as well as in producing an image that 
exhibits the qualities of sparsity-driven SAR imaging. 

There exist several other pieces of recent work exploiting 
sparsity for moving target SAR imaging. The work in [39] con-
centrates on targets with micromotions that are mainly embod-
ied with rotation and vibration. To enforce sparsity, generalized 
Gaussian and student-t prior models are considered, and the 
variational Bayes’ approximation estimator is applied to the hier-
archical Bayesian models involved in the problem. The paper [41] 
considers the problem of motion parameter estimation of mov-
ing targets with Doppler spectrum ambiguity and Doppler cen-
troid frequency ambiguity encountered in SAR systems with low 
pulse repetition frequency, and presents a sparsity-based method 
that involves the use of the Radon transform to acquire unam-
biguous across-track velocities and range positions in the range 
profile domain. The paper [43] proposes an adaptive CS-based 
SAR system for dynamic sparse target scenes. The proposed sys-
tem uses the recovered target scene information to detect if the 
scene has changed and optimizes the transmission waveform and 
sensing matrix accordingly. Finally, the paper [44] presents an 
approach that combines sparsity-driven radar imaging and 
change detection for detecting and localizing moving humans 
behind walls and inside enclosed structures. 

[FIG7] Imaging in the presence of phase errors uniformly distributed in [ , ] .r r-  (a) Conventional imaging. (b) Sparsity-driven imaging 
without phase error compensation. (c) SDA.

[FIG8] Multistatic moving target imaging. (a) A simulated ground truth scene at time .t 0=  The upper left target is stationary, the upper 
right target moves slowly, and the bottom target moves at a faster velocity. (b) Conventional reconstruction when motion is ignored. 
(c) Conventional reconstruction over a set of velocity hypotheses. (d) Sparsity-enforcing overcomplete dictionary reconstruction. 
(Images used courtesy of [38].)
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COMPRESSED SENSING-BASED ANALYSIS 
AND DESIGN OF SAR SENSING MISSIONS
As discussed in previous sections, ideas based on sparse signal rep-
resentation have led to advanced image formation methods that 
offer a number of benefits for SAR such as increased resolvability 
of point scatterers and reduced speckle, as well as robustness to 
limitations in data quality and quantity. Robustness to missing or 
undersampled data has recently become a particularly critical con-
cern due to new mission requirements and sensor geometries that 
result in nondense and irregular sampling patterns in the SAR 
measurement space. Current radar systems are capable of accom-
modating multiple operational modes such as searching, tracking, 
and imaging on the same platform. Timeline constraints of a 
higher priority mode may require interrupts in SAR data collec-
tion and lead to gaps in the synthetic aperture. Likewise, jamming 
and interference from nearby transmitters may lead to frequency 
gaps in SAR data collection. Furthermore, multiplatform and pas-
sive sensing from transmitters of opportunity result in sparse 
sensing geometries and irregular sampling of the SAR measure-
ment space. Such irregular and undersampled data scenarios 
motivate the application of CS [45] ideas and signal processing 
algorithms to SAR. Sparsity-driven methods described in previous 
sections serve as the main computational tool for inverting such 
limited data. In this section, we provide an overview of a subset of 
recent work on the use of CS theory and principles for analysis 
and design of monostatic and multistatic SAR sensing missions 
under various constraints on data collection. 

CS seeks to acquire as few measurements as possible about an 
unknown signal, and given these measurements, reconstruct the 
signal either exactly or with provably small probability of error. 
Reconstruction methods used in CS involve sparsity-constrained, 
nonquadratic regularization ideas and algorithms similar to the 
ones discussed in previous sections. Based on CS theory, such 
methods can successfully recover the signal sampled well below the 
Nyquist rate provided that the signal has a sparse representation in 
some suitable domain and that its measurement process satisfies 
certain properties (such as incoherence [46]) with respect to the sig-
nal’s sparsifying basis [45]. For example, signals sparse in the canon-
ical basis (which is what we will assume in this section) can be 

accurately reconstructed from measurements involving extremely 
few, but randomly chosen Fourier samples of a signal. Since both 
monostatic and multistatic SAR sensing can be viewed as obtain-
ing samples of the spatial Fourier transform of the scattering field, 
these results open opportunities for reduced-data SAR sensing. 

Random sampling of SAR data in 2-D Fourier space closely 
matches observation scenarios assumed in existing CS theory. 
While random subsampling can be primarily used to reduce on-
board data storage requirements, it may not represent data limita-
tions due to more structured interrupts and it may not enable 
reallocation of SAR sensing resources to other tasks. To enable 
such resource management and retasking, one could consider col-
lecting returns of, e.g., a reduced number of transmitted wave-
forms by imposing randomness into the synthetic aperture [47], 
[48]. It would then be of interest to analyze and design sensing mis-
sions, i.e., practical data sampling configurations, based on the 
expected signal reconstruction quality and assess how well metrics 
appearing in CS theory (and that are defined by the measurement 
scenario) predict reconstruction performance from such limited 
data. Recent work on this question suggests CS principles may be 
used to analyze and guide the design of monostatic and multistatic 
SAR sensing missions under various constraints on data collection. 

Here we provide highlights of such an analysis. One idea is 
to study sensitivity to data limitations and to the sampling pat-
terns through mutual-coherence based metrics, which appear 
in CS theory. The mutual coherence of a measurement operator 
was proposed as a simple, but conservative measure of the abil-
ity of sparsity-enforcing reconstruction to accurately recon-
struct a signal [46]. The mutual coherence of a complex-valued 
matrix ,H  which in our case becomes the mutual coherence of 
a sensing configuration, is defined as

( ) ,
| , |

, ,max g g i jH
h h

h hi j i j

i j

2 2
ij ij !

G H
n = =

!
(14)

where hi  is the ith  column of the matrix ,H  and the inner prod-
uct is defined as , .h h h hi j i

H
jG H=  The ith  column vector hi  can 

be viewed as a range-aspect “steering vector” of a sensing 

(a) (b) (c)

[FIG9] Imaging of a synthetic scene with moving targets. (a) Conventional imaging. (b) Sparsity-driven imaging assuming a stationary 
scene. (c) Joint sparsity-driven imaging and phase error correction.
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geometry or the contribution of a scatterer at a specific spatial 
location to the received phase history data. The mutual coherence 
measures the worst case correlation between responses of two 
distinct scatterers at different spatial locations. The t% -average 
mutual coherence, ,t%n  has been proposed as a measure more 
closely related to the average reconstruction performance of spar-
sity-driven SAR reconstruction [47] 

( ) , ( )
,
, ,( )

( )

t

g t
t

g1
0 otherwise

H
I

I
I

%
%

%
t

i j

i j t

ij

ij ij
ij

ij
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%!
n

f
= =

!

! )/
/

(15)

where t%f  denotes the set containing the largest %t  column cross-
correlations .gij  Based on this definition, ( )Ht%n  measures the 
average cross-correlation value within the set of the t% most simi-
lar column pairs. A large value of ( )Ht%n  indicates that there are 
many similar pairs of columns of H  that can potentially confuse the 
reconstruction algorithm. This measure is more robust to outliers, 
which can unfairly dominate the mutual coherence. The %t
-mutual coherence can be related to the cumulative coherence [49] 
that, in the CS literature, has been used to derive sparse signal 
recovery conditions with convex cost function relaxations. The 
cumulative coherence provides an upper bound on the %t -mutual 
coherence. Note that ( )Ht%n  can be computed for a sensing config-
uration before actual data collection. The question then is whether 
it can serve as a predictor of reconstruction quality of a sparse scene 
based on data to be collected through a particular configuration. 

Figure 10 provides an example of the utility of t%-average 
mutual coherence on an urban scene from the publicly released 
Gotcha SAR data set [59]. Figure 10(a) shows the scatter plot of 
root-mean-square error (RMSE) of the reconstructions versus 

. %0 5n  when the number of randomly missing aperture positions 
increases linearly up to 50%. Just for visualization, Figure 10(b) 
and (c) shows sample conventional and sparsity-driven recon-
structions of the scene with 24% of the synthetic aperture miss-
ing. The result in Figure 10(a) indicates that configurations with 
sufficiently small values of the %t -average mutual coherence 
achieve high-quality reconstruction and that . %0 5n  appears to be a 
good predictor of reconstruction quality. This is an easily com-
puted parameter that can be utilized for real-time evaluation of 
sensing configurations and task planning of multimode radars. 
Although we have considered a simple monostatic scenario here 
for simplicity, the analysis in [47] suggests that such a CS-moti-
vated metric can be useful in the analysis and design of multistatic 
sensing missions as well. In the multistatic case, CS and sparsity-
driven reconstruction have the potential to allow for sensing with 
fewer transmitted probes and reduced acquisition time. 

Another way CS theory has recently impacted SAR imaging is 
by motivating the design of new radar waveforms. New radar 
waveforms such as Alltop and pseudorandom sequences have 
been shown to lead to high-resolution imaging radar and 
reduced analog-to-digital conversion bandwidth [7], [50]. Com-
pressive sensing through convolution using random noiselike 
transmitted waveforms followed by random time-domain sub-
sampling and its application to SAR was discussed in [51]. These 

waveforms result in incoherent radar sensing matrices and allow 
for accurate reconstruction of sparse target scenes. Multistatic 
and distributed radar waveform design for CS was discussed in 
[52]. CS for MIMO radars was addressed in scenarios involving 
uniform linear antenna array configurations [53], [54] and 
antennas randomly distributed over a small area [55]. 

SUMMARY AND DISCUSSION
We have presented an overview of recent lines of inquiry that lie 
at the intersection of two domains: sparse signal representation 
and SAR image formation. For basic SAR imaging, we have 
described image formation methods founded upon analysis and 
synthesis-based sparse signal representation ideas, and discussed 
how the complex-valued and potentially random-phase nature of 
SAR reflectivities have led to interesting optimization formula-
tions different from those encountered in basic sparse signal rep-
resentation problems. Motivated by emerging applications, 
including those involving sensing by unmanned aerial vehicles, 
we have considered the problem of wide-angle SAR imaging and 
described how exploitation of the sparsity of the scene and that of 
the angular scattering response can lead to effective imaging and 
anisotropy characterization. Then we have turned to the issue of 
phase errors, and described how exploitation of sparsity enables 
autofocusing in challenging conditions. We have pointed to 
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[FIG10] A compressed sensing-based analysis of sensing con-
figurations. (a) RMSE versus .. %0 5n  (b) Conventional recon-
struction, and (c) sparsity-driven reconstruction correspond-
ing to the red point in (a) with 24% of missing data. (Images 
used courtesy of [47].)
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recent pieces of work that attempt to use sparsity for the chal-
lenging problem of moving target SAR imaging. Finally, we have 
discussed how recent developments in CS theory have motivated 
not only the use of sparsity-driven methods for SAR imaging, but 
also the analysis and design of SAR sensing missions under physi-
cal, geometric, or temporal constraints on data collection. 

The body of work on sparsity-driven SAR imaging we have cov-
ered here (and related pieces of work we were not able to cover 
due to space constraints), shows that sparsity can be a useful asset 
for SAR imaging especially in nonconventional data collection sce-
narios (e.g., when the data are sparse, irregular, limited) leading to 
severely underconstrained, ill-posed problems for image forma-
tion. Sparsity-driven imaging should not necessarily be viewed as 
a general-purpose approach that should replace more traditional 
SAR image formation methods completely. When used properly, it 
is a tool that can enable the radar engineer to extract interesting 
pieces of information from SAR data that is not possible through 
more conventional means. As any approach for solving an ill-
posed problem, it relies on a certain type of assumption, which, in 
this particular case, is that the scene admits sparse representation 
in some domain. It performs very well on scenes that exhibit spar-
sity or compressibility, and enhances aspects of a particular scene 
that exhibit these characteristics. If the important characteristics 
of the scene and the sparse structure imposed through a particu-
lar dictionary are mismatched, we would obviously not expect the 
approach to produce improved imagery. This is why we expect 
“learning” to be an important theme in future work, as we 
describe below. Furthermore, when sparsity by itself is not suffi-
cient to capture the rich information content of a scene, it might 
be possible to combine it with other types of priors each of which 
describes a component of a decomposed scene. 

The research we have reviewed provides a principled basis and 
demonstrates how sparsity can be exploited in several contexts in 
SAR imaging. We believe we will witness wider utilization of spar-
sity-based methods in real SAR imaging applications over the 
upcoming years if several challenges are addressed and further 
research is carried out with a broader perspective. These chal-
lenges include reducing computational complexity, establishing 
stronger connections between imaging and decision-making, 
using effective machine-learning ideas to tune the notion of spar-
sity to a particular context, and going beyond sparsity to capture 
other forms of simple structures present in the data. Based on this 
perspective, we briefly describe four lines of research that we 
believe will enrich this problem domain and widen its applicability. 

1) Computational advances. The first issue is computational 
complexity. While we might never expect sparsity-driven 
imaging to be as fast as simple Fourier transform-based imag-
ing methods, more work is needed to develop exact and 
approximate algorithms that exploit the problem structure to 
produce faster solutions. One can think of several related 
research thrusts under this theme. First, given recent develop-
ments in convex optimization methods, it is of interest to 
adapt promising methods to particular SAR imaging problems 
to improve computational efficiency. As an example, aug-
mented Lagrangian methods such as alternating direction 

method of multipliers could be considered not only because of 
their fast convergence properties, but also due to their poten-
tial for distributed implementation leading to parallelization. 
This brings us to our next point, which is whether one could 
exploit parallel processing on graphics processing units 
(GPUs) for sparsity-driven SAR imaging. While there exist 
GPU implementations of sparse signal representation ideas 
used as postprocessing despeckling methods, effective GPU 
implementations of the solution of the inverse problem for 
imaging is more challenging. Finally, for sparsity-driven SAR 
imaging problems involving large dictionaries, it is of interest 
to develop approximate algorithms that intelligently search 
the solution space exploiting the problem structure to achieve 
fast and reasonably accurate solutions. Advances in computa-
tional tools would enable wider utilization of sparsity-driven 
SAR imaging methods especially in relatively large problems 
involving, e.g, 3-D imaging in the context of TomoSAR. 
2) Decision-directed imaging. We envision two potential major 
lines of inquiry suggesting the establishment of closer connec-
tions between SAR imaging and machine learning. The one we 
describe here involves the interplay between SAR imaging and 
further decision making. As discussed in the body of this arti-
cle, one of the early motivations for sparsity-driven SAR imag-
ing has been the preservation and enhancement of features 
important for tasks such as automatic target recognition. 
While this line of thinking has produced images with, e.g., bet-
ter preservation of scatterer locations or easier to segment 
regions, accomplishments have been limited in at least to 
ways: first, only very low-level features have been used, and 
second, this has been an “open-loop” process. It would be 
interesting to bring in higher-level information, such as object 
shapes, into the problem formulation. It would also be inter-
esting to take a decision-directed perspective and use informa-
tion fed back from the inference engine, such as partial 
information on classes of objects in the scene, while solving 
the image formation problem. Whether one could formulate a 
sparse representation perspective to incorporate such high-
level statistical information is a question worthy of exploration. 
3) Closer connections to machine learning. Another major 
line of inquiry we foresee involves close integration of 
machine-learning methods into sparsity-driven SAR imaging. 
We have already mentioned that sparsity-driven imaging can 
be formulated using a Bayesian perspective that involves priors 
on the reflectivity field and the parameters, and in which the 
imaging problem involves characterizing a posterior density. 
While there exists some work with this perspective, using 
machine learning methods to demonstrate the benefits offered 
by such a statistical perspective is of interest for the future. 
Another aspect in which we expect learning methods to play a 
more prominent role is the construction of the dictionaries 
used in sparse representation. While there has been some pre-
liminary work on dictionary learning in the context of SAR 
imaging, significant benefits are yet to be demonstrated. Con-
necting this back to decision-directed processing, one might 
consider performing discriminative dictionary learning as well. 
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4) Other forms of “simplicity.” The final area of research we 
anticipate is about exploiting other types of structures poten-
tially exhibited by SAR data in addition to sparsity. In particular, 
a concrete potential line of work could involve the use of low-
rank models. Recent theoretical work on low-rank models 
shares many aspects of earlier work on sparsity and CS: low-rank 
matrix recovery problems are posed as optimization problems, 
relaxed forms of which, involving nuclear norms of matrices, are 
solved efficiently. Temporal and spatial dependencies in SAR data 
may lead to successful use of low-rank models, in a variety of 
contexts including moving target imaging and wide-angle imag-
ing, and could possibly involve decomposition of some of the sig-
nals into sparse and low-rank components as well. 
Overall, sparsity-driven SAR imaging is an exciting topic of 

study for both radar imaging experts and statistical signal pro-
cessing researchers. Due to its connections to interesting ongo-
ing theoretical work on signal representation and CS, as well as 
due to its potential for real impact on existing and emerging 
applications, we expect that it will continue to be an active area 
of academic and engineering development in the near future. 
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S
ynthetic aperture radar (SAR) data processed with inter-
ferometric techniques are widely used today for environ-
mental risk monitoring and security. SAR tomography 
techniques are a recent advance that provide 
improved three-dimensional (3-D) 

reconstruction and long-term deforma-
tion monitoring capabilities. This ar-
ticle is meant to discuss the main 
developments achieved in the 
last few years in the SAR to-
mography framework, with 
particular reference to 
both urban and forest sce-
narios. An insight on clas-
sical multipass interfero-
metric processing is also 
included to summarize the 
importance of the technology 
for natural hazards monitoring 
and to provide the basis for the de-
scription of SAR tomography.

INTRODUCTION
SAR synthesizes a large antenna along the movement 
direction to provide images at microwaves with resolutions 
comparable with those achieved with optical sensors but with 
the advantage of day–night and all-weather acquisition capabil-
ities [1]. Interferometric SAR (InSAR) techniques exploit angu-
lar imaging diversity, offered by vertical spatial orbit, flight 
track, or antenna position offsets (spatial baselines), to recon-
struct the scene topography: the technology is cost effective in 
terms of coverage/accuracy [2] and has been also used to map 
the Earth topography on a global scale [1]. The typical 

satellite-enabled regular and systematic data acquisition plays a 
key role in applications to environmental risk monitoring and 
security. In particular, differential interferometry (DInSAR) can 

reveal Earth displacements to a subcentimeter accu-
racy and has been widely used for the analy-

sis of large deformations, for instance, 
associated with main earthquakes. 

In the last decade, the develop-
ment of algorithms [1], [3]–

[5] able to process large 
stacks of multipass inter-
ferometric SAR images 
relevant to an area of in-
terest has also allowed 
the monitoring of slow 
and long-term move-

ments, for instance, of 
landslides and subsidence, 

e.g., due to mining and water/
oil extraction. SAR tomography 

techniques are a recent advance 
that “turn” interferometric methods into 

(multidimensional) imaging [6]–[11]. By ex-
ploiting acquisitions collected with multiple spatial base-

lines and temporal separation (temporal baselines), these 
techniques allow the implementation of a synthetic fine beam 
(radar) scanner along the vertical direction for full 3-D scene re-
construction [6]–[8], as well as for slow, long-term deformation 
monitoring in complex areas [9]–[11], i.e., four-dimensional (4-D) 
(3-D+time) imaging. 

The 3-D imaging (focusing) enables the investigation of the 
scene scattering structure along the vertical direction, which is 
not possible with neither conventional two-dimensional (2-D) 
SAR imaging nor with InSAR. This is an important feature for 
applications where the scattering is distributed along the 
height, for instance, for application to forests and glaciers 

[Gianfranco Fornaro, Fabrizio Lombardini, Antonio Pauciullo, 

Diego Reale, and Federico Viviani]
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(sensed by P- and L-band sensors [6]) which is of paramount 
importance in the climate change issues. With reference to for-
est applications it is worth noting that the European Space 
Agency is developing a dedicated satellite (BIOMASS Earth 
Explorer mission) operating at P-band. Multidimensional (Mul-
tiD) SAR imaging also benefits from the fine beam vertical scan-
ning capabilities to investigate complex man-made scenes, such 
as urban areas and infrastructures, where perspective distortions 

due to the radar imaging geometry frequently occur and lead to 
interference of the response of multiple scatterers relevant to 
different ground structures mapped in the same image pixel. 
This typical layover effect dramatically impairs urban areas and, 
in particular, data of high- and very high-resolution systems 
such as the recent X-band TerraSAR-X (TSX) and Cosmo-
Skymed (CSK) missions, due to the spread of the effect over a 
large number of pixels. 

INSIGHTS ON SAR INTERFEROMETRY
SAR interferometry exploits at least two SAR images acquired 
with angular or time diversity to estimate the scene topogra-
phy or the possible displacements of ground targets [2]. The 
key principle is the use of the phase difference between com-
plex SAR images for the accurate measurement (to a subwave-
length accuracy) of the radiation traveled path variation (path 
difference) in the two images. For images acquired simultane-
ously from multiple sensors or from multiantenna platforms 
(single-pass interferometry) observing the scene with slightly 
different incidence angles (across-track interferometry), such a 
measurement allows, on one hand, estimating the scatterer 
elevation s, i.e., the scene topography. On the other hand, 
when images are acquired through different passes (repeat-
pass acquisitions) the path difference is used to measure possi-
ble displacements of the target even due to slow deformation 
with sub-cm accuracy (differential SAR interferometry, DInSAR). 

We refer to (1), that in the hypothesis of high azimuth and 
range resolution, is the most general expression of the complex 
signal received at different antennas. Assuming the presence of 
a single scatterer at elevation s, the phase of the complex inter-
ference between a pair of acquisitions g1  and g2  is  

,arg g g r
b s d4 4*

a w2 1{
m
r

m
r { { {= = + + + +c6 @ (S1)

wherein b  is the orthogonal baseline difference between the 
acquisitions and d  is the scatterer displacement. All remaining 
terms are error sources: {c  and a{  are the backscattering 
phase change and the atmospheric phase delay (APD) varia-
tion between the two acquisitions, respectively, and w{  is the 
phase contribution of the thermal noise.

On one side, simultaneous or quasi-simultaneous acquisitions 
(in the absence of fast target movements) makes both a{  and 
d  be zeroed: the system is able to measure, pixel by pixel, ,s
and therefore to generate accurate digital elevation models. 
On the opposite side, for ,b 0.  the systems is able to measure 
d  provided that the associated component has a dynamic 
larger than a{  (for instance, displacements associated with 
earthquakes). In the case of large ,b  an external digital eleva-
tion model (DEM) must be used to subtract (DInSAR) the term 
related to the topography thus reducing the variation of s. The 
possibilities mentioned above are feasible when {c  and w{  do 
not overwhelm the useful signal component.

Effects of w{  are “felt” generally in areas characterized by 
low backscattering; on the other hand, effects of {c  are, as 
speckle, independent on the target backscattering magnitude 
and relate to decorrelation, which originates from imaging 

angular variations (even associated with small variation of the 
target incidence or aspect angles) or from temporal backscat-
tering changes. In the former case, the phenomenon is 
referred to as angular decorrelation, whereas in the latter case 
it is referred to as temporal decorrelation. The image cross cor-
relation index, specifically its amplitude (coherence), evaluated 
on a pixel-by-pixel basis through a suitable complex multilook-
ing, provides a way to quantify the decorrelation and is used 
to discriminate between reliable and unreliable regions for 
interferometric processing [1], [2].

The APD shows, unfortunately, spatial correlation and cannot 
be mitigated, as thermal noise, via spatial multilooking. The only 
possibility to separate it from the deformation signal is provided 
by the use of multiple observations at different times: in such a 
case the APD can be estimated via advanced DInSAR (A-DInSAR) 
techniques and compensated essentially by exploiting its differ-
ent temporal statistics (typically uncorrelated over the epochs). 
A-DInSAR techniques, which allow APD removal and measure-
ment of deformation time series (Figure S1), are essentially 
divided in two classes: the DInSAR stacking techniques and the 
PSI, which rely on different assumptions about the ground scat-
tering. DInSAR stacking methods, such as the small baseline sub-
set [4] and the coherent point targets [5], assume the scattering 
to be spatially distributed over the resolution cell and are based 
on the exploitation of both only small baseline interferograms 
(hard baseline thresholding) and spatial coherent multilook to 
limit the effects of decorrelation (8); see Figure S1. They are tai-
lored to the monitoring of wide areas, including rural areas with 
slow temporal correlation losses. On the other hand PSI, such as 
the PSInSAR [3], [28] assumes the presence of dominant scatter-
ers (8) and uses all (i.e., also large) baselines to achieve high accu-
racy in the localization of targets for precise and accurate 
monitoring of man-made structures. Differently from SAR 
tomography, PSI methods are essentially phase model-based, i.e., 
do not use the amplitude information for estimating the target 
position and deformation parameters. Moreover, besides an 
early work on separation of double scatterers moving with the 
same velocity proposed in [29], precursor of the application of 
tomographic methods for layover solution over vertical build-
ings, they assume the presence of a single persistent scatterer per 
resolution cell. 

Recently a new approach, SqueeSar, has been introduced 
[23]: it relies on the use of the data covariance matrix, esti-
mated by spatial adaptive averaging (Figure S1) to implement 
a soft and adaptive baseline threshold aimed at handling both 
the distributed and the dominant scatterers model. A principle 
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By solving the layover problem, today SAR tomography tech-
niques offer a unique tool [11]–[13] to carry out accurate 3-D 
reconstruction and long-term slow displacements monitoring 
of even single-built structures, which can be useful for security 
and long-term structural health-monitoring issues.

The article is meant to provide a concise overview of SAR 
interferometry and, together with the companion article [31
focused on the use of compressive sensing (CS), of the devel-

opments of SAR tomography. The experiments’ results on 
real data are provided for both airborne and spaceborne SAR 
sensors to give a flavor of the application scenarios of the 
described techniques. Multiple polarization and polarimetric 
processing approaches have been also employed in the SAR 
tomography context, leading to polarimetric SAR tomogra-
phy [14]–[16], however, this topic is outside the scope of 
this article.

of optimal coherent SAR data combination, for accurate multi-
baseline interferometry exploiting also amplitude information 
for the reconstruction of the single scatterers heights and 
accounting for the distributed scattering, had been also first 
introduced; see modeling in [7] and introductory comments in 
[18], and references therein.

In all of the processing approaches, a critical step is the phase 
unwrapping (PhU) that must be handled to access the absolute 
phase measurements. The availability of a 2-D (typically sparse) 
spatial grid can be favorably exploited to perform PhU on spa-
tially redundant networks. The latest-generation algorithms 
developed for multipass/multibaseline also exploits the redun-
dancy of interferograms to improve the PhU step; see, e.g., 

[30] and other similar noncited (to limit the number of refer-
ences in the article) recently published papers.

To show the importance of SAR interferometry for monitor-
ing natural hazards, the images in the right part of Figure S1 
are provided to shows a sample of the DInSAR stacking prod-
uct in the region of L’Aquila (Italy) hit by the 2009 Mw 6.2 
earthquake: the colors of the map are associated with the 
deformation mean velocity evaluated only on the postseismic 
acquisitions, and the plotted time series shows the possibility 
to identify and monitor also postseismic effects that typically 
lead to an exponential decrease of the deformation over time. 
Results were obtained by processing 33 CSK images between 
April and October 2009.

Processing for
Interferogram
Generation

A-DInSAR
Analysis

Multilook

Full Resolution
(Fine Scale)

Low Resolution
(Coarse Scale)

Atmospheric Propagation Delay

Deformation

–5.0 5.0(cm/y)

[FIGS1] The multipass DInSAR processing scheme. Deformation measurements are separated by the APD by analyzing stacks of 
interferograms generated by multiple SAR observations. The multilook operation, which can be carried out adaptively, is used to 
trade off the scale of analysis (fine and coarse scale) and the mitigation of noise. The images on the right (deformation map and 
deformation time series) show an example of application of the technique to postseismic monitoring typically associated with 
main earthquakes.
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SIGNAL MODELS
The multiacquisition SAR geometry is depicted in Figure 1 in 
the slant range r -slant height (elevation) s plane, which is 
defined with respect to a reference ground plane and is orthogo-
nal to the azimuth direction ,x^ h  this latter being coincident 
with the track of a reference master antenna. Assuming parallel 
antenna tracks (typically obtained by multiple passes with cur-
rent satellite and airborne technologies), bn in Figure 1 

, ,n N0 1f= -^ h is the orthogonal component of the baseline 
connecting the n th antenna to the master one.

For a generic n th acquisition (at time ),tn  after the applica-
tion of a standard azimuth-range (2-D) raw SAR focusing, the 
complex values gn  of each ,x r^ h image pixel is the superposi-
tion of multiple elementary backscattering contributions 
described by the distribution of the complex amplitude of the 
scattering snc ^ h along s (at )tn

,g e s e e ds w( , )
n

j n
n

j r
b s j d s t

n
I

4 4
a

n
n

s

c= +{
m
r

m
r

^^ hh # (1)

where
■ e j na{ ^ h is the term associated with the atmospheric phase 
delay variation caused by the propagation of the radiation in 
the atmosphere
■ m  is the radar wavelength 
■ I s  is the scene extension in the slant height direction 
■ ( , )d s tn  is the deformation signal at epoch tn  (positive 
toward the sensor) affecting the generic scatterer at elevation s
■ wn  is the noise term in the focused pixel accounting for 
thermal noise, which has a strong impact in low backscat-
ter areas.
As anticipated in the introduction, the model we consider 

refers to the single polarization case. 
In the following, we neglect the term a{  by assuming that 

the atmospheric contribution is compensated through a pre-
liminary standard multipass interferometric processing (data 
calibration) [10], as depicted in the left part of the tomo-
graphic processing block diagram in Figure 2. In “Insights on 
SAR Interferometry,” details are provided on the data 

calibration step and, in general, on the main issues related to 
InSAR and DInSAR for application to digital elevation model 
generation and monitoring of surface deformation, which have 
significantly pushed the development of the SAR technology. 
The double-framework, i.e., interferometric and tomographic, 
description is fundamental to clarify that the latter (SAR 
tomography) must be considered as a tool that enhances the 
former (SAR interferometry) with reference to specific applica-
tions, e.g. urban areas, infrastructures, and forest. 

With reference to (1), the particular case of simultaneous 
acquisitions implying the absence of temporal diversity, i.e., tn

fixed, or alternatively of the absence of any deformation (and 
temporal backscattering change), leads to the classical tomo-
graphic (3-D) framework  

.g s e ds wn
j r

b s
n

I

4 n

s

c= +m
r+^ h# (2)

Equation (2) constitutes a Fourier transform (FT) operator. Two 
different equivalent visions can be considered depending on the 
choice of the transformation pairs:

, / , / .s b r b f s r2 2n n n sp m m=- =^ ^h h" ", , (3)

In a first vision, the sequence gn  is a (sampled) spatial spec-
trum, at frequencies ,np  of the (tomographic) scene, with ( )sc
being the (spatial) signal; this is the so-called wavenumber 
domain frame. Dually, in a second vision, the data sequence gn

is the spatial (baseline) sampled signal, while ( )sc  is a spatial 
spectrum (elevation scattering distribution) in the variable spa-
tial frequencies :fs  this frame can be termed spectral analysis,
or SPECAN, vision and is also used in array signal processing 
[direction of arrival (DOA) estimation] [7]. For this reason it is 
also referred to as array processing-based vision.

In the more general and frequent case of acquisitions carried 
out with multiple passes at time ,tn  the deformation term cannot 
be neglected. By introducing the conjugate variable v  having the 
dimensions of a velocity (m/s), the second exponential term in 
(1), related to motion of the scatterer at elevation ,s  can be 
expanded in Fourier harmonics with Fourier conjugate vari-
ables , /v t2n nh m=-" , as follows: 

, ,e h s v e dv( , ) /j d s t j v t

I

4 2 2n n

v

=m
r

r m^ h# (4)

where ,h s v^ h plays in v  the role of the spectrum of the motion-
related signal for elevation .s  Note that the decomposition in 
(4) is analogous to the quick-time Doppler spectrum used in 
surveillance radars, which can be expressed as a distribution of 
spectral velocities (“equivalent velocities”). This effect was 
exemplified for a jittered motion in [9]. It is also worth noting 
that, as happens for Doppler spectra, the spectral velocity vari-
able v  in the ,h s v^ h distribution is not an instantaneous (defor-
mation) velocity; the difference between the two velocities is 
exactly that associated with spectral and instantaneous frequen-
cies in the common signal theory and frequency modulation 

nth Antenna

bn

Master Antenna

Orbit

s

r

[FIG1] Tomographic SAR and reference geometry.
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context. In particular, in the case of uniform deformation 
motion at a given ,s  where the motion-related signal in (4) is a 
pure complex sinusoid, the spectral velocity turns to be a single 
one (i.e., h  is d  Dirac-shaped along )v  and coincides with the 
constant velocity of the motion. On the other hand, the pres-
ence of a peak at a given spectral velocity vr  corresponds to a 
scatterer motion with a deformation mean velocity of .vr

The substitution of (4) in (1) leads to

, ,g s v e e dsdv wn n
j r

b s j vt
n

I I

4 4n n

s v

c= +m
r

m
r

^ h## (5)

where , ,s v s h s vn nc c=^ ^ ^h h h is the backscattering distribu-
tion in the ,s v^ h plane. 

Equation (5) describes what is known as differential-
tomography (4-D) model [9]–[11]. It shows that a 2-D FT relation 
stands between the data ,gn  which notably are typically irregu-
larly sampled both in the baseline and temporal domains and 
the backscattering distribution. Similar to the 3-D case, a dual 
vision is possible by introducing, in addition to (3), the two fol-
lowing FT variables pairs:

, / , / ,v t t f v2 2n n n th m m=- =" ", , (6)

wherein, the use of the left variable pair leads to the wavenum-
ber vision, whereas the use of the right variable pairs refer to 
the array processing vision.
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[FIG2] A scheme of the SAR tomography processing for forest and urban/infrastructures scenarios.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [46] JULY 2014

Accordingly, (5), (3), and (6) show that, in the presence of 
deformations, the 3-D model in (2) is extended to the velocity 
domain and involves a 2-D FT in both elevation and velocity.

The (3-D/4-D) tomography problem consists of the estima-
tion, in each image pixel, of the scene backscattering profile 

,sc^ h  or of the backscattering distribution ( , ),s vc  starting 
from the N samples :gn  it involves, in the most general case, 
the inversion of (5), that is a spectral analysis of the data. 

Equation (5) represents the most general (4-D) imaging 
model. Nevertheless some important particularizations are use-
ful to link to classical concepts, well known in the InSAR and 
DInSAR context, as well as for the developments of advanced 
3-D/4-D imaging methods. In particular, to link to the classical 
persistent scatterers (PS) approach [3], a temporal invariant 

nc c=^ h and concentrated nature of the scattering is assumed. 
With reference to the application to urban areas and particu-
larly with high frequency systems (for instance, C-band and 
X-band sensors), due to frequent occurrence of the layover, the 
backscattering profile can be in fact assumed to be composed 
by a finite number K  of d -Dirac functions in the ,s v^ h domain 
(line spectrum) centered in the different elevation/velocity scat-
terers phase centers .,s vk k^ h  Under this assumption ,s vc =^ h

,s s v vk k kk

K

0

1
c d d- -

=

-
^ ^h h/  where kc  is the complex amplitude 

of the k th scatterer, and the 4-D model in (5) (including the 3-D 
case) reduces to

,,g a wN s vk k kk

K

0

1
c= +

=

-
^ h/ (7)

where , ,g g gN
T

0 1f= -6 @  is the vector collecting, for each pixel, 
the measured complex data, , ,w w wN

T
0 1f= -6 @  collects the 

noise contribution at each acquisition (T defines the transposition 
operator) and ,a s v^ h  can be termed steering vector, as from the 
array processing area, and its elements are defined as 

/, expa s v j s v N2n n nr p h= - +^ ^h h6 6@ @  for the generic eleva-
tion/velocity pair .( , )s v  We refer to (7) as the fully coherent (con-
centrated, i.e., pointlike, and time invariant) scattering model.

In real cases, the scattering cannot be always assumed to be 
concentrated at discrete heights, thus leading to angular (spatial 
baseline) decorrelation; even more important, it cannot be consid-
ered invariant over the time (temporal decorrelation) [1][2]. We 
refer therefore to (5) and restore the dependence of the backscat-
tering over time and suppose the scattering to be distributed over 
“small” elevation intervals ,s kT (compact scatterers) centered in 
sk  and moving with velocity .vk  In this case we have [7], [17] 

,,g a wN s vk k kk

K

0

1
9 c= +

=

-
^ h/ (8)

where 9  denotes the Hadamard (element-by-element) 
product and ,, ,, ,k k k N

T
0 1fc c c= -6 @  with 

,s kT
exps,k n nc c= ^ h#

,j s s ds2 n krp -^ h6 @  is a vector collecting the (angularly decor-
relating and time-variant speckled) realizations of the k th scat-
tering as seen at the N  tracks. The decorrelation property of 
the scatterer, including compact time-invariant, concentrated 
time-variant, and more generally compact time-variant scatter-
ing will be statistically described through the correlation 

matrix defined as .R E k k
H

k c c=c 6 @  The particular case in which 
,R E 1 1k N N

T2
k c=c 6 @  where 1N  is the N -dimensional unity 

vector and | |E k
2c6 @ is the (possibly temporally averaged) scat-

terer powers, leads to the (statistical) equivalence between the 
speckled and time variant model in (8) and the pointlike model 
in (7) when kc  are random variables. For this reason, we refer 
to the time-variant speckled model in (8) as the partially coher-
ent scattering model.

MULTIDIMENSIONAL TOMOGRAPHY IMAGING METHODS
The 3-D and 4-D SAR imaging is achieved via inversion of (2) or 
(5), respectively. The acquisition geometry poses limitation on the 
imaging capabilities which can be overcome by the use of some 
specific techniques. The baseline distribution defines a reliable 
elevation span, i.e., the maximum extension in elevation direction 
to avoid heavy effects of aliasing. Assuming a uniform baseline 
distribution with an antenna separation of ,bT  the unambiguous 
elevation interval is / :r b2sT Tm= ^ h  in the nonuniform case bT
is typically replaced by the average baseline separation. The Ray-
leigh elevation resolution of the system is / ,r B2s md = ^ h  with B
being the total baseline span. In the same way, an unambiguous 
velocity interval and a velocity resolution can be also defined as 

/ t2vT Tm= ^ h and / ,T2v md = ^ h  where tT  and T  are the average 
temporal separation and total temporal span, respectively.

Several techniques can be used to implement the inversion 
that leads to the estimation of the backscattering distribution 
along s or in the elevation/velocity plane , .s v^ h  Each is charac-
terized by a different tradeoff between simplicity, computational 
efficiency, sidelobes reductions, and super-resolution capability 
and may be well suited for specific applications. Nonparametric 
methods, i.e., beamforming (BF), singular value decomposition 
(SVD), and adaptive Capon BF, provide flexibility of application 
to scenarios with any elevation backscattering profile, in partic-
ular with distributed (speckled) scatterers, and including also 
the pointlike scattering case. However, for 3-D imaging of forest 
volumes, linear methods such as SVD and nonparametric 
Capon BF can be well suited for handling the case of irregular 
baselines. On the contrary, for application to 3-D/4-D urban 
imaging and monitoring areas characterized by layover, super-
resolution methods for compact scatterers like, e.g., multiple 
signal classification (MUSIC) may be better suited but require a 
prior determination of the scattering order for each pixel. In any 
case, as better specified in the following section dedicated to 
detection issues, with reference to this application even the sim-
ple BF performs better than classical interferometric 
approaches, such as persistent scatterers interferometry (PSI).

BEAMFORMING
Referring to the 3-D model in (2), the backscattering profile 

sc^ h can be estimated as follows:

[ ,] ( )a a gs g s s*
nn

H
n
N

0
1

c = =
=

-t^ ^h h/ (9)

where ( ) *:  and H:^ h  denotes the conjugation and Hermitian oper-
ators, respectively. This technique is also usually referred to as 
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(classical) BF in array processing or matched filter. Extension to 
the 4-D case of estimating ,s vc^ h is easily carried out by the use 
of the 2-D steering vectors .,a s v^ h  Hereafter, we will refer to the 
generic 4-D inversion problem, assuming the 3-D focusing as a 
special case in which all dependences on v  drop out .v 0=^ h

According to (9), BF corresponds to a rephase-and-sum array 
processing that forms a “beam” in the elevation/velocity direc-
tions. In practical applications, as baselines are far from being 
uniformly distributed, BF may give poor reconstruction perfor-
mances in terms of sidelobes and leakage of the point spread 
function. Strategies alternative to plain BF have been adopted to 
improve the resolution below the inherent Rayleigh limit 
(superresolution) and the sidelobes suppression.

SINGULAR VALUE DECOMPOSITION
The discretization of the integral in (5) is now introduced with 
the assumption of a temporal invariant behavior, i.e., .nc c=

Letting , , , ,s v s vM M
T

0 0 1 1fc c c= - -^ ^h h6 @  be the vector that 
collects the M M Ms v#=  samples of ,s vc^ h at the discrete 
points, hereafter called bins, , ,s vm m^ h , , ,m M0 1f= -

belonging to the M Ms v#  elevation/velocity grid, we have that 
the FT operator in (5) can be rewritten in the discrete case as

,g A wc= + (10)

where , ,A a aM
T

0 1f= -6 @  is the N M#  system matrix collect-
ing the steering vectors associated with each discretization bin 
synthetically defined as , .a a s vm m m= ^ h

Particularly, with reference to the fully coherent model in (7), 
assuming the discretization grid to include the scatterer locations 
in the ,s v^ h-plane, the vector c  will be characterized by only K
nonzero elements at the bins corresponding to the scatterers 
phase centers. The case in which K M%  leads to a sparsity 
nature of the unknown vector ,c  which is of interest, as 
explained in [31], for the use of CS approaches.

The use of the SVD of the operator A  in (10) allows regular-
izing the inversion by restricting the solution space and benefit-
ing of the inclusion of very limited a priori information on the 
expected scene elevation extent. The regularization, obtained 
through the so-called truncated SVD, allows the avoidance of 
noise amplification and inversion instabilities, and hence gener-
ally provides a better sidelobe reduction as well as slight super-
resolution than plain BF [8], [10].

CAPON SPECTRAL ESTIMATION
To counteract the increase of sidelobes even more, 3-D and 4-D 
SAR focusing has been successfully set in the adaptive spectral 
estimation/array BF framework, in particular employing the 
Capon method [7], [13], [18]. As a result, (elevation) superresolu-
tion adaptive tomography methods have been developed of non-
parametric kind. The strong (elevation) spatial leakage associated 
with the irregular baselines is significantly reduced through the 
adaptive nulling, which interestingly results, jointly with a sensi-
ble reduction of the anomalous sidelobes, in some elevation 
superresolution capabilities beyond the Rayleigh limit. This also 

allows dealing with system problems of limited baseline span or 
of very detailed layover/volumetric analysis needs. In the general 
4-D case, the data-dependent processing is based on the multi-
baseline array spatial/temporal (“hybrid”) correlation matrix of 
the data R g  [7], which requires operation with multilook data 
(multiple observations of the array data vector) for its estimation. 
The multilook operation is coherent, as in SAR interferometry, 
and the looks are typically obtained from multiple adjacent pixels 
(multilook cell). In this context, the tomographic output is the 
average squared modulus of , ,s vc^ h , | , | ,P s v E s v 2c=^ ^h h" ,

which is retrieved as follows:

, ., ( , )a R aP s v s v s vg
H 11=

--t ^ ^^h h h (11)

In the tomographic application of the Capon beamformer, the 
integration of diagonal loading methods is necessary to handle 
problems related to the possible nonpositive-definiteness of the 
correlation matrix and to generally improve the inversion 
robustness [9]. Today, 3-D Capon tomography is a standard tool 
to get image enhancements beyond the above linear methods, 
in particular being very suitable for analyses of volumetric scat-
terers and thus being commonly used for forest scenes [1], [14], 
[15], [19].

A typical result, which shows a demonstration of the Capon 
tomography [7] capability to well perform 3-D focusing on for-
est scenarios [19], is reported in the lower left plot in Figure 2. 
The figure reports a tomographic slice obtained by processing 
nine tracks of P-band data (HV polarization) acquired with DLR 
E-SAR airborne platform over a boreal region in Sweden, where 
light temporal decorrelation effects occur. 

MUSIC
Model-based beamformers matched to line spatial spectra have 
been applied to SAR tomography to get further performance 
improvements for the (urban) pointlike scatterers scenarios, 
revealing good capabilities even for distributed scatterers, 
depending on the compactness degree, despite the model 
approximation [7]. In particular, the spatial correlation matrix-
based MUSIC method relying on the subspace decomposition 
[7] has been validated both for urban/infrastructure [16], [20] 
and forest scenarios 3-D imaging [15], [19]. In the case of com-
pact or pointlike scatterers and nonfull yet sensible time coher-
ence, a 2-D MUSIC estimator can be used for the 4-D case as 
follows [19], [21]:

, ,, ( , )a QQ aP s v s v s vH H 1
=

-t ^ ^^h h h (12)

where Q  is the noise eigenvector matrix and ,s vPt ^ h  is a 
psedudospectrum.

As an example, the plot in the lower right part of Figure 2 
shows an automatic-order MUSIC [7] tomogram obtained with 
the X-band airborne three-antenna (single-pass) system AER-II 
(FGAN) data [22] acquired over Weitingen, Germany. The result 
has been obtained by integrating an information theoretic crite-
rion [21] order selection method exploiting the eigenvalues [7], 
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[22] of ,Rg  with eigenvalue leakage stabilized by diagonal loading 
[9] into the MUSIC method. In particular, being the scene consti-
tuted by a bridge crossing a valley, practically the whole bridge 
portion is correctly imaged jointly with the layover valley.

A significant recent advancement has been the extension for 
single-look processing of the Capon and MUSIC [20]: this has 
allowed obtaining high superresolution and sidelobe cleaning 
capabilities at full horizontal resolution operation. The principle 
relies on knowledge-based baseline interpolation [20]. These 
resulting methods are intrinsically computationally light with 
respect to CS with a processing burden very close to plain linear 
focusing. A typical sample of the backscattering distribution in 
the ( , )s v  plane for an urban cell obtained with 4-D single-look 
BF and Capon processing of CSK data is reported in Figure 3. 
The Capon distribution, in (b), is apparently characterized by a 
sub-Rayleigh double scatterer (the height distance between the 
two scatterers is equal to 2.5 m), going beyond the manifest res-
olution limits of the classical BF method shown in (a). More-
over, the Capon sidelobes level is much better than the BF one. 
Validation on wide regions are presented in [21], and notably 

the best height superresolution gain achieved is about seven 
times below the Rayleigh limit, the methods thus being an alter-
native to CS.

DETECTION OF CONCENTRATED SCATTERERS
The interpretation of the produced MultiD images requires the 
detection of typical pointlike scatterers where the retrieved infor-
mation is reliable. Referring to the signal model in (7) with K
scatterers, starting from the backscattering profile reconstructed 
through one of the above inversions, it is necessary to detect the 
generic kth scatterer in relative low signal-to-noise ratio condi-
tions and estimate its parameters , .s vk k^ h  For the case of 
K 1=  (single scatterers) the detection problem consists in dis-
criminating between the hypothesis H0  (absence of target) and 
H1  (presence of target). Under the typical Gaussian statistical 
modeling [2], [23], the generalized likelihood ratio test is [24] 

,
,

,max
g a
g a

s v
s v

T
H

H
,s v

H

0

1

U
^
^

^
h
h

h (13)

where T  is the detection threshold, belonging to the ,0 16 @
interval and set according to the desired level of false alarm. It is 
worth noting that, for single scatterers, the test statistic repre-
sents the highest peak of the normalized BF reconstruction and 
the argument of the maximization is the maximum likelihood 
estimation of the ,s v^ h position. Comparison of the perfor-
mances of tomographic reconstruction in detecting single scat-
terers with the standard PSI technique [3], which is based on 
the use of only the phase information, i.e., by substituting g  in 
(13) with its version obtained by considering only the phase of 
the elements, leads to the conclusion that the tomographic 
approach allows achieving significant increase of the detection 
probability for a fixed false alarm rate [24]. An extension to the 
case of K 2=  based on the sequential use of the detection 
scheme in (13) has been proposed in [25].

Results of the application of the detector in (13) on a data set 
of 28 CSK (3-m spatial resolution) acquisitions is shown in the 
middle image in the right column of Figure 2, representing the 
3-D cloud of detected points over the area of the San Paolo sta-
dium in Naples, Italy (colors are set according to the estimated 
height). The shapes of buildings are well recognizable: notice the 
comparison with the optical view of the same area taken from 
Google Earth, reported in the upper image in the same figure. 
Conversely, Figure 4 is relevant to the deformation mean velocity 
map estimated again through the detector in (13) on a data set of 
29 CSK images over the city of Rome. In this case, the color of 
each point is associated with the estimated velocity. The area is 
affected by the presence of severe subsidence caused by consolida-
tion of the alluvial sediments of the Tevere River and affecting the 
stability of buildings: it has been widely investigated with the SAR 
technology for geotechnical and structural reasons.

The literature provides a large number of contributions to 
the problem of detecting the presence of single and multiple 
scatterers in tomographic processing framework based also on 
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[FIG3] Four-dimensional backscattering distributions (decibels), 
satellite X-band CSK data: (a) BF and (b) Capon reconstructions, 
respectively.
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model order estimation strategies. As an example of application 
of the least square (LS) detector [13], [18], [20], 4-D single-look 
fitting fed by the Capon output in Figure 3(b) identifies a double 
scatterer, in agreement with the visual interpretation. Other 
3-D/4-D extensive results of Capon-LS/MUSIC-LS detection are 
reported in [20] and [21] for CSK data.

CONCLUSIONS AND FUTURE RESEARCH 
This work has given an overview of the main advances achieved 
over the last decade in the SAR inter-
ferometry/tomography areas. The 
basic concepts of multipass DInSAR 
and PSI have been summarized to 
provide indications about impor-
tance of such techniques for surface 
height mapping and monitoring in 
the natural risk and security areas as 
well as to perform the calibration 
steps necessary for describing the 
advances achieved by adopting an 
imaging view, i.e., SAR tomography 
(3-D SAR imaging) and differential SAR tomography (4-D SAR 
imaging) with reference to application to forest, urban, and infra-
structure imaging and monitoring.

A general formulation that starts from a model also address-
ing the typical decorrelation problem has been introduced to 
provide the basis for future research accounting for target cor-
relation properties [17], [19], and several imaging methods have 
been considered. Examples of results relevant to real cases for 
L- and P-band airborne data for application to forest imaging 
and latest-generation X-Band data for urban and infrastructure 
monitoring have been discussed, leaving to the existing litera-

ture validations that were also carried out on C-band medium-
resolution data [8], [10], [13], [18], [20].

The existing SAR tomography literature also cover topics that 
have not been discussed due to article space limitations. This is 
the case of the extension of 4-D imaging to match specific nonuni-
form deformation motion models, e.g., of thermal building dila-
tions associated with temperature (baseline) distribution, to get 
five-dimensional (4-D+temperature) single-look analyses [26], and 
parametric superresolution [21]. Besides, fertilization of the Mul-

tiD imaging area with Cramer–Rao 
bounding tools has been also given 
for tomographic system and mission 
planning; see [7] and [24]. The exten-
sion of 4-D SAR imaging for 
improved monitoring of thermal 
dilations has shown that a high cor-
relation degree between (mainly 
temporal and temperature) baseline 
distributions may lead to detection 
ambiguity problems. In any case, an 
unnecessary increase in the dimen-

sionality of the imaging reduces the scatterer detection 
performances. 

Emerging research topics are related to the extension of SAR 
tomography to unstructured SAR tomographic and scattering 
decomposition methods based on principal component analysis 
for urban and rural area monitoring [27]. With reference to for-
est tomography, where nonconcentrated partially coherent scat-
tering occurs, it is worth mentioning the possibility of 
exploiting 4-D imaging to obtain 3-D multipass volumetric 
tomographic imaging robustness to (long-term) temporal 
decorrelation, reducing the possible height blurring effects [19].

–1.0 (cm/y) 1.0

[FIG4] The deformation mean velocity of scatterers detected on the BF reconstruction on a data set of 29 CSK images over Rome. The 
subsidence due to consolidating alluvial-deposit close to the Tevere River is well recognizable.  (Image courtesy of Google.)

EMERGING RESEARCH
TOPICS ARE RELATED TO
THE EXTENSION OF SAR 

TOMOGRAPHY TO UNSTRUCTURED
SAR TOMOGRAPHIC AND

SCATTERING DECOMPOSITION
METHODS BASED ON PRINCIPAL

COMPONENT ANALYSIS.
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S
ynthetic aperture radar (SAR) is capable of assessing the 
deformation of the ground and buildings in the order of 
centimeters and millimeters due to its coherent nature 
and short wavelengths. Spaceborne SAR 
systems are particularly suited for 

long-term monitoring of such dynamic 
processes. A single SAR image, 
however, only provides a two-di-
mensional (2-D) projection of 
the objects, which is in 
many cases noninjective 
(i.e., suffers from layover). 
To retrieve the real three-
dimensional (3-D) local-
ization and motion of 
scattering objects, ad-
vanced interferometric 
methods, like persistent scat-
terer interferometry (PSI) or 
SAR tomography (TomoSAR), are 
required, which exploit stacks of com-
plex-valued SAR images with diversity in 
space and time [1]–[6]. Modern spaceborne SAR 
sensors like TerraSAR-X, TanDEM-X, and COSMO-Skymed, pro-
vide data with very high spatial resolution (VHR) in the order of 1 
m, which matches well with the scale of building features (typical 

floor height and window size and distance). This motivated the 
further development of existing TomoSAR techniques for explor-
ing the potentials of VHR SAR data for urban infrastructure map-

ping [6]–[8]. In the last decade, conventional spec-
tral estimation methods have been 

implemented for tomographic SAR im-
aging [3]–[6], [8]. However, for 

VHR urban monitoring, the 
following requirements 

should be met: 
■ Maintaining the meter 
azimuth-range resolution, 
i.e., avoiding multilooking
■ Improving the elevation 
resolution, i.e., providing 
superresolution (SR)
■ Achieving high 3-D local-

ization accuracy even in the 
presence of  unmodeled, 

non-Gaussian noise
■ Retrieving nonlinear motion, e.g.,  

due to seasonal thermal dilation [9]. 
Driven by these requirements, new algorithms 

have been invented in the last few years that take advantage of 
recent developments in signal processing such as sparse recon-
struction and compressive sensing (CS) [10]–[12]. This article 
deals with CS-based TomoSAR inversion and is a follow-up to a 
companion TomoSAR article, also in this issue of IEEE Signal 
Processing Magazine [13]. 

[Xiao Xiang Zhu and Richard Bamler]

[Compressive sensing-based TomoSAR inversion]
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TomoSAR SYSTEM MODEL 
Conventional SAR imaging provides a projection of the 3-D object 
reflectivity to the 2-D azimuth-range (x-r) plane. TomoSAR is a 
technique that allows resolving scatterer densities in the third 
native radar coordinate “elevation” (s), orthogonal to the azimuth-
range plane. The term tomography is misleading since it suggests 
that a large range of angles is required like in computed axial 
tomography. TomoSAR uses only an extremely small angular 
diversity though. It rather extends the synthetic aperture princi-
ple—as employed in the azimuth direction—to the elevation 
direction b s<  by combining multiple passes of the radar at 
slightly different orbit positions to establish a virtual array of 
antennas, as depicted in Figure 1. Typically, the elevation extent 

bT  of the antenna array, i.e., the maximum orbit spread, is about 
250 m for TerraSAR-X and the distance to the scene 700 km, lead-
ing to an angular diversity as small as 0.02 degrees.

By stacking all the multiview coherent images and by per-
forming the tomographic processing, s-profiles can be retrieved 
for every x-r pixel. These profiles can be continuous in the case of 
forest biomass imaging or may consist of only a few discrete 
responses, typically corresponding to scatterers located on the 
ground, façade, and roof, in the case of urban mapping. This arti-
cle is devoted to the latter application, i.e., the result of tomo-
graphic retrieval is a point cloud. 

Since the elevation antenna array is in the Fraunhofer far-field 
of the imaged objects, the complex value gn of an azimuth-range 
pixel for the nth acquisition at aperture position , ,n Nb 1n f=^ h

is a sample of the Fourier transform of the reflectivity profile sc^ h
along s

,expg s j s ds w2n n
I

n
s

c rp= - +^ ^h h# (1)

where geometric phase terms and atmospheric phase errors 
have been neglected, I s  represents the range of possible eleva-
tions, b r2n np m= - ^ h  is the spatial (elevation) frequency 
depending on the (more or less random) elevation aperture posi-
tion ,bn m  stands for the wavelength, and wn is noise. There-
fore, retrieval of the s-profile is a spectral estimation problem. 
The inherent (Rayleigh) elevation resolution st  of the 

tomographic arrangement is related to the elevation aperture 
extent bT

.b
r

2s T
t m= (2)

For the typical TerraSAR-X parameters given above,
~ .30 50 mst =

EXTENSION TO MULTIMODAL DEFORMATION
For the spaceborne case, the multipass acquisitions used in 
tomographic reconstruction are taken over a time span of sev-
eral weeks to years. Hence, the long-term motion of a scattering 
object during this time period must be considered or is even the 
signal of interest. The additional motion term leads to an 
extended version of the system model from (1)

, ,expg s j s d s t ds w2 2n n n
I

n
s

c r p m= - + +^ ^^^h h hh# (3)

where ,d s tn^ h is the line of sight (LOS) displacement as a func-
tion of elevation and time. The motion may be modeled as a lin-
ear combination of M basis functions tm nx ^ h

, ,d s t p s tn m m n
m

M

1
x=

=

^ ^ ^h h h/ (4)

where p sm ^ h is the corresponding motion coefficient to be esti-
mated. The choice of the basis functions depends on the under-
lying physical motion processes. For example, long-term 
geodynamic processes may lead to a linear, accelerating, or 
decelerating motion; instantaneous geodynamic events, like 
earthquakes, result in a stepwise motion; thermal expansion 
causes a motion correlated to temperature, etc. 

To convert (3) into a convenient Fourier transform, we warp 
the acquisition time axis for each motion basis function m $x ^ h

according to .t2,m n m nh x m= ^ h  Then (3) can be rewritten as an 
M 1+^ h-dimensional Fourier transform of ( , ,s p p s1 1 fc d -^ ^h h

)p p sM M- ^ h  which is an M-dimensional linear d-manifold (line, 
plane, or hyperplane) in the ( )M 1+ -dimensional elevation-
motion parameter space [9]:

... , ...,

... ... ,

, ..., ,

exp

g s p p s p p s

j s p p dsdp dp

n N

2

1

w, ,

n

I

M M

II

n n M n M M n

1 1

1 1 1

pM sp1

$c d

r p h h

= - -

- + + + +

=

^ ^ ^^

^^

h h hh

hh

# ##

(5)

where Ipm  stands for the maximum support of motion parame-
ter .p sm ^ h  The ideal d -manifold may broaden up a bit if the real 
motion does not follow our motion model. With this system 
model, the elevation profile and motion parameter retrieval boils 
down to an M 1+^ h-dimensional spectral estimation problem. 
In the following, for the sake of simplicity of the equations, we 
refer to one-dimensional (1-D) spectral estimation, i.e., the 3-D 
reconstruction case. Any motion term can be considered by add-
ing another dimension. For the same reason we make no explicit 
distinction between “TomoSAR” and “differential TomoSAR.”

[FIG1] TomoSAR geometry and signal sparsity in the range-
elevation (r–s) plane.

bΔb

ρ s≈ 30 ∼ 50 m ρr ≈ 0.6 m

s

r
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Discretizing the elevation profile in (1) [or the M-dimen-
sional s p pM1- - -f  space in (5)] leads to this standard linear 
system equation

,g A wc= + (6)

where g  is the measurement vector of length ,N A  is an N L#
irregular Fourier matrix composed of the so-called steering 
vectors, c  is the reflectivity profile uniformly sampled in eleva-
tion at ( , ..., ),s l L1l =  and w  is noise. The profile c  to be recon-
structed is often sampled much more densely than suggested by 
the elevation resolution st  to allow SR. As a consequence, 
L N&  and (6) is severely underdetermined. An appropriate SR 
regularization is required for obtaining an unambiguous and 
robust estimate of .c

SPARSITY AND THE CITY
The tomographic imaging configuration for urban scenes of 
Figure 1 illustrates the following:

■ Short-wavelength microwaves are scattered at surfaces and 
to a limited extent in vegetation volumes. The vegetation 
responses tend to decorrelate over time and mostly contribute 
to noise rather than to the useful signal. Hence, our object to 
be retrieved is more or less a 2-D surface in 3-D space, or, for 
every azimuth position, a 1-D line in the 2-D range-elevation 
plane. The object is zero elsewhere in space; it is sparse.
■ The tomographic 3-D resolution element (the blue-shaded 
elongated area in Figure 1) is highly anisotropic, if the eleva-
tion aperture size, i.e., the maximum orbit spread ,bT  is lim-
ited as it is with modern satellite systems. For TerraSAR-X, 
the azimuth and range resolutions are in the range of 0.5~1 
m, while ~ .30 50 mst =  Therefore, SR in elevation is desir-
able; otherwise layover cannot be resolved in the lower parts 
of buildings.
As mentioned previously, SR, i.e., oversampling of ,c  is equiv-

alent to setting up an underdetermined equation system that 
requires either regularization or parametric estimators. The stan-
dard L2 norm regularizer leads to the conventional linear maxi-
mum a posteriori (MAP) estimator

,A C A C A C g1 1 1 1T T
MAP ww wwc = + cc

- - - -t ^ h (7)

where Cww  and Ccc  are the covariance matrices of noise and prior, 
respectively. The truncated SVD method described in [5] and [13] 
falls into the same class. These solutions are not able to achieve 
significant SR, however. Several nonlinear or parametric estima-
tors known from spectral analysis are presented in the companion 
article [13] in this issue. Instead, we use the mentioned sparsity 
property and the CS framework. 

Object sparsity could be exploited in several ways. A brute-
force approach would attempt to reconstruct the line segments 
representing the surfaces, visible to the SAR (bold in Figure 1), 
in the 2-D range-elevation plane for every azimuth position. 
However, in the case of an anisotropic resolution element like 
the one in Figure 1, we only need SR in the elevation direction. 
The intersections of such an elongated resolution element with 

the ground, the façade, and the roof of a building have an extent 
much smaller than .st  Hence, the elevation profiles to be 
reconstructed for every azimuth-range pixel can be considered 
as consisting of a few d -functions, i.e., as sparse. The sparsity 
property can be used as a strong prior for regularizing the 
underdetermined inverse problem. 

THE COMPRESSIVE SENSING-BASED 
SL1MMER ALGORITHM
Using the concept of CS for TomoSAR has been proposed by [10] 
and first demonstrated by the authors in [11]. We developed the 
SL1MMER algorithm (pronounced “slimmer”). The acronym 
stands for the three processing steps: 1) scale-down by L1 norm 
minimization, 2) model order selection, and 3) parameter estima-
tion reconstruction. Considering that the elevation profile is 
sparse, we may assume that among the infinitely many solutions 
of the underdetermined system equation, the sparsest solution, 
i.e., the solution having the minimum L0  norm 0c  (number of 
nonzero elements), is assumed to be the most probable one. The 
solution could be found by parametric nonlinear least squares 
(NLS) estimates of increasing number of scatterers combined with 
model order selection. However, this optimization task is NP-hard, 
it requires a combinatorial search of all possible scatterer posi-
tions. CS theory [14], [15] tells us that under certain constraints, 
the L0 norm may be replaced by the by the (convex) L1 norm. 
Since the measurements are contaminated with noise, the L1

norm is preferably jointly minimized with the classical residual 
data term (log-likelihood)

.arg min g A K2
2

1c c cm= - +
c

t " , (8)

Equation (8) gives the sparsest estimate of c  if the mapping 
matrix A  fulfills the restricted isometry (RIP) and incoherence 
properties [15]. However, for TomoSAR, RIP and incoherence 
are violated for several reasons. First, the mapping matrix A  is 
predetermined by the measurement system (the elevation aper-
ture sampling pattern) and may not be optimum. Second, 
oversampling the elevation profile c  renders A overcomplete, 
reduces RIP, and increases coherence. Nevertheless, the L L2 1-
norm minimization step shrinks A  dramatically [16] and gives 
a first sparse estimate of .c  This estimate, though, may still 
contain outliers and, hence, the sparsity K  (i.e., the number of 
discrete scatterers, typically )K 0 3+= is often overestimated. 

As the second algorithm step, model order selection is used to 
clean the c  estimate of spurious, nonsignificant scatterers and to 
finally obtain the most likely number Kt  of scatterers along eleva-
tion. The model complexity can be described by the number of 
parameters that is proportional to the number of scatterers .K Let 
Ki^ h be the vector of the unknown amplitudes, phases, and ele-

vations for all the K  scatterers. The goodness-of-model-fit can be 
described by the likelihood | , .p K Kg it ^^ h h  A more complex 
model always fits the observations better, hence, for the purpose of 
selecting the most probable model, its complexity must be penal-
ized to avoid overfitting of the data. The general form of penalized 
likelihood criteria is
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| , ,arg min lnK p K K C K2 2g
K

i= - +t t ^^ ^h h h" , (9)

where C K^ h is a complexity penalty, e.g.,  the Bayesian informa-
tion criterion (BIC) [17], the Akaike information criterion (AIC) 
[18], or the minimum description 
length (MDL) [19]. Note that those 
penalty terms are proportional to ,K
i.e., C K 0? c^ h  and (9) is an 
L L2 0- norm minimization, but with 
known and few K candidate eleva-
tion positions, and hence can be eas-
ily solved.

As a last refinement, a much 
slimmer mapping matrix ,A st^ h  i.e., 
the N K# t  matrix with ,expA j s2s,n k n krp= -t t^ ^h h  is built up, 
where skt  is the estimated elevation value of the k th scatterer. 
The final complex-valued reflectivity sc t^ h for the Kt  scatterers 
is obtained by solving the following overdetermined linear sys-
tem equation: 

,g A s s wc= + lt t^ ^h h (10)

where wl combines the measurement noise and the model error, 
i.e., the deviation from sparsity or unmodeled motion-induced 
phase terms. The complex amplitudes of the Kt  discrete scatter-
ers are finally found by the classical least-squares solution

.s A s A s A s gH H1
c =

-
t t t t t^ ^ ^^ ^h h hh h (11)

This last (debiasing) step is performed because (8) is known to 
slightly underestimate the magnitudes of c  [20]. Although 
amplitude fidelity is not the main purpose of TomoSAR, (11) ren-
ders SL1MMER a generic unbiased CS algorithm. Since the main 
step of SL1MMER is the L L2 1- norm minimization known from 
CS, the analysis and the results in the following sections apply 
similarly to other CS-based TomoSAR algorithms.

SUPERRESOLUTION FACTOR: THEORY, 
SIMULATIONS, AND REAL DATA EXAMPLES
By making use of object sparsity, the SL1MMER algorithm can 
achieve substantial SR in elevation while maintaining the full azi-

muth-range resolution. A simulation 
example may demonstrate SR with 
SL1MMER. Since multiple scatterers 
inside an azimuth-range pixel at dif-
ferent elevation positions most likely 
occur in high-rise urban areas, we 
simulated a situation with two scat-
terers inside a pixel: one point scat-
ter at the building façade and 
another rough surface reflection 

from the ground with an elevation distance of 0.4 of the Rayleigh 
resolution unit under an SNR of 10 dB and a number of acquisi-
tions ,N 30= i.e., .SNRN 25 dB# .  Figure 2 compares the 
reconstructed reflectivity profiles along the elevation direction 
using the linear MAP estimator and SL1MMER. The MAP estima-
tor is subject to the Rayleigh resolution limit and is not able to 
separate the two closely spaced scatterers while SL1MMER easily 
separates them.

The example also shows that nonlinear (and semiparametric) 
spectral estimators like SL1MMER yield reconstructions with 
much sharper “point responses” than traditional nonparametric 
ones. However, the nice shape of the responses tells us neither 
their location accuracy nor the ability of the algorithm to 
resolve two close scatterers. To study the SR power of such algo-
rithms, let us define the (elevation) resolution as the minimum 
distance PDt  between two d -functions (point scatterers) that 
are separable at a prespecified probability of detection .PD  Note 
that we investigate the detection rate in the SR regime, while in 
the companion article [13] the detection rates in the non-SR 
regime have been studied. PDt  depends on the amplitude ratio 
of the scatterers, their phase difference, and (asymptotically) on 

[FIG2] A demonstration of SR: reflectivity profiles along 
elevation direction reconstructed by the classical MAP estimator 
and by SL1MMER. The elevation distance between the layovered 
double scatterers is 0.4 of the Rayleigh resolution unit. In this 
example, N 30= and .10 dBSNR =

MAPSL1M
M
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[FIG3] The fundamental bound of SR: SR factor of the SL1MMER 
algorithm averaged over {D  as a function of N SNR#  for 
different amplitude ratios a1/a2 of two close scatterers [21].
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the product .N SNR# We define the SR factor PDl  as an 
improvement factor relative to the Rayleigh resolution st

.P
P

s
d

D

l
t

t
= (12)

It depends on the required detection rate PD and is larger than 
unity for SR. Figure 3 shows the SR power of SL1MMER for 

%P 50D = as a function of N SNR#  for different amplitude 
ratios. These curves have been found by Monte Carlo simulations 
[21]. For each realization the phase differences {D  of the two 
scatterers were chosen randomly from [ , )0 2r as it is the case in 
real scattering scenarios. In [21] it was shown that these SR fac-
tors are close to those of NLS estimation, which is theoretically 
the best, and hence establish a kind of fundamental bound. For 
interested readers, the SR of CS-based algorithms is shown to sig-
nificantly outperform multiple signal classification (MUSIC) in 
[22]. For other moderately superresolving estimators, like Capon, 
see [13] and the references therein. In the interesting parameter 
range of TomoSAR, i.e., N 10 100+= and ~0 10SNR dB=

(which applies for the majority of pixels of urban scenes) the 
achievable SR factor is in the order of 1.5~25. 

CRAMÉR–RAO LOWER BOUND FOR SINGLE 
AND DOUBLE SCATTERER POSITIONING ACCURACY
Assuming two scatterers at elevation positions s1 and s2 with 
amplitudes a1 and a2 and phases 1{  and 2{  have been 
detected, we are now interested in how accurately their posi-
tions can be estimated. To find the Cramér–Rao lower bound 

(CRLB) of the elevation estimation error, the Fisher information 
matrix J  is constructed from the derivatives of the log-likeli-
hood function ,ln p g i^ h  where the parameter vectori =
[ , , , , , ] .a s a s1 1 1 2 2 2

T{ {  We obtain the CRLB matrix by 
,P J 1

CRLB = - from which the elements P , , s3 3
2
1CRLB v=  and 

P , , s
2

6 6 2CRLB v=  are the ones of interest, i.e., the CRLBs of the loca-
tion estimation errors for the two scatterers. Since the analytic 
inversion of J  leads to a complicated and lengthy expression, it is 

[FIG4] A location estimation error factor of two scatterers from 
(15) and (16) as a function of their normalized distance a  CRLB, 
approximation of CRLB from (16), and experimental results from 
NLS and SL1MMER [21].
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[FIG5] The 3-D view of buildings visualized in Google Earth reconstructed by SL1MMER using a stack of 25 TerraSAR-X images 
(color represents height). (Figure used with permission from DLR.)
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more convenient to retrieve the relevant elements of PCRLB by solv-
ing the inversion numerically. For the sequel, we split the elevation 
estimation error standard deviation into two contributions [21] 

,c ,s s0 0q q$v v= (13)

where

N
r

4 2 SNR
,s

q b
0q

$ $ $
v

r v

m= (14)

is the CRLB of the elevation estimates of the qth scatterer 
q 1 2or=^ h in the absence of the other one. bv  is the standard 

deviation of the elevation aperture antenna positions .bn  For 

uniformly distributed aperture sampling (randomly or equidis-
tantly spaced) b 12bv D=  and . .N0 39 SNR,s q s0q $ $.v t

In the parameter range of TomoSAR, ,s 0qv  is in the order of 
1/100 to 1/10 of the Rayleigh resolution unit .st  The more inter-
esting term is ,c0  the interference correction factor for closely 
spaced scatterers. It is asymptotically independent of SNR and N
and can be shown to be approximately (see [21] and the refer-
ences therein)

/
, ,max

cos
c

9 6 3 2 2 3 2
40 1 3

10 2

2

a { a

a a

D
=

- - + -

--

^ ^ ^

^

h h h

h
) 3 (15)

where s sa d t=  is the distance between the two scatterers, 
normalized to the Rayleigh resolution unit. Obviously, c0

depends strongly on the phase difference .{D  Since for Tomo-
SAR {D  is totally random and depends on the unknown geo-
metric configuration, we integrate c0

2  over .{D  The resulting 
CRLB for the interference correction factor is plotted in 
Figure 4 as a function of the normalized distance a  together 
with a convenient approximation [21]  

. . . , .maxc 2 57 0 11 0 62 1
,

.

s

s
0

0

1 5 2

q

.
v
v

a= - +-^ h$ . (16)

The location estimation error is ,,s 0qv  i.e., ,c 10 =  as long as the two 
scatterers are far apart but increases at a rate of .1 5a-  once the scat-
terers are closer than about 1.6 times the Rayleigh resolution unit.

Figure 4 also compares the CRLB with the results from NLS 
(solution with the L0  norm prior) and SL1MMER. These have 
been obtained by simulations with randomly distributed phase 
differences. The elevation estimation accuracy of the CS-based 
algorithm SL1MMER approaches the CRLB and is almost iden-
tical to NLS, i.e., both algorithms are efficient.

[FIG6] Histogram of the distance between the detected double 
scatterers using MAP (red) and SL1MMER (blue). (Figure used 
with permission from [23].) 

[FIG7] The fusion of two point clouds generated from TerraSAR-X data stacks of ascending and descending orbits. The color represents 
height. Grey areas are temporally decorrelated objects, e.g., vegetation or water.
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EXAMPLES WITH VHR TerraSAR-X DATA
TomoSAR with VHR X-band data can achieve point densities in 
the order of 600,000~1,000,000/km2, which are much higher 
than with PSI (40,000~100,000 PS/km2) where only pixels con-
taining single or dominant scatterer are considered. As a conse-
quence, detailed monitoring of even single buildings and in 
general of infrastructure as well as cultural heritage is possible. In 
the following, we demonstrate practical use of TomoSAR with 
TerraSAR-X data. 

Figure 5 presents a 3-D view of the Bellagio Hotel complex in 
downtown Las Vegas, Nevada visualized in Google Earth and recon-
structed by SL1MMER using a stack of 25 TerraSAR-X images.

To demonstrate the effect of the SR power of SL1MMER on 
real data, Figure 6 shows the histogram of the elevation distance 
between detected double scatterers using MAP (red) and SL1MMER 

(blue) over the Bellagio Hotel area. It is not surprising that the 
number of double scatterers detected by SL1MMER is much high-
er than those detected by MAP and most of them lie in the SR re-
gime 11a  (green area). For an urban scene like this typically 
30~40% of the scatterers detected by SL1MMER are double scat-
terers compared to 10~20% detected by linear estimators. 

Due to the side-looking geometry of SAR, a single stack of SAR 
images only provides information on one side of a building (see 
the bold surface segments in Figure 1). For comprehensive urban 
structure monitoring, a shadow-free point cloud is desirable. It 
requires fusion of the TomoSAR results of multiple stacks from 
opposite view angles. This is a nontrivial task, since all the scat-
terer locations detected from TomoSAR are relative to a reference 
point and it is usually not possible to identify the same object as a 
reference for all the view angles [24]. Figure 7 presents the fusion 
result from two stacks, one from ascending orbit (94 acquisitions) 
and one from descending orbit (79 acquisitions), over the city of 
Berlin, Germany. The scene contains about 40 million detected 
scatterers each of which also contains its own deformation history. 
Small structures like the Victory Column, i.e., the statue at the 
center of the park can be easily identified.

Figure 8 shows an example of multicomponent motion esti-
mation. Since July 2009, an area in the city of Las Vegas is 
undergoing a pronounced subsidence centered at the Conven-
tion Center. Together with the thermal dilation-induced sea-
sonal motion of the metallic building structure, the selected 
area is characterized by a two-component nonlinear motion as 
shown in the phase history. Here, we chose the motion basis 
functions as a sine-function with a period of one year for sea-
sonal motion and a linear function for subsidence. The esti-
mated linear deformation velocity in mm/year is shown in 
Figure 8(a), while (b) shows the LOS motion of one of the scat-
terers on the roof of the Convention Center. The two-compo-
nent motion is evident. 

[FIG8] (a) TomoSAR deformation estimates of an area around 
the Las Vegas Convention Center: linear deformation velocity 
(unit: mm/y). (b) Phase (= deformation) history of one of the 
scatterers on the roof of the center building.
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[FIG9] From TomoSAR point clouds to objects: reconstructed 
building façades of the Bellagio hotel complex in Las Vegas [25]. 
The point cloud is overlaid on the facade model, color 
corresponds to height. 
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BUILDING RECONSTRUCTION 
FROM TomoSAR POINT CLOUDS
The point clouds from VHR TomoSAR can reach a density compa-
rable to lidar. These tomographic point clouds can be potentially 
used for building facade reconstruction in urban environment 
from space with some special considerations such as the side-look-
ing geometry, anisotropic estimation accuracy, and decorrelation. 
Yet to provide a high-quality spatiotemporal four-dimensional 
(4-D) city model, object reconstruction from these TomoSAR 
point clouds is an emergent topic. A 3-D view of the reconstructed 
facades over the Bellagio Hotel complex in Las Vegas (see 
Figure 5) using point clouds retrieved from stacks from both 
ascending and descending orbits, is exemplified in Figure 9.

CONCLUDING REMARKS
With reference to the current status of VHR spaceborne 
tomographic SAR inversion presented in this article, the fol-
lowing conclusions can be drawn: 

■ VHR tomographic SAR inversion is able to reconstruct the 
shape and motion of individual buildings and entire city areas.
■ SR is crucial and possible, e.g., using CS, for VHR tomo-
graphic SAR inversion for urban infrastructure.
■ The motion or deformation of buildings is often nonlinear 
(periodic, accelerating, stepwise, etc.). Multicomponent non-
linear motion of multiple scatterers can be separated.
■ The 4-D point clouds retrieved by VHR TomoSAR has a 
point density comparable to LiDAR and can be potentially 
used for dynamic city model reconstruction.
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I
nterferometric synthetic aperture radar (InSAR) systems are 
capable of providing an estimate of the digital elevation model 
(DEM) of the imaged ground scene. This is usually done by 
means of a phase unwrapping (PU) operation. In the absence 
of additional regularity constraints, PU is an ill-

posed problem, because the solution is not 
unique. Multichannel (MCh) tech-
niques, using stacks of images of 
the same scene, can be used for 
restoring the solution unique-
ness and reducing the effect 
of phase noise. Moreover, 
statistical techniques ex-
ploiting the contextual 
information contained in 
the data can provide satis-
factory results. In this arti-
cle, an overview of the main 
MCh statistical DEM recon-
struction methods, developed 
both in the classical and in the 
Bayesian estimation framework, is 
presented. In particular, the effectiveness of 
the exploitation of contextual statistical models is 
shown by means of numerical experiments on simulated and real 
data sets.

INTRODUCTION
Today, InSAR systems are widely used and represent an effective 
tool for geoscience and topographic mapping of the earth’s surface. 
InSAR systems typically make use of two complex SAR images of 

the same scene, acquired with slightly different 
view angles, from which it is possible to 

generate the so-called phase interfero-
gram, given by the wrapped differ-

ence of the two image phases. 
The phase interferogram is 

linked through a known 
(nonlinear) relation to the 
height profile of the ob-
served scene [1], [2], usu-
ally also denoted as DEM.

Phase interferograms 
suffer from two main 

problems: they are wrapped 
in the interval ] , ],r r-  and 

are corrupted by noise, which 
is related to the spatial and tem-

poral decorrelation between the two 
acquisitions and, in general, cannot be 

neglected. The DEM reconstruction is, then, per-
formed by means of a PU operation, which allows the phase 
reconstruction in the interval ] , [3 3-  starting from the 
wrapped phase values [1]. Since there is an infinite number of 
height profiles that can be mapped in the same interferogram [2], 
PU is an ill-posed problem unless proper regularity constraints 
are imposed. This problem has been widely studied in many 
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other application fields, such as radio astronomy [3] and mag-
netic resonance imaging [4].

A constraint that is commonly adopted to regularize the PU 
problem, restoring the solution uniqueness, consists of impos-
ing that the absolute values of the unwrapped phase jumps 
between adjacent pixels are less than .r  This constraint is satis-
fied in the case of height profiles without strong discontinuities 
and high slopes, and for small baseline values [2]. 

One of the first techniques proposed for InSAR dates back 
more than 25 years ago [5]. Since then, many other PU algo-
rithms have been developed.

Most PU traditional techniques can be classified as either path-
following methods or minimum norm methods. A good review is 
provided in [6]. A significant and more recent extension of the 
path-following methods is based on constrained optimization of 
network flows [7]. However, even the best PU method, based on a 
single interferogram, will fail for steep mountainous or urban areas 
due to the solution ambiguity and presence of noise. 

The solution uniqueness can be recovered, without imposing 
any constraint on the height profile, by using MCh techniques 
[8]–[13], which exploit the availability of more than two images 
(i.e., more than one interferogram) obtained using multibaseline 
or multifrequency interferometric acquisitions. They have shown 
to be more robust compared to the ones based on a single interfer-
ogram, and, besides solving the problem of the multiplicity of the 
solution, they provide improved accuracy and can be applied to a 
larger class of height profiles. The time series of SAR images are 
also useful for reducing noise in topographic applications or mea-
suring time-varying surface deformations [2] in the differential 
interferometric configuration (DInSAR). 

A boost to the development of MCh InSAR techniques has been 
also given by the recent launch of very high-resolution (VHR) SAR 
system constellations (e.g., TerraSAR-X, COSMO-SkyMed), provid-
ing a huge amount of interferometric data acquired with small 
revisiting times.

Most of the MCh DEM reconstruction methods are based on 
statistical estimation techniques. Initially, methods based on 
maximum likelihood (ML) estimators have been proposed [11], 
[12], [14]. Such techniques, by exploiting the statistical distri-
bution of the interferometric phase noise, are able to effectively 
combine the MCh data to estimate the height of a pixel inde-
pendently from the ones surrounding. Achievable performances 
depend significantly on the number of images, the operating 
frequency, the baselines, and coherence values of each interfer-
ogram [15]. Reliable and accurate reconstructions require a 
large number of channels, especially in the presence of low 
coherence areas.

To increase the performance of DEM reconstructions, espe-
cially in the presence of a small number of channels, contextual 
information can be considered. Instead of working pixel-wise, 
this approach requires the simultaneous processing of pixel 
clusters by exploiting relationships existing between the nearby 
pixels (also called a neighborhood).

Contextual information methods can be grouped into two 
classes: methods imposing deterministic constraints between 

the nearby pixel, and methods adopting statistical constraints 
between nearby pixels.

As far as deterministic constraints are concerned, pixels are 
jointly processed in clusters, in which some geometrical rela-
tions are imposed [16]. In the case of statistical constraints 
based methods, instead, pixels are modeled considering their a
priori joint statistical distribution [17]–[22].

The joint use of MCh data and contextual information 
noticeably improves DEM reconstruction accuracy. In particu-
lar, MCh information allows solving the solution ambiguity 
problem, while the exploitation of neighboring pixel constraints 
allows reducing the reconstruction noise.

In [16], an MCh PU method using a deterministic constraint 
was proposed. The constraint imposes that a pixel and its neighbor-
ing ones are belonging to the same local plane, whose parameters 
are estimated by a local cluster of data using an ML approach. 

Later, statistical constraints have been explained. Bayesian 
approaches, such as the maximum a posteriori (MAP), taking 
into account the a priori statistical distributions for the two-
dimensional (2-D) height profiles together with MCh data, have 
been introduced in [19]. 

The joint use of MCh data and contextual information can be 
particularly useful in the absence of coherent stable reflecting 
structures on the ground, as, for instance, permanent scatterers 
[2], and in the presence of high decorrelation. These techniques are 
particularly helpful when the fiducial points density is not sufficient 
to guarantee good results, even if algorithms properly developed to 
find networks of stable points are applied [23]. In this case, contex-
tual MCh techniques can allow high-quality reconstructions also 
for distributed and progressively decorrelating targets.

A deep and quantitative analysis on the best reconstruction 
accuracy that can be achieved by both ML- and MAP-based 
approaches is reported in [15]. The obtained results are very inter-
esting. It shows that while ML techniques exhibit an accuracy that 
weakly depends on the height slope and strongly depends on the 
baselines choice, the MAP technique exhibits an accuracy that 
strongly depends on the height slope and weakly depends on the 
baselines choice, thus relaxing the requirements on the baseline 
values, thus allowing a larger flexibility in their choice.

Within this article, an overview of the statistical methods, 
developed in both the classical and Bayesian estimation frame-
work for solving the MCh InSAR PU problem for DEM genera-
tion is presented, stressing the usefulness of the contextual 
information and drawing evolutions and new scenarios of PU 
approaches for the future.

MULTICHANNEL SYSTEMS AND 
CONTEXTUAL INFORMATION
An InSAR MCh system exploitats different interferograms related 
to the same observed scene acquired with a diversity, i.e., by using 
different channels. Two typologies of diversity are commonly 
adopted: multifrequency and multibaseline configurations. In mul-
tifrequency systems, multiple acquisition are obtained by observing 
the scene from the same position but using different working fre-
quencies (or wavelengths ),m  or by partitioning the SAR signal 
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spectrum in subbands [16], [24]. Multibaseline systems consist of 
observing the scene with the same frequency from at least three 
slightly different positions (i.e., at least two different orthogonal 
baselines ) .B=  The multibaseline geometry is shown in Figure 1 in 
the case of two baselines: B 1=  and .B 2=

Considering K  different channels, the acquired interfero-
metric phase signal for the pixel s  is related to the ground 
height via the following equation:

, , , , , , ,s h s w s k K s S1 1k k k 2 f fz a= + = =r^ ^ ^h h h

(1)

where S  is the number of image pixels, k  is the channel index, 
w is the interferometric phase noise, 2r$1 2  represents the 
“modulo-2 _r  operation, and ka is a coefficient that takes into 
account the multifrequency or multibaseline diversity. In par-
ticular, ka  is given by

,sinR
d4

k
k

0
a

i
r= (2)

where dk  is equal to B km=  in case of multifrequency systems, or 
to B k m=  in the case of multibaseline systems, i  is the view 
angle, and R0  is the distance between the master antenna and the 
center of the scene. The DEM reconstruction problem, in an MCh 
framework, consists of estimating the height values ( )h s  by prop-
erly combining the K  channels measured wrapped phases at posi-
tion ,s  i.e., the vector ( ) ( )( ) [ ( ) ] .s ss s K

T
21 fz zzU =

As previously mentioned, MCh approaches are useful in 
removing the problem of solution multiplicity; however, they 
could not guarantee optimal performances in DEM estimation. 
To improve the reconstruction accuracy and regularize the 
solution, contextual information has proven to be helpful.

The choice of the quantity (how many?) and the quality (which 
one?) of the baselines affects the final performance of the DEM esti-
mation: the larger the number of baselines, and the more different 
(from each other) the baseline values, the better the expected esti-
mation performance. Unfortunately, it is often difficult to be able to 
collect SAR data relevant to several baselines of required length. In 
the repeat pass system configuration, this circumstance would 
imply several days or, worse, weeks of data acquisition. Such a situ-
ation has a twofold undesired effect: very long acquisition time and 
lower coherence values due to the increasing of the temporal 
decorrelation (the positive effect due to the acquisition of several 
baselines can be thwarted for the presence of larger phase noise). 

For this reason, it is very interesting and useful, from a practi-
cal point of view, to use a limited number of baselines, without 
impairing the performance of the method. It can be realized with 
the application of an external regularization rule, i.e., the intro-
duction of constraints on the height profile to be reconstructed 
through contextual information, as opposed to a pixel-based 
approach. Such an approach is closer to human perception and 
presents strong relations with computer vision, image analysis, 
and pattern recognition.

DEM reconstruction capabilities can dramatically be improved 
if contextual information is exploited. Contextual information 
exploits the connections between adjacent pixel behaviors across 

the considered scene. It is likely that, especially in natural scenar-
ios, the height relevant to a pixel is strictly related to its surround-
ing pixels, particularly its neighborhood. The exploitation of the 
contextual information provides a regularization that derives from 
the natural properties of the imaged scene, instead from an exter-
nal rule imposition. In our case, being the unknown image repre-
sentative of the height of an observed scene, strong contextual 
pixel information is very likely to be.

Two main classes of contextual information can be identified: 
deterministic and stochastic. Within the first class, an interesting 
approach is the so-called local planes technique [16]. The method 
consists of estimating the profile values at a given position starting 
from the wrapped phase values in the same position and in a “clus-
ter” of neighboring positions. The assumption is that the height of a 
pixel, and consequently its interferometric phase value, is linearly 
related to its neighborhood. The characteristic parameters of a 
plane, linearly approximating the height profile in correspondence 
of the position of the pixel of the cluster, are estimated. In practice, 
planes in a three-dimensional (3-D) space can approximate the DEM 
locally. As an example, considering a pixel ,s  a squared neighboring 
system ,N s  constituted by N 9=  positions, has been considered in 
Figure 2. The height behavior of the pixels of the cluster can be 
approximated and modeled as a plane (the grey plane of Figure 2).

A second contextual information-based approach consists of  
modeling the interpixel dependencies of the neighboring system 
N s  in a stochastic way, instead of a deterministic one, through 
an a priori joint probability density function (pdf). In such a way, 
the statistical distribution similarities of adjacent pixels can be 
taken into account, assigning different probabilities to different 
pixel configurations. 

In this framework, the Markov random field (MRF) theory has 
proved to be a powerful and effective tool for modeling images, tak-
ing into account the contextual pixel information [17]. In the MRF 

B⊥2

SAR
Flight Track

B⊥1

R0

h (s )

B⊥222

SAR
Flight Track

BB⊥1

R0RR

hh (s )

[FIG1] Two-baselines (B 1=  and )B 2=  InSAR system geometry for 
the estimation of height ( ) .h s
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framework, the local Gaussian MRF (LGMRF) model described in 
[19] adapts well to describe natural scenarios. By properly tuning 
the locally defined model parameters related to the statistical corre-
lation between neighboring pixels, an LGMRF can be adapted to 
any imaged scene, even in the presence of high slopes or strong 
height discontinuities. This peculiarity leads to a general model, 
well suited to represent a wide class of height profiles.

MULTICHANNEL PHASE UNWRAPPING 
FOR DIGITAL ELEVATION MODEL GENERATION
Within this section, MCh PU techniques for DEM generation are 
presented. By exploiting the statistical distribution of data, such 
techniques are able to effectively combine the MCh-available data. 

In the following, three techniques developed in the statisti-
cal estimation framework will be presented and discussed: the 
ML approach, which does not exploit any constraints between 
neighboring pixels; ML with local planes (MLLP), which exploits 
deterministic constraints between neighboring pixels; and MAP 
approach, which exploits statistical constraints between neigh-
boring pixels.

MAXIMUM LIKELIHOOD
Let us consider the height value ( )h s  of an image as deterministic 
parameters. The ML solution consists of finding the unknown ( )h s
maximizing the likelihood function ( ( )); ( )) .f s h sz  Starting from 
the interferometric phase noise statistical distribution [25] and tak-
ing into account the phase-height relation of (1), the likelihood 

function in case of a single interferogram for the kth  channel is 
shown in (3) at the box at the bottom of the page, where ( )skc  is 
the coherence of the kth  channel, i.e., the complex correlation
coefficient between the two SAR images that produce the kth
interferogram, at position s. Its value is related to different aspects, 
such as phase noise and ground scene changes that occurred dur-
ing the temporal interval between the two acquisitions [1].

The likelihood function (3) is periodic with period / ,T 2k kr a=

and so it exhibits an infinite number of global maxima (see the 
dotted line of Figure 3), leading to ambiguous solutions.

The ambiguity can be solved considering additional MCh 
phase measures ( ), ( , , ) .s k K1k fz =  Considering K  indepen-
dent phase measures, the MCh likelihood function can be 
defined as

; .;F s h s f s h sk
k

K

1
MCh zU =

=

^ ^^ ^ ^^h hh h hh% (4)

The multiplication of K  single channel likelihood functions with
different periods (effect of different baselines and/or working fre-
quencies) avoids multiple global maxima that occur in single 
channel likelihood function, at least in the range of interest for 

( ) .h s  This effect is shown in Figure 3 (continuous line).
The assumed independence between interferometric phases 

is strictly related to the choice of the interferograms. In case 
of multifrequency systems, the independence can be easily sat-
isfied by exploiting nonoverlapped bands [16]. This hypothesis 
is not always verified in case of multibaseline. An interesting 
study on the multibaseline configuration, in case the interfer-
ograms are not statistically independent, can be found in [26] 
for the dual baseline case. In [26], it is shown that assuming 
the two interferograms to be independent, does not signifi-
cantly affect the results, even if they are statistically depen-
dent. The independence hypothesis can become more critical 
in the case of more than two baselines. In any case, it has to be 
pointed out that a closed-form expression of the joint pdf of 
the interferometric phases is not available for more than two 
baselines. Then, its approximate expression, obtained by using 
the independency assumption, is always adopted. The effect of 
this approximation on the DEM reconstruction accuracy is an 
important point that merits further investigations. 

The MCh ML solution of the PU problem is

; .

;arg max

arg max

h s F s h s

f s h s

h

h
k

k

K

1

ML MCh

z

U=

=
=

t ^ ^ ^^

^ ^^

h h hh

h hh% (5)

The position of the global maximum of FMCh  represents the esti-
mated height. Several global 
optimization procedures can 
be applied for solving the 
nonlinear maximization in 
(5). It must be pointed out 
that, for each fixed pixel, the 
maximization in (5) has to be 
performed respect to a scalar 
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[FIG2] The plane (grey) approximating the true profile for 
position s  in the grid, for a neighboring system consisting of 
N 9=  positions: [  represents the neighborhood Ns  of pixel 
,s :  represents the true height values, and V  represents the 

height value approximated by the plane.
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unknown parameter, so that numerical complexity is not 
critical and parallel and efficient numerical techniques can be 
easily implemented.

MAXIMUM LIKELIHOOD WITH LOCAL PLANES
As described in the previous section, ML works pixel-wise, treat-
ing the height estimation of each pixel independently from the 
surrounding ones. Better performance can surely be achieved if 
some constraints based on contextual information are intro-
duced. In particular, within this section, the joint exploitation of 
the ML approach with the deterministic contextual information 
provided by local planes, reported in the section “Multichannel 
Systems and Contextual Information,” is presented.

Let us consider a “cluster” of neighbors of the pixel ,s
called ,N s  formed by the pixel itself, and by N 1-  neighbor-
ing pixels. The considered contextual information consists of 
approximating the height surface in the cluster N s  by a plane. 
The height ( )z n  of each pixel belonging to N s  can be approxi-
mated by the equation [16]

, ,z n a s b s c s n N s!a bD D= + +^ ^ ^ ^h h h h (6)

where only the case of a perfect vertical plane is excluded. 
Note that Ta  and Tb  of (6) represent the ground range and 
the azimuth sampling steps, respectively.

In place of estimating the height values for each pixel inde-
pendently from the others as performed by the ML method, 
the parameters ( ), ( ),a s b s  and ( )c s  of the plane best approxi-
mating in the ML sense the true height profile of the pixel 
belonging to N s  are sought. Thus, for each pixel, a vector of 
three unknown parameters [ ( ) ( ) ( )]x a s b s c ss

T=  has to be 
estimated by exploiting N K#  wrapped phase values 

( ),  ,n n NT
s!U" ,  where ( )nU  are the measured wrapped 

phase K-element vectors defined in (4).
The MLLP solution for the ( )h s  reconstruction is achieved 

via a two-step procedure. The first step consists of estimating 
the unknown parameter vector x s  by computing

.

argmax

argmax

x x

x

F n

f n

s
x

s
n

x
k s

k

K

n 1

MCh
N

N

s

s

z

U=

=

!

! =

t ^^

^^

h h

h h

%

%% (7)

The likelihood term xf nk sz ^^ h h is derived from (3) by consid-
ering the neighborhood cluster n N s!  instead of a single pixel 

,s  and instead of the height ( )h n  the local plane ( )nz  that 
depends on the unknown parameter vector .x s  Once x st  is esti-
mated, the height of the pixel is assumed as the “central” point s
of the estimated plane.

Considering Figure 2, the height of the central pixel (referred 
to as ):  is approximated by the central point of the plane (referred 
to as ),9  computed by exploiting the ( )N K N 9# =  wrapped 
phase measures. This led to an improvement of the ratio between 
the number of independent measures and the number of 
unknowns, compared to the ML.

In this case, the maximization in (7) has to be performed pixel-
wise with respect to a vector of three unknown parameters, exploit-
ing a number of data that depends on the neighborhood. Also in 
this case, the numerical complexity is not critical, and parallel and 
efficient numerical techniques can be easily implemented.

MAXIMUM A POSTERIORI
The contextual information can also be exploited in a statistical 
framework, i.e., modeling the behavior of a pixel to its neighbor-
hood by considering the statistical distribution of the unknown 
image. This distribution is usually defined in such a way to assign 
high probability to particular pixel configurations. An effective tool 
to statistically describe and model the unknown height profile, 
able to take into account the contextual information between 
neighboring pixels, is provided by MRF theory. 

According to the Hammersley–Clifford theorem [17], an MRF 
can be analytically expressed by a Gibbs distribution. The type of 
Gibbs distribution, or equivalently of the MRF, can be chosen 
according to the characteristics of the image. As already stated, a 
general model that well fits in case of a wide class of height pro-
files is the local Gaussian MRF (LGMRF), whose expression is [19] 

; ,exphg
Z

h s h n1
2 ,

H
s nns

S

2

2

1 Ns

v
v v

= -
-

!=

^
^

^ ^^
h

h
h hh= G* 4//  (8)

where ,s nv  are the so-called hyperparameters, v  is the hyperpa-
rameter vector collecting all ,s nv  values, and ( )Z v  is the so-
called partition function. In this framework, the unknown image 

[ ( ) ( ) ( )]h h h h s1 2 Tf=  is considered as a sample of a random 
vector H  with an a priori Gibbs distribution.

The hyperparameter values, which are locally defined, are 
related to the height spatial variation between adjacent pixels. The 
hyperparameter ,,s nv  in fact, can be seen as an indicator of the 
spatial correlation of the neighboring pixels. A high value of ,s nv

means that the probability that two neighboring pixels s  and n
have different height values is high. On the contrary, a low value of 

,s nv  implies that the probability that ( )h s  and ( )h n  are different 
is small. By changing the hyperparameter values, the LGMRF 
model can be adapted to describe the image local nature. 

0.8

0.6

0.4

0.2

0
0 100 200 300 400

Height (m)
500 600

Li
ke

lih
oo

d 
F

un
ct

io
n

Two Channels
One Channel

[FIG3] Single channel (dotted line) and multichannel (continuous 
line) likelihood functions.
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Exploiting the LGMRF model for the a priori statistical descrip-
tion of the unknown ,h  and following Bayes’ rule, the MAP solu-
tion for the height reconstruction is provided by the value that 
maximizes the logarithm of the a posteriori distribution

.
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arg min ln
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4

4%

/

// (9)

The a posteriori distribution of (9) is obtained as the product of the 
MCh likelihood function of (4) and the a priori distribution of (8).

Clearly, the hyperparameters as they appear in (9) are not a pri-
ori known and have to be estimated from the available data, the 
measured phase interferograms [ ( ) ( ) ( )]y S1 2T T T TgU UU=
defined in (4).

An efficient and effective way to estimate the hyperparame-
ters from the available noisy data is provided by the expecta-
tion-maximization (EM) algorithm [17]. The expression of the 
hyperparameter estimation update at the ( )l 1 th+  step of the 
EM algorithm with respect to pixel s  is

.,yl E h s h n l1
9
1

s
n

s
2 2

Ns

v v+ = -
!

t t^ ^ ^ ^h h h h6= @ G/ (10)

The conditional expectation [.]E  of the unknown h  given the 
observed data y  and the current estimation ( )lsvt  is performed. 
To compute the expectation over h,  samples of this random 
vector at the l th  iteration are mandatory. The sampling is itera-
tively performed starting from the a posteriori distribution of h
using the Metropolis algorithm. The local estimation of hyper-
parameters is very powerful, because it allows the localization of 
the flat regions and the discontinuities of the image.

Once the hyperparamters have been estimated for all the pix-
els, ,s nv  is set to be ( ) / .2,s n s nv v v= +t t t  More details on hyperpa-
rameter estimation can be found in [19]. 

The height samples generated during the hyperparameter 
estimation procedure can be used to initialize the search of the 
solution of (9). Therefore it is possible to carry out the optimiza-
tion step using a semideterministic solution: the iterated condi-
tional modes (ICM) algorithm is appropriate for this purpose. For 
a deeper analysis on the numerical implementation of the algo-
rithms required by both hyperparameter estimation and optimi-
zation steps (i.e., Metropolis algorithm and ICM) refer to [17].

The computational burden can be, differently from the previ-
ous cases, critical for large size images. Anyway, alternative 
more efficient optimization schemes can be adopted (see the 
next section).

NEW TRENDS
Besides the previously presented MCh algorithm, some new 
techniques developed in the contextual information framework 
have been recently proposed.

An improvement of the MAP approach, called multichannel 
phase unwrapping + total variation, has been presented in [27]. 
Such an algorithm is able to overcome some limitations of MAP 
approach regarding computational time and robustness to local 
optima in the optimization process. In particular, the new tech-
nique is able to provide the global optimum for the considered 
energy function within a short time exploiting the graph-cut-
based optimization tools. Its main drawback regards the mem-
ory occupation, which is excessive in the case of large images.

Recently, an evolution of multichannel phase unwrapping + 
total variation, specifically thought for 3-D reconstruction of 
urban areas using VHR images, able to exploit the additional 
information provided by the amplitude of SAR data, has been 
introduced [28]. The amplitude data plays a double role: it helps 
both phase regularization and PU steps. In particular, amplitude 
data are useful for preserving height discontinuities and  smooth-
ing noise in homogeneous areas. The method is also able to cor-
rectly handle MCh InSAR data corrupted by atmospheric artifacts 
and phase offsets, which is mandatory for a correct 3-D mapping.

Within the Bayesian estimation framework, interesting algo-
rithms for PU that exploit the extended Kalman filter (EKF) 
have been proposed. The usefulness of the EKF for joint PU and 
noise reduction has been first demonstrated in [29] and recently 
adapted to work with MCh interferometric stacks, achieving 
interesting reconstruction improvements [30]. The EKF is a 
two-step technique for nonlinear fixed interval smoothing, per-
forming simultaneously PU, noise reduction, and data fusion by 
a proper state space model design. Since it does not require an 
accurate numerical maximization of nonconvex objective func-
tions, it can achieve high computational efficiency while main-
taining the benefits of statistical Bayesian approaches. Its main 
drawback is related to the application of a monodimensional fil-
ter to a 2-D domain problem, which implies that, at the present, 
some empirical coefficients have to be set. 

EXPERIMENTS
To evaluate the performances of the described MCh PU algo-
rithms, three case studies are considered. In particular, a simu-
lated data set has been generated to quantitatively evaluate the 
unwrapping performances of the different approaches, and two 
real data sets (acquired by ENVISAT and COSMO-SkyMed sensors) 
have been considered to validate results on real images.

SIMULATED DATA
A simulated data set has been generated using the profile shown in 
Figure 4(a). Five noisy interferograms with orthogonal baselines of 
[237.72 255.90 322.60 399.92 544.81] m have been simulated. The 
working frequency has been set to 5.3 GHz while ,R0  the distance 
between the sensor and the center of the scene, has been set to 700 
km. The coherence for the whole scene has been simulated accord-
ing to the rule ( ) / ( ) ,B B1 maxk k0c c= - = =` j  where B max=  is a 
constant related to the critical baseline, and set equal to 1,000 m.

The interferogram related to the smallest baseline is shown in 
Figure 4(b). The DEM has been estimated by applying ML, MLLP, 
and MAP, the results of which are reported in Figure 4(c)–(e), 
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respectively. The reconstruction error progressively reduces from 
ML to MLLP solution (i.e., when deterministic contextual infor-
mation is exploited) and from MLLP to MAP result (i.e., when sta-
tistical contextual information is considered).

To quantitatively evaluate the performances of the consid-
ered approaches with respect to stack characteristics, estima-
tions have been performed varying both coherence value 0c  and 
number of channels .K  As an index of reconstruction accuracy, 
the normalized root mean square error defined as 

,
h

h h
h 2

2

f =
-t (11)

has been computed and reported in Figure 5. In (11) h  is the 
vector collecting the true height values, ht  is the vector collect-
ing the estimated values, and 2$  is the quadratic norm. 
Results confirm what is expected: MAP overcomes MLLP and 
MLLP overcomes the ML solution. It is evident how the contex-
tual information can greatly improve the accuracy of the esti-
mated DEM, in particular in the case of stochastic relation 
between nearby pixels.

REAL DATA SET
The considered algorithms have been tested on two real data 
sets. The first image stack has been acquired by the ENVISAT 
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[FIG4] A simulated data set. (a) The height profile and (b) smallest baseline interferogram. The coherence has been set to 0.85. (c) The 
DEM reconstruction with ML, (d) MLLP, and (e) MAP approaches. On the axes, the pixel indices are reported.
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sensor and refers to a natural scenario, a mountain in the 
region of Las Vegas, Nevada (United States). Acquisition 
parameters are the same of the simulated data set. Before 
applying MCh PU algorithms, the flat earth component has 
been removed, and phase offsets have been compensated. To 
better appreciate the accuracy of the obtained results, the 
SRTM DEM has been subtracted to the reconstructed profiles. 
These residual components—ML, MLLP, and MAP—are 
reported in Figure 6(a)–(c), respectively. The obtained results 
confirm the outcome of the simulated data. The MAP solution 

outperforms MLLP and ML, both in terms of restoration and 
reconstructed details. It provides a reliable and realistic recon-
struction, as it is evident in the 3-D projection of the com-
puted DEM [Figure 6(d)].

The second data set is composed by 30 COSMO-SkyMED 
sensor images acquired in the urban area of Nola, Italy. This 
data set has been chosen to test the algorithms on a different 
scenario, compared to the Las Vegas one: data are acquired in 
X-band, instead of C-band, and are related to an urban area 
which, differently from a natural scenario, is characterized by 
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sharp discontinuities due to the presence of man-made 
structures. Results of the considered approaches are reported 
in Figure 7: (a) ML, (b) MLLP, and (c) MAP. Even in this sce-
nario, contextual information, in particular the stochastic one 
(MAP solution) is able to sensibly improve the performances 
of the DEM generation. To appreciate the high accuracy and 
reliability of the MAP solution, its 3-D projection is presented 
in Figure 7(d). 

CONCLUSIONS
The role of the contextual information in the MCh InSAR PU 
problem has been discussed. The exploitation of interdepen-
dency between nearby pixels has been shown to be effective in 
regularizing the solution and in providing high-accuracy 
DEM. To assess the positive effect of contextual methods, 
three different MCh PU techniques have been investigated: 

ML, MLLP, and MAP. The first methodology, the ML, makes 
no use of any contextual information, the second one, the 
MLLP describes the pixel neighborhood dependency using a 
deterministic model, while MAP exploits a stochastic relation 
between nearby pixels. The obtained results show that contex-
tual information can substantially improve the DEM recon-
struction performances, particularly in the case of stochastic 
models. This improvement has been quantitatively evaluated 
on a simulated data set and validated on two different real 
data scenarios.
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M
ost current synthetic aperture radar (SAR) sys-
tems offer high-resolution images featuring 
polarimetric, interferometric, multifrequency, 
multiangle, or multidate information. 
SAR images, however, suffer 

from strong fluctuations due to the 
speckle phenomenon inherent to 
coherent imagery. Hence, all 
derived parameters display 
strong signal-dependent 
variance, preventing the 
full exploitation of such a 
wealth of information. 
Even with the abundance 
of despeckling techniques 
proposed over the last 
three decades, there is still 
a pressing need for new 
methods that can handle this 
variety of SAR products and effi-
ciently eliminate speckle without 
sacrificing the spatial resolution. 
Recently, patch-based filtering has emerged 
as a highly successful concept in image processing. 
By exploiting the redundancy between similar patches, it succeeds 
in suppressing most of the noise with good preservation of texture 
and thin structures. Extensions of patch-based methods to speckle 
reduction and joint exploitation of multichannel SAR images 
(interferometric, polarimetric, or PolInSAR data) have led to the 
best denoising performance in radar imaging to date. We give a 
comprehensive survey of patch-based nonlocal filtering of SAR 
images, focusing on the two main ingredients of the methods: 
measuring patch similarity and estimating the parameters of 
interest from a collection of similar patches.

INTRODUCTION
Current SAR systems share two common characteristics: they 
provide a wealth of information thanks to polarimetric, wave-

length, or angle diversity, and they offer very high spatial 
resolutions that give access to the shape of man-

made structures. In radar images, how-
ever, parameters of interest, like 

interferometric phase, coherence, 
polarimetric properties, or 

radiometry, are not directly 
accessible but must be esti-
mated from unreliable 
data. It is essential that 
the estimation procedure 
be robust to the strong 
fluctuations in the mea-

surements due to speckle 
without trading off the spa-

tial resolution.
The simplest way to reduce 

speckle noise is to average pixels 
in a rectangular window around the 

target pixel, so-called spatial multilooking.
Although speckle is itself a signal of possible inter-

est, in the context of despeckling it is an undesired component, 
and hence customarily referred to as noise with a slight abuse 
of terminology [1]. This process, already present in the first 
European Remote Sensing (ERS) satellite images and still 
widely used for interferometric or polarimetric data, leads to a 
uniform reduction of speckle in homogeneous areas, with a 
residual variance inversely proportional to the number of pixels 
averaged. However, by potentially mixing different signals, it 
also impairs such important signal features as region edges, 
man-made structures, and fine textures. The point is that mul-
tilooking is just a basic nonadaptive form of parameter estima-
tion: to remove speckle without degrading fine features, local 
image content must be taken into account. 

[Charles-Alban Deledalle, Loïc Denis, Giovanni Poggi, Florence Tupin, and Luisa Verdoliva]

[The nonlocal paradigm]
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The design of efficient despeckling filters is a long-standing 
problem that has been the object of intense research since the 
advent of SAR technology [2], with 
the first contributions dating back to 
the 1980s [3]. However, research 
activity has accelerated significantly 
in recent years, reflecting both the 
success of SAR remote sensing in 
general and the lack of satisfactory 
methods for resolution-preserving 
speckle reduction. Some of the most 
successful methods proposed in the 
recent past for locally adaptive estimation are based on image 
models that enforce strong regularity constraints, either in the 
original domain (e.g., Markov random fields [4]), or in some trans-
form domain (e.g., wavelet-based sparse representations [5]). 

Very recently, patches, i.e., small rectangular image regions 
(typically squares of size between 3 × 3 and 11 × 11 pixels), have 
emerged as a powerful representation on which to build rich and 
flexible statistical models of natural images. Patches capture richer 
neighborhood configurations than first-order Markov random 
fields and are better localized than wavelets. Patch-based models 
do not enforce the solution to belong to a restricted class of 
signals, such as signals with bounded variations or with sparse 

transform coefficients. They exploit the self-similarity, typical of 
natural scenes, and look for similar patches not just in the imme-

diate neighborhood of the target 
pixel but in an extended search area. 
Unlike a local method like [6] that 
considers only connected pixels, far 
apart pixels can be combined, 
thereby justifying the widespread 
nonlocal appellative. The evolution 
from explicit image models to the 
concept of patch redundancy corre-
sponds to a true methodological 

shift in image processing. In particular, recent denoising methods 
most often rely on the notion of a patch. 

Interestingly, the concept of nonlocal filtering originally 
emerged in image processing after the pioneering work of Lee [7] 
for SAR despeckling. However, it was only with the development of 
patch-based methods, following the seminal work [8] in the 2000s, 
and the definition of highly discriminative patch-based similarity 
measures, that nonlocal filtering could be successfully applied to 
the low-SNR speckle-corrupted SAR images. The paradigm of 
patch-based nonlocal estimation is particularly interesting for SAR 
image processing given the poor fit of classical models to SAR 
scenes, characterized by many very strong punctual targets and 
high-contrast structures that are poorly modeled with piece-wise 
constants or wavelets. 

The potential of this new paradigm for SAR imaging has 
quickly been recognized, with more than 30 papers published 
since 2009 that describe patch-based methods applied to SAR, 
including most state-of-the-art despeckling techniques [9]–[11]. 
In addition, nonlocal patch-based methods are very flexible and 
can readily be extended to different SAR modalities [12]–[14]. 

This article reviews the underlying ideas and principles of 
nonlocal estimation methods proposed in SAR imaging. We con-
sider despeckling as a familiar and important case study, but we 
also address the more general point of view of parameter estima-
tion, looking ahead at extensions to more challenging SAR modal-
ities and estimation problems. Before diving into the core of 
patch-based methods, we begin by describing the classical speckle 
model in SAR imaging and the major families of estimation meth-
ods that have emerged over the last three decades. 

A SHORT OVERVIEW OF SAR DESPECKLING
Depending on the modality, SAR systems can record up to six 
channels of complex valued signals (see “SAR Imaging Modali-
ties”). All of these signals present highly varying fluctuations 
because SAR is a coherent imaging system (see “Speckle Fluc-
tuations in Radar Images”). The simplest way to reduce these 
fluctuations and estimate the values of the physical parame-
ters is to average several independent samples from the data. 
This operation, called multilooking, was applied in various 
forms from the very beginning of the SAR era. However, such 
simple averaging that applies equally to every region of the 
image, regardless of the local heterogeneity, strongly degrades 
the spatial resolution. 

SAR IMAGING MODALITIES 
SAR systems are based on the emission of an electromag-
netic wave that is then backscattered by the ground level 
features and finally recorded by the receiving antenna. 
Several modalities are used in SAR imaging (see [15] for a 
comprehensive survey):

■ Amplitude: The simplest configuration provides, after 
SAR synthesis, an image of scattering coefficients k  that 
are complex values with a magnitude (i.e., amplitude) that 
is representative of the radar cross-section. The square 
magnitude (i.e., intensity) is also often considered.

■ Polarimetric: The use of different polarizations at emission 
and reception of the radar wave provides a deeper insight 
into the backscattering mechanisms inside the resolution 
cell. The scattering vector k  is formed by the complex values 
corresponding to each combination of emission/reception 
polarizations. Usually, horizontal (H) and vertical (V) polar-
izations are used for emission and reception providing the 
scattering vector [ , , , ]z z z zk t

HH HV VH VV=  (or, by reciprocity,
[ , , ] ) .z z zk t

HH HV VV=  This modality (PolSAR) is widely used to 
study vegetation growing or urban areas.

■ Interferometric: The combination of two backscat-
tered signals, k1  and k2 , measured by two close config-
urations of the acquisition systems can yield elevation 
information or ground displacement maps. In interfero-
metric configurations, a composite signal k  can be 
defined by the concatenation of the two received signals 

[ , ] .k k kt t t
1 2=  These can be single (InSAR) or multipolar-

ization (PolInSAR) signals.

IT IS ESSENTIAL THAT THE 
ESTIMATION PROCEDURE BE ROBUST 
TO THE STRONG FLUCTUATIONS IN 

THE MEASUREMENTS DUE TO 
SPECKLE WITHOUT TRADING OFF 

THE SPATIAL RESOLUTION.
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Improved approaches have long been proposed to enhance this 
basic estimation method by better taking into account the image 
information. Many efforts have been devoted to the case of ampli-
tude images, corresponding to the modulus of single polarization 
data. Most of these “filtering” methods are described in a review 
paper [2] and very recent tutorial [1]. The first attempts were 
derived according to estimation theory: Lee [3] proposed a min-
imum mean square error (MMSE) estimator in the class of lin-
ear filters, while Lopes et al. [16] considered the maximum a
posteriori estimator. Both works used a statistical model limited to 
local distributions, and it is worth noting that these two filters 
were popular because of the clever analysis of the local context, 
using window splitting, or edge and target detection [16]. The idea 
of selecting the most relevant samples in the window has been fur-
ther developed in [6] and is the main motivation of patch-based 
approaches. The following generation of filtering approaches 
introduced stronger priors to guide the solution. 

The first family includes Markovian and variational 
approaches, which impose smoothness or regularity constraints 
on the solution through a suitable prior model. These 
approaches usually lead to minimizing an energy function com-
posed of two terms. The first term reflects the data distribution 
and is related to statistical models of speckle (see “Speckle Fluc-
tuations in Radar Images”). Due to the heavy tail of the distribu-
tions of speckle-corrupted images, classical least-squares data 
fitting must be replaced by a more relevant criterion derived 
from speckle distributions. The second term relies on some 
prior on the solution. Although regularization models such as 
gradient sparsity have been investigated [4], they do not fit well 
SAR signal properties. The Markovian formalism can be easily 
extended to deal with different SAR modalities like interfero-
metric data. However, the specific nature of SAR signals is 
poorly captured by simple models and more complex ones lead 
to very hard optimization problems. 

SPECKLE FLUCTUATIONS IN RADAR IMAGES 
Coherent signals like SAR data present strong fluctuations. The 
waves backscattered by elementary scatterers inside each reso-
lution cell are not “in phase” but arbitrarily “out-of-phase,” which 
results in constructive and destructive interferences. In a SAR inten-
sity image, fluctuations due to speckle follow a heavy-tail distribu-
tion (large deviations occur often) and are signal dependent 
(standard deviation is proportional to the radiometry), which 
departs from the usual additive Gaussian noise model (Figure S1). 

Measured SAR intensity I 02  in untextured areas deviates from 
the radiometry R 02  according to an exponential distribution: 

( | ) .expp I R R R
I1= -c m (S1)

Multilook SAR images, obtained by averaging L  intensity 
images, follow a gamma distribution (Figure S2):

( | ) ( ) .expp I R R
L

L
I

R
LIL L 1

C
= --

c cm m (S2)

In the more general case of a K-dimensional scattering vector 
as encountered in polarimetric and interferometric modalities 

[ , , ] ,z zk K
t

1 f=  the observed complex vector k  follows a 
K-dimensional circular complex Gaussian distribution under 
Goodman’s fully developed speckle model (valid for untex-
tured areas with physically homogeneous and rough surfaces) 

( | )
| |

( ),expp k k k1
K

1

r
R

R
R= - @ - (S3)

where { }kkER = @  is a K K#  complex covariance matrix char-
acteristic of the imaged surface, E  is the expectation, and @  the 
Hermitian transpose. Some radar images are not available in 
the form of scattering vectors, but rather as empirical covari-
ance matrices 

,LC k k1
i

L

i i
1

= @

=

/ (S4)

where the sum is carried over several scattering vectors for 
each pixel. In the case of amplitude images, k  is a scalar and 
C  corresponds to an L -looks intensity image. The empirical 
covariance C  follows a Wishart distribution given by 

( | , )
( ) | |
| |

( ) ,expp L
L

L
LC

C
CTr

K
L

LK L K
1

C R
R R= -

-
-^ h (S5)

where Tr :^ h is the matrix trace. The equivalent number of 
looks L  acts as the shape parameter of the Wishart distribution.

Noisy Image Noiseless Image Gaussian Noise

= += +

Noiseless Image Exponential NoiseNoisy Image

= ×= ×

(a)

(b)

[FIGS1] (a) Additive white Gaussian noise versus 
(b) multiplicative speckle noise. 

p (I |R )
L = 1

L = 20

L = 5

IR

[FIGS2] Gamma distributions for three different number 
looks L.
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The second large family of approaches is based on wavelet 
transforms. Thanks to their spatially localized and multiresolu-
tion basis functions, wavelets yield sparse yet accurate represen-
tations of natural images in the transform domain. Sharp 
discontinuities and pointlike features, so common in SAR 
images, are well described by a small number of basis functions, 
just like the large homogeneous regions between them. This 
compact representation was quickly recognized as a powerful 
tool for denoising. In fact, while the signal is projected on a rela-
tively small number of large wavelet coefficients, the white noise 
remains white after the transform, and hence evenly distributed 
on all coefficients. Signal and noise can be, therefore, efficiently 
separated by means of an appropriate nonlinear processing, 
such as hard/soft thresholding or more sophisticated shrink-
ages. The encouraging results provided by early SAR despeck-
ling techniques spawned an intense research to overcome the 
shortfalls of soft/hard thresholding. A popular approach consid-
ered wavelet shrinkage as a Bayesian estimation problem, possi-
bly expressed after application of a homomorphic transform to 
reduce speckle to an independent additive perturbation. The 
major problem in this context becomes the modeling of signal 
and noise by suitable distributions, and a number of parametric 
models have indeed been proposed [5], [17]. Further improve-
ments come from joint modeling of wavelet coefficients in and 
across subbands, like in [18]. Despite its potential, the wavelet 
transform cannot deal by itself with the high heterogeneity of 
SAR scenes. A number of spatially adaptive techniques were 
therefore proposed, based on some prior classification of the 
image, typically in homogeneous, heterogeneous (e.g., textures), 
and highly heterogeneous (e.g., point targets) regions, to tune 
filtering parameters or strategies to the different regions [19]. 

The approaches reviewed above generally try to estimate the 
signal at a certain pixel from the noisy observations at pixels close 
to it. However, with plenty of data to estimate the signal, i.e., the 
observations over the whole image, why restrict attention only to a 
small neighborhood of the target? The obvious answer is that not 
all image pixels carry valuable information on the target, and only 
close pixels are used because they are expected to be more similar 
to it, and hence, better estimators. The above consideration makes 
clear that the image denoising problem may be performed in two 
separate steps: 1) selecting good predictors, which carry useful 
information on the target, and then 2) using them to perform the 
actual estimate. Lacking any other hints, spatial closeness is taken 

as a surrogate of signal similarity relying heavily on the fact that 
natural images are predominantly low-pass. Needless to say, 
sophisticated filters go much beyond a simple distance-based 
weighting of contributions, but this basic criterion remains a 
founding paradigm of local filters. 

The patch-based nonlocal approach avoids the potentially dan-
gerous identification between closeness and similarity and goes 
back to the original problem, trying to identify the pixels more 
similar to the target, irrespective (to a certain extent) of their spa-
tial distance from it. In the next section, we explore in more depth 
the fundamental steps involved in nonlocal SAR despeckling and 
review the current state of the art. 

NONLOCAL APPROACHES: EXPLOITING 
PATCH REDUNDANCY
At the core of the nonlocal approach stands the selection of suit-
able predictors based on their similarity with the target. This idea 
began to gain some popularity with the bilateral filter, proposed 
for additive white Gaussian noise (AWGN) denoising, with predic-
tor weights depending not only on their spatial distance from the 
target, but also on their similarity with it, measured by the differ-
ence between observed values. Despite its simplicity, this filter 
gave a surprisingly good denoising performance, reducing the 
annoying edge-smearing phenomenon. However, the pixel-wise 
estimation of similarity was very rough and happened to reinforce 
observed values affected by strong noise, justifying the need for the 
spatial-distance term. The fundamental step toward nonlocal fil-
tering was then the introduction, in nonlocal means (NL-means) 
[8], of a reliable patch-wise measure of similarity. When a rela-
tively large patch is taken into account, it is very unlikely that pix-
els characterized by a signal much different from the target be 
accepted as good predictors. Thanks to the improved reliability, 
predictors can be weighted based only on similarity, with no refer-
ence to spatial information. Unlike local filters, nonlocal ones do 
not impose any specific structure (connectivity, shape) or smooth-
ness, but only exploit that patches recur more or less frequently, a 
self-similarity property common to most images. Recurring 
patches are easily found in smooth regions, but just as well around 
region boundaries, textures, artificial structures, etc., as shown in 
Figure 1. Hence, for most patches, several other patches can be 
found with similar content. This form of stationarity in the space 
of patches is central to nonlocal approaches. 

Nonlocal estimation methods generally follow a three-step 
scheme, summarized in Figure 2 with many possible variations 
at each step and, possibly, preprocessing steps and/or iterative 
refinement of results by repeated nonlocal estimations. The first 
step identifies similar patches (patch size is generally set from 

to3 11 113 # #  pixels). It must reliably find, within an 
extended search window (typically to21 21 39 39# # ), patches 
that are close to the reference central patch. Once several 
patches have been selected (from a few tens to all the hundreds 
of patches within the search window), they are assigned relative 
weights. The second step combines patches, according to their 
weights, to form an estimate of either the central pixel, the cen-
tral patch, or all selected patches. The estimates computed from 

[FIG1] Typical fragments of SAR images (51 × 51 pixels): (a) homo-
geneous region, (b) line, (c) texture, and (d) structure. For each 
target patch (green) several similar 8 × 8 patches (red) are easily 
found in the same fragment. 

(a) (b) (c) (d)
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all possible reference patches are then merged in a last step to 
produce the final image. 

We now illustrate these steps for the special case of NL-
means [8], indicating by ( )v x  and ( ),v x  respectively, the value 
at pixel x , and the image patch centered on x  in the observed 
image. In NL-means, each pixel xl in a large search area around 
the target pixel x  is considered and a similarity measure 

( , )x xD l  is computed by comparing the two patches centered 
on x  and .xl  Under AWGN, the sum of squared differences is a 
natural criterion to evaluate similarity  

( , ) ( ) ( ) .v vx x x x 2D = -l l (1)

This measure is used to compute the weight for each predictor 
pixel ,xl  with large weights associated with similar patches and 
negligible weights with dissimilar ones. An exponential kernel is 
used to this end 

( , ) ( , ) / ,expw x x x x hD= -l l^ h (2)

with the bandwidth parameter h  governing the weight distribu-
tion. Finally, the target pixel x  is estimated through the weighted 
average of all pixels within the search area  

( )
( , )

( , ) ( )
,u

w
x

w x x

x x v x

x

xNL =
l

l l

l

lt /
/

(3)

where ut  denotes an estimate of the unknown signal value .u
In the NL-means, therefore, only one estimate is obtained for 

each pixel x, which corresponds to the top branch depicted in 
Figure 2. Generalizations provide several estimates for each pixel 
that must be properly combined in the last step. 

The NL-means filter and its numerous variants are known to 
perform well under AWGN. However, the extension to SAR imag-
ing, and in particular to speckle, is by no means trivial, and has 
been the object of several recent papers. One has to understand 
the foundation of such filters, and provide a flexible formulation 
suitable for different modalities and models of noise. In the follow-
ing, we focus on the main concepts that have been proposed in 
SAR imaging, and try to provide some insight into the problems 
that emerge when noise departs from the Gaussian distribution, 

and possible solutions to them. The key point of all these exten-
sions is the consideration of the specific distributions of radar data. 

STEP 1: DEFINING PATCH SIMILARITIES
The first step of nonlocal estimation methods is the identification 
of similar patches through a (dis)similarity criterion .( , )x xD l

This criterion quantifies, in a principled manner, by how much 
the unknown patches ( )u x  and ( )u x  differ. Based on the similar-
ity to the reference patch at ,x  predictor patches at xl can be 
either soft-assigned or hard-assigned to the set of similar 
patches. In the case of soft-assignment, a weight reflecting the 
level of similarity is associated to each patch within the search 
area, otherwise the most similar patches are included and used to 
perform the prediction. 

Under AWGN, (1) is a natural criterion to evaluate similarity 
between two patches. Fluctuations created by speckle are multipli-
cative and non-Gaussian; see “Speckle Fluctuations in Radar 
Images.” Specific criteria must be derived for the comparison of 
patches in SAR imaging. 

The similarity between two patches is generally defined as the 
sum of the similarity d  of each pair of corresponding pixels in the 
two noisy patches: ( , ) ( ( ), ( )) .x x v x v xd x xD = + +

x
l l/  To 

improve the discrimination power of the similarity criterion, sev-
eral authors suggest using a pre-estimate uu  computed either over 
the whole patch [20], obtained after a first iteration [11] or at the 
previous iteration [9] of the nonlocal method. The similarity then 
takes the form ( , )x xD =l ( ( ), ( )) .u x u xd x x+ +

x
lu u/  Described 

next are possible approaches to derive the pixel-wise similarity .d

DETECTION APPROACH
Dissimilarity can be defined based on the detection of the differ-
ence between the underlying values u1  and u2  [21]. This detec-
tion problem can be formulated as an hypothesis test where the 
null hypothesis corresponds to no difference :H u u u0 1 2 12= =^ h

and the alternative one to a difference : .H u u1 1 2!^ h  Among 
several criteria considered in [21], the generalized likelihood 
ratio (GLR) is shown to perform best and fulfill several invari-
ance properties 

x ′ x ′

x ′

x ′
x ′

x ′

x x
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[FIG2] Nonlocal estimation in action: processing at pixel x.
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( , ) [ ( | )] [ ( | )]
[ ( | ) ( | )]

.log sup sup
sup

v v p v u p v u
p v u p v u

u u

u
1 2

1 1 2 2

1 12 2 12GLR

2

12

1

d =- (4)

Criteria specific to SAR imaging can be derived from (4) by using 
the statistical speckle models recalled in “Speckle Fluctuations in 
Radar Images.” Both single channel (intensity) and multichannel 
(polarimetric and/or interferometric) configurations lead to a cri-
terion defined as the log of the ratio between arithmetic and geo-
metric means [22] 

( , )
| | · | |

| |
,logC C

C C

C C
L2 2

1

1 2
1 2

1 2
GLRd =

+
(5)

where C  may represent either the L-looks intensity (single-chan-
nel images) or the L-looks empirical covariance matrices (multi-
channel images). This is a natural criterion to compare patches 
corrupted by a multiplicative noise such as speckle since the cri-
terion is invariant to a multiplicative change of contrast. It has 
been successfully used in nonlocal filtering of intensity, interfero-
metric, and polarimetric SAR images [12], [14]. Detection-based 
criteria using similar expressions are also at the heart of [9], [13], 
[23], and [24]. 

INFORMATION APPROACH
In line with the detection approach, the authors of [9] and [20] 
consider a similar hypothesis test involving pre-estimates of the 
parameters. Good criteria to perform such a hypothesis test are 
provided by the h -z  divergences where h  and z  refer to pre-
defined functions. The h -z  divergences measure the quantity 
of information shared by the distributions parametrized by u1u

and :u2u  they evaluate the proportion of samples from one distri-
bution that can be explained by the other. Specific choices of h
and z  lead for instance to the Hellinger divergence or the Kull-
back–Leibler divergence. Again, taking into account specific 
SAR distributions provides well-founded criteria. The symmetri-
cal version of Kullback–Leibler divergence (sKL) gives, in the 
case of Wishart-distributed empirical covariance matrices, 

( , ) ( ) .,LTr const1 2 1
1

2 2
1

1
sKLd R R R R R R= + +- -u u u u u u (6)

again involving ratios, as customary in SAR imagery. 

GEOMETRIC APPROACH
The similarity can be defined by deriving a metric suitable to the 
specificities of SAR data. D’Hondt et al. [25] suggest using Hermi-
tian semidefinite positive matrices and propose a metric con-
nected to geodesic and Riemannian distances  

( , ) ,( )log / /
F1 2 2

1 2
1 2

1 2 2Geod R R R R R= - -u u u u u (7)

where log  is the matrix logarithm and · F  the Froebenius 
norm. This similarity offers some interesting invariance proper-
ties. In the case of intensity images with pre-estimated 

radiometry ,Ru  this criterion boils down to ( ( ) ( )) ,log logR R2 1
2-u u

which is the square distance between observations after applying 
a homomorphic transform on the pre-estimates. It has been 
shown in the framework of detection theory that criteria based on 
variance-stabilization (such as the log transform in SAR) enjoy 
good properties [21]. It is interesting to see that such a criterion 
can be derived using different interpretations (a geometric found-
ing or a statistical reasoning). 

ESTIMATION APPROACH
Lee et al. [26] have shown that the estimation of radar properties 
may suffer from a systematic bias arising from the procedure that 
detects similar noisy values (hard-assignment). For SAR intensity 
images, they suggest using a preselection rule of the form 

[ , ]I R R2 1 1! g gl —called sigma range—for which the prese-
lected samples I2  do not introduce bias in the subsequent estima-
tion when the radiometry is identical .R R1 2=^ h  Values of g  and 
gl are computed by an iterative method, while the unknown R1

is replaced by a pre-estimate R1u  called a priori mean [10], [26]. 
By rather considering a preselection rule of the form 

( , ) ,I I1 2 #d c  numerical integrations over I1  and I2  show that 
the subsequent estimation is unbiased as soon as the rule can be 
rewritten as [ / , ] .I I I2 1 1! g g  Detection rules such as GLR (5) 
verify this property. 

Some of the estimators used in the second step of nonlocal 
estimation methods use the similarity ( , )x xD l  to weight the 
importance of the patch ( )v xl  (i.e., soft-assigment). The similar-
ity ( , )x xD l  is mapped into a weight ( , )w x xl  using a function 
termed kernel. Many different kernels have been proposed in the 
literature, from simple thresholding ( , ) [ ( , ) ],1w x x x x h1D=l l

exponential kernels as in (2), to more sophisticated ones [14], 
[20], [24]. The shape of the kernel (e.g., smooth, discontinuous, 
or trapezoidal) changes the contributions of patches that may 
correspond to false detections and thus controls the bias/variance 
tradeoff. In [14] and [20], suitable kernels have been defined to 
guarantee the same bias/variance tradeoff, irrespective of the 
modality, the noise statistic, or the patch size. 

STEP 2: ESTIMATION OF RADAR PROPERTIES
After the selection of a stack of patches and/or computation of 
relative weights during the first step of the nonlocal estima-
tion method, these patches are combined in a second step to 
form an estimate of the radar properties. This combination 
can be a simple (weighted) averaging as in the NL-means, or a 
more evolved estimator. 

In SAR imaging, observations v  may denote a collection of 
intensities I, amplitudes I  or log-transformed values ( ),log I  a 
vector of noisy coefficients in a transformed domain (discrete 
cosine transform, Fourier, wavelets, etc.), a collection of scatter-
ing vectors k  or of empirical covariance matrices .C  The associ-
ated collection of parameters of interest ,u  are generally the 
radiometry R  or covariance matrice .R  The estimation step 
computes radar parameters from the collection of observations v
and/or pre-estimations uu  gathered during the first step. The most 
common estimators for patch-based denoising of SAR images are: 
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■ SME/WSME: NL-means and many of its successors com-
bine similar patches into a weighted average [weighted sample 
mean estimator (WSME)], where the weights are derived from 
the similarities; see (3). By using weights, the estimation 
relies more heavily on samples that are more similar (thus, 
more reliable), which reduces bias. Compared to an estima-
tion based solely on a collection of patches detected as highly 
similar (i.e., by hard-assignment), the variance can also be 
reduced by considering a larger number of samples. The sam-
ple mean estimator corresponds to the conditional expecta-
tion [ | ] .v uE  This expectation may not directly be equal to 
the parameter of interest ,u  but require a debiasing step. A 
notable example is the case of (weighted) averaging of log-
transformed SAR images. The estimation of covariance matri-
ces from empirical ones can be performed by WSME [12], 
[14], [20], [24], [25]  

( )
( , )

( , ) ( )C
x

w x x

w x x x

x

xWSMER =
l

l l

l

lt
/
/

(8)

with ( , )w x xl  the weight depending on the similarity ( , )x xD l

between patches extracted at pixel locations x  and .xl
■ MLE/WMLE: The sample mean is not a correct estimator of 
some parameters, e.g., the amplitude .I  The sample mean 
should then be replaced by an estimator adjusted to the spe-
cific noise distribution of the observations, such as the maxi-
mum likelihood estimator. Similarly to the WSME, sample 
weights can be introduced in the estimation method. Maxi-
mum likelihood can be generalized into the weighted maxi-
mum likelihood estimator (WMLE) [9]: 

, .arg max logu x w x x p v x u
u x

WMLE = l l
l

t ^ ^ ^h h h6 @/ (9)

WMLE leads to (8) for Wishart-distributed covariance matrices, 
but improvements are obtained for matrices with particular 
structures as in interferometric SAR imaging [13]. 
■ MMSE: Kervrann et al. proposed a method called Bayesian 
NL-means [27] that estimates the parameters u  as a linear 
combination of pre-estimated patches ,uu  with weights defined 
by the likelihood of each pre-estimated patch with respect to 
the observation :v

( )
[ ( ) | ( )]

[ ( ) | ( )] ( )
u

v u

v u u
x

p x x

p x x x

x

xMMSE .
l l

l l

l

lt
u

u u

/
/

. (10)

This estimator can be interpreted as an approximation of the 
MMSE error estimator, i.e., the posterior mean. Pre-estimates 
are usually obtained thanks to a two-step or iterative prefilter-
ing [10]. Since the pre-estimation step provides only a coarse 
estimation uu  of the patches ,u  a smoothing parameter is 
introduced to reduce the selectivity of the likelihood function 
and thus avoid weighting too much patches that are very close 
to the observation [27]. 
■ LMMSE: The linear MMSE (LMMSE) error estimator has 
long been used in SAR imaging [26]. This estimator 
restricts the form of the solution to linear transforms of ,v
which is most efficient when noise and signal are well 

separated. In SAR-BM3D [11], the LMMSE is computed 
after an undecimated discrete wavelet transform (UDWT) is 
applied to the stack of similar patches. Expectation and 
variance of observations and parameters can be obtained 
from band-wise statistics and later refined using prefiltered 
patches after a first restoration has been performed.
The family of homomorphic approaches transform the mul-

tiplicative noise into an additive one by taking the logarithm of 
the observed intensity/amplitude. Several papers have derived 
nonlocal estimators in this sense, e.g., [28], where an “adjust 
mean” step is used to deal correctly with the bias arising from 
the Gaussian assumption (i.e., debiasing step described for 
SME). Note that estimators that process directly SAR data (i.e., 
without log-transforms) are often preferable since the debiasing 
step is then unnecessary. 

STEP 3: REPROJECTION TO IMAGE SPACE
The second step of nonlocal methods provides estimates either 
for a single pixel (pixel-wise estimation), for a single patch 
(patch-wise estimation), or for the whole stack of patches 
(stack-wise estimation). The first option corresponds to basic 
NL means, already described above, so let us focus on the other 
two strategies. 

The difference in patch-wise filtering is that all pixels in the 
patch, not just the central one, are estimated at once. Since each 
pixel is estimated several times, a suitable aggregation phase is 
necessary to combine all such estimates. In particular, we need to 
define a reprojection function, ,g $^ h  to get an estimate in the 
pixel domain: ( ) ( ( ), , ( )).u uu x g x xK1 f=t t t  What is more impor-
tant, these estimates refer to different patches, with different reli-
ability levels, an information that can be exploited to improve 
results. The reprojection can be performed through a weighted 
average of the K  estimators: 

( ) ( ).uu x xk
k

K

k
1
a=

=

t t/ (11)

The simplest form of aggregation is to consider uniform weights 
,ka  as done in the block-wise NL-means [8]. Another strategy is to 

set the weight associated with each estimate as inversely propor-
tional to its variance [29].

To illustrate why patch-wise estimation improves perfor-
mance, let us consider the special case of a pixel near the bound-
ary between two homogeneous regions. Since the patch centered 
on it is strongly heterogeneous, most other patches of the search 
area, coming from homogeneous regions on either side of the 
boundary, are markedly dissimilar from it, and contribute very lit-
tle to the average. The estimate, thus, involves only a small effec-
tive number of predictors, those along the edge, which results in 
a high variance. As a result, a visible “halo” of residual noise is 
observed near the edges, a phenomenon well-known in NL-
means, also referred to as the rare patch effect. The target pixel, 
however, belongs to a large number of patches, not just the patch 
centered on it, many of them drawn from the homogeneous 
region to which the pixel belongs. In patch-wise reprojection, all 
of these patches are included in the average reducing the 
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estimate variance, especially if suitable weights are used to take 
into account the reliability of each contribution. 

Let us now consider the third strategy, with stack-wise filtering. 
The first difference with regard to patch-wise filtering is that now 
all patches collected in the stack are collaboratively filtered before 
reprojecting them to their original position. The major improve-
ment is that the stack is filtered in three dimensions, i.e, not only 
along the stack but also in the spatial domain. In BM3D [29] and, 
with necessary adjustments to the SAR domain, in SAR-BM3D [11], 
the whole stack, formed by just a limited number of similar 
patches, is wavelet transformed, Wiener filtered, and back trans-
formed. By so doing, strong spatial structures are emphasized 
through filtering while random noise is efficiently suppressed. As a 
matter of fact, these techniques exhibit significant improvements 
especially in highly structured areas (edges, point reflectors, 

textures). The efficiency of collaborative filtering comes from the 
full exploitation of the redundancy of information in a stack of sim-
ilar patches. 

In “Overview of Nonlocal Estimation Methods in SAR Imag-
ing,” we compare nine recent patch-based techniques in rela-
tion to each of the three steps previously described. Needless to 
say, performance depends on the setting of several parameters, 
like patch size and search area size, which should be related to 
image resolution, smoothing strength, and balance between 
original and pre-estimated data. In most of the nonlocal 
approaches these parameters are set by hand. Few works have 
considered semisupervised setting or automatic setting with 
spatial adaptation [14]. 

Some sample experimental results that confirm the potential 
of nonlocal methods are presented in Figure 3 for an amplitude 

OVERVIEW OF NONLOCAL ESTIMATION METHODS IN SAR IMAGING 
Nonlocal estimation methods perform the three steps depicted 
in Figure 2. A great variety of methods dedicated to SAR images 
have been proposed over the last few years. These methods fol-
low different paths to implement each of the three steps: 
1) similar patches identification (choice of the similarity criterion) 

2) estimation of radar properties (choice of the estimator) 
3) reprojection of estimates onto the image space (choice of 
the domain).
Table S1 is an overview of some of the main methods devoted 
to SAR imaging.

[TABLE S1] MAIN PATCH-BASED METHODS FOR SPECKLE REDUCTION IN SAR IMAGES.

METHOD  
(OLDEST FIRST)

DOMAIN ESTIMATOR SAR MODALITY SELF-SIMILARITY 
DOMAIN

SIMILARITY 
CRITERION 

SCHEME

PPB/NL-INSAR PIXEL-WISE WMLE SAR (ANY L ) /
INSAR (L 1= )

PATCH-WISE DETECTION + 
INFORMATION

ITERATIVE

[9], [13] ORIGINALITY: ITERATIVELY REFINES THE WEIGHTS BY COMPARING PATCHES OF PREVIOUS ESTIMATES AND PATCHES
OF THE NOISY IMAGE.

PRETEST NLM PIXEL-WISE WSME POLSAR (L 3$ ) PATCH-WISE DETECTION ONE STEP

[12] ORIGINALITY: DIRECT EXTENSION OF [8] WITH A SELECTION BASED ON A GLR (REFERRED TO AS PRETEST STEP).

BAYESIAN NLM PIXEL-WISE MMSE SAR (ANY L ) PATCH-WISE ESTIMATION ONE STEP

[10] ORIGINALITY: PRIOR PATCHES ARE EXTRACTED IN A MULTILOOKED IMAGE. A SIGMA-RANGE PRESELECTION IS USED
AND DARKER PIXELS ARE DISCARDED.

SAR-BM3D STACKWISE LMMSE SAR (ANY L ) PATCH-WISE DETECTION + 
INFORMATION

TWO STEPS

[11] ORIGINALITY: WORKS ON THE UDWT OF STACKS: FIRST STEP USES STATISTICS OF EACH SUBBAND; SECOND ONE USES
STATISTICS PROVIDED BY THE FIRST ITERATION. 

BILATERAL NLM PIXEL-WISE WSME POLSAR (ANY L ) PIXEL-WISE GEOMETRIC ITERATIVE

[25] ORIGINALITY: IMAGES ARE MULTILOOKED, THEN ITERATIVELY UPDATED BY NONLOCAL AVERAGING BASED ON GEOMETRI-
CAL COMPARISON OF PIXEL VALUES (NO PATCH). 

STOCHASTIC NLM PIXEL-WISE WSME POLSAR (NON-
STATIONNARY L )

STATSWISE INFORMATION ONE STEP

[20] ORIGINALITY: LETS L  VARY IN THE IMAGE. PATCH SIMILARITY IS BASED ON THE DIVERGENCE BETWEEN MLE ESTIMATES
OF R AND L  WITHIN THE PATCH.

DISCRIMINATIVE NLM PIXEL-WISE WSME POLSAR PATCH-WISE DETECTION ITERATIVE

[24] ORIGINALITY: ITERATIVELY REFINES WEIGHTS BASED ON THE RATIO OF DIAGONAL ELEMENTS OF EMPIRICAL COVARIANCE
MATRICES AND THE SPAN OF THE PREVIOUS ITERATE.

NL-SAR PIXEL-WISE WMLE (POL)(IN)SAR
(ANY L )

PATCH-WISE DETECTION ADAPTIVE

[14] ORIGINALITY: FULLY AUTOMATIC: PATCH SIZES, SEARCH WINDOWS AND PREFILTERING STRENGTHS ARE SPATIALLY TUNED
TO PROVIDE IMPROVED RESULTS.
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image with SAR-BM3D [11] and in Figure 4 for a polarimetric 
data with NL-SAR [14]. Visual inspection shows the perfor-
mance of the approach in reducing strong fluctuations while 
preserving important features like targets and lines. Note that 
no systematic artefacts should be observed with these 
approaches unless the parameters are not set properly (e.g., no 
consideration of oversampled data). A rigorous performance 
evaluation of nonlocal despeckling techniques is beyond the 
scope of this article. Some frameworks for SAR despeckling 
evaluation and comparison are proposed in [1] and [30]. 

OPEN ISSUES AND FUTURE TRENDS
Patch-based approaches provide the best performance to date 
for speckle reduction in SAR intensity images [30] and polari-
metric or interferometric SAR images [14]. Beyond speckle sup-
pression, they improve parameter estimation, drastically 
enhancing radar measures. Therefore, they can be expected to 
have a strong impact, in the near future, on major applications 
of radar imaging, improving the biomass estimation with polari-
metric-interferometric data; increasing the spatial resolution in 

urban monitoring with radar tomography; enabling more reliable 
phase unwrapping methods for interferometric SAR. 

As a by-product of patch-based speckle reduction methods, sev-
eral similar criteria especially suited for SAR imaging have been 
established. These criteria are central to many applications: for 
classification and indexing using patch clustering; for change 
detection; for movement monitoring by patch tracking. 

Patch-based methods are at their beginning and many open 
issues have yet to be solved. The speckle model considered so far 
(simple complex Gaussian) is known to inaccurately describe 
very high-resolution images or textured areas. The introduction 
of more accurate models (e.g., Weibull, Fisher, or generalized 
gamma distributions for amplitude, and corresponding matrix-
variate polarimetric distributions) raises questions about the 
increased complexity of estimators and the possible loss of 
robustness with the increase of degrees of freedom. Another 
limit is the geometric deformations appearing on SAR images 
with elevated objects. Such deformations should be considered 
to perform joint restoration of images taken from multiple inci-
dence angles.

[FIG3] (a) The single-look TerraSAR-X image of Barcelona and (b) the radiometry estimated by the nonlocal method [11]. Images are 
511 × 1,043 pixels with a spatial resolution of 2.5 m. (Images used with permission of Infoterra GmbH.) 

[FIG4] (a) Two PolSAR images of the area of Kaufbeuren, Germany, sensed by F-SAR, single-look, X-band (top) and S-band (bottom) 
(image courtesy DLR).  In (b) and (c), estimated polarimetric signatures using the nonlocal patch-based method (images used with 
permission from [14]). Images are 400 × 512 pixels with a spatial resolution of 0.5 m. 

(a) (b)

(a) (b) (c)
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P
olarimetric target decomposition is a powerful tech-
nique to interpret scattering mechanisms in polarimetric 
synthetic aperture radar (PolSAR) data. Eigenvalue-
eigenvector-based and model-based methods are two 
main categories within the incoherent 

decomposition techniques. Eigenvalue-ei-
genvector-based decomposition be-
comes relatively mature since it 
has a clearer mathematical 
background and has only one 
decomposition solution. In 
contrast, model-based de-
compositions can obtain 
different decomposition 
solutions in terms of vari-
ous scattering models. 
Meanwhile, conventional 
methods with models or as-
sumptions that do not fit the 
observations may induce defi-
ciencies. Thereby, the development 
of effective model-based decomposi-
tions has received considerable attention 
and many advances have been reported. This article 
aims to provide a review for these notable advances, mainly in-
cluding the incorporation of orientation compensation processing, 
nonnegative eigenvalue constraint, generalized scattering models, 
complete information utilization, full-parameter inversion 
schemes, and fusion of polarimetry and interferometry. Airborne 

Pi-SAR data sets are used for demonstration. Besides, natural di-
saster damage evaluation using model-based decomposition is car-
ried out  based on advanced land-observing satellite/phased array 
type L-band synthetic aperture radar (ALOS/PALSAR) data. Fi-

nally, further development perspectives are pre-
sented and discussed.

INTRODUCTION
Microwave remote sensing has 

been rapidly developing over 
the past few decades with 
progresses in hardware 
systems, signal processing 
techniques, and interpre-
tation theories. Micro-
wave remote sensors, 
which can work day and 

night and are nearly unaf-
fected by weather and atmo-

spheric conditions, play an 
increasingly important role for 

Earth and other planet monitoring in 
both global and regional scales. PolSAR is 

one of the mainstream imaging systems in micro-
wave remote sensing. It can obtain fully polarimetric information 
by transmitting and receiving microwaves with specific polariza-
tion states [1]–[3]. Fully polarimetric information is sensitive to 
scattering mechanisms related to target responses during a back-
scattering procedure. Full polarization acquisition can enhance the 
radar capability in scattering mechanism understanding and target 
parameters (e.g., material, shape, and orientation) retrieval. In this 
vein, many current airborne and spaceborne synthetic aperture 
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radar (SAR) systems are equipped with a full-polarization mode. A 
number of PolSAR data sets have been acquired by these systems 
especially the routinely operated spaceborne systems such as on-
orbit Radarsat-2 and TerraSAR, the 
retired ALOS/PALSAR, etc. [1]. These 
valuable data sets greatly stimulate 
the studies in both theory and appli-
cation. Scattering mechanism under-
standing is a bridge between the 
collected data and real applications. 
Generally, scattering mechanisms are determined by a set of factors 
such as radar frequency, radar bandwidth, illumination direction, 
and target dielectric/geometric properties. Although the basic the-
ory of radar polarimetry has been well established [1]–[3], scatter-
ing mechanism modeling and interpretation are still ongoing. How 
to effectively extract robust and useful information from collected 
data is still challenging. 

In past decades, many scientists and researchers have been 
involved in this field to interpret the scattering mechanisms pres-
ent in PolSAR data [1]–[4]. Polarimetric target decomposition 
theorems [5], originated from Huynen’s work in the 1970s [6], 
became one of the most powerful and the most popularly used 
techniques. With this technique, a measured polarimetric matrix 
can be decomposed into a summation of several canonical scat-
tering mechanisms. Thereby, the dominant scattering mecha-
nism can be determined and physical parameters can be 
retrieved. A number of successful applications, such as land-cover 
classification and target detection [1], [4], soil moisture estima-
tion [2], [7], forest study [1], [3], ocean study [1], agriculture 
study [1], glacier study [8], and natural disaster study [9]. Since 
the measured scattering matrix is commonly affected by speckle 
phenomenon [1], incoherent analysis using the second-order sta-
tistics such as the coherency/covariance matrix is mostly used. 
Incoherent decompositions can be divided into two categories: 
eigenvalue-eigenvector-based decomposition [1], [3], [5] and 
model-based decomposition [10], [11]. Eigenvalue-eigenvector-
based decomposition becomes relatively mature since it has 
clearer mathematical background and has only one decomposi-
tion solution. Polarimetric entropy, mean alpha angle ar , and 
polarimetric anisotropy are the most popular parameters derived 
from this technique and are widely used for scattering mecha-
nism understanding [1], [3], [5]. In contrast, with various combi-
nation of scattering models, model-based decompositions can 
obtain different decomposition solutions. Meanwhile, conven-
tional model-based decompositions with models or assumptions 
that do not fit the observations may induce deficiencies, such as 
the appearances of negative powers for scattering mechanisms, 
overestimations of volume scattering, scattering mechanism 
ambiguities, etc. Thereby, the development of effective model-
based decompositions has received considerable attention [12]. 
The Freeman–Durden decomposition [10] is the pioneer of inco-
herent model-based decompositions. Thereafter, to enhance the 
scattering mechanism interpretation performance, many notable 
advances have been achieved, including orientation compensa-
tion strategy [13]–[15]; nonnegative eigenvalue constraint 

[16]–[18]; generalized scattering models [7], [19]–[26]; complete 
information utilization [18], [23], [26], [27]; full-parameter inver-
sion technique [20], [21], [26]; and polarimetric-interferometric 

decomposition [21], [24], [25]. 
In 1996, Cloude and Pottier 

published an excellent review for 
target decomposition theorems [5]. 
Reference [12] also provides a short 
overview. Based on these papers, 
this article will investigate all these 

recent advances, present a brief summary, and discuss the per-
spectives for future developments.

BASICS OF SCATTERING MECHANISM MODELING

REPRESENTATION OF PolSAR DATA
For PolSAR, the acquired full polarimetric information can be 
expressed in the form of the scattering matrix, as

,S
S
S

S
S

HH

VH

HV

VV
= ; E (1)

where SHV  is the backscattered return from vertical transmit-
ting and horizontal receiving polarization.

Subject to the reciprocity condition ,S SHV VH=^ h  the Pauli 
scattering vector is ( / ) .k S S S S S1 2 2P

T
HH VV HH VV HV= + -6 @

When rotated with angle i  around the radar line of sight (LOS), 
it becomes [1]

.cos
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k R k k
1
0
0

0
2
2
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P P P3i i i
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= =

-

^ ^h h > H  (2)

The coherency matrix T  without rotation is

,T k k
T
T
T

T
T
T

T
T
T

P P
H

11

21

31

12

22

32

13

23

33

= = > H (3)

where  denotes the sample average, and kP
H  is the conjugate 

transpose of .kP Tij  is the ,i j^ h entry of .T
The coherency matrix T  with rotation angle i  is [1] 

.T k k R TRP P
H H

3 3i i i i i= =^ ^ ^ ^ ^h h h h h (4)

BASIC SCATTERING MODELS 
The general principle of incoherent model-based decomposi-
tion is to decompose a polarimetric matrix into a summation 
of a set of basic scattering models. Using the coherency matrix 
as an example, basic scattering models include volume scatter-
ing ,Tvol  double-bounce scattering ,Tdbl  odd-bounce scattering 

,Todd  and helix scattering .Thel  In practice, volume scattering 
can represent the scattering mechanism from areas with a 
number of elemental scatterers inside, such as vegetation can-
opy and ice. Double-bounce scattering indicates dihedral 

PolSAR IS ONE OF THE 
MAINSTREAM IMAGING SYSTEMS IN 

MICROWAVE REMOTE SENSING.
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corner reflection formed by ground-wall structures and 
ground-trunk interactions. Odd-bounce scattering can 
describe both single-bounce scattering from rough surfaces 
such as grass area and ocean, and triple-bounce scattering 
from ground-wall-ground and ground-trunk-ground struc-
tures. Helix scattering fits the reflection asymmetry condition 
valid in heterogeneous areas, such as complicated shape tar-
gets and built-up areas. Decomposition framework can be pre-
sented as 

,T f T f T f T f Tv d s cvol dbl odd hel g= + + + + (5)

where ,fv ,fd ,fs  and fc  are model coefficients.
The number of model components is tunable for certain 

decomposition. With the determination of the power of each 
component, scattering mechanisms can be understood and 
applications can be explored thereafter. 

VOLUME SCATTERING MODEL
Volume scattering is usually modeled by a cloud of elemental 
scatterers with some orientation defined by an angle .i  The 
coherency matrix for volume scattering is obtained by the inte-
gration with a probability density function (PDF) ,p i^ h  and can 
be generally expressed as

.T T p d
a
d
e

d
b
f

e
f
c

0

2
vol i i i= = )

) )

r
^ ^h h > H# (6)

For randomly oriented thin dipoles, if the PDF is assumed to 
be uniform )(p 1 2i r=^ h  [10], the corresponding model is

.T 4
1

2
0
0

0
1
0

0
0
1

1vol = > H (7)

With another PDF ( )sinp 1 2i i=^ h  proposed in [11], two 
models can be obtained using horizontal and vertical dipoles

T 30
1

15
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0

5
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0

0
0
8

2vol = > H and .T 30
1

15
5

0

5
7
0

0
0
8

3vol = -

-> H (8)

DOUBLE-BOUNCE SCATTERING MODEL
The double-bounce scattering is basically modeled by scattering 
from a dihedral corner reflector, such as ground-wall structures 
and ground-trunk interactions, where the reflector surfaces can 
be made of different dielectric materials. The corresponding 
coherency matrix [1] is

,T
0

1
0

0
0
0

2

dbl

a

a

a

= )> H (9)

where a  is complex valued and 11a  [1].

ODD-BOUNCE SCATTERING MODEL
The odd-bounce scattering is represented by a Bragg surface scat-
tering model for slightly rough surfaces for which the depolariza-
tion effect and the cross-polarization component is negligible. The 
corresponding coherency matrix [1] is

,T
1

0 0

0
0
0

2
odd b

b

b=

)

> H (10)

where 11b  and b  is real valued from most natural surfaces [1]. 

HELIX SCATTERING MODEL
The roll-invariant helix scattering component was proposed in 
[11] to fit the reflection asymmetry condition, such as in built-
up areas. The corresponding coherency matrix is

.T
j

j2
1

0
0
0

0
1

0

1
hel

"

!= > H (11)

CONVENTIONAL THREE- AND
FOUR-COMPONENT DECOMPOSITIONS
The Freeman–Durden decomposition [10] is the first three-com-
ponent incoherent model-based decomposition with the formu-
lation as

.T f T f T f Tv d svol dbl odd= + + (12)

The Freeman–Durden decomposition assumes the reflection 
symmetry condition for which the cross-correlation between 
copolarization and cross-polarization are always zero (T 013 =

and ) .T 023 =  In this way, there are five known observables 
( ,T11 ,T22 ,T33  and complex valued )T12  with six unknown 
model parameters ,fv ,fd ,fs ,b  and complex-valued )a  to be 
determined. From the adopted models (7), (9), and (10), only 
the volume scattering contributes to the cross-polarization 
term .T33  Thereby, the volume model coefficient fv  can be 
determined at first and its contribution is subtracted 

.T T f T f T f Tv d sremainder vol dbl odd= - = + (13)

Based on the sign of ,Re S SHH VV
)^ h  the dominance of double- 

or odd-bounce scattering in the remainder matrix Tremainder  can be 
determined. If Re S SHH VV

)^ h is positive, parameter a  of model 
(9) is fixed as –1, otherwise parameter b  of model (10) is fixed as 
1. In this vein, all the model parameters can be determined.

The Yamaguchi decomposition [11] includes helix scattering 
model to remove the reflection symmetry assumption since it is 
not always valid for various land covers

.T f T f T f T f Tv d s cvol dbl odd hel= + + + (14)

Another improvement is the extension of volume scattering 
modeling. For instance, a PDF for elemental scatterer orientation 
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and another two volume scattering models are introduced, 
shown in (8). The most suitable volume model is determined by 
the ratio of copolarization terms. 
Since only helix scattering contrib-
ute to ,Im T236 @  its model coefficient 
fc  is determined and its contribution 
is subtracted with the highest prior-
ity. The inversion strategy then 
follows the Freeman–Durden 
decomposition procedure.

EXISTING PROBLEMS
Freeman–Durden and Yamaguchi decompositions are the pioneer 
model-based decomposition techniques. They are popularly used 
due to the easy physical interpretation of the scene they provide, 
together with their simplicity, computational efficiency, and rela-
tively good performance. However, some issues exist too. The first 
is the occurrence of negative powers for double- or odd-bounce 
scattering after the subtraction of volume or helix scattering com-
ponents. Although scattering powers can be forced to be zero or 
positive, these decomposition results are physically incorrect. 
Intrinsically, it means the scattering models do not fit the observa-
tions. The second is that double- and odd-bounce scattering com-
ponents are modeled with zero cross-polarization terms. In a real 
situation, the depolarization effect and polarization state rotation 
from terrain slopes and oriented buildings can induce significant 
cross-polarization power. Therefore, especially oriented man-made 
structures and hills are usually misjudged as volume scattering 
dominant, which produces serious scattering mechanism ambigu-
ity. The volume scattering models ,T 1vol ,T 2vol  and T 3vol  from (7)–
(8) all have constant model parameters. Therefore, using (6), the 
volume scattering contribution is fully determined by these con-
stants and the cross-polarization term

.P a b c f c
a b T F T1v v v33 33= + + = + + =^ eh o (15)

The dynamic range is limited and the volume scattering contribu-
tion is easily overestimated. Moreover, for parameter inversion, the 
implicit assumption of model priority is included, since the obser-
vations are used to satisfy helix and volume components first. In 
addition, conventional methods do not use the full information of 
a coherency matrix for modeling. For example, all models (7), (9), 
and (10) used in the Freeman–Durden decomposition [10] do not 
account for elements T13  and ,T23  while elements T13  and 
Re T236 @ are not utilized in the Yamaguchi decomposition [11].

RECENT ADVANCES IN MODEL-BASED DECOMPOSITION
This section reviews recent advances in model-based decompo-
sition and the key features are summarized in Table 1.

ORIENTATION COMPENSATION PROCESSING
Polarimetric responses of the same target with different orienta-
tions can be quite different due to the rotation of polarization 
state. This phenomenon causes ambiguity for scattering mecha-
nism discrimination. Orientation compensation [1], [14], also 

named deorientation processing [6], can mitigate this orientation 
dependence effect by polarimetric matrix rotation around radar 

LOS until the cross-polarization 
term is minimized.

Orientation compensation was 
incorporated into model-based 
decomposition [13]–[15]. The gen-
eral orientation compensation 
effect is to minimize the cross-
polarization term .T33  From (15), 
the decomposed volume scattering 
power is consistently reduced. 

Therefore, orientation compensation can partially cure the 
overestimation of volume scattering power and the occurrence 
of negative powers. Besides, it is possible to compensate the tar-
get orientation effect on the perpendicular plane to the radar 
LOS using this technique. However, since there is an intersec-
tion angle between the rotation plane of oriented buildings or 
terrain slopes and the perpendicular plane, complete orienta-
tion compensation cannot be achieved only using this tech-
nique, which deserves further efforts. 

NONNEGATIVE EIGENVALUE CONSTRAINT
The appearance of negative power due to the subtraction of the 
scattering component is an important issue of conventional 
methods. Van Zyl et al. [16] recognized this fact and proposed 
the nonnegative eigenvalue decomposition to theoretically 
avoid the occurrence of nonphysical negative power. Using 
three-component decomposition as an example, they intro-
duced the nonnegative eigenvalue constraint (NNEC) during 
the subtraction of the volume scattering component. The core 
idea is to guarantee the eigenvalues of remainder matrix 
Tremainder  are nonnegative. Then, the subtraction processing will 
not produce negative power. Using NNEC, the maximum vol-
ume model coefficient can be determined

.T T f Tmax
vremainder vol= - (16)

Therefore, when f f max
v v#  is satisfied, the negative power can be 

avoided. With the reflection symmetry condition, the analytical 
expression of f max

v  is derived in [16]. More recently, its analytical 
expression is extended to the nonreflection symmetry condition 
using the principle minor theory [17]. The optimal determination 
of fv  is still open. In [3], a generalized Freeman–Durden decompo-
sition is established and the appearance of negative powers is theo-
retically avoided using both the eigenvalue technique and the 
orthogonality of double- and odd-bounce scattering models. Fur-
thermore, with certain conditions, the idea of NNEC is generalized 
and volume model coefficient fv  can be uniquely determined [18].

OTHER VOLUME SCATTERING MODELS
To better fit the elemental scatterer orientation and to extend 
the dynamic range of volume scattering model, other PDFs 
have been utilized [21]–[23]. The von Mises distribution has 
been used in [21] to characterize a vegetation canopy. The nth

THE GENERAL PRINCIPLE OF 
INCOHERENT MODEL-BASED 

DECOMPOSITION IS TO DECOMPOSE 
A POLARIMETRIC MATRIX INTO A 
SUMMATION OF A SET OF BASIC 

SCATTERING MODELS.
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power cosine-squared distribution, including two parameters of 
the mean orientation angle and the randomness indicator, was 
developed in [22]. Meanwhile, generalized volume scattering 
models generated from arbitrary-shaped elemental scatterers 
instead of the thin dipole assumption were also proposed [22]. 
Besides, a family of models based on the multilook phase differ-
ence distributions, which are better suited to characterize ori-
entation angle distributions, was proposed [23]. 

In addition, empirical volume scattering models have also 
been proposed as another alternative. An empirical model with 
shape parameter t  was introduced to particularly fit randomly 
oriented prolate spheroidal and elliptical scatterers in [19] 
(notated as the Freeman II decomposition). Since polarimetric 
SAR interferometry (PolInSAR) coherence has a close relation-
ship to forest structures [3], [28], volume scattering can be 
modeled from it and an adaptive volume scattering model was 
proposed [25] using PolInSAR coherence to be functioned as 

the shape parameter. Identity matrix with the highest entropy 
was also proposed to fit volume scattering [13]. 

GENERALIZED DOUBLE- AND ODD-BOUNCE 
SCATTERING MODELS
In conventional methodologies, the double- and odd-bounce scat-
tering mechanisms are assumed not to contribute to the cross-
polarization term. However, in real situations, terrain slopes in the 
along-track direction and/or oriented buildings rotate the polar-
ization basis of the scattering matrix, which will induce significant 
cross-polarization power [1], [2], [16]. Since the conventional 
models do not fit these situations, the scattering mechanism 
ambiguity is serious. Recently, several papers addressed this issue 
for more generalized double- and odd-bounce scattering modeling 
[7], [23], [26]. In [7], the Bragg surface model has been extended 
as the advanced X-Bragg model to fit the cross-polarization term 
induced by the depolarization effect. In [23], incoherent double- or 

[TABLE 1] A SUMMARY OF TYPICAL MODEL-BASED DECOMPOSITIONS.

METHODS INFORMATION 
UTILIZATION

NEGATIVE 
POWER

MODEL INVERSION 
PRIORITY

COMPUTATION 
EFFICIENCY

NOTABLE REMARKS

FREEMAN–DURDEN
DECOMP. [10]

,T13 T23

UNACCOUNTED
YES VOLUME>DOUBLE-/

ODD-BOUNCE
HIGH BASIC SCATTERING MODELS

FREEMAN II
DECOMP. [19]

,T13 T23

UNACCOUNTED
YES VOLUME>DOUBLE/

ODD-BOUNCE
HIGH VOLUME SCATTERING MODEL IS 

FITTED BY A SHAPE PARAMETER

YAMAGUCHI
DECOMP. [11] 

,T13 R TE 236 @
UNACCOUNTED

YES HELIX>VOLUME>
DOUBLE-/
ODD-BOUNCE

HIGH INTRODUCE THE FOURTH HELIX
COMPONENT AND TWO MORE 
VOLUME SCATTERING MODELS

YAMAGUCHI (FREEMAN-
DURDEN) DECOMP. + 
ORIENTATION
COMPENSATION [13]–[15]

T13 ( ,T13 )TIM 236 @
UNACCOUNTED

YES HELIX>VOLUME>
DOUBLE-/
ODD-BOUNCE

HIGH INCORPORATE THE ORIENTATION
COMPENSATION TO MINIMIZE T33

AND ELIMINATE TRE 236 @
GENERALIZED FREEMAN-
DURDEN DECOMP. [3]

,T13 T23

UNACCOUNTED
NO VOLUME>DOUBLE-/

ODD-BOUNCE
HIGH HYBRID FREEMAN–DURDEN/

EIGENVALUE TECHNIQUE

VAN ZYL ET AL.
DECOMP. [16]

,T13 TIM 236 @
UNACCOUNTED

NO VOLUME>DOUBLE-/
ODD-BOUNCE

HIGH INCORPORATE THE NNEC TO 
THEORETICALLY AVOID THE
NEGATIVE POWER

GULAB ET AL.
DECOMP. [27]

FULL POLARIMETRIC
INFORMATION

YES HELIX>VOLUME>
DOUBLE-/
ODD-BOUNCE

HIGH DOUBLE UNITARY ROTATION
PROCESSING

CUI ET AL.
DECOMP. [18]

FULL POLARIMETRIC
INFORMATION

NO VOLUME>DOUBLE-/
ODD-BOUNCE

HIGH HYBRID DECOMPOSITION USING
BOTH SCATTERING MODELS
AND EIGENDECOMPOSITION

LEE ET AL.
DECOMP [23]

T13 , TIM 236 @
UNACCOUNTED

VERY
LIMITED

VOLUME>DOUBLE-/
ODD-BOUNCE

HIGH GENERALIZED DOUBLE- AND
ODD-BOUNCE OR VOLUME
SCATTERING MODELS

ARRI ET AL.
DECOMP [20], [22]

T13  UNACCOUNTED OR 
FULL POLARIMETRIC
INFORMATION

NO PARTIAL PRIORITY,
SIMULTANEOUSLY
INVERSION

LOW GENERALIZED VOLUME
SCATTERING MODELS, FULL-
PARAMETER INVERSION

CHEN ET AL.
DECOMP. [26]

FULL POLARIMETRIC
INFORMATION

NO NO PRIORITY,
SIMULTANEOUSLY
INVERSION

LOW GENERALIZED DOUBLE- AND
ODD-BOUNCE MODELS, FULL-
PARAMETER INVERSION

NEUMANN ET AL.
DECOMP. [21]

POLARIMETRIC AND
INTERFEROMETRIC
INFORMATION

NO NO PRIORITY,
SIMULTANEOUSLY
INVERSION

LOW GENERALIZED MODELS
ESPECIALLY FOR VEGETATIONS,
FULL-PARAMETER INVERSION

DAVID BALLESTER–BERMAN
ET AL. DECOMP. [24]

POLARIMETRIC AND
INTERFEROMETRIC
INFORMATION

NO VOLUME>DOUBLE-/
ODD-BOUNCE

LOW OBTAIN THE POWER AND
LOCATION OF EACH SCATTERING
MECHANISM AT THE VERTICAL
DIMENSION OF THE SCENE

POLARIMETRIC-
INTERFEROMETRIC
DECOMP. [25]

POLARIMETRIC AND
INTERFEROMETRIC
INFORMATION

NO VOLUME>DOUBLE/
ODD-BOUNCE

HIGH USING POLARIMETRIC AND
INTERFEROMETRIC INFORMATION
TO FIT VOLUME SCATTERING
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odd-bounce scattering models have been incorporated. Recently, 
in [26], double- and odd-bounce scattering models are generalized 
to fit the cross-polarization and off-diagonal terms, by separating 
their independent orientation angles dbli  and .oddi

COMPLETE INFORMATION UTILIZATION
A coherency matrix contains nine real values (three real-valued 
quantities and three complex-valued quantities). Each of them has 
specific physical meaning. If scattering mechanisms are well mod-
eled, each element of a coherency matrix should be fitted. The 
three-component Freeman–Durden decomposition [10] accounts 
for five of these parameters. The Yamaguchi decomposition [11] 
introduced the fourth component and accounts for six parame-
ters. With the orientation compensation [14], Re T 023 =6 @  is 
achieved and nine elements are reduced to eight. Thereby, there 
remains three and two unaccounted parameters in Freeman–Dur-
den and Yamaguchi decompositions, 
respectively. The details of many cur-
rent model-based decompositions are 
summarized in Table 1. 

How to model the scattering 
mechanisms using complete infor-
mation is a major motivation, and 
three representative approaches were 
presented in [18], [26], and [27]. A 
further modified Yamaguchi decom-
position was reported [27] and 
accounts for all parameters based on 
special double unitary transformations. In [26], a general decom-
position framework was proposed to utilize all elements of a coher-
ency matrix. All model parameters are optimally obtained using 
the full-parameter inversion technique. A hybrid decomposition 
using full information was established [18]. It generalized the van 
Zyl et al. decomposition [16] to uniquely determine volume scat-
tering contribution from the scattering model while using the 
eigendecomposition to determine the double- and odd-bounce 
scattering contributions.

FULL-PARAMETER INVERSION STRATEGY
Model parameters inversion is carried out at a certain order under 
some specific conditions for majority of the established model-
based decompositions. For conventional Freeman–Durden and 
Yamaguchi decompositions, the volume scattering and helix scat-
tering solely contributes to cross-polarization term T33  and 

,Im T236 @  respectively. Therefore, their contributions are sub-
tracted from the total measured data at first. Double- and odd-
bounce scattering contributions are calculated in turn from the 
remainder matrix thereafter with a branch condition. This strategy 
is the main weakness and may overestimate volume scattering 
contribution, induce negative power, etc. In addition, it also 
implies that the volume and helix scattering components share the 
higher priority. Especially in mixed scenes, such a priority assump-
tion seems unreasonable.

Generalized decomposition frameworks and full-parameter 
inversion techniques have been proposed [20], [26] to obtain all 

the unknown parameters simultaneously using linear or non-
linear optimization algorithms. Basically, the decomposition 
framework is generalized as

... .T f T f T f T f T f Tv d s c rvol dbl odd hel residual= + + + + + (17)

Suitable scattering models that guarantee parameter inversion 
as a determined problem can be included into (17). Tresidual  is 
regarded as the residual induced by speckle, noise, and unmodeled 
contributions to the data. The residual matrix Tresidual  can mea-
sure how well those models fit the observations. Therefore, for 
model inversion, the optimization criterion is to minimize the 
residual. The optimization adopted in [20] and [26] is

: ,min T 2residual (18)

where T 2residual  is the L2-norm of .Tresidual

Minimization (18) can be solved 
by a nonlinear least squares optimi-
zation, as adopted in [26]. Full-
parameter inversion can obtain all 
model parameters optimally and 
simultaneously while avoiding the 
model priority assumption and nega-
tive power issue. Note that nonlinear 
optimization takes more computa-
tion time and may obtain only local 
minimal of ,T 2residual  which needs 
further studies.

POLARIMETRIC-INTERFEROMETRIC DECOMPOSITION
PolInSAR, which is a combination of PolSAR and interferometric 
SAR, has been well established [3], [28]. This combination allows 
understanding different scattering mechanisms located at differ-
ent heights. The complementary information (e.g., PolInSAR 
coherence) between polarimetry and interferometry has been 
demonstrated to be very promising for many applications, such 
as forest characterization and land-cover classification [1], [3]. 
PolInSAR studies contain two main aspects. The first is the 
development of innovative imaging techniques especially for the 
vertical profile or the three-dimension reconstruction of targets 
using single- or multibaseline PolInSAR data. The second is the 
physical parameters (e.g., forest height, biomass) inversion, 
which also covers a wide scope. Each of these important topics 
and recent advances deserves separate papers to discuss in depth. 
In the second aspect, there is a small branch utilizing the con-
cept of model-based decomposition and the framework of (5). 
Only this technique branch, mainly including three reported 
methods [21], [24], [25], will be introduced in this section. The 
main purpose of these methods is to incorporate interferometric 
information in scattering mechanism modeling. With extra 
information to conventional polarimetric decomposition frame-
work, decomposition performance can be enhanced. In [21], 
scattering modeling especially in vegetation areas has been 
intensively studied and a set of volume scattering models using 
single- or multibaseline PolInSAR data has been established. 

THE COMPLEMENTARY  
INFORMATION BETWEEN

POLARIMETRY AND INTERFEROMETRY 
HAS BEEN DEMONSTRATED TO BE 

VERY PROMISING FOR MANY 
APPLICATIONS, SUCH AS FOREST 
CHARACTERIZATION AND LAND-

COVER CLASSIFICATION.
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Detailed geophysical parameters describing the vegetation layers 
can be derived. In [24], the concept of the Freeman–Durden 
decomposition has been extended to PolInSAR polarimetric-
interferometric correlation matrix by adding the interferometric 
responses of each scattering mechanism. Thereby, both the 
power and location of each scattering mechanism can be deter-
mined. In [25], an adaptive polarimetric-interferometric model-
based decomposition has been developed using PolInSAR 
coherence. Demonstrations with real PolInSAR data validated its 
performance especially for oriented building characterization. 
These are the first attempts to fuse the polarimetric and interfer-
ometric information for scattering mechanism modeling. More 
efforts are needed for further study. 

EXPERIMENTAL DEMONSTRATION AND INVESTIGATION

DEMONSTRATION WITH AIRBORNE Pi-SAR DATA
This example demonstrates the effects of model priority issue, 
orientation compensation, generalized models, and full parame-
ter inversion scheme. Airborne Pi-SAR X-band PolSAR data cov-
ering an urban region from the downtown of Sendai, Japan, is 
used. The optical image and a photo for the tall building are 
shown in Figure 1(a). The representative three-component 
Freeman–Durden decomposition without and with orientation 
compensation [10], [14] and the recently developed Chen et al. 
decomposition [26] are used for comparison. The Chen et al. 
decomposition [26] uses the generalized double- and odd-
bounce scattering models fitting the cross-polarization term 
and off-diagonal terms of a coherency matrix. To guarantee that 
the model inversion is a determined problem, a lookup table 

including representative volume scattering models with con-
stant parameters is formed. Suitable volume scattering model 
and optimal model parameters are determined using the full-
parameter inversion technique (18). Decomposition results are 
shown in Figure 1(b)–(d), respectively. For Freeman–Durden 
decomposition, volume scattering contribution is first deter-
mined and subtracted. This processing implies the model prior-
ity assumption and volume scattering contribution always exist 
for any target. In Figure 1, without orientation compensation, 
the oriented tall building is obviously judged as dominant vol-
ume scattering, which is usually exhibited by vegetated areas. 
Thereby, scattering mechanism ambiguity occurs. With orienta-
tion compensation, the cross-polarization term is minimized 
and the volume scattering contribution is reduced. As can be 
seen in Figure 1(c), volume scattering contribution is greatly 
decreased. In reality, oriented buildings also induce significant 
cross-polarization term. Since conventional double- and odd-
bounce models (9) and (10) do not account for it, and due to 
the model priority issue, the volume scattering contributions 
over these man-made targets are still overestimated. By that 

[FIG1] A demonstration with Pi-SAR PolSAR data. (a) A Google Earth optical image and a photo for the tall building, (b) and (c) 
Freeman–Durden decomposition without and with orientation compensation [10], [14], (d) Chen et al. decomposition [26] without 
orientation compensation. The decomposition images are colored by Pd  (red), Pv  (green), and Ps  (blue). (e) Decomposition performance 
comparison over oriented buildings.

Pd

Ps Pv

Color-Code

(a)

Volume

Double-Bounce + Odd-Bounce

Without Orientation Compensation
and with Model Priority

Generalized Models and
Without Model Priority

With Orientation Compensation
and with Model Priority

Volume +
Double-Bounce

(e)(d)(c)(b)

Volume +
Odd-Bounce

[TABLE 2] DOMINANT SCATTERING POWER CONTRIBUTION
(%) FOR THE SELECTED BUILDING.

Pd Pv Ps

FREEMAN–DURDEN DECOMPOSITION [10] 2 94 4

FREEMAN–DURDEN DECOMPOSITION WITH
ORIENTATION COMPENSATION [14]

30 45 25

CHEN ET AL. DECOMPOSITION [26] 46 13 41
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means, comparable volume scattering and double- or odd-
bounce scattering contributions coexist for these oriented 
buildings, which appear yellow or cyan in the RGB composite 
image in Figure 1(c). In comparison, the generalized models fit 
the cross-polarization terms while the full-parameter inversion 
technique avoids the negative power and model priority 
assumption. The general decomposition can successfully iden-
tify these buildings as man-made structures. In Figure 1(d), 
these buildings show purple since both double- and odd-bounce 
scattering mechanisms are dominant. For the tall building 
shown in Figure 1(a), quantitative examination is also carried 
out and summarized in Table 2. Compared to the original Free-
man–Durden decomposition [10], 
with orientation compensation, 
dominant volume scattering obvi-
ously reduces from 94% to 45%, 
while the percentages of the domi-
nant double- and odd-bounce scat-
tering increase from 2% to 30% 
and 4% to 25%, respectively. Even 
still, volume scattering contribution is still overestimated and 
this building will be misjudged as dominant volume scattering. 
In comparison, dominant volume scattering further reduces to 
13%, while dominant double- and odd-bounce scattering 
increase up to 46% and 41%. This building can be successfully 
discriminated as a man-made structure, which validates the 
efficiency of the advances.

APPLICATION FOR NATURAL DISASTER EVALUATION
The occurrence of observed natural disasters, such as earthquakes 
and tsunamis, appears to have increased in recent decades [9]. 
With the advantages of a large imaging scene, revisiting capability, 

and multitemporal data archives, spaceborne SAR sensors play an 
extremely important role for natural disaster evaluation. The fol-
lowing demonstration uses the spaceborne ALOS data over the 
seriously damaged city of Ishinomaki, induced by the Eastern 
Japan great earthquake and tsunami that happened 11 March 
2011. The after-tsunami optical and PolSAR data sets were acquired 
on 8 April 2011, while the latest before-tsunami data sets were 
acquired on 21 November 2010. Optical images are shown in Fig-
ure 2(a) and (g). The Pacific Ocean is located to the right of the 
images. Buildings in the region, highlighted by the line, were 
almost completely flushed away leaving a relatively rough surface. 
Besides, the orientations of these buildings are inclined to the sen-

sor flight pass. 
From scattering interpretation 

theory, this built-up area should 
response dominant double-bounce 
scattering induced by the ground-
wall structures before the damage. 
However, after the tsunami, most of 
these buildings were swept away 

and the ground-wall structures were dramatically decreased. 
Therefore, this seriously damaged area should be obviously 
changed into dominant odd-bounce (surface) scattering. As a 
comparison, the amplitudes of HH polarization are shown in 
Figure 2(b) and (h). Visually, single polarization is less sensitive 
to the changes of target structures, compared with fully polari-
metric features. Meanwhile, mean alpha angle ar , which is the 
primary parameter for scattering mechanism indication in the 
Cloude–Pottier decomposition [1], [5], is derived and shown in 
Figure 2(c) and (i). For before-tsunami cases, 90"a cr  and indi-
cates double-bounce scattering, while 0"a cr  and indicates sur-
face scattering for after-tsunami cases. Therefore, the ar

N
0° 90°

0° 90°

(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

N

[FIG2] (a)–(f) Before- and (g)–(l) after-tsunami ALOS data and decomposition results. (a) and (g) show the ALOS optical image, 
(b) and (h) illustrate HH polarization amplitude data, (c) and (i) are the mean alpha angle parameter derived from Cloude–Pottier 
decomposition [1], [5], (d) and (j) show the Yamaguchi decomposition without orientation compensation [11], (e) and (k) 
show the Yamaguchi decomposition with orientation compensation [15], and (f)–(l) shows the Chen et al. decomposition [26] 
without orientation compensation. The decomposition images are colored by Pd  (red), Pv  (green), and Ps  (blue).

SPACEBORNE SAR SENSORS 
PLAY AN EXTREMELY IMPORTANT 

ROLE FOR NATURAL DISASTER 
EVALUATION.
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parameter can potentially discriminate damaged buildings. The 
Yamaguchi decomposition without and with orientation com-
pensation [11], [15] and the Chen et al. decomposition [26] are 
also used for demonstration, shown 
in Figure 2(d)–(f) for before-tsu-
nami cases and Figure 2(j)–(l) for 
after-tsunami cases, respectively. 
After the tsunami, the damaged area 
is correctly judged as dominant 
odd-bounce scattering (blue) indi-
cating a rough surface from all 
three methods. However, for before-
tsunami cases, the overestimation 
of volume scattering is significant 
without orientation compensation and this built-up area is 
falsely determined as dominant volume scattering (green), 
shown in Figure 2(d). In comparison, the other two approaches 
can successfully identify them as man-made structures that 
exhibit dominant double-bounce scattering (red). These polari-
metric features are more stable during repeated data collects. 
The reduction of dominant double-bounce scattering amount 
has been verified to have a linear relationship with the amount 
of damaged ground-wall structures and has been utilized for 
quantitative evaluation of urban damage [9].

DISCUSSIONS AND PERSPECTIVES

PolSAR DATA PREPROCESSING ISSUE
There are two main aspects in PolSAR data preprocessing. The 
first is the data calibration. Generally, the acquired PolSAR data is 
affected by the channel imbalance and cross-talk effects that dis-
tort the polarization purity [2], [3]. Polarimetric calibration 
should be implemented at first for further processing. The afore-
mentioned polarimetric target decompositions are all based on 
well-calibrated data. For low-frequency band (e.g., P-, L-band) 
spaceborne systems, the Faraday rotation effect induced by the 
ionosphere should also be compensated beforehand. Propagation 
distortions including Faraday rotation effect in model-based 
decomposition have been investigated in [3].

The second aspect is speckle reduction. Speckle phenomenon 
is an intrinsic property for coherent imaging system of PolSAR 
[1]. The existence of speckle phenomenon makes information 
extraction more difficult. Speckle reduction is also a preprocess-
ing step for PolSAR data utilization. Suitable speckle filter should 
significantly reduce speckle phenomenon while preserving image 
details [1]. 

RADAR FREQUENCY ISSUE
Target backscattering properties usually vary with the illumi-
nation frequency due to its physical characteristics, especially 
the geometric features (e.g., size, shape, and structure) with 
respect to the radar wavelength. Meanwhile, low frequencies 
such as P- and L-band usually have a penetration depth into 
forest/vegetation canopies, deserts, dry bare soil areas, etc. 
Intrinsically, incident microwaves with different wavelengths 

interact with different parts of a complex target or medium 
and the polarimetric responses may differ accordingly. 
Thereby, scattering mechanisms of a same target strongly 

depend on the observation fre-
quency and so are the interpreta-
tion results from model-based 
decomposition. For example, the 
scattering mechanism from vege-
tations may totally differ at the P- 
and X-band. In addition, the 
scattering models presented in the 
sections “Basics of Scattering 
Mechanism Modeling” and “Recent 
Advances in Model-Based Decom-

position” have their theoretical assumptions that should be 
well satisfied before utilization. 

HIGH SPATIAL RESOLUTION ISSUE
With the advances in SAR imaging systems, fine-resolution data 
in the order of decimeter and centimeter can be available. At 
such resolutions, scatterers may be very limited. Some of the 
current modeling schemes should be updated. For example, 
modeling volume scattering by a cloud of oriented elemental 
scatterers should be reconsidered. Besides, note that incoherent 
polarimetric decomposition with sample average of measured 
data may blur image detail, while coherent polarimetric decom-
position with scattering matrix (1) have only five freedoms for 
modeling. Thereby, how to fit these fine-resolution data provides 
challenges to scattering mechanism modeling and interpreta-
tion. In another aspect, more detailed information such as open-
ing or closing a window may be sensed with high spatial 
resolution systems. Suitable decomposition techniques are 
highly expected for these situations. 

PERFORMANCE EVALUATION ISSUE
A number of advanced model-based decompositions have been 
reported. They raise urgent questions: how to judge whether one 
proposed scattering model is reasonable or superior and how to 
fairly evaluate the performance? Actually, there is no standard 
answer. From the literature and according to our studies, the used 
evaluation criterion are summarized and discussed: 

1) Reflection symmetry assumption. This assumption is 
mainly satisfied in vegetated areas with relatively flat topogra-
phy. More generalized decomposition should also account for 
the reflection asymmetry condition.
2) Information utilization. The number of the used quantities 
of a polarimetric matrix is a good measure to evaluate a model-
based decomposition proposal. Complete information utiliza-
tion will be a mainstream concept for future development.
3) Negative power occurrence. This is an important issue since 
the decomposition results are nonphysical. Intrinsically, it indi-
cates that the scattering models do not fit the observations. 
4) Scattering mechanism discrimination. This is one key cri-
terion to evaluate the performance of model-based decomposi-
tion. The majority of recent advances are also motivated to 

SINCE THE SCATTERING 
MECHANISM CLOSELY RELATES 

TO LOCAL INCIDENCE ANGLE AND 
TARGET ORIENTATION, USING

MULTILOOKINGDIRECTION DATA 
SETS IS ANOTHER PROMISING 

TECHNIQUE.
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overcome the scattering mechanism ambiguity between for-
ests and oriented buildings. 
5) Model priority assumption. For mixed land covers, there is 
no proper reason to assign the model priority. If the volume 
scattering component is determined at first, each scatterer 
will have volume scattering contribution. For oriented build-
ings, this contribution is not negligible. Generally, it is more 
reasonable to consider each scattering model share the equiv-
alent priority. 
6) Computation efficiency. Computation time and implemen-
tation complexity are considered in real applications. Basically, 
computationally effective methods are preferred. 
These criteria can be the basics for model-based decomposi-

tion performance evaluation and comparison. Table 1 provides a 
summary of these criteria for typical model-based decomposi-
tions. Note that it is not reasonable to claim one proposed 
decomposition is always superior to others. In practice, how to 
choose the most suitable decomposition is also data oriented 
and application oriented. 

FURTHER GENERALIZED MODELING
One difficulty in further development of model-based decompo-
sition is how to balance model generalizations and model 
parameters inversion. A coherency matrix, providing nine 
inputs, allows at most nine unknown parameters for scattering 
mechanism modeling. There are several potential ways for 
future exploration. The first is still based on polarimetric data 
and segments the land cover beforehand. Specifically general-
ized scattering models are established for different terrains using 
more freedom in the modeling. For example, for pure built-up 
areas with dominant double-bounce scattering, ocean and grass 
areas with dominant odd-bounce scattering, more generalized 
double- and odd-bounce models can be founded accordingly. The 
core idea is that it may not be necessary to keep three or four 
scattering components for known land covers, and more detailed 
information can be extracted thereafter. The second method is to 
develop more generalized scattering models that do not reduce 
the scattering components by fusing additional data sets. The 
polarimetric-interferometric decomposition [21], [24], [25] is 
one attempt. Since the scattering mechanism closely relates to 
local incidence angle and target orientation, using multilooking-
direction data sets is another promising technique. Further-
more, a combination of the aforementioned techniques may also 
be investigated in further studies. 

CONCLUSIONS
Recent advances in scattering modeling and model-based 
decomposition theorem were reviewed. The notable achieve-
ments include orientation compensation processing, nonnega-
tive eigenvalue constraint, generalized scattering models, 
complete information utilization, full-parameter inversion 
strategy, and the polarimetric-interferometric decomposition 
scheme. These advances contribute to make scattering models 
more adaptive, better fit observations and guarantee physically 
meaningful decomposition solutions. The key features of these 

advances have been summarized. Performance evaluation and 
further development perspectives were also discussed. One 
promising way is to fuse multiple data to better model scatter-
ing mechanisms, such as the polarimetric-interferometric 
modeling attempts. Besides, with the progress in PolSAR sen-
sors, imaging modes (e.g., bistatic, hybrid-polarization and 
multi-incident-angle modes) and application requirements, 
the development of specific scattering mechanism interpreta-
tion techniques, multiangular decomposition [29], and 
compact/hybrid decomposition [30] techniques are also 
highly preferred.
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T
his article deals with two significant aspects related to 
synthetic aperture radar imaging (SAR-I) of relevant 
theoretical and applicative interest. The first objective 
regards the analysis of the most-used 
SAR-I approaches under the 

unified mathematical framework pro-
vided by the Porter–Bojarski inte-
gral equation. The second 
objective is to provide an 
updated overview on how 
SAR-I research is general-
izing previous algorithms 
to deal with unconven-
tional scenarios.

INTRODUCTION
SAR-I was originally intro-
duced with regard to a sce-
nario where the investigated 
scene is probed by a satellite plat-
form-based synthetic aperture radar 
(SAR). Now, the corresponding imaging 
algorithms have crossed the boundaries of satel-
lite imaging so that SAR-I refers to more general radar imaging 
contexts that encompass real (not synthetic) arrays, near-zone 
configurations, and layered (more in general lossy) scenarios. 
Therefore, SAR-I algorithms are relevant to many applicative sce-
narios, ranging from monitoring and nondestructive diagnostics 
to border surveillance, security, and crisis management. Accord-
ingly, a large body of methods has populated the specialized liter-
ature; see, e.g., [1] and [2].

The need to link/compare these imaging methods arises quite 
naturally, and few works attempting to address such a compara-
tive analysis have been presented in the literature [3]. In [4], the 

classical matched filtered approach is reinterpreted 
as a particular case of some seismic migra-

tion; a similar analysis has been pre-
sented in [5], where the version of 

SAR-I given in [6] was com-
pared to the frequency-wave-

number (F-K) migration. 
From a different point of 
view, Bamler showed in 
[7] that the wavenumber 
SAR focusing is related to 
the classical Range–Dop-
pler method without 

explicitly invoking the wave 
equation. The relationship 

between the Kirchhoff migra-
tion and the seismic method is 

instead well known [2]. However, 
most of the aforementioned works com-

pared only a couple of methods and a more com-
prehensive study is still missing.

Accordingly, the first objective of this article is to provide a 
unified and rigorous mathematical framework for several 
SAR-I approaches. To this end, we consider the traditional 
SAR-I scenario, i.e., the scattered field is collected under a mul-
timonostatic measurement configuration (i.e., the transmitter 
and receiver are colocated) in a free-space scenario and the 
scattering phenomenon is assumed to be scalar. Despite SAR-I 
traditionally dealing with two-dimensional (2-D) scene approxi-
mations (e.g., slant plane imaging or 2-D sliced approach), here 
the case of three-dimensional (3-D) scene is considered. This is 
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because full 3-D SAR-I algorithms are being developed due to 
the possibility to exploit multipass data [8] or are already rou-
tinely used when data are measured on a scanning surface [9].

It is shown that the formal mathematical root of SAR-I is the 
Porter–Bojarski integral equation derived in the framework of 
generalized holography [10]. Accordingly, different SAR-I imag-
ing methods can be reinterpreted on the basis of this equation, 
depending on the adopted approximations and the data spaces. 
These algorithms are here addressed as migration algorithms. A
second class of SAR-I is explicitly founded on linear models of 
the electromagnetic scattering and is known as inverse filter-
ing. Both the class of methods will be discussed and compared.

The necessity to achieve imaging in complex scenarios is 
gaining increasing interest due to new applicative fields such 
as security and monitoring applications, rescue assessment, 
and border surveillance. As applicative cases, through-the-wall 
imaging (TWI), imaging in urban canyons, and underground 
tunnel detection are of timely interest [11]–[13]. Therefore,
the second objective of this article is to provide a quick view 
on how SAR-I can be generalized to face unconventional sce-
narios. In particular, the focus will be on inverse scattering 
methods as they offer the remarkable advantage that, even in 
presence of different and complex scenarios, the inversion pro-
cedure holds the same once the relevant Green’s function has 
been evaluated. 

THE SCATTERING EQUATIONS
Consider a volume D  probed by an incident field ( , , )r ri O{ ~

provided by a source, for simplicity assumed to be pointlike, 
located at rO  [see Figure 1(a)]. Accordingly, due to the interac-
tion between the incident field and the target in ,D  a scattered 
field ( , , )r rS O{ ~  arises so that the total field is given by 

.( , , ) ( , , ) ( , , )r r r r r rO i O S O{ ~ { ~ { ~= +  In the following, the 
case of electromagnetically penetrable scatterers is addressed, 
but similar arguments can be developed also for not penetrable 
scatterers. Accordingly, the scattered field satisfies the nonho-
mogeneous Helmholtz equation

( )( , , ) ( , , ) ( , , ),r r k r r k r r rS O S O O
2 2 2d |{ ~ { ~ { ~+ =- (1)

where k  is the wavenumber and ( )r|  is the so-called contrast 
function, which accounts for the relative difference between the 
dielectric permittivity of the target and the one of the back-
ground medium; ( ) ( , , )k r r rO

2| { ~  is the current induced 
inside the target due to the incident field. The inverse scattering 
problem amounts to retrieve the target (represented by the con-
trast function ( ))r|  from scattered field data. As the induced 
current depends upon the total field (and hence on the scatterer 
itself) such an inverse problem is nonlinear. A number of meth-
ods have been devised to tackle the nonlinearity, and they cast 
the inversion as a nonlinear optimization [14], which suffers 
from local minima (false solutions) and convergence problems. 
Moreover, the nonlinear inverse methods generally require a 
high computational burden and accurate knowledge of the 
background scenario, which impair their applicability in most 
practical cases. The problem is drastically simplified by adopting 
approximate scattering models. In particular, for the case of 
penetrable scatterers, the Born approximation allows for linear-
ization of the problem by approximating ( , , )r rO{ ~  with 

( , , )r rOi{ ~  inside the scatterer [15]. The Born approximation 
generally poses severe limitations on the class of scatterers 
(weak targets) when a quantitative reconstruction is required. 
Fortunately, inversion schemes based on linear models are very 
suitable to achieve scatterer localization and morphological 
information (i.e., size and shape) [11]–[13]. Turning to consider 
(1), under the Born approximation, the scattered field can be 
expressed as 

( , , ) .( , , ) ( , , ) ( ) r drr r k G r r r r OS O D
i

2 ~{ ~ ~ | {=- ll l l### (2)

Note that the electromagnetic properties of the scatterer have 
been assumed not dependent on the frequency (nondispersive 
scatterer). This allows the exploitation of data collected at differ-
ent frequencies but, on the other side, this is not the most gen-
eral case that occurs. In any case, the scatterer’s frequency 
dependence can be often considered negligible over the work 
frequency bandwidth. By making explicit the Green’s function 
and the incident field in (2) for the free space and for the obser-
vation point coinciding with the source position ,rO  we have 
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[FIG1] (a) The scattering configuration, (b) aspect limited configuration, and (c) spatial spectral domain. 
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( , ) ( ) ( )
( ) ,

exp
r

k I
r r
jk r r

r dr4 4
2

S O
O

O

D

2

2{ ~
r
~

r
|=-

-

- -### (3)

where ( )I ~  is the transmitted signal Fourier spectrum. There-
fore, ( )r|  can be retrieved by inverting the linear integral equa-
tion (3). The SAR-I based on the inversion of (3) are addressed 
as the inverse filtering methods.

Under ideal conditions (no noise and sampling effects), the 
scattering operator in (3) is injective and so, in principle, the 
contrast reconstruction can be obtained with “unlimited” reso-
lution. However, the scattering operator in (3) is compact [16] 
and uncertainties are always present. Therefore, to obtain stable 
reconstructions, a tradeoff between resolution and stability 
must be always established.

As suggested in [15], starting from (3) and by considering 
( , ) , ( )/ [ ( ) / ]r r k Ik j4S O OS

22 2{ ~ ~ ~r{=u  as data, the following 
relationship can be established: 

( , ) * ( ) * ( ) ( , )

( , ) ( ) ,

, , , ,r n G G n r S

G r r r r

r r r r

2

d

j d

S OS
S O

D

O O

im

2
2

2
2{ ~ { ~

~ |

~ ~-

= l l l

u u

###
##

(4)

where ( , , )r rG O ~  and ( , , ),G r r0im ~  are the Green’s function 
corresponding to real and imaginary parts of the quantity ,k2
respectively; S  is a closed measurement surface surrounding D ,
and / n22  is the derivative along the outward normal. The 
obtained equation is the Porter–Bojarski equation, which repre-
sents the foundation of generalized holography and establishes in 
a rigorous way the link between the backpropagated field and the 
scatterer. It is also interesting to outline that the time-domain ver-
sion of (4) is equivalent to the widely used time-reversal imaging 
[17]. Differently from (3), (4) readily permits an estimate of ( )r|
from the scattered field (and its normal derivative). However, for a 
finite frequency bandwidth, only a spatial band-limited version of 

( )r|  can be retrieved, with Fourier transform supported over the 
spherical shell ,k k k2 2min max min# #h  and ,kmax  being the wave-
numbers corresponding the minimum and maximum work fre-
quencies, respectively, and h  is the radial coordinate in the 
Fourier k-space [see Figure 1(c)]. This can be explained by noting 
that the volume integral in (4) is a spatial convolution whose ker-
nel, ,( , ),G r rOim ~  at a single frequency has a spatial Fourier 
transform supported on the Ewald’s sphere of radius .k2  It is 
interesting to note that the limit on the achievable resolution due 
to the aforementioned filtering [at variance of what happens while 
inverting (3)] is intrinsic of the method as no noise, uncertainties, 
and sampling effects have been considered in its derivation. 

It must be stressed that full-view data (i.e., over a closed sur-
face containing the scattering scene) have been considered 
while deriving (3) and (4). In most practical cases, data can be 
gathered only over a part of S  and often under a reflection 
mode configuration. Therefore, it is necessary to address how 
(4) changes for aspect limited configurations. To this end, S  can 
be deformed into two planes so that S P P,= - +  (say P-  and P+
are orthogonal to the z-axis) and the scattering volume is now 

the spatial region enclosed between these planes [see Figure 
1(b)]. For a reflection mode configuration, data are collected 
only over P-  (or .)P+  Accordingly, the surface integral in (4) 
particularizes as

( , ) * ( , , )

* ( , , ) ( , ) .

r z G r r dP

G r r z r P

2

2 d

S OP O

OP
S O

2
2

2
2

{ ~ ~

~ { ~

-

=

-

-

-

-

u

u

##

## (5)

Some clarifications are in order. First, the surface integration 
restricted over a plane requires knowing only the field or its 
normal derivative [15]. Second, it can be shown that it is possi-
ble to retrieve only the spatial spectrum of ( )r|  belonging to 
the Ewald’s sphere part with .k 0z #  Finally, when the mea-
surement aperture R  is a subset of ,P-  the spatial filtering is 
even more severe and dictated by the aperture size [18].

SAR-I
In this section, most of the SAR-I approaches are reviewed and 
reinterpreted under a unified framework provided by (3) and (4).

MIGRATION
In view of the assumed linearity for the scattering phenomenon, 
the reconstruction performances of the imaging algorithms can be 
provided by analysing the point spread function (i.e., the recon-
struction of a pointlike scatterer). Accordingly, consider a pointlike 
scatterer located in the object space at ( , , ),r x y z=  and denote as 
rO  the observation point belonging to the measurement aperture 
R  (a subset of the plane )z zO=  and let ( )i t  be the transmitted 
signal. The corresponding backscattered field is given by 

( , )
| |

,r t i t c
r r

2S O
O{ = -
-

c m (6)

where amplitude factor due to the propagation spreading has 
been neglected and ( )i t  is a short duration pulse or the pulse 
after range compression has occurred. Actually, due to the finite 
directivity of the antennas, a point scatterer appears as a diffrac-
tion hyperboloid whose apex is located at .( , , / )x y z c2  The aim 
of migration is to compensate such a spreading by refocusing 
each segment of the hyperbola to its apex. 

The first method to accomplish such a task is a graphical 
method, which dates back to the work of Hogendoorn [19]. 
Basically, for each measurement point, a semisphere centered 
on the source-receiver position and of radius equal to the travel-
time times half the wave speed is drawn; then, the scatterer’s 
location is identified as the point where all the semispheres 
intersect. This graphical method is known as wave interference 
migration [20]. A different way to implement the same imaging 
concept is through the so-called diffraction summation [20]. In 
this method, the object space is divided in pixels and for each of 
them a diffraction hyperboloid is constructed in the data space. 
Then, the reconstruction at each pixel is obtained by summing 
up contributions where the synthetic hyperboloid intersects 
data. Formally, the reconstruction is provided by ( )R r  (corre-
sponding to the migrated data)
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( ) ( , ) | | ,R r r t t c r r d dt2
S O O

T

{ d R= - -
R

c m## (7)

where T  is the time interval during which data are collected. 
After Fourier transforming with respect to the time, (7) can be 
recast (apart an unessential factor) as 

( ) ( , ) ( | |) ,expR r r k j k r r d dk2S O O

k

{ R= -
XR

## (8)

kX  being the frequency band in the k  domain. Equation (8) 
points out the equivalence between the diffraction summation 
and the range migration technique [9] as well as to the SAR 
focusing technique [21]. The spatial convolution in (8) can be 
conveniently computed in the spatial Fourier domain so that 

( ) ( , , ) ( , , ) [ ( )]

[ ( )] ,

exp

exp

R r f k k k k k k j k x k y

jk z z dk dk dk

x y S x y x y

z O x y

kk kx y

{= - +

-
XX -

##
(9)

where k kx yX -  is the selected frequency band in the spatial spec-
tral plane , ,k kx y^ h ;k k k k4z x y

2 2 2= - - ( , , )f k k kx y  is a slowly 
varying amplitude factor arising by performing the Fourier 
transform of the exponential kernel ( )exp j k x z2 2 2+  thanks 
to the stationary phase method. Finally, (9) can be recast as a 
3-D Fourier transform as 

( )
( , , )

( , , ) [ ( )]

[ ( )] .

exp

exp

R r
k k k

k f k k k
k k k j k x k y

jk z z dk dk dk
x y z

z x y z
S x y z x y

z O x y z

2 2 2
{=

+ +
- +

-
X

#

(10)

Equation (10) has the computational advantage that it can be 
efficiently computed by FFT for each point in the object space 
but also requires data to be interpolated and resampled accord-
ing to a rectangular grid in the k  space [22]. It can be noted 
that, unless the amplitude factor, (10) is identical to the SAR-I 
algorithm presented in [6] and also very similar to the F-K 
migration as outlined in [5]. 

A more rigorous derivation follows the wave equation along 
with to the so-called exploding source model, which holds for 
both penetrable and nonpenetrable targets. Accordingly, the 
scattered field is thought as being radiated by a source at time 
t 0=  embedded within a medium characterized by a half the 
wave speed. Therefore, by accounting for only up-traveling (i.e., 
toward the measurement aperture) waves and by enforcing the 
boundary condition over the measurement aperture at ,z zO=

the field can be backpropagated in the object space as 

( ) ( , , ) [ ( )]

[ ( )] .

exp

exp

R r k k j k x k y

jk z z dk dk d

S x y x y

z O x y

kx ky

{ ~

~

= - +

-
XX -

##

(11)

This is the so-called F-K migration and (11) can be readily 
recast in spatial domain as 

( ) ( , ) ( , , ) .R r r z G r r d d*
s O O2

2{ ~ ~ ~R=
XR

## (12)

Migration in (12) is known as the Rayleigh–Sommerfeld holog-
raphy and its time domain is the well-known Kirchhoff migra-
tion [2]. Equation (12) has been obtained by requiring fewer 
approximations with respect to the previous methods; in fact, 
the amplitude spreading term has not been ignored and the sta-
tionary phase method has not been employed. Therefore, it can 
be considered as the mathematical rationale supporting the 
intuitive discussion under which previous migration schemes 
have been developed. However, (12) suffers of an implicit con-
tradiction: while the field is backpropagated as a solution of a 
homogeneous wave equation, the exploding source assumes it is 
being radiated by a localized source. Differently, these issues are 
completely avoided in (5), and therefore, the Porter–Bojarski 
equation can be considered as a rigorous mathematical founda-
tion for the migration algorithms. Nonetheless, migration algo-
rithms succeed in the localization of the discontinuities and the 
estimation of the geometry of the targets, since all previous 
methods led to a correct phase compensation. This is apparent 
by comparing the point spread function returned by (12) 

( , ')

| ' |
( | ' |)

| |
( | |)

,
exp exp

r r

k
r r

jk r r
z r r

jk r r
d d

2 2
psf

O

O

O

O2
2 2

2 ~R=
-

- -

-

-

XR

= G##
(13)

and (5)
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( | ' |)

| |
( | |)exp exp

r r

r r
jk r r

z r r
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d d
2 2
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O
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O
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2 ~R=

-

- -

-

-

XR

= G##
(14)

The difference between (13) and (14) resides only in amplitude 
factors ,| ' |r rO -  which become relevant only for near zone 
configuration, and in the k2  term that basically acts as a high-
pass filter [5].

INVERSE FILTERING
Inverse filtering algorithms aim at reconstructing ( )r|  by solving 
(2). A simple way to address such a task is to Fourier transform the 
kernel function [20] and the resulting inversion scheme is referred 
to as diffraction tomography. More generally, the reconstruction 
problem can be cast as the inversion of the linear scalar operator 
(2). Rewriting such an equation in operator notation 

: ,A S"| { (15)

where |  and S{  are assumed to belong to suitable functional 
sets possibly according to a priori information about the 
unknown. To accommodate the effect of uncertainties and noise 
on data, usually the data space is assumed to be the Hilbert 
space of square integrable functions. This choice is also quite 
common for the unknown space, when no a priori information 
is available. The solution is then stated as 

.{ }inf A S
2| | {= -u (16)
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Since the operator A  is compact, (16) cannot have a solution, or 
if the solution exists it does not depend continuously on data, so 
the inverse problem is ill posed [16]. The lack of stability of solu-
tion can be restored by adopting a regularizing inversion scheme 
such as the Tikhonov method. This regularization scheme 
exploits a priori information about the unknown [16] and casts 
the inversion problem as a constrained optimization problem 

.{ }inf A BS S
2 2| | { a {= - +au (17)

Here B  is a suitable constraint (smoothing) operator and a  is the 
regularization parameter; a popular choice is ,B I=  which con-
strains the energy of solution. Important questions are the exis-
tence of the solution and its convergence (to the generalized 
solution) as the regularization parameter and the noise tend to 
zero. On this topic, there is a large body of literature, and the 
reader can find an excellent basic review in [16]. It is clear that the 
key question is the choice of the regularization parameter, which 
actually establishes the tradeoff between stability and smoothing of 
the solution. Different methods exist to select the regularization 
parameter. These methods can explicitly exploit the knowledge of 
the noise level, as the Morozov discrepancy principle, or not such 
as the generalized cross validation [16]. Another very popular 
method is the so-called L-curve, which estimates the regularization 
parameter in correspondence of the knee exhibited by the trajec-
tory described by the solution in the discrepancy-norm of the solu-
tion plane as a  varies [23]. However, the Tikhonov method as well 
as the regularization schemes based on (17) are particular cases of 
windowing regularization, i.e., 

,
,W

v
u,n

n

S n

n
n

0
|

v

{
=

3

a a

=

u / (18)

where W ,n a  filtering window and , ,v un n nv" , is the singular sys-
tem of the scattering operator .A  In inverse scattering problems, 
the relevant operator kernel is an analytic function of exponential 
type (far from its singularities) and this entails, for most situations, 
that the singular values have a nearly steplike behavior. Accord-
ingly, the choice of W ,n a  is simplified as it can be set equal to 

{ : , : },W n N n N1 0,n T T2#=a  where NT  (the number of degrees 
of freedom) is the truncation index chosen around the knee exhib-
ited by the singular values [24]. This regularization method is 
addressed as truncated singular value decomposition (TSVD) [16].

We end this section by making a comparison between the 
migration and inverse filtering methods. By looking at (8), it can 
be easily understood that migration basically performs the inver-
sion by resorting to the adjoint of the scattering operator. This 
allows at obtaining a stable reconstruction, but even in absence of 
noise there is an intrinsic limitation on achievable resolution.

Finally, in the framework of inverse filtering, a new paradigm 
based on compressive sampling [25] has gained recent attention. 
The approach is of relevant interest when the scattering scene is 
sparse with respect to a suitable representation dictionary 
(roughly saying, if the target occupies a small fraction of the area 
to be imaged). In this case, the imaging problem is formulated as 
in (17), but the regularization term is based on the L1  norm. 

Details on why such a kind of inverse filtering allows obtaining 
highly resolved reconstructions with sparse set of data is left to 
the pertinent literature. Here, we just mention the Baraniuk’s 
article [26] where an intuitive geometrical interpretation is pro-
vided in terms of the “shape” of the hyperspheres in .L1  Of 
course, also for this scheme, the choice of the regularization 
parameter a  is crucial, since it dictates the degree of sparsity at 
which the scene is reconstructed.

SOME UNCONVENTIONAL APPLICATIONS 
Many operational contexts require image scatterers embedded in 
complex obscuring and multipath environments (see Figure 2) 
[11]–[13], as in ground penetrating radar (GPR) and TWI surveys. 
In these cases, the first main difficulty regards the clutter arising 
from the obscuring medium, which can overwhelm the desired 
target response, especially for lossy background and/or when tar-
gets are close to the air/soil interface or wall. In most cases, using 
classical preprocessing procedures, such as time-gating and back-
ground removal solves the problem. The problem is more chal-
lenging when the target response overlaps to the background 
returns. In this case, more sophisticated methods have to be 
employed [27].

The second difficulty regards the inaccurate knowledge of the 
electromagnetic properties of the embedding medium, which 
leads to defocused and delocalized reconstructions. Accordingly, a 
large body of research has been dedicated to the estimation of 
medium properties before/while imaging (e.g., see [27]).

Assuming that previous issues have been solved, we now focus 
on the reconstruction capabilities of model-based inversion meth-
ods, particularly on the inverse filtering and the migration (inver-
sion by using the adjoint of the operator). These imaging 
approaches are formulated by taking into account the Green’s 
function pertinent to the reference scenario under test. Accord-
ingly, even though inverse filtering generally are computationally 
more challenging, they provide procedures more flexible and 
adaptable to a larger class of scenarios. The last consideration also 
includes measurement set-up where data are taken over a nonpla-
nar aperture and possibly nonuniformly. 

The first applicative example concerns the reconstruction of a 
dielectric target hidden in a dry soil, whose average dielectric 
permittivity has been estimated to be 4.5, while its electric con-
ductivity has been fixed equal to 1 ms/m. The target is a sphere 
having diameter 6.5 cm and hidden 7.5 cm below the air–soil 
interface within a 100 cm × 70 cm × 45 cm wood tank; see 
Figure 3(a). The data have been collected on a 24 cm × 24 cm 
square grid with a 4-cm measurement step along both the x and 
y axis by means of a K2-RIS GPR system (produced by IDS Cor-
poration) equipped with a single polarization 2-GHz antenna. 
The GPR traces have been gathered in a 16-ns time window. The 
measured data have been preprocessed by means of the back-
ground removal filtering procedure to remove the direct antenna 
coupling and the backscattered field due to the air–soil interface. 
Then they have been transformed into the frequency domain and 
processed by means of Born approximation-based imaging 
approaches and the adjoint-based inversion procedure. A 
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frequency range [1.1; 1.8] GHz has been selected and evenly 
sampled with a frequency step of 70 MHz (11 frequencies).

The obtained results are given in Figure 3(b)–(d), which show 
the constant depth slices of the reconstructed contrast function as 
normalized to its maximum value. These results have been 
obtained by assuming a half space as a reference scenario and assess 
the utility of a full 3-D wave propagation model. In particular, by 
comparing the results in Figure 3(b)–(d), we can state that the full 
3-D Born approximation imaging approach provides cleaner 
images, from which the target’s shape and size can be estimated. 
Conversely, the migration-based reconstruction of Figure 3(c) is 
most sensitive to the soil inhomogeneity, and it is affected by sev-
eral ghosts appearing in the upper part of the investigation domain. 
Finally, the most common pseudo-3-D algorithm, which produces 
3-D images by interpolating 2-D reconstructions, does not allow for 
an accurate reconstruction of the geometrical features of the tar-
get. The results in Figure 3(b) and (d) have been obtained by fixing 
the TSVD threshold in such a way to filter out all those singular 
values that are 30 dB below the maximum.

Inverse filtering approaches are suitable also for SAR-I in 
complex urban environments. In this framework, building walls 
obscuration and attenuation reduce the ability to detect targets, 
and most notably the electromagnetic signal propagation 
undergoes multipath effects. This usually produces artefacts 
(ghosts) so increasing the number of false alarms. A possible 
strategy to overcome this last problem is to mitigate multipath 
returns. In this frame, frequency dependence of scattering prop-
erties of target and multipath structure cannot be ignored and a 
multipath separation requires large operational bandwidth. 

However, when the target and the radar are not in the line of 
sight, the only possibility to retrieve information about its presence 
is thanks to multipath exploitation. Multipath exploitation is an 
emerging field of research in the framework of SAR-I for urban 
sensing applications [12], [28]. The main focus is on the develop-
ment of multipath models leading to correct and easily interpreta-
ble SAR images free from multipath ghosts. Furthermore, as 
shown in [12] and [28], a correct modeling and exploitation of the 
multipath provides additional information that may potentially 
improve imaging performance in terms of resolution limits. 

We will discuss a novel and interesting application that helps 
us to elucidate these concepts [12]. Specifically, we are concerned 
with the problem of imaging strong scattering targets located in 
an urban canyon. In particular, we consider the 2-D scenario in 
Figure 4(a), which, though simple, accounts for all the relevant 
ingredients to highlight the necessity of a correct model-based 
approach for imaging targets in a complex multiscattering envi-
ronment. The scene is probed by a ground-based SAR standing in 
close proximity of the canyon entrance. Due to the peculiar 
geometry, at each measurement point the received echo from the 
target is the superposition of various multipath contributions 
(e.g., direct path, single reflection path, diffraction path, etc.). It 
must be stressed that, depending on the system constraints in 
terms of operating bandwidth and/or aperture size, these mul-
tipath returns may be or not well separated in time.

A linear scattering model is applicable under Kirchhoff’s 
approximation; however, as a noncanonical geometry is 
involved, no closed-form analytical expressions for the Green’s 
function are readily available. A possible answer may be to com-
pute approximate expressions for instance by ray optics models. 
Alternatively, one must necessarily resort to numerical tech-
niques which are quite flexible and therefore applicable in sev-
eral contexts. In particular, the finite difference time domain 
(FDTD) method represents a good candidate. 

Some representative results for a perfectly cylindrical target 
with radius 0.1 m and centered at the point (0, 1.3) m are 
reported in Figure 4, along with the scattering layout 
[Figure 4(a)]. A UWB electromagnetic pulse having the shape of a 
Ricker wavelet with central frequency of 1,600 MHz is radiated by 
each antenna, whereas the working frequency range is [1, 2] GHz 
discretized at a 50-MHz step. The SAR array is composed by 11 
line sources with a spacing of 0.1 m placed in correspondence of 
the canyon entrance. The frequency domain scattered field data 
have been inverted by applying the TSVD inversion scheme with a 
truncation index selected in such a way to filter out the singular 
values lower than –20 dB with respect to the maximum one.

As can be seen in Figure 4(b), when the image is obtained 
by inverting the actual data by means of the free-space Green’s 
function, some artefacts, due to multipath, arise in the image 
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[FIG2] A schematic view for (a) GPR imaging, (b) TWI imaging, and (c) urban street canyon SAR-I.
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so to impair the localization of the real target. On the other 
hand, when the correct Green’s function (computed by FDTD) 
is adopted, the true target is well localized and the multipath 
ghosts are completely suppressed [see Figure 4(c)].

As a term of comparison, we report in Figure 4(d) the tomo-
graphic reconstruction achievable with the adjoint inversion and 
the reconstruction performance are worse compared to the inverse 
filtering solution. Finally, by comparing the urban canyon recon-
struction in Figure 4(c) to that attainable in a free-space scenario 
[see Figure 4(e)] with the same array configuration, it can be seen 
that the image relevant to the canyon scenario highlights a larger 
portion of the upper scatterer’s contour. This peculiar feature is a 
direct consequence of multipath exploitation that, in the specific 
example, is mainly related to the specular reflections from the 
building walls. From the physical perspective, this fact can be inter-
preted by considering that the rays emitted by the source, reflected 
from the walls and reaching the target can be seen as originated by 

“virtual sources” falling outside the array. In other words, the tar-
get is “viewed” under a wider angle. As a result, once taken into 
account in the forward model, the multipath improves the image 
resolution in crossrange. Further details on the resolution 
enhancement due to multipath exploitation can be found in [12]. 

Finally, as further examples of unconventional measurement 
configurations, significant attention has been recently devoted 
to the development of hardware and data processing solutions 
for the multistatic SAR-I both for satellite imaging [29] and in 
[30] for high-resolution imaging for short-range applications.

CONCLUDING DISCUSSION
In this article, a quick overview of several SAR-I algorithms has 
been presented. The discussion mainly focused on establishing 
the rigorous mathematical framework upon which such imaging 
algorithms are founded. It has been shown that SAR-I algorithms 
can be classified in inverse filtering and migration methods. The 
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[FIG3] A GPR imaging example. (a) An experimental setup, (b) depth slices of the full 3-D TSVD reconstruction, (c) depth slices of the 
full 3-D migration (reconstruction by the adjoint of the operator), and (d) depth slices of the pseudo-3-D TSVD reconstruction.
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first are methods that achieve imaging by inverting the linearized 
scattering operator. Migration, instead, basically achieves imaging 
by compensating the scattering phase by properly adopting a spa-
tially varying filter. Interestingly, it has been shown that the gen-
eralized holography coming from the Porter–Bojarski equation is 
the more rigorous migration scheme. In fact, the generalized 
holography provides an explicit relationship between the 
migrated field and the target and does not rely on the homoge-
neous wave equation and the exploding source model. Nonethe-
less, all migration schemes provide similar results because they 
compensate the scattering phase in the same way. 

A comparison between migration and inverse filtering has 
been briefly addressed as well. Basically, as migration performs 
the inversion by approximating the inverse operator by the 
adjoint of the scattering operator, the achievable resolution is 
intrinsically limited. However, the inverse scattering problem is 
ill posed and noise and uncertainties are always present. 

As shown by representative examples based on synthetic and 
experimental data, migration generally provides worse imaging 
performance compared to the inverse filtering; however, inverse 
filtering is usually more computationally demanding.
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[FIG4] Urban canyon SAR imaging: (a) scattering layout, (b) reconstruction with TSVD and free-space Green’s function, 
(c) reconstruction with TSVD and urban canyon Green’s function, (d) reconstruction with adjoint inversion and urban canyon 
Green’s function, and (e) reconstruction with TSVD obtained with the same array configuration in a free-space scenario.
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T
his tutorial-style article presents the novel concept of 
time-reversal-based airborne ground penetrating 
radar (TR-AGPR) and its application for soil 
imaging and gives a brief descrip-
tion of the time-reversal 

synthetic aperture radar SAR (TR-
SAR) focusing algorithm. The 
intent of this article is to 
answer the question as to 
whether the time-reversal-
based algorithm is a feasi-
ble technique for SAR 
focusing of a buried tar-
get (structure).

INTRODUCTION
Synthetic aperture radar 
(SAR) [1], [2] is one of the 
most important engineering 
inventions of the last century. High-
resolution images are commonly used 
over a wide range of applications. With a var-
ied number of modes and purposes, the SAR system pro-
vides comprehensive imaging capabilities in microwave 
frequency range at different altitudes (airborne or spaceborne 
systems), on a large scale (depending on the footprint size), and 
in different frequency bands. Furthermore, electromagnetic (EM) 
waves have the ability to penetrate into the soil, be scattered on 
its inhomogeneities, and travel toward the initial source location 
in the form of backscattered waves. On the other hand, a radar 
system designed for nondestructive subsurface soil imaging, 

referred to as ground penetrating radar (GPR) [3], more often 
uses the SAR technique for high-resolution imaging of the sub-

surface soil structure. A GPR system mostly operates as 
an ultra-wideband (UWB) [4] system in a low-

frequency range [very high frequency 
(VHF)/ultrahigh frequency (UHF), 

and P-band and L-band of fre-
quency] and has a limited 

area of imaging, thus signif-
icantly reducing the ability 
to image complex and 
vast buried structures to 
local-scale applications. 
The area of the GPR 
imaging process depends 

on three factors: 1) the 
width of footprint over the 

surface (antenna pattern, 
height, and incident angle), 2) 

the effective penetration depth of 
soil, and 3) the antenna displacement. 

SAR and GPR imaging processes exhibit simi-
larities. For instance, both imaging processes have a 

common feature, i.e., they are formed as a result of antenna 
movement above the surface at a constant height. Although hav-
ing many differences, similarities between the two imaging pro-
cesses led to the idea that it is possible to model and develop a 
concept of airborne GPR (AGPR), i.e., a radar system combining 
the advantages and essential features of the two well-known SAR/
GPR techniques and operating over a large scale. 

Some early attempts at this concept have been already per-
formed in the Shuttle Imaging Radar-B mission: for instance, 
with the shuttle over a desert [5], [6] or glacier [7]. Due to natu-
ral environmental conditions, the structures of a desert and 
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glacier are strongly similar to a homogeneous structure (dry sand 
or ice) with almost constant EM parameters in the observed area. 
Hence, the propagation medium can be approximated as two 
homogeneous half-spaces, i.e., free space and a material medium. 
A similar homogeneous approach of the soil structure, with con-
stant values of permittivity f  and conductivity ,v  was used in 
discussions, analysis, and numerical simulations [8]–[10]. Unfor-
tunately, such a homogeneous approximation of the soil struc-
ture does not correspond to the vast majority of lands, which are 
a mixture of different soil types, arranged in horizontal-layered 
structures with varied texture and parameters inside a single 
layer. Due to the inhomogeneous nature of the soil, the backscat-
tered signal derived from multireflections of the EM waveform 
transmitted through the soil is disrupted by dispersion and loss 
effects. This leads to energy dissipation and pulse distortion 
strongly affecting the output of the matched filtering and signifi-
cantly degrading the spatial resolution. Detailed analysis of the 
low-frequency SAR focusing problems was carried out in [11]. 
The most important problem is the strong defocusing of the 
backscattered signal in range (depth) dimension, which does not 
allow one to fully benefit from the SAR processing. The primary 
step to take advantage of the SAR processing should be the neu-
tralization (or compression) of the defocusing effects in depth 
dimension. On the other hand, the time-reversal (TR) [12]–[15] 
technique is used to exploit multipath propagation in rich scat-
tering media and to provide significant detection gain. For 
instance, experiments in the microwave frequency range 4–6 
GHz with single antenna were described and performed in [15]. 
Overall, the TR is incorporated with the wide range of remote 
sensing applications to improve their imaging and detection effi-
ciency [16]. Its applications in the SAR were described, e.g, for 
target focusing and removing ghost images [17], [18], as well as 
for change detection [19]. Furthermore, the TR were used for 
beamforming imaging [20] and source localization in changing 
media [21]. In addition, the TR were applied in the GPR for the 
focusing algorithm [22] and for TR-based range estimation [23]. 

The expansion of the functionality of the side-looking airborne 
radar (SLAR) with a new method of scanning along a modern sig-
nal focusing algorithm, based on the TR approach, may result in 
novel and uncommon capabilities for high-resolution imaging of 
soil structure over a large scale and in many areas. A validation of 
the TR focusing algorithm would provide new broad-area imaging 
capabilities that would be usable in many fields, such as soil-
resource mapping, environmental protection, and military sur-
veillance and recognition. Before focusing on a general TR-AGPR 
concept, the modeling of the soil texture and the EM parameters 
are introduced to fully understand the complex nature of soil as a 
material medium, and TR principles are presented. 

SOIL MODELING

PHYSICAL MODEL
In general, modeling of the EM parameter of the soil is limited 
to estimating the permittivity f  and the conductivity .v  The 
permeability n  is assumed to be free space. Estimation of the 

relative complex dielectric constant rf  is performed by a pedo-
transfer function [24], [25] based on the soil texture and mois-
ture profile. In [26], it is shown that the geological database is a 
valuable source of information about the soil texture, its inho-
mogeneous and layered nature. 

The soil typological unit (STU), from the geological database 
Soil Profile Analytical Database For Europe (SPADE)/2, contains 
averaged information about soil texture of the selected volume of 
ground, is organized as a column vector defined in depth dimen-
sion, and presents information, e.g., about the percentage of clay 

,cl  percentage of silt ,st  percentage of sand ,sd  and bulk density 
.bt  Relative amounts of clay, silt, and sand determine the soil 

class. The fundamental method for classifying the soil types has 
been illustrated by the U.S. Department of Agriculture in the form 
of triangle, based on the relationships between percentages of dif-
ferent sizes of particles. The 12 classes of unequal areas are distin-
guishable, ranging from homogeneous (sand, silt, clay) to highly 
mixed (loam) [25]. 

The theory of pedotransfer function assumes the estimation 
of the immeasurable (or difficulty measurable) parameters from 
one or more measurable ones, i.e., estimation of rf  based on 
soil texture , , ,c s sl t d bt^ h and soil moisture profile .mv  The rf

of soil mixture can be expressed as 

,jr r rf f f= -l m (1)

where the real part rfl  is the dielectric constant of an equivalent 
lossless material, and the imaginary part rfm  is the dielectric loss 
factor. Using the pedotransfer function proposed in [24], the 
real and imaginary part of (1) can be expressed as 

. [ ( ) ] . ,m m1 15 1 1 0 68r
s

b
s v v

1
f

t

t
f f= + - + - -a b

~
a

al ll (2)

,[ ]mr v
1

f f= b
~
a
am mm (3)

respectively. Variables in (2) and (3) mean mv  is soil moisture 
profile; bt  is bulk density of soil mixture; st = 2.66 g/cm3 is char-
acteristic bulk density of soil mixture; sf  is the dielectric con-
stant of the soil solids and is given by ( . . )1 01 0 44s s

2f t= + -

. ;0 062 a= 0.65 is the empirical coefficient; bl  and bm  are 
empirical coefficients dependent on soil texture (i.e., cl  and );sd

and f~l  and f~m  are mainly frequency-dependent parameters, 
and less texture-and-moisture dependent [24]–[26]. The fre-
quency dependence of rf  is one of the most important issues for 
UWB signals. According to (2) and (3), the soil mixture shows a 
dispersion nature and variations of both parts of rf  are not 
monotonic [26]. Moreover, (2) and (3) indicate a strong depen-
dence of permittivity from the soil moisture profile .mv  Refer-
ring to [26], the permittivity changes can be described as a 
process whose amplitude is similar to the soil moisture profile 
mv  and is modulated by the soil texture, implying the influence 
of sd  and cl  into bl and bm [see [26, eqs. (13) and (14)]. Figure 1 
shows an example of geological and EM modeling of the soil 
layered structure based on data from SPADE/2 and the 
pedotransfer function. Originally, soil typological unit (STU) 
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HU360084 was composed of three classes of soil (horizons), 
starting from the top: 

■ sandy clay loam (0, –0.96) m
■ sand (–0.96, –1.38) m
■ sandy clay (–1.38, –2.5) m. 

Other classes of soil were artificially added in this STU profile to get 
more complex geological structures. Figure 1(a) presents the soil’s 
geological structure estimated on the basis of STU HU360084 to a 
depth of ZN  = 2.5 m; the thickness of the each planar layer ln

equals dn= 5 mm. Thus, it results in structure of N 500=  layers 
each with different geological structures and a planar interface 
between consecutive layers .,l ln n 1+^ h  In realistic conditions, sev-
eral man-made objects (or structures) can be buried at different 
depths, locations, and inclinations to the surface, e.g., pipelines, 
underground storage tanks, cables, rocks, archaeological remains, 

mines, unexploded ordinances, and others. For the sake of simplic-
ity, a bare and flat soil surface is assumed, thus avoiding taking into 
account the surface shape (roughness) and vegetation in the back-
scattered signal simulation. 

Referring to the modeling process presented in [26], the 
equivalent absolute value of the rf  is presented in Figure 1(b), 
for single frequency f = 480 MHz. Although three main horizons 
of soil geological texture [see Figure 1(a)], due to the nonmono-
tonic changes of the moisture profile ,mv  the volume of | |rf  pre-
sented on Figure 1(b) consists of four ranges of similar dielectric 
constant values, from the top: 

■ (0, –0.96) m 
■ (–0.96, –1.38) m
■ (–1.38, –1.59) m
■ (–1.59, –2.5) m. 

[FIG1] An example of a horizontal-layered soil structure: (a) geological and (b) relevant absolute value of complex relative dielectric 
constant rf .
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Inner range values differ slightly, the largest differences of the 
| |rf  occur at the interfaces between ranges, due to the water 
exchange processes. Various hydrological properties of the indi-
vidual soil layers cause the nonmonotonic progress of water 
percolation into and evaporation from soil structure. A complex 
nature of the mv  (with respect to its shape and variation over 
time and spatial coordinates) forces to it numerical calculation 
[11], [26], for instance, based on the Richards’ equations [27] 
and the soil hydraulic parameters [25]. 

BACKSCATTERED SIGNAL
Theoretically, in a rich scattering medium, the target response of 
a point scatterer consists of a direct amplitude-scaled echo and 
multipath echoes from the surrounding scatterers. On the other 
hand, the target response ( )s tr  in an AGPR consists of a strong 
backscattered echo derived from surface reflection and a weak 
cumulative echo from soil structure. The strong backscattered 
echo comes from the boundary between the sensor half-space 
and soil half-space. Furthermore, the weak echo from soil struc-
ture contains direct amplitude-scaled and distorted echo from 
point scatterers, and superposition of every indirect multipath 
reflections from the point scatterers and an infinite number of 
multipath reflections from soil inhomogeneities. Therefore, the 
target response ( )s tr  can be generally expressed as 

,( ) ( ) ( ) * ( )s t s t h t s t tr r t d
i

i t d i
1surface reflection

internal multireflections

v x x= - + - -
3

=1 2 344 44
1 2 3444444 444444
/ (4)

where rv  is surface reflection coefficient, ( )s tt  is transmitted 
radar signal, dx  is the two-way time delay between radar and 
surface, ( )h ti  is impulse response of ith  propagation path inside 
the soil, ti  is propagation time of ith  path, and * denotes time 
convolution. The first term in (4), representing surface reflec-
tion, strongly disturbs a weak cumulative echo derived from 
internal multireflections in the soil structure and should be pro-
cessed as clutter. Furthermore, even a slight difference of EM 
parameters (e.g., rf ) between two consecutive layers ,l ln n 1+^ h

causes energy reflection proportionally to the reflection coeffi-
cient [3]. Permittivity ,r nf  affects the propagation time through 
the layer ,ln  thus in consequence, the change of ,r nf  affects the 
propagation time ti  of the ith  path (passing by the layer .)ln

Considering the downward and upward traveling of the UWB 
pulse only through a small number of dispersive layers L  in the 
structure presented in Figure 1(b), where ,L N%  with N  of 
considered layers (see the section “Physical Model”), the back-
scattered pulse distortion becomes nonnegligible. In addition, L
decreases when the bandwidth of UWB pulse increases. 

The main task of source separation methods is the extraction 
of weak cumulative echoes occurring on the strong surface 
reflection background. This operation is similar to the ground 
refection removal (GRR) used in the GPR imaging process and is 
aimed at the separation of strong terrain returns, which domi-
nate in backscattered signal and shade weak echoes from the 
entire soil structure and not only from the upper shallow layers. 
In conventional GPR, the separation of surface reflection is 

performed, for example, by the blind source separation [28], 
compressive sensing [29], or the simple averaging-and-subtrac-
tion methods. The perpendicular location of the antenna directly 
above the ground surface reduces the footprint and allows one to 
process ground returns as point reflection assigned only to 
antenna coordinates, which simplifies processing. Unfortunately, 
there are a number of theoretical and practical issues related 
with the use of source separation methods in AGPR. First, the 
use of an airborne platform considerably increases the level of the 
ground returns caused by a significant expansion of the observed 
surface (a broader footprint on the surface in comparison to the 
vehicle-mounted GPR). Second, a nonperpendicular observation 
angle results in the spread of ground returns across time in the 
range from near slant range R sn  to far slant range .R sf  There-
fore, a weak cumulative echo from soil structure derived from 
the slant range R ,s r  occurs on the background of the superposi-
tion of every ground return within the footprint. Additionally, the 
incident angle affects both the level of ground returns and the 
backscattered echo from buried targets, similarly as in conven-
tional GPR. The complexity of source separation issues is only 
briefly highlighted in this article, however, the investigation of 
source separation techniques and their applicability is outside the 
scope of this article and will be addressed in future works. 

TIME-REVERSAL

HYPOTHESIS
The TR technique [12]–[16] exploits the reversibility (reciprocity) 
of the propagation medium, which means that a field and its time 
symmetric form can both propagate in this medium. Using the TR 
operator [ ]T  [14], the “reversible” form of four vectorial fields 
describing EM waves , , , andE H D Br r r r  are expressed as follows: 

.

[ ( , )] ( , ),

[ ( , )] ( , ), [ ( , )] ( , )

[ ( , )] ( , ),E r t E r t D r t D r t

H r t H r t B r t B r t

T

T T

T = -

=- - =- -

= - r r r r

r r r r r r r r

r r r r

(5)

The TR invariance of the following wave equation in nondisper-
sive and lossless media 

( , ) ( ) ( ) ( , )E r t r r
t

E r t 02
2

2
d

2
2

n f- =r r r r r r (6)

indicates that vector electric field ( , )E r tr r  and its time-reversed 
version [ ( , )]E r tT r r  are solutions of the same wave equation (6). 
However, loss and dispersive media are naturally present in the 
environment, e.g., a soil mixture with all its natural belongings 
and man-made objects. The basic idea of the TR is to re-emit the 
received pulse to alleviate these loss effects. A nonzero value of the 
conductivity ( )rv r  and dependence of medium permittivity from 
frequency ( , ) [ ( , )]r t rF 1 ~f f= -r r  leads to the wave equation

.( , ) ( ) ( ( , ) * ( , )) ( ) ( ) ( , )E r t r
t

r t E r t r r t E r t 02
2

2
d

2
2

2
2n f n v- - =r r r r r r r r r r

(7)

The comparison of (6) and (7) shows the presence of the addi-
tional term with first derivation of the ( , )E r tr r  in our case. Thus, 
the conventional TR operator cannot be directly applied into 
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loss media. In addition, the attenuation in dispersive media 
affecting each frequency component of ( , )E r tr r  depends on the 
medium properties, for instance, the conductivity [compare (6) 
and (7)]. Without taking theoretical considerations into account 
[30], we describe the influence of dispersion and irregular atten-
uation on the (ultra-)wideband signal, e.g., on the common 
radar linear frequency modulated (LFM) pulse.

■ Dispersion: In a dispersive medium, each wave component 
has a different phase velocity. Depending on the dispersion 
characteristic of the medium, when higher frequency compo-
nents travel faster than the lower frequency components, 
then the duration time of up-chirp decreases while for down-
chirp it increases, and reversely. Thus, the LFM pulse 
(whether up- or down-chirp) traveling through the dispersive 
medium does not maintain a constant value. Therefore, the 
once-changed shape can be retrieved with a fairly high accu-
racy after retransmission through the same medium but with 
reversed internal frequency changes (down- or up-chirp). 
■ Irregular attenuation: The frequency-dependent attenuation 
separately affects the amplitude of each frequency component 
of the LFM pulse. Depending on the attenuation properties of 
the medium, the amplitude of the LFM characteristic spectrum 
can change to any other shape. The attenuation characteristic 
in the frequency domain can be obtained based on the compari-
son between the initial spectrum and the attenuated signal 
spectrum. Nevertheless, a priori knowledge about attenuation 
properties (for instance, based on the physical soil model, as 
shown in the section “Soil Modeling”) can be used to selectively 
amplify the attenuated frequency components to reach the 
desired shape. Thus, based on the attenuation characteristics 
obtained in a first transmission with initial LFM pulse, in 
retransmission each frequency component can be selectively 
overamplified to ensure the shape of the reattenuated spectrum 
similar to the characteristic spectrum of the LFM pulse. 
Taking both effects into account, it can be assumed that the 

mirrored (time-reversed) retransmission of the once irregularly 
attenuated and dispersed signal through the same medium, 
with selective amplification of each frequency components, 
allows restoration of the initial pulse with very high precision. 
This hypothesis assumes a unchanging medium as well as the 
same location of the transmitter and receiver in the initial 
transmission and the secondary retransmission. 

FOCUSING ALGORITHM
As shown in [12]–[16], TR measurement is organized as two 
successive and implicitly linked probings, where a single prob-
ing is composed of its own signal transmission and registration. 
Thus, TR measurement can be simply represented as two pairs 
of signals: the first pair of [ ( ), ( )]s t s tt

f
r
f  representing the trans-

mitted ( )s tt
f  and recorded ( )s tr

f  signal in forward probing, and 
the second pair of ( ), ( )s t s tt

tr
r
tr6 @ representing the transmitted 

( )s tt
tr  and recorded ( )s tr

tr  signals in TR probing. As follows from 
the TR assumptions, ( ),s tt

tr  depends on ( ),s tr
f  i .e. , 

( ) [ ( )],s t K SF *
t
tr

a r
f1 ~= -  where Ka  is an energy normalization 

factor, ( ) ,[ ( )]S s tFr
f

r
f~ = [ ]F  is the Fourier transform, and *

denotes conjunction. This time-frequency dependence between 
( )s tt

tr  and ( )s tr
f  results from the TR assumptions and is aimed 

at retracing the signal propagation path and coherent energy 
refocusing phenomenon. Hence, the two remaining signals, i.e., 

( )s tt
f  and ( ),s tr

tr  represent an input and an output of TR mea-
surement. The first, ( )s tt

f , is a well-known radar waveform. The 
second, ( )s tr

tr , is supposed to represent the temporal and spatial 
refocused energy. While the signal is emitted with pulses cen-
tered on the carrier frequency, the (re)focusing algorithm con-
sists of matched filtering performed in the baseband frequency 
range on ( )s tr

tr  and with ( )s tt
f  as a reference signal for providing 

a high resolution and maximizing signal-to-noise ratio (SNR).

TR-BASED AGPR CONCEPT
Within the soil geological structure as well as the consequences 
on the backscattered signal presented in the section “Soil Model-
ing” and the focusing hypothesis and algorithm described in the 
section “Time-Reversal,” we describe the TR-AGPR system 
designed for imaging of an optically invisible soil structure. 
From the geometrical point of view, the TR-AGPR configuration 
is identical to the SLAR configuration. The key difference lies in 
the different purposes of observation. Classical SAR systems are 
devoted to imaging the terrain surface, and a typical high-resolu-
tion SAR image represents only a reflectivity of the terrain sur-
face. On the contrary, TR-AGPR intends to image the optically 
invisible soil structure located under the surface and process typ-
ical backscattered terrain returns as clutter. Figure 2 presents an 
adequate geometry of a TR-AGPR system (in SLAR, strip-mode 
SAR) with an example location of buried objects in the soil. 

An AGPR mission, similar to SAR missions, is performed at a 
height H  with the platform velocity .vp  The antenna beam, 
with azimuth azi  and elevation eli  beamwidth, is oriented at an 
angle .ini  TR-AGPR systems, during an acquisition along the 
synthetic aperture line ,Lsar  observe swath about width WL

meters and length dependent on the duration of the TR-SAR 
acquisition. The near slant range to swath is Rsn  and the far 
slant range is .Rsf  The soil structure, presented in Figure 2, 
contains three types of usual objects located at typical depths 
for each. Antipersonnel mines are placed just below the surface, 
pipelines are usually located down to several meters, and stones 
(or rocks) may occur at every depth. Such objects have their 
own dielectric constants, defined by the material from which 
they are made (for instance, see [3, Table 2.1]). 

TR-BASED METHOD OF SCANNING
As shown in Figure 2, from the geometrical point of view, the 
conventional SLAR and TR-AGPR configurations are similar. 
The difference lies in the way of pulse transmission and signal 
processing. Unlike traditional SARs, as stated in the section 
“Focusing Algorithm,” TR-AGPR has two signal transmissions. 
First, a chirplike radar signal, of duration Ts  and total energy 

,Es  is transmitted. Backscattered returns are recorded in time 
window .Tw  Then, after source separation (see the section 
“Backscattered Signal”), TR operation and energy normaliza-
tion, a new radar signal is transmitted and backscattered 
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returns are recorded. In other words, three separates steps can 
be distinguished at a given position along the ,Lsar  specifically, 
forward probing, TR operation, and TR probing. Figure 3 pres-
ents a possible time-schedule of system functionality at a partic-
ular position along the synthetic aperture. Naturally, other 
schedules of TR scanning can be assumed. 

FORWARD PROBING
In the usual transmission of SAR systems, backscattered signals 
are recorded in time tw  between Tsn  and ,Tsf  corresponding to 
the near and far slant range, Rsn  and ,Rsf  respectively 

,
cos cos

T t T
c

H t
c

H T

2

2

2

2
w w ssn sf

in
el

in
el

&# # # #
i

i
i

i- +
+

` `j j
(8)

where c  is speed of the light and term Ts  is added to fully 
record whole returns from the far slant range. Therefore, the 
time period ,Tw  intended for the terrain returns registration is 

.T T Tw sf sn= -  However, the time period Tw  can be too short 
for registration of the sufficient amount of backscattered energy 
derived from internal reflections inside the soil on its inhomo-
geneities, as well as from the buried objects (structures). In fact, 
as outlined in the section “Soil Modeling,” variations of the rela-
tive complex dielectric constant rf  result in changes of wave 
propagation velocity vs  in soil, which is locally in layer ln  given 
by / .v c, ,s n r nf=  In consequence, variation of vs  affects the 
effective depth of propagation. Moreover, we have to consider 
what effective depth of penetration it is possible to achieve and 
what effective depth of penetration is desirable from the mission 

point of view. For mine detection, small penetration depths are 
sufficient (to tens of centimeters), but for pipeline monitoring, 
higher depths are required (to several meters). Therefore, the 
upper time limit for returns registration in (8) should be 
increased by the term representing the sufficient penetration 
time ,Tsp  so (8) is now changed 
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The value of Tsp  should be selected according to the AGPR 
application and a priori information about the type of soil, as 
seen in the section “Physical Model.” An appropriate choice of 
time window Tw  and its location at the time axis is one of sev-
eral issues in proper selection. 

TR OPERATION
This step is the formation of a new radar waveform based on the 
backscattered signal recorded in the previous step. All tasks in 
this step consist only of signal processing in the base band fre-
quency range. The effective duration of this step TOP  is depen-
dent on the hardware performance of the radar unit and the 
efficiency of signal processing algorithms. TR operation is 
equivalent to a mirror operation, i.e., last in, first out, and per-
formed in the time window .Tw  In the frequency domain, this 
operation corresponds to the spectrum conjugation. The Fou-
rier transform of time-reversed signal St

tr ~^ h equals 

( ) ( ),S K S *
t a r

ftr ~ ~= (10)

H

WL-Swath Width

SAR

MINE/UXO

θ in

θ el
θ az

Pipeline

Rsf

Rsn

vp

Footprint

Lsar

Stone

[FIG2] The TR-AGPR configuration with three man-made objects buried at different depths and locations.
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where ( ) [ ( )]S s tFt
f

r
f~ =  and Ka  is the energy normalization 

factor (see the section “Focusing Algorithm”). Energy normal-
ization EN^ h provides compensation for energy losses and 
keeps average energy at a constant level [15]. The normalization 
factor Ka  is given by 

,K E
E

a
w

s= (11)

where Es  is the total energy of the transmitted radar signal and 
Ew  is the total backscattered energy from soil structure. It 
should be noted that Es  is calculated during Ts  and Ew  during 

,Tw  respectively, where .T Tw s&  However, (11) expresses a nor-
malization coefficient, which is valid only in the medium where 
the attenuation does not depend on the frequency, i.e., in a non-
dispersive medium. In such a medium, EN  can be performed as 
a compensation of average energy. 

TR PROBING
This key step starts at TTR  (see Figure 3) and consists of retrans-
mission and backscattered returns registration. The duration of 
the signal transmitted in TR probing is equal to .Tw  Additionally, 
T Twsn &  has to be satisfied to prevent signals overlapping and 
uncertainty of returns registration. Due to ,T Tw s&  the radar 
blind zone for TR probing is greater than for forward probing. In 
this acquisition, the time period T ,wTR  intended for backscattered 
returns registration is considerably longer than .Tw

DIFFERENCES, LIMITATIONS, AND EXCEPTIONS
The extended measurement times at individual positions along 
synthetic aperture, more than twice that of the conventional 
SAR, due to ( ),T T T ,wsf sn TR# +  decrease the value of pulse repe-
tition frequency (PRF). For the TR-AGPR, the mission value of 
PRF is considerably lower than PRF in conventional SAR mis-
sions. A decreasing PRF value causes less precise reconstruction 
of the azimuth reference signal, and thus, deterioration of the 
azimuth resolution. Proper selection of PRF is the important 
issue in the TR-AGPR system, in particular, to perform the 
accurate synthesis of the antenna along the radar track. 

The scheme of TR-AGPR acquisition with TR operation, pre-
sented in the section “TR-Based Method of Scanning,” differs con-
siderably from a typical scheme of TR measurements [15]–[16] in 
one field. Specifically, the conventional TR scheme assumes the 

performance of additional (initial) probing of the clutter channel 
as a measure of clutter response only, i.e., when the target is 
absent. In the case of TR-AGPR, the presence of objects in the soil 
is difficult to identify due to their invisibility and buried nature. 
However, an additional flight and preacquisition over terrain, 
with the drawback of increasing the cost of the AGPR mission, 
may provide useful information about backscattered terrain 
returns, which are identified as clutter [see (4)]. Afterward, based 
on the properly developed source separation methods, the weak 
cumulative echoes derived form internal multireflection can be 
separated from clutter, time-reserved, and energy normalized, 
and used in TR probing. Unfortunately, as shown in the section 
“Backscattered Signal,” the use of source separation methods in 
AGPR requires additional and intensified investigations due to the 
complexity of this issue. 

Moreover, the TR experiment, in the original form, specifies 
the location of the transmitter and receiver on opposite sides of 
the scattering environment. Such a configuration is not appropri-
ate for GPR measurements due to natural impracticality. During 
the last few years, several configurations of the TR experiment 
(various transmitter–receiver configurations) were used: monos-
tatic pulse-echo [18], [19] or bistatic pulse-echo [20], [23]. With 
regard to the AGPR mission configuration (i.e., one antenna for 
signal transmission and backscattered echo registration), the TR 
experiment with the use of an airborne platform can be carried 
out only in the monostatic pulse-echo configuration. 

Further, as stated in the section “Focusing Algorithm,” the TR 
hypothesis assumes the invariant medium and the same position 
of the transmitter and receiver in the initial transmission and 
the secondary retransmission. The condition of invariant 
medium is valid since the TR-AGPR acquisition along Lsar  takes 
up to several seconds, and thus, the geological and hydrological 
parameters impacting the value of complex relative dielectric 
constant [(1)–(3)] are constant. Unfortunately, since the radar is 
in motion, at the altitude ,H  the second condition is not satis-
fied. However, proper selection of PRF and consideration the fact 
that ,H h22  where h  is the depth determined by the purpose 
of the mission, allow for presumption that radar motion at H
slightly affect the (re)focusing effect. Generally, since the refer-
ence signal used in matched filtering is the pulse sent in the ini-
tial probing, the (re)focusing effect depends only on “the quality 
of restoration” of the initial pulse in TR probing. As shown in 

[FIG3] The schedule of TR acquisition at a given position along the synthetic aperture line.
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[21], minor perturbations in probing position, relative to the 
inhomogeneous medium, have few effects on TR focusing. 

Beyond the lack of strict clutter probing, the main idea of 
the TR approach for AGPR remains the same (as presented in 
the section “Time-Reversal”). Due to complex scattering phe-
nomena in soil structure, TR should coherently cover and 
exploit the original multipath propagation to provide a temporal 
and spatial energy refocusing effect. 

TR-AGPR SIMULATION SETUP
The TR-AGPR simulations were performed on the basis of (rela-
tively) a simple ray tracing method, with three point scatterers ,S1

,S2 S3  located in the soil structure, each at a different horizon [see 
Figure 1(a)]. The coordinates, i.e., (depth, along-track, across-track) 
m, are (0.625, 127, 1,746) m, (1.25, 255, 1844) m, and (1.875, 383, 
1945) m for the first ,S1  second S2 , and third S3  scatterer, respec-
tively. Soil structure and AGPR geometry configuration were chosen 
as depicted in Figure 2 in the section “Physical Model.” For the 
AGPR mission, the SLAR configuration with the following parame-
ters were assumed: H = 3,500 m, vp= 100 ,ms 1- PRF 200=  Hz, 

ina = 35º, and TE  polarization. As a radar signal, the up-chirp LFM 
pulse of fc= 430 MHz, B= 200 MHz, and x= 1.2 μs were used 

,( ) ( )coss t f t t t2 2 2t
f

c
2 # #r rc x x= + - (12)

where c  is the chirp rate. The SAR simulation was performed 
along 1,024 positions on the synthetic aperture line leading to a 
synthetic aperture length LS= 512 m. 

To simplify the backscattered signal simulation and processing, 
the ground reflections are not included; only backscattered signals 
form buried targets are taken into account. As stated in the section 
“Physical Model,” the total number of distinguishable layers in the 
selected STU profile is equal ,N 500=  each with a different value 
of the complex relative dielectric constant. The number of layers 
Lt  taken into account in the simulation depends on the depth of 
the scatterer and is equal to 125, 250, and 375 for the first ,S1  sec-
ond S2 , and third S3  scatterer, respectively. The different travel 
paths are modeled based on Snell’s law, starting from the radar 
location, through the entry point to the soil and relevant number 
of layers ,Lt  to the scatterer location (refer to [11] for a detailed 
description of the simulation). Moreover, pulse instantaneous fre-
quency lies in the range of 330–530 MHz, i.e., in a frequency range 
where the imaginary part of the relative complex dielectric con-
stant rf  varies the most; see (1)–(3) and refer to [26]. 

REFOCUSING PHENOMENON
Figure 4 separately presents normalized output of the matched 
filtering for the three-point scatterers located inside the soil (see 
the section “TR-AGPR Simulation Setup”), for the scatterer S1  in 
(a), S2  in (b), and S3  in (c). On these plots, dashed (blue) lines 
represent the output of matched filtering after forward probing 

( ),[s tt
f ,( )]s t,r S

f
i  dotted (red) lines represent the output of 

matched filtering after TR probing ( ),[s t,t S
tr

i ,( )]s t,r S
tr

i  and solid 
(black) lines represent the output of cross-matched filtering 

( ), ( ) ,s t s t,t
f

r S
tr

i6 @  respectively. 

■ Forward probing: For each point scatterer, the effective time 
duration of backscattered echo ( )s t,r S

f
i  is proportionally 

shorter than the duration of radar (up-chirp) pulse ( ),s tt
f  as 

seen in the section “Focusing Algorithm.” For up-chirp LFM, 
pulse dispersion caused a contraction of the backscattered 
echo. A cumulative nature of dispersion and attenuation makes 
echoes from deeper targets more deformed, the higher fre-
quency components are more damped throughout the fre-
quency band. Thus, the outputs of matched filtering are 
proportionally defocused, broader and (negatively) shifted from 
expected position at time axis; compare the dashed lines in Fig-
ure 4(a)–(c). The ghost targets appear, comparing the side-lobe 
level (SLL), faintly visible for S1  in Figure 4(a), and clearly for 
S2  in Figure 4(b) and S3  in Figure 4(c). 
■ TR probing: (As previously stated, this is a processing 
between input ( )s t,t S

tr
i  and output ( )s t,r S

tr
i  of TR probing treated 

as a separate measurement in a dispersive and loss medium.) 
TR (mirrored or down-chirp) and energy normalized retrans-
mission of the backscattered echo through the same loss 
medium resulted in reattenuation, due to the constant attenu-
ation factor for each frequency component of the LFM pulse, 
regardless of the internal frequency change inside the pulse. 
The level of ghost targets (i.e., the increasing of side lobes) is 
higher than for forward probing; compare the SLL between 
dotted and dashed lines in Figure 4(a)–(c). Nevertheless, the 
reversed mode of internal frequency changes inside the pulse 
induces a lengthening of the backscattered echo (see the sec-
tion “Focusing Algorithm”). For each point scatterer, the effec-
tive time duration of backscattered echo ( )s t,r S

tr
i  is longer than 

the duration of the radar waveform ( )s t,t S
tr

i  and is almost equal 
to the time duration of .( )s tt

f  Furthermore, the energy nor-
malization ensures an almost uniform level of .( )s t,r S

tr
i  Thus, 

outputs of matched filtering are still defocused and signifi-
cantly broader. However, now they are reversely (positively) 
shifted, and moreover, centered at the expected location for 
each scatterer; compare the dotted plots in Figure 4(a)–(c). 
■ Cross-matched filtering: Despite the strong frequency-
dependent attenuation and dispersive characteristic of the soil, 
the results of cross-matched filtering are correctly focused. 
Retransmission of the time-reversed signal inversely restores 
the dispersion effects in backscattered echo and overstated 
energy normalization (selective overamplification) has neutral-
ized attenuation in TR probing. Regardless of the scatterer 
location, the main lobes have the same width as the expected 
resolution. Furthermore, the value of (SLL) is slightly different 
between them, but oscillates around the theoretical value. 
Performed simulations are based on an assumption about 

the time invariability of the rf (1) in individual layer .ln  Such 
an assumption is correct, when taking into account that con-
ventional TR-SAR acquisition along synthetic aperture Lsar  can 
take approximately a few seconds. 

TR-BASED SAR PROCESSING
Figure 4 presents the refocusing effects in the fast time domain 
(in range/depth dimension). Data collected along the synthetic 
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aperture ,Lsar  similarly to conventional SAR acquisition, have a 
migration effect resulting from changes in the relative distances 
between platform position and target location. Based on the 
range compression results, only compression in azimuth has to 
be additionally performed. The azimuthal compression factor 
Ka  is given by /K v f R c2a p c s

2=  [11], where vp  is platform veloc-
ity, fc  is carrier frequency, R s  is slant range to range cell, and c
is the speed of the light. Azimuth reference function ( , ),a u rref

defined in slow time u  and range ,r  is expressed as 

, ,expa u r
R r
u u

j 2
c s

p
2

0
2

ref
m
r y=

-
^

^

^
eh

h

h
o (13)

and is created based on TR-AGPR parameters. 
Using the fast convolution theory for azimuth compression, 

the data presented in Figure 5 has been obtained. Correction of 
range migration (RMC) was intentionally skipped to focus only on 
azimuth compression. Hence, the scatterers have a curved glow. 
Both TR-SAR images obtained after forward probing [Figure 5(a)] 
and TR probing [Figure 5(b)] have low azimuth resolution 
decreasing with depth. Results of azimuth compression are 
strongly distorted and targets are unresolved. In addition, ghost 
targets caused by energy dissipation and pulse distortion appear 
in the both SAR images. Various object depths result in different 
amplitudes and levels of distortion in the backscattered echo. 
Thus, the results of SAR processing are proportionally deformed. 
For forward probing, [see Figure 5(a)], despite the absence of 
focal in depth and azimuth, S1  has the strongest echo of the 
three scatterers, S2  has slightly weaker echo and S3  is almost 
invisible. For TR probing, overstated energy normalization causes 
the opposite effect in SAR image; see Figure 5(b). Now, the 

dominant echo from S3  significantly blurring the remaining 
weak echoes from S1  and ,S2  also the accumulation of ghost tar-
gets is highly visible for .S3  The clearly visible width of the 
curved tail along synthetic aperture Lsar  indicates the level of 
defocusing and distortion of backscattered echo. Figure 5(c) is 
much better focused, both in range and azimuth dimension. All 
targets are clearly resolved with nearly the same amplitude, 
despite the lack of the RMC (the curved tail along synthetic aper-
ture Lsar  is still present, but now is uniformly thin and identical 
for all scatterers). Due to the partial propagation in inhomoge-
neous soil structure scatterers are shifted (delayed) in range 
domain, proportionally to depth location. The range shift (delay) 
results from smaller and irregular velocity of EM wave propaga-
tion through the soil layered structure. The deeper targets have 
greater displacement than shallow targets. 

CONCLUSIONS AND CHALLENGES
Conventional SAR systems, based on surface returns, process 
the backscattered energy as only reflected from terrain, and 
thus, omit the ability of the EM waves to penetrate through soil, 
scatter inside its inhomogeneous structure, and travel upward 
to the surface. Nevertheless, registration and processing of the 
backscattered waves derived from the internal multipath propa-
gation and multireflection are a key aspect of remote sensing 
imaging of the ground. Thus, AGPR, unlike SAR, have to exploit 
the internal complex scattering phenomenon to provide range/
depth focal of the backscattered energy and for high-resolution 
imaging of the soil structure. 

As presented in this tutorial, configuration of the TR-AGPR 
acquisition involves a number of different nature issues and 

[FIG4] The normalized output of matched filtering for three point scatterers , ,S S S31 2^ h after (a) forward probing (dashed lines), (b) TR 
probing (dotted lines), and (c) cross-matched filtering (solid lines). 
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limitations. First, the inhomogeneous nature of the soil (see the 
section “Physical Model”) affects both the EM parameters, and 
consequently, the time-frequency form of an incident signal 
propagating through it, scattering on its inhomogeneities and 
traveling upward in the form of backscattered waves. Backscat-
tered returns consist of many deformed, amplitude-scale, and 
phase-shifted replicas of the transmitted signal (see the section 
“Backscattered Signal”). Second, knowing that the effectiveness 
of wave penetration depends on the incident angle (Snell’s law), 
the parameters of the TR-AGPR acquisition along Lsar  have to 
be well aligned to one another. The acquisition settings (e.g., 
altitude, platform velocity, incident angle, elevation and azi-
muth beamwidth, and pulse repetition frequency) and radar 
configuration (e.g., frequency band, signal bandwidth, internal 
modulation, and signal power) affect the backscattered returns, 
for instance, by the implied impact of footprint dimensions, 
both on the surface clutter level and on the returns registration 
periods Tw  and T ,wTR  (see the section “TR-Based Method of 

Scanning”). Moreover, as presented in the section “Differences, 
Limitations, and Exceptions,” decreases of PRF negatively 
affects the performance of image synthesis. Third, adaptation of 
the TR technique into measurement schedule, besides increas-
ing the acquisition time at a given position along ,Lsar  forces 
the creation of new signal processing algorithms aimed at 
source separation (see the section “Backscattered Signal”), at an 
estimation of selective attenuation characteristics of the soil as 
well as at TR-SAR processing. 

Beyond these limitations, as shown in the section “Refocusing 
Phenomenon,” the TR approach for SAR focusing of buried tar-
gets, under certain conditions, can provide an energy refocusing 
phenomenon, and thus, significantly improve range resolution 
(Figure 4) and increase detection gain over the conventional 
approach. Additionally, assuming that shape of the radar wave-
form can have an important effect on the object detection in a 
dispersion and loss medium, the TR technique can provide a 
method for adaptation of the radar waveform to the medium. The 
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[FIG5] The result of SAR processing after (a) forward probing, (b) TR probing, and (c) cross-matched filtering (all in decibel scale).
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synthesis along Lsar  results in a high-resolution TR-AGPR image 
of the soil subsurface structure (Figure 5), that similar to a con-
ventional SAR image, represents only a reflectivity of buried 
objects located in the soil. Furthermore, properly devised and 
successfully validated algorithms for TR-AGPR are the basis for 
new challenges facing high-resolution and large-scale soil imag-
ing. For example, application of the interferometry aimed at cre-
ating a digital soil model, similar to the digital terrain model. 

In summary, proper defining of all issues related to TR-
AGPR open up many areas for high-resolution and large-scale 
imaging of optically invisible soil structure. 
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M
ultipath that involves target scattering is an 
important phenomenon in synthetic aperture 
radar (SAR). It is highly pronounced in imag-
ing of building interiors due to the 
presence of walls, ceilings, 

and floors surrounding the targets of 
interest. Multipath attributed to tar-
gets is a special type of clutter, 
which can be either sup-
pressed or exploited. The 
latter has been the subject 
of many recent works in 
the area of SAR imaging 
and has led to tangible 
improvements in target 
detection and localiza-
tion. In this article, we 
consider state-of-the-art 
multipath suppression and 
exploitation approaches, present 
their corresponding analytical 
models, and highlight their respective 
requirements, assumptions, and offerings. 
Both conventional and compressive sensing-based 
approaches are discussed, where the latter assumes the presence 
of a few behind-the-wall targets. 

INTRODUCTION
In recent years, radar imaging of building interiors has gained 
much interest due to the rising and ubiquitous use in civilian, 
security, and defense applications [1]–[3]. Typically, there is no 

visual access to the scene, and optical, ultrasound, or thermal 
imaging is not effective. In this case, sensing is performed by the 
electromagnetic (EM) modality and has allowed the emergence of 

the area of through-the-wall radar imaging (TWRI). 
Indoor targets and interior building layout are 

detected and characterized from a stand-
off distance. The radar systems may 

be ground based or airborne and 
assume different modes of 

operations and system 
parameters. One mode, 
which is consistent with 
many sensing objectives, 
is SAR. TWRI using SAR 
is the only viable choice 
when two-dimensional 

(2-D) physical apertures 
required to achieve the 

desired resolution are logisti-
cally difficult or impossible. We 

restrict the discussions to SAR 
imaging of stationary targets. Moving 

targets pose a whole set of different chal-
lenges, exceeding the scope of this article. 

SAR imaging could be impaired by the many scatterers pre-
sent in a typical indoor scene. In addition to the shortest path to 
the target and back to the receiver, the transmitted wave may 
travel on indirect paths due to secondary reflections arising from 
interior walls, floor, and ceiling. This leads to rich multipath 
associated with the targets, which, depending on the scattering 
environment, can have different adverse effects on the image 
quality and interpretation. The energy in the multipath returns 
may accumulate at locations where no physical targets reside, 
thus creating “ghosts.” With increased specular and diffuse 
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scatterings, the stationary scene can become very cluttered, 
masking the true targets and disabling their detection. The signif-
icance of multipath and ghost targets in imaging of building inte-
riors has been shown in various works. Dogaru and Le [3] showed 
the ghost phenomenon using extensive numerical EM simula-
tions. Others examined the same, using measurements in a lab 
setup [4], [5]. The radar community also acknowledged multipath 
as a significant problem on a special industry day [6]. 

Since multipath exists and is often observed, it must be 
described and accounted for, using accurate analytical models, 
and properly addressed in imaging techniques. Broadly, there are 
two paradigms to deal with indirect propagation: multipath sup-
pression and multipath exploitation. The key idea of the former is 
to characterize the multipath returns and mitigate their effects 
on image formation [7]–[16]. Different properties of direct and 
indirect radar returns can be used to distinguish between the two 
arrivals and attenuate, if not remove, the indirect returns. These 
methods are generally straightforward to apply. However, they do 
not make use of the energy and target information contained in 
the multipath returns. The second method, reminiscent of the 
RAKE receiver in wireless communications [17], aims at exploit-
ing the multipath and using it for imaging enhancements [4], [5], 
[18]–[24]. By properly modeling the indirect propagation paths, 
whether they are resolvable or not, their energy can be captured 
and attributed to their respective targets, allowing an increase in 
target to clutter and noise ratios, and thus culminating in an 
enhanced image. Further, areas in the shadow region of highly 
attenuative targets, which cannot be illuminated by the radar 
directly, can be imaged by utilizing multipath. Although mul-
tipath exploitation has potential and tangible benefits, it often 
requires prior information or is computationally demanding. 

SIGNAL MODEL
A forward scattering model should be developed for multipath to 
be properly exploited or mitigated. This requires determining the 
scattered field from the targets inside the building. If the building 
layout and imaging geometry is known, this problem can be 
exactly solved by using Maxwell’s equations [25]. However, there 
are two issues that render this approach impractical. First, solving 
a full wave model is computationally demanding and may require 
vast resources. Second, inferring the positions of the scatterers 
from the scattered field requires solving an inverse problem. 
Since the forward problem is nonlinear due to the influence of the 
scatterers on the surrounding field, the inverse problem is even 
more challenging and, for practical purposes, impossible to solve. 
To overcome these difficulties, various linear approximations of 
the forward scattering model, such as the Born approximation, 
Kirchoff approximation, and geometric optics (GO), have been 
introduced, all of which yield tractable solutions to the inverse 
problem [1], [26], [27]. More specifically, the Born approximation 
makes the weak scatterer assumption, i.e., the electrical parame-
ters of the scatterers do not differ much from that of the back-
ground medium. As such, the total field inside the target is 
approximated by the incident field [26]. The Kirchhoff or physical 
optics (PO) approximation assumes perfectly conducting targets, 

and the interaction with the incident field takes place only on the 
surface of the targets [27]. For both Born and PO approximations, 
the background medium, which is the building enclosure in the 
problem at hand, is described by the Green’s function that depicts 
the impulse response of the wave equation. The GO or ray-tracing 
approach uses local plane wave assumption or “ray of light” to 
model the propagation of the wave [1]. Since the latter is the sim-
plest and most commonly used approximation in TWRI, we focus 
on ray tracing for describing the signal model. 

BASIC SIGNAL MODEL
Consider an N-element monostatic linear array of transceivers. 
Either all of the array elements can be physically present or a 
single transceiver can be moved to different locations to synthe-
size the intended aperture. For the synthetic aperture, we 
assume the stop-and-go approximation for the movement pat-
tern, i.e., the transceiver remains stationary while it transmits 
and receives at a particular array position and then moves to the 
next location. The model may be extended to a bistatic or multi-
ple-input, multiple-output (MIMO) SAR scenario, where the 
transmitter(s) and receiver(s) move along different trajectories. 
However, this is not treated here for the sake of simplicity. 

The linear array is located along the x -axis parallel to an 
exterior wall of thickness ,d  with its element locations denoted 
by , , , .u n N0 1n f= - . At the nth array element location, a 
modulated wideband pulse { ( ) ( )}exps t j f t2 c0 r  is transmitted, 
where t  is the fast time, ( )s t  is the pulse in the complex base-
band, and fc  is the carrier frequency. For a scene of P  station-
ary point targets behind the wall at positions ( , ),x zp p  the nth 
element receives the baseband signal ( ),y tn  given by 

( ) ( ),expy t s t j f v t2n p
p

P

c n
0

1

pn pnv x r x= - - +
=

-

^ ^h h/ (1)

where pv  is the deterministic complex reflectivity of the pth 
target, and pnx  is the two-way propagation delay between the 
nth transceiver and the pth target. We consider additive 
receiver noise ( ),v tn  which is typically assumed to be an inde-
pendent and identically distributed complex circular Gaussian 
process. For through-the-wall propagation, pnx  comprises the 
components corresponding to traveling distances before, 
through, and after the wall [1]. Note that the received signal is a 
superposition of the individual direct target returns only. Target 
interactions with other targets and the surrounding environ-
ment are ignored in this model. However, in indoor scenarios, 
such interactions are both pronounced and measurable and give 
rise to multipath propagation. 

MULTIPATH PROPAGATION MODEL
We broadly categorize multipath returns as follows: 

■ Interior wall/floor/ceiling multipath: These involve indi-
rect paths with secondary specular reflections at a large 
smooth surface. 
■ Wall ringing multipath: This type involves signals that 
undergo multiple reflections within the exterior wall in tran-
sit to/from the targets. 
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■ Target-to-target interaction: This includes paths where the 
wave interacts with more than one diffusely scattering targets.
The interior wall/floor/ceiling multipath returns can be fur-

ther subdivided into the following classes: 
■ First-order multipath: This involves one secondary reflec-
tion either on the transmit or receive path. 
■ Second-order multipath: This involves two secondary 
reflections during the round-trip path. 
■ Higher-order multipath: This includes multipath returns 
involving three or more secondary reflections during the 
round-trip path.
Figure 1 shows examples of various multipath propagation 

cases. As the signal weakens at each secondary reflection, the 
higher-order multipath returns can usually be neglected. 

Considering a maximum of R  possible propagation paths for 
each target–transceiver combination, including the direct path 
and excluding target-to-target interactions, we can extend the 
n th received signal model in (1) as 

( ) ( ),expy t s t j f v t2( ) ( ) ( )
n p

r

p

P

r

R
r

c
r

n
0

1

0

1

pn pnv x r x= - - +
=

-

=

-

^ ^h h// (2)

where ( )r
pnx  is the round-trip propagation delay between the n th 

transceiver and the pth target along the rth path, and ( )
p
rv  is 

the complex reflectivity of the pth target when observed 
through the rth path. Let r 0=  correspond to the direct path 
and the remaining R 1-  be the multipath returns. The various 
propagation delays can be readily calculated using GO consider-
ations [5]. The number paths R  is a deterministic parameter 
that depends on the number and type of scattering walls, which 
are assumed to be known a priori.

For illustration, Figure 2 depicts an example of an interior 
wall multipath. The associated propagation delay may be deter-
mined by considering the equivalent two-way path to the corre-
sponding virtual target. Target-to-target interactions can be 
included in the multipath model of (2) by assuming additional 
double bounce paths between pairs of diffusely scattering targets. 
Note that, in this case, the associated propagation delays not only 
depend on the distances between the transceivers and the targets, 
but also on the separation between the targets themselves. 

IMAGE FORMATION AND THE EFFECTS 
OF MULTIPATH
Having developed the forward scattering model, we now proceed 
with the inverse problem of determining the locations of the P
point targets. The conventional approach is delay-and-sum beam-
forming or backprojection, which does not account for multipath 
propagation. As the number of targets is usually unknown a pri-
ori, the target space is discretized into a rectangular grid of P
pixels. Hence, P  is the deterministic total number of possible tar-
get positions, which is determined by the dimensions of the area 
being imaged and the system resolution. A nonexisting target is 
simply represented by a pixel with zero reflectivity. An estimate of 
the image is obtained as [1] 

( ) ( ) ( ) , , , ,I p N y t s t p P1 0 1n t
n

N

0

1
( )0
pn

) g= - = -x=
=

-

/ (3)

[FIG1] Various cases for multipath in indoor scenes. (a) Direct propagation, (b) one secondary reflection at an interior wall, (c) multiple 
reflections inside the front wall, (d) two secondary reflections at an interior wall, and (e) target-to-target multipath.

[FIG2] Multipath propagation via reflection at an interior wall. 
(Figure used with permission from [19].)  
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which employs matched filtering of the nth received signal, fol-
lowed by sampling the output at the delay corresponding to 
direct propagation to the current pixel, and finally, coherently 
summing the results corresponding to all N  array locations. 

If multipath returns are present in the received signals, the 
image formation process results in ghost targets, i.e., the energy 
in the multipath returns is focused at locations where no physi-
cal targets exist. Figure 3 shows the image of a scene consisting 
of two point targets inside a room, which was obtained by apply-
ing beamforming to data simulated using (2). In addition to the 
direct returns, only first-order interior wall multipath and two 
wall ringing multipath returns per target were assumed to be 
present in the measurements. We observe that the multipath via 
reflections at interior walls causes ghosts within the room, 
whereas the wall ringing multipath creates equally spaced 

copies of the target response in the downrange direction. The 
ghosts cause the scene image to be highly cluttered, rendering 
interpretation difficult and challenging. 

MULTIPATH SUPPRESSION
Having described the multipath model and the cluttering effects 
of multipath propagation, we revert back to multipath suppres-
sion and exploitation. The objective of multipath suppression is 
to mitigate the effects of indirect propagation on the quality of 
the reconstructed scene image. A variety of multipath suppres-
sion methods have been devised [7]–[14], which can either act 
directly on the raw data measurements or are implemented as a 
postprocessing step for the SAR image. These methods require 
the targets and ghosts/multipath returns to be well resolved and 
can achieve ghost suppression without any prior knowledge of 
the scene. 

A SUPPRESSION USING GHOST 
PROPERTIES IN SAR IMAGES
We first describe methods applicable to suppression of ghosts in 
SAR images resulting from target-to-target interactions. Con-
sidering two targets separated by a distance ,2d  the received 
signal at the n th transceiver location would consist of three 
components: the two direct returns with respective round-trip 
propagation delays ( )

n1
0
x  and ,( )

n2
0
x  and a double scattering return 

involving the two targets with a round-trip propagation delay of 
( ) / ( ) ( ) / ( ),c2 2( ) ( ) ( )

n n n
1

1
0

2
0

x x x d= + +  where c  is the speed of light 
in free space. Since the conventional SAR image formation 
method, described in the section “Image Formation and the 
Effects of Multipath,” is based on direct returns of single target 
scatterings, the additional delay associated with the double scat-
tering multipath results in a ghost located at a farther range 
than the two targets, as shown in Figure 4(a). 

Ghosts in SAR images resulting from target-to-target interac-
tions have very specific characteristics, which can be exploited to 
distinguish them from real targets. These characteristics stem 

[FIG3] A beamformed image of a two-target scene showing five 
ghost targets associated with each target (R 6=  propagation 
paths per target).
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[FIG4] The multipath suppression using the HMM-based approach [8]. The ghost at the highlighted position in (a) has been suppressed 
in (b). (Figure adapted from [8] and used with permission.)  
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from the changes in the associated double scattering geometry 
with aspect angle as viewed by the imaging system [7]. 

Most targets exhibit aspect dependent scattering. However, 
unlike the targets, the ghost intensity takes on high values only 
over a portion of the synthetic aperture (see Figure 5), implying 
a smaller effective aperture for imaging of ghosts. This causes a 
wider point spread function in crossrange for the ghosts as 
compared to a real target, and subsequently lower crossrange 
resolution. Second, the phase characteristics of the ghost differ 
across the SAR aperture, leading to changes in the ghost loca-
tion when observed through different smaller subapertures. 
This same characteristic causes the ghosts to be defocused 
when employing the full aperture. To reveal the ghost charac-
teristics in SAR images, the full aperture is typically split into 
small subapertures for separate imaging. The above ghost char-
acteristics across the subaperture images are effectively used for 
its suppression. 

A simple technique for using the variation of the ghost 
intensity across the subaperture images was proposed in [7]. 
For each “candidate” target, the variance of the intensity is cal-
culated across the subaperture images. Candidates with high 
variance are identified as ghosts and are attenuated or sup-
pressed to obtain a ghost-free image. A more sophisticated tech-
nique models the intensity variations to distinguish between the 
targets and the ghosts based on their aspect dependency [8]. 
However, the target intensity is also a function of its orientation, 
which is typically unknown. As such, the intensity variation 
across the various subaperture images can be modeled by a hid-
den Markov model (HMM), where the hidden states are the possi-
ble target orientations. The output of the HMM is the intensity 
profile RM!t  of a certain image pixel, where M  is the number 
of subapertures. Training data from known targets is used to esti-
mate the state-transition probabilities, the probability of observ-
ing a certain intensity in a given state, and the initial state 
probabilities. Thus, a specific HMM can be built for each consid-
ered target type. For notational brevity, we consider only one tar-
get type, denoted by .T1

In the testing phase, subaperture images are created from 
the full aperture image using directional filters. The pth image 
pixel has a corresponding intensity profile  ,pt  which may or 

may not be generated by the T1  target. The trained HMM is 
used to evaluate the likelihood that the observed intensity pro-
file is generated by the given target. The likelihood is given by 

 | ) ( | , ) ( | ),q qT T TP P P
q

p p1 1 1
all

t t=( / (4)

where ( | , )q TP p 1t  is the probability that pt  was generated by 
state sequence q  given target T1 , ( | )q TP 1  is the probability 
that state sequence q  occurs given target ,T1  and the summa-
tion is carried out over all possible state sequences .q  If the pixel 
corresponds to the target, the likelihood should be high, 
whereas the value should be low if it corresponds to a multipath 
ghost. The pixel in the ghost-mitigated image is obtained by 
multiplying the original full aperture image pixel with the 
obtained likelihood value 

( ) | ) ( ) .I p T I pP p 1
mitigated t= (

Hence, only targets that fit the considered model with a high 
likelihood are retained and the ghosts are suppressed. The per-
formance of the approach is illustrated in Figure 4. The ghost is 
strongly visible in the original image. However, it has been sup-
pressed by about 15 dB in the processed image. 

A different class of algorithms exploits the differences in the 
phase history of the subaperture images [9]. As explained above, 
the ghost targets exhibit a different phase history when viewed 
from different aspect angles, which depends on the distance 2d
between the two scattering centers. This is exploited for a SAR 
image reconstruction scheme that generates a separate image for 
each assumed .d  The true scatterer positions are then contained 
in the direct path image with .0d =  This approach can be com-
bined with a scheme that exploits the drift of ghost targets with 
aspect angle [10]. Drifting and nondrifting target candidates are 
separated using the Fourier transform of a subaperture image 
pair. Nondrifting targets are retained, whereas drifting targets 
are suppressed. An issue with the described approach is that the 
phase changes have to be observed over a large number of aspect 
angles. Hence, a large aperture and antennas with a large azi-
muth beamwidth are required. This may work against the power 
constraints of the transmit chain. 

One way to overcome the large synthetic aperture constraint 
is to exploit the nonlinearity in the phase delays of the ghosts 
directly in the raw data [11]. Under far-field assumptions, real 
targets exhibit a linear phase shift when viewed from a shifted 
aperture. In contrast, the ghosts have an additional nonlinear 
term in the phase history, which can be exploited to cancel mul-
tipath returns and obtain a ghost-free image. 

All of the aforementioned methods have been mainly devel-
oped under the assumption of far-field conditions, which are 
mostly applicable to airborne platforms. For ground-based sys-
tems, the building resides usually in the near-field, and may be 
observed from different sides. This gives rise to another 
approach for ghost suppression in TWRI [12]. An image is gen-
erated for each vantage point used to interrogate the building 

[FIG5] The support angle of SAR echoes in the wavenumber 
domain. Compared to the real target in (a), the ghost target in 
(b) exhibits a narrower support. (Figure adapted from [7] and 
used with permission.) 

kz kz

kx kx0

Real Target

0

Ghost Target
(a) (b)

4π B
c

4π B
c

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [115] JULY 2014

interior. After image registration, the primary reflections, i.e., 
the true targets, stay at the same location in all images. How-
ever, multipath returns place ghosts at different locations, since 
the multipath reflection geometry changes with the vantage 
point. Thus, multiplicative fusion of the registered images 
retains the overlapping true targets and mitigates the nonover-
lapping ghosts. This approach is conceptually similar to [9] and 
[10]. However, the drifts are much larger as the vantage points 
have a large separation. We note that, as the secondary specular 
reflection geometry is a function of the vantage point or aspect 
angle, the drift-based methods described previously are also 
applicable to specular multipath cases. 

OTHER METHODS FOR MULTIPATH SUPPRESSION
In this section, we briefly discuss multipath suppression meth-
ods that do not fit in the aforementioned class of algorithms. 
One possibility is a colocated MIMO-based approach [13]. In 
MIMO radar imaging, orthogonal waveforms are transmitted 
from a transmit array and the scene reflections are received, 
using a receive array. Exploiting the orthogonality of the trans-
mitted waveforms, the returns can be associated with the 
respective transmitter. From the propagation model, we know 
that the angle of departure (AOD) equals the angle of arrival 
(AOA) for the direct path. However, in the multipath propaga-
tion case, particularly so for specular multipath, the transmit 
and receive paths are different and, consequently, the AOA is dif-
ferent from the AOD. This effect can be exploited by using spa-
tial filtering on the transmit and receive signals. By retaining 
only the signal components with equal AOA and AOD, the mul-
tipath returns can be filtered out. Polarimetric features of the 
secondary reflections have also been exploited for multipath 
suppression [14]. Double scattering of the wave may change the 
polarization characteristics, which can be used to differentiate 
between targets and ghosts. Finally, even an optimized imaging 
geometry may help reduce ghosting [15]. If the secondary scat-
terer is known, the SAR trajectory can be adjusted such that 
very little energy is contained in the multipath returns. 

For extended targets modeled by a number of scattering cen-
ters, ghosts can appear on or in the vicinity of the back wall due 
to target obstructing incident waves from reaching the back 
walls. This presents a vacuum in the image along the back wall 
or, if change detection is applied, it creates ghosts, which could 
be stronger than targets. In this case, ghost mitigation can pro-
ceed utilizing the respective interrelated geometry of target and 
ghosts. Extended targets tend, in general, to produce blurred 
ghosts beyond those created by point target model. 

MULTIPATH EXPLOITATION
Multipath suppression discards the energy contained in the mul-
tipath returns to reduce their adverse effects on the image. Since 
multipath returns ultimately originate from the target, it is pru-
dent to utilize the energy and information contained in such indi-
rect target returns. Proper exploitation of the multipath returns 
has been shown to lead to higher signal-to-clutter ratio (SCR), 
higher crossrange resolution, and extended imaging regions. 

However, all these imaging enhancements usually come at a 
price. Multipath exploitation schemes either require prior knowl-
edge of the scattering environment or incur higher computa-
tional costs. In the sequel, we categorize multipath exploitation 
methods according to their multipath resolution requirements. 

EXPLOITATION REQUIRING RESOLVED MULTIPATH
For resolved multipath, the radar returns are well separated in 
fast time and form the target images and their ghosts. This cate-
gory includes shadow region imaging in indoor settings [18], 
where information of hidden areas of spatially extended targets, 
which are not in the line-of-sight of the radar, is obtained by 
exploiting target-to-target interactions. The proposed multipath 
exploitation is a two-step procedure. First, a conventional SAR 
image (·)I  is obtained using the radar returns. The scattering 
centers observed in the conventional SAR image are treated as 
new sources for the double scattered multipath returns. That is, 
the scattering centers act as new transmitters that can illuminate 
the shadow region of the targets. Next, a modified SAR algorithm 
is employed that assumes double-scattering propagation to obtain 
an image ( )Idouble $  as 

( ) ( ) ( ( ) ( ) ) ( , , ),

, , ,
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where nppx l  is the round-trip path between the transceiver, the 
first scattering center at ( , ),x zp pl l  and the second scattering point 
at ( , ) .x zp p  The weighting function ( , , )F p p nl  discards an ellip-
soidal region surrounding the line-of-sight between the nth 
antenna location and the plth first scattering center to reduce the 
introduction of ghosts at implausible locations [see Figure 6(a)]. 
Finally, the two images are normalized and superimposed to 
obtain a composite image, which depicts significantly enhanced 
visible regions of the targets. For illustration, Figure 6(b) and (c) 
also show the images ( )I $  and ( )Idouble $  for a scene containing 
three targets of circular and rectangular shapes. Clearly, the con-
ventional SAR image has difficulty in imaging the sides of the 
rectangular target, whereas the modified SAR algorithm can 
reconstruct the rectangular sides of the target. The main advan-
tage of this algorithm is an extension of the visible target region 
without the need of prior knowledge of the scene distribution or 
the surrounding environment. 

Following a similar idea, the work in [5] proposed a ghost-
mapping approach, wherein the ghosts in the conventional SAR 
image, resulting from interior wall multipath, are mapped back 
onto the respective targets to obtain a ghost-free image with 
improved SCR. Complete knowledge of the room geometry is 
assumed, especially the locations of the interior walls. Using 
this prior knowledge, for any target position, the location of the 
associated ghosts (one for each interior wall) can be predicted. 
The exploitation scheme works as follows. Using conventional 
image formation, an image of the scene containing both real 
targets and ghosts is obtained. Next, for every image pixel (and 
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possible target location), the energy of the associated ghosts is 
mapped back onto the target’s site. This is achieved by a 2-D 
convolution with a space-varying kernel ( , )H p r  that uses the 
information of the ghost locations 

( ) | ( ) | ( , ) .I p I p H p r
r

R

0

1
mapping )=

=

-

/ (6)

The weighting and shape of the kernel ( , )H p r  is chosen such that 
the full energy of the ghosts is utilized to boost the amplitude of 
the real target. At the same time, the ghosts are suppressed. 
Finally, a composite ghost-free image with improved SCR is 
obtained by a pixel-by-pixel multiplication of the two images. 
Figure 7 illustrates the result of the multipath exploitation 
scheme using real data from a scene consisting of a single reflec-
tor located between front and back walls. The conventional SAR 
image in Figure 7(a) shows both the target and the ghost due to 
multipath, originating from the back wall. The ghost is clearly 
suppressed in the composite image in Figure 7(b) obtained using 
the exploitation scheme. 

EXPLOITATION WITH UNRESOLVED MULTIPATH
The previously described exploitation methods fail if the mul-
tipath returns are not resolvable because they would lead to 
overlapping targets and ghosts in the conventional SAR image. 
Such situations may arise when system constraints permit use of 
limited bandwidth and/or aperture, and in the presence of non-
homogeneous front walls. However, using proper modeling of 
the multipath returns, the additional energy and information 
therein may still be exploited to obtain an improved scene 
reconstruction. 

If prior knowledge of the surrounding environment is avail-
able, i.e., the location and dielectric properties of the walls, a 
linear inverse scattering scheme based on the PO model may be 
employed for exploiting multipath from walls and other specu-
lar reflectors [20]. Using Kirchhoff’s approximation, a linearized 
scattering equation can be obtained as 

( , ) ( , , , ) ( , , , ) ( , ) ,E u k E u x z k G u x z k x z dxdzs n i n n0 0 0 v=
X

## (7)

[FIG6] (a) Propagation paths of single- and double-scattered waves. (b) The conventional SAR image. (c) The double scattering image. 
(Figure adapted from [18] and used with permission.) 

TrueTrue

z

3

2

1

0

z

3

2

1

0
(X, 0) –1 0 1 2

x
–1–2 0 1 2

x

z

3

2

1

0
–1–2 0 1 2

x
(a) (b) (c)

First Fresnel Zone

p′
Target

p
ε0

Direct Path
Multipath 0.3

0.4

0.6

0.8

0.5

0.7

0.9
1

Before After

–8

–2

–4

–6

–10

–12

–14

–16

4

6

5

7

2

3

2 3–2–4 10–1–3

z

x
(dB)

–8

–2

0 0

–4

–6

–10

–12

–14

–16

4

6

5

7

2

3

2 3–2–4 10–1–3

z

x
(a) (b)

(dB)

Target Target

[FIG7] A backprojected image using the (a) conventional- and (b) multipath exploitation-based image formation approaches. (Figure 
adapted from [5] and used with permission.)  

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [117] JULY 2014

where ( , )E u ks n 0  is the scattered field measured at the nth 
antenna location, k0  is the wave number in free space, ( )Ei $  is 
the incident field, ( )G $  is Green’s function for the relevant back-
ground medium, ( , )x zv  is the unknown target distribution, 
and X  describes the spatial region being interrogated. With 
prior knowledge of the background scattering environment, 
Green’s function can be calculated analytically or numerically. 
The incident field can be obtained by the known emitted field of 
the transmitter and the reflection/refraction properties of the 
front wall. Discretizing the region of interest ,X  a finite-dimen-
sional equivalent representation of (7) is obtained as 

 ,E As linscat v= (8)

where E s  is the vectorized measured scattered field, Alinscat  rep-
resents the discretized linear operator in (7), and v  is the dis-
cretized and vectorized scattering space. An estimate of v  can be 
achieved by finding the singular value decomposition of Alinscat

and inverting only the dominant singular values [20], [27]. Other 
inversion methods may employ a sparsifying regularization, as in 
[21]. Sparse reconstruction-based multipath exploitation 
approaches are described in more detail in the section “Multipath 
Exploitation/Suppression in Sparse Reconstructions.” 

A similar method has been proposed to deal with multipath 
resulting from periodically structured front walls, e.g., cinder-
block walls [4]. The propagation through the front wall is mod-
eled analytically and is exploited in the image formation step to 
utilize the additional beams that are directed toward the target 
by the Floquet modes of the front wall. 

Time-reversal methods [22]–[24] may also be applied to 
exploit multipath propagation in indoor imaging. The efficiency 
of this approach was first demonstrated by Fink [28], using 
acoustic waves and first applied to multipath environments in 
SAR by Sarabandi et al. [22]. Time-reversal is a two-step proce-
dure. In the first step, the pulse is transmitted into the back-
ground scene and reflections are received by an array. This is 
done to obtain information of the scattering scenario without the 
target of interest. In the second step, a time reversed received sig-
nal is transmitted at the receive array into the scene containing 
the target of interest. In this way, the transmitted energy is 
focused at the original transmitter location. By using this 
scheme, the information of the scattering environment can be 
used to improve the effective array aperture. It should be noted 
that if the scattering environment is known a priori, the first 
transmit receive cycle can be executed via a simulation, thereby 
overcoming the otherwise limiting constraint of background 
scene access. 

MULTIPATH EXPLOITATION/SUPPRESSION 
IN SPARSE RECONSTRUCTIONS
Sparse signal representation has been used successfully for solv-
ing SAR image formation problems in a variety of applications 
[29]. This framework is based on the observation that typical 
underlying scenes usually exhibit sparsity in terms of certain 
features, such as scene reflectivity. 

Sparse representation was first employed for imaging of 
building interiors in [30]. As only a few targets usually reside in 
the room, the complex amplitude of the image can be sparsely 
represented. The measurement model, motivated by the ray-
tracing formulation of (1), is given by 

 ,y A v= (9)

where y  is the stacked vector representing the measurements 
from all N  array element locations, v  is the sparse vectorized 
image of the scene, and the matrix A  is the dictionary of the 
radar responses under the assumed single-scattering-based 
point-target model. The scene image can be reconstructed 
using the basis pursuit denoising (BPDN) as follows: 

,A ymin 2
1

2
2

1v v m v= - +
v

t (10)

where m is a regularization parameter which provides a tradeoff 
between fidelity to measurements and noise tolerance. BPDN is a 
regularized least-squares solution that favors sparse results. Other 
reconstruction methods use greedy approaches to build the solu-
tion iteratively. Optionally, a downsampling of the measurements 
in (9) can be done to reduce the amount of data. However, special 
care has to be taken to ensure incoherence of the sampling matrix 
and the dictionary to guarantee reliable recovery. 

The sparse reconstruction approach for indoor images has been 
extended to exploit both the interior wall and wall ringing mul-
tipath returns in [19] under the assumption of prior knowledge of 
building layout. Using a discretized version of the ray-tracing signal 
model in (2) and assuming knowledge of the building layout, the 
measurement vector y  can be expressed as a superposition of indi-
vidual linear models for each of the R  propagation paths 

 ,y A A A( ) ( ) ( ) ( ) ( ) ( )R R0 0 1 1 1 1fv v v= + + + - - (11)

where ( )rv  is the vectorized image of the scene corresponding 
to the rth path and A( )r  is the dictionary that embodies the GO 
propagation model for the rth path. Next, a stacked signal 
model is formed 

,y Av= u u (12)

[FIG8] The group sparse structure for the subimages.
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with a combined dictionary [ ]A A A A( ) ( ) ( )R0 1 1g= -u  and stacked 
image vectors .( ) ( ) ( )T T R T T0 1 1gv v v v= -u ^ ^ ^h h h6 @

The vector vu  can be estimated by exploiting the common 
support property of the R  sparse images. This property stems 
from the fact that the images , ,( ) ( )R0 1fv v -  describe the same 
underlying scene. That is, if a certain element in, e.g., ( )0v  has a 
nonzero value, the corresponding elements in the other images 
should be also nonzero. 

This means that corresponding pixels in the image vectors 
should be grouped, as shown in Figure 8, necessitating a group 
sparse reconstruction approach 

,y Aarg min 2
1

,2 12
2

- mv v v= +
v

ut u u u
u

(13)
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The mixed-norm term in the regularizer ensures the group 
structure in the sparse reconstruction result. Finally, the 
reconstruction results for the individual paths are combined 
noncoherently to obtain an overall image with suppressed 
ghost targets and improved SCR; see Figure 9. Data unders-
ampling can precede the sparse reconstruction in this 
approach as well. 

An alternate approach for sparsity-based scene reconstruc-
tion in the presence of multipath has been proposed in [16]. The 
authors assume a convolutive model for multipath, wherein the 
echo waveform at each receiver is modeled as the superposition 
of the direct impulse response and the multipath impulse 
response for P  targets convolved with the transmitted pulse 
waveform s

.( )y s g d gp
p

P

p p p
0

1

) )= +
=

-

/ (15)

The direct impulse response g p  is assumed to be a single spike and 
stronger than the indirect returns. The multipath impulse 
response is the convolution of the direct impulse response g p  with 
a sparse delay vector .d p  The multipath delays for a particular tar-
get are assumed constant across the receivers. Using the above 
model, an iterative greedy sparse reconstruction approach is pro-
posed by the authors to estimate the unknown impulse responses 
g p  and delay vectors .d p  The estimated direct impulse responses 
are then used to form a ghost-free image. The method performs 
well, especially in the case of wall ringing multipath. The advantage 
of this approach lies in the fact that no prior knowledge is needed. 
However, the additional energy in the multipath returns is sup-
pressed rather than exploited for image formation. 

CONCLUSIONS
We have considered the problem of imaging building interiors 
using SAR. The emerging TWRI technology has experienced a 
rising interest over the last decade due to its numerous civil and 
military applications. We have presented an overview of different 
approaches to deal with multipath in indoor radar imaging sce-
narios. Multipath mitigation and exploitation are key to obtain-
ing reliable information when many and/or strong secondary 
scatterers are present in the scene of interest. We have provided a 
balanced and complete account of existing methods and dis-
cussed their respective advantages and disadvantages. Both con-
ventional beamforming and compressive sensing-based methods 
have been presented, where the latter assume the underlying 
scene to be sparse. We bridged analysis with supporting simula-
tion and experimental examples. 
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M
any military and civilian applications depend on the ability to remotely 
sense chemical agent (CA) clouds, from detecting small but lethal con-
centrations of chemical warfare agents (CWAs) to mapping plumes in the 
aftermath of natural disasters. Hyperspectral imaging sensors, in the 
long-wave infrared (IR) (LWIR) part of the spectrum, are particularly well 

suited for these gas-sensing tasks. Their wide fields of view allow many square kilometers to 
be imaged almost simultaneously, and their high spectral resolutions often allow the detec-
tion of chemical clouds even when they are optically thin (or nearly transparent).

In this review article, we focus on the signal processing approaches necessary to achieve 
the three main tasks of gas-phase remote sensing: detection of a plume, identification of its 
constituent gases, and quantification of the amounts present. We start with a tutorial intro-
duction to the radiance phenomenology that drives the models on which exploitation algo-
rithms are based. Next, we identify the fundamental aspects of the data-exploitation 
problem, develop algorithms that can successfully exploit data from many different sensors, 
and discuss the many challenges that remain open to the signal processing community. We 
present results using real hyperspectral data sets whenever possible.

INTRODUCTION
Spectroscopy, the study of the interaction between matter and radiated energy, originated 
with the study of visible light dispersed according to wavelength by a prism. IR spectroscopy 
is based on measurement of radiation, absorbed or emitted by a sample, as a function of the 

[Dimitris G. Manolakis, Steven E. Golowich, and Robert S. DiPietro]

[A focus on signal processing approaches]
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wavelength in the IR region of the electromagnetic spectrum 
(0.75–14 nm). Hyperspectral sensors are essentially spectrometers 
that measure the distribution of radiation in the IR region using a 
large number (typically more than 100) of contiguous narrow 
spectral bands [1]. 

Some sensors measure the spectrum of the entire scene in 
their field of view. Such single-pixel sensors can be used to collect 
multiple spectra by scanning a region to build an image or by 
staring at the same point to obtain a time-series of spectra. In 
contrast, hyperspectral imaging sensors divide the field of view 
into a rectangular grid of pixels and almost simultaneously meas-
ure the spectrum of each pixel. As a result, they produce a data 
cube with two spatial dimensions and one spectral dimension. 
Hyperspectral sensors can be deployed on satellites, unmanned 
aerial vehicles, and ground-based platforms (see Figure 1). The 
choice of a specific platform, however, imposes crucial constraints 
on the design and performance of the sensor.

Standoff detection of chemical clouds is necessary when 
physical separation is required for convenience or to put people 
and assets outside the zone of severe risk. An important class of 
standoff sensors for chemical clouds is based on the principles 
of passive IR spectroscopy. Such sensors use passive imaging 
spectroscopy in the LWIR atmospheric window (8–14 nm). For 
passive IR detectors, sunlight and the earth’s thermal emission 
provide the illuminating source. In the LWIR region, thermal 
emission from the ground is far stronger than reflected sun-
light. Thus, LWIR spectroscopy provides day and night capabil-
ity for remote chemical detection applications. The LWIR region 
is also well suited for gas-sensing applications because:

■ A wide range of chemical compounds have unique identify-
ing spectral signatures in the LWIR region. This is illustrated 
in Figure 2, which shows the spectral signature of ammonia.
■ The atmosphere is relatively transparent within the LWIR 
window. This is also illustrated in Figure 2, which shows the 
atmospheric transmittance as a function of wavelength.
The objective of a standoff sensor is to determine the pres-

ence of a chemical cloud in its field of view and provide infor-
mation for its identification and quantification. From a signal 
processing point of view, the goal is to develop algorithms to 
detect, identify, and quantify chemical gases using mathemati-
cal methodologies that address the physics of the problem, 
operational environment, characteristics of the sensor hard-
ware, and user requirements.

[FIG1] Standoff hyperspectral sensors can be deployed on 
satellites, unmanned aerial vehicles, and ground-based platforms.
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When IR radiation passes through a chemical cloud, its 
spectral composition is modified by the transmittance of the 
cloud, which in turn depends on the spectral signature of the 
gas. All practical data exploitation algorithms exploit the differ-
ences between radiation reaching the sensor directly or 
through the cloud.

When there is no plume in the sensor’s field of view, the 
observed signal consists of detector noise and the radiation from 
the surrounding background, which is called background clut-
ter or simply clutter. The presence of unwanted detector noise 
and background clutter complicates the sensing of chemical 
clouds. Noise, which can usually be reduced by better sensor 
design, sets the limit for performance. Background clutter can 
often be reduced by appropriate signal processing to reach, at 
best, noise-limited performance.

The basic operational objectives of a chemical-cloud detection 
system are summarized in Table 1. Figure 3 shows the fundamen-
tal signal processing operations required to address 

the operational objectives in an automated 
fashion. Although many of these operations 
can be addressed by existing signal process-
ing techniques, the complex interactions 
between the properties of the plume, 
atmosphere, and background pose chal-
lenges that are unique to the LWIR prob-
lem. In particular, the relative temperatures 

of these three components, and variations thereof, can have a pro-
found impact on the at-sensor radiance, while the nonlinear 
nature of the interactions can be both a help and a hindrance to 
inference algorithms. Understanding and appreciating such chal-
lenges is necessary to properly apply existing tools and develop 
new algorithms that enable the next generation of applications, 
such as real-time operation, exploitation of a greater variety of 
sensor geometries, and tomographic plume reconstruction.

APPLICATIONS
The list of applications of standoff hyperspectral imaging for chem-
ical gas sensing is long and growing. Here, we provide a sampling 
of some of the major ways in which this technology is employed.

ENVIRONMENTAL MONITORING
Many gaseous pollutants, as emitted by industrial and other 
sources, exhibit strong LWIR signatures that lend themselves 
well to passive monitoring [2]. This option has many advantages 
over in situ monitoring, most prominently the ability to survey 
wide areas rapidly and remotely, eliminating the need for site 
access. Such monitoring may be carried out either with a 
ground-based sensor with a horizontal viewing geometry or 
from an aircraft passing over the scene under study.

A comprehensive study of the down-looking airborne sce-
nario was carried out in [3] and [4], in which effluent gases 
from industrial emission stacks were imaged with the Aero-
space Spatially Enhanced Broadband Array Spectrograph Sys-
tem (SEBASS) sensor [5]. A study [6] by the Environmental 
Protection Agency (EPA), using the University of Hawaii’s Air-
borne Hyperspectral Imager (AHI) sensor [7], demonstrated 
the detection and identification of a number of hazardous 
emissions from petrochemical plants and other facilities. The 
side-looking geometry, with the ground-based Scanning IR 
Gas Imaging System (SIGIS) sensor [8], [9], was used in [10] 
to map the dispersion of a sulfur dioxide plume emitted from 
an oil-fired power plant under various atmospheric conditions. 
Similar side-looking geometries were employed in [11] and 
[12] using the Telops FIRST and Hyper-Cam sensors [13].

EMERGENCY RESPONSE
Natural and man-made disasters can result in the release of haz-
ardous chemical vapors into the atmosphere. In such situations, 
the rapid assessment of the types and quantities of such plumes 
is crucial for the protection of both first responders and local res-
idents. The EPA has been operating an always-on-call airborne 
system for this purpose for the past decade [14], [15]. The system 
employs two imagers that operate in the midwave IR (MWIR) and 

[TABLE1] OPERATIONAL AND SIGNAL PROCESSING ALGORITHM OBJECTIVES OF
AN AUTOMATED STANDOFF CHEMICAL GAS-DETECTION SYSTEM.

OPERATIONAL OBJECTIVES ALGORITHMIC OBJECTIVES 
IS AN AGENT CLOUD PRESENT? DETECT CHEMICAL CLOUD
WHICH AGENT? IDENTIFY CHEMICAL FROM LIBRARY
HOW MUCH MATERIAL WAS RELEASED? ESTIMATE CLOUD SHAPE AND STRENGTH OF CHEMICAL
WHERE IS THE CLOUD HEADED? TRACK CHEMICAL CLOUD

Detect IdentifyLWIR
Sensor

Quantify Track Cloud Report

[FIG3] The fundamental signal processing functions of an 
automated standoff chemical cloud detection system.
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[FIG2] A wide range of chemical compounds, such as ammonia, 
have unique identifying spectral signatures in the LWIR region 
(8–13 nm). The atmospheric transmittance function shows the 
presence of an atmospheric window in the LWIR from 8 to 13 nm.
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LWIR atmospheric windows; a multispectral scanner for plume 
detection over wide areas, and a cued hyperspectral spectrometer 
to measure high-spectral resolution radiances from specific 
plume locations. These latter spectra are used for gas identifica-
tion and quantification. A special-purpose spectral library tai-
lored for this application has been developed [16]. The system 
has been flown operationally on many missions in response to 
accidents, fires, and natural disasters, including Hurricanes Kat-
rina and Rita [17]. A ground-based system has been developed for 
similar purposes by the Hamburg University of Technology [18].

CHEMICAL WARFARE THREAT MITIGATION
The remote detection of CWAs and toxic industrial chemicals is 
of great importance for the protection of both civilian and mili-
tary personnel and has been studied for more than 30 years. A 
great variety of deployment scenarios exist, including stationary 
ground-based sensors for the protection of fixed targets, ground 
vehicle deployments for mobile reconnaissance, and airborne 
missions to cover wide areas. The goals of such sensors are to 
detect possible threats, identify any constituent gases as belong-
ing to a library of known agents, quantify the amount of gas 
present, and dynamically map the location of the plume, all 
with sufficiently low latency to allow responsive action to be 
taken. Wide-area sensors may be also be used to locate CWA 
production facilities by the detection of fugitive emissions. 
Some of the sensors that have been developed to address these 
threats are described in the section “Imaging Spectrometers.”

EARTH SCIENCE
The applications of remote imaging spectrometry in the earth and 
planetary sciences are vast in scope, and we mention just two direc-
tions enabled by recent advances in LWIR imaging technology.

The monitoring of volcanic emissions is important for pub-
lic health and environmental studies as they can have substan-
tial effects on local and global atmospheric chemistry. The use 
of hyperspectral imagers for this purpose has been demon-
strated with the AHI sensor flying over the Kilauea volcano 
[19] and by the SIGIS ground-based system viewing the Pop-
ocatèpetl volcano [20].

Another promise of imaging spectrometry is the mapping of 
surface mineral composition. This area is most developed in the 
visible and near-IR/short-wave IR (VNIR/SWIR) window, in which 
the spectral signatures are dominated by electronic processes. The 
LWIR regime, by contrast, provides sensitivity to vibrational pro-
cesses, and some minerals, mainly silicates and carbonates, have 
characteristic features in this range. Most work in this area has 
used multispectral radiometers, e.g., the orbital Advanced Space-
borne Thermal Emission and Reflection Radiometer (ASTER) sen-
sor [21], but increased spectral resolution offers the possibility of 
much finer mineral classification. The SEBASS sensor has been 
successfully used to explore these applications [22], [23].

IMAGING SPECTROMETERS
The fundamental function of a hyperspectral imaging sensor, also 
known as an imaging spectrometer, is to measure the spectrum 

of each picture element in the field of view of the sensor. There-
fore, at least in principle, hyperspectral sensors consist of an opti-
cal system, an image scanning mechanism, and a spectrometer.

The optical system collects the radiation originating from 
some ground surface area and focuses the intercepted rays 
onto the surface of a detector element as shown in Figure 4. 
The area of the detector projected through the system’s 
optics onto the earth’s surface coincides with the ground 
resolution element.

The solid angle, through which radiation originating from 
the ground is accepted by the optical system and reaches the 
detector, is called the detector’s instantaneous field of view 
(IFOV). The IFOV is determined by the focal length of the 
optical system and the size of the detector. Because the IFOV 
subtends an area of the terrain equal to the ground resolution 
element, the combined detector–optics system functions as a 
spatial sampler with sampling area .x y#D D  Typically, the 
ground resolution element is square and the quantity x yD D=
is known as ground–sample distance.

At any instant of time, the sensor sees the energy within its 
IFOV. The sensor stares at a ground resolution element and col-
lects photons for a time interval known as residence or dwell 
time. The energy measured within the IFOV is a weighted aver-
age of the energy reflected or emitted from all materials within 
this circular area. Because averaging is done by integration, the 
dwell time is also known as integration time. The weighting 
function, which is known as the point spread function (PSF) of 
the sensor, extends beyond the area of a ground resolution 
element. In practical systems, the PSF accounts for optical, 
motion, and detector-size effects. Each ground resolution elem-
ent is mapped onto one pixel of the image created by proper 
scanning of the surface by the sensor.

In a whisk broom system, the optical system, with the help of 
a rotating mirror and the forward motion of the sensor platform, 
scans the surface to collect a two-dimensional (2-D) grid of pixels. 
The angular field of view is that portion of the mirror sweep, 

IFOV

Angular
Field

of View

Swath Path

Ground Resolution Element

[FIG4] An illustration of basic ideas for a whisk broom 
hyperspectral remote sensing system. 
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measured in degrees, that is recorded as a scan line. The angular 
field of view and the altitude of the sensor determine the ground 
swath, which is the width of the terrain strip represented by the 
image. The radiance within the IFOV is passed onto a 
spectrometer that measures the spectrum of the pixel.

In a push broom system, there is a dedicated column of 
spectral detector elements for each cross-track pixel in the 
scene, which increases the dwell time (time-on-pixel) to the 
interval required to move one IFOV along the flight direction. 
The result is usually more accurate measurements because 
there is no moving mirror and the detector has more time to 
collect radiation from the ground resolution element. A step-
stare Fourier-transform imaging spectrometer (FTIS) simultan-
eously measures the spectra of each pixel in a 2-D array of pixels, 
which itself may or may not be scanned.

For aircraft or spaceborne instruments like the ones illus-
trated in Figure 4, the motion of the platform usually provides 

one of the scanning directions. Yet, for fixed site operation 
(such as tripod or mast-mounted instruments), either an FTIS 
must be employed or a scanning mechanism must be provided 
to build the required spatial dimensions. Measuring the spec-
trum of each ground resolution element requires a spectrom-
eter. There are three types of imaging spectrometers.

In prism spectrometers, the light passing through the prism 
is refracted over an area as a function of wavelength. Spectral 
sampling is achieved by detectors placed at proper locations to 
collect the components from a given spectral band and measure 
their radiance.

In grating spectrometers, the discontinuities on the grating 
surface redirect the incident radiation at an angle dependent on 
the wavelength. Because frequencies ( / )co m=  of integer mul-
tiple of each other are redirected in the same direction, it is 
necessary to use order-sorting filters to choose only the radi-
ation of the frequency of interest.
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[FIG5] Types of imaging spectrometers. (a) A “push broom type” imaging spectrometer using a dispersive element. The spectra of all 
pixels in the scan line are measured simultaneously. (b) “Step-stare” FTIS. The interferogram of all pixels in the field of view is 
computed simultaneously for each optical path difference (OPD). The image cube is the Fourier transform of the interferogram cube 
along the spectral dimension.
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In Fourier transform spectrometers, the incident radiation is 
split into two beams whose optical paths are varied differentially 
and recombined to allow interference. Fourier transform spec-
troscopy consists of two processes: the first, experimental, is the 
measurement of an autocorrelation function called the inter-
ferogram using a Michelson interferometer; the second, math-
ematical, is the computation of the spectrum from the 
interferogram. Spectral resolution is determined by the length 
of the measured interferogram.

Prism and grating spectrometers [see Figure 5(a)] measure 
the spectrum directly in the frequency domain. In contrast, 
Fourier transform spectrometers [see Figure 5(b)] measure the 
spectrum indirectly by computing the Fourier transform of the 
physically measured interferogram. However, every spectrom-
eter is characterized by its spectral resolution and the spanned 
spectral range. Spectral sampling is specified by the center 
wavelength and the width of each band (bandwidth or spectral 
resolution). The number of bands and their locations in the 
spectrum, expressed as wavelengths or frequencies specify the 
spectral response of the sensor.

The ground-based SEBASS (GBSS) [24] is a prism-based push 
broom imaging spectrometer with an IFOV of 1.1 mrad per pixel 
and spectral range of 7.8–13.4 nm. The focal plane array (FPA) is 
128 #  128 and measures the spectrum of 128 pixels in 
128 spectral bands. The entrance slit is aligned vertically and a 
large servo motor is used to do azimuth scanning.

The Telops FIRST imaging spectrometer [13] is a step-stare 
Michelson interferometer with spectral range of 8–12 nm, vari-
able spectral resolution of 0.25–150 cm–1, and optimum resolu-
tion 4 cm–1. The sensor uses a 320 #  256 pixel FPA with an 
IFOV of 0.35 mrad.

The Joint Services Lightweight Standoff Chemical Agent 
Detector (JSLSCAD) [25] uses a 2-D scanning Michelson inter-
ferometer with a single detector element and a 1.5° IFOV. 
JSLSCAD, which has a spectral range of 7–14 nm, operates in 
a search mode with a spectral resolution of 16 cm–1 and an 
interrogation mode with a spectral resolution of 4 cm–1.

Imaging spectrometers take indirect measurements of phys-
ical parameters in the sense that the output digital numbers are 
proportional to the incoming photon energy but they are not 
measured in any physically meaningful unit. The process of 
converting digital numbers into at-sensor spectral radiance is 
known as radiometric calibration. Conversion of at-sensor 
radiance to emissivity, which is a more complicated process, is 
discussed in the section “Signals, Distortions, and Clutter.”

AT-SENSOR RADIANCE SIGNAL MODELS
In this section, we explain the physical basis for gas detection 
with passive LWIR sensors. The radiance reaching the detector 
can often be modeled well using radiative transfer theory with 
three parallel atmospheric layers orthogonal to the line of sight 
of the sensor. The first layer extends from behind the plume to 
the background, the second layer is the plume itself, and the 
third layer is the atmosphere between the plume and the sensor. 
Each layer attenuates the radiation that passes through it and 

emits radiation on the basis of its own content and temperature. 
This is illustrated in Figure 6 for a standoff sensor with a hori-
zontal line of sight.

Several simplifying assumptions are made to arrive at 
expressions for the at-sensor radiance in the presence and 
absence of the chemical plume.

■ The atmosphere and plume are assumed free of aerosols 
and particulate matter so that scattering may be neglected 
throughout. 
■ The plume and atmosphere are each assumed to be homoge-
neous in both temperature and composition.
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[FIG6] A pictorial representation of a three-layer side-looking 
radiative transfer radiance signal model for standoff CA
detection. ,La ,ax  and ,Lp px  are the path radiance and 
transmittance of the atmosphere and plume layers, respectively, 
and Lb  is the background radiance. 

[FIG7] (a) The radiance spectra of the same pixel before and after 
the appearance of a TEP plume. (b) Plots of radiance spectral 
contrast ( ) ( )L Lon offm m-  and the absorption-coefficient library 
spectrum of TEP. (Notice the different units used for radiance and 
absorption.)
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■ The thickness of the plume layer and the distance between 
the plume and background are assumed to be small so that 
atmospheric transmittance can be neglected in those layers.
■ Reflections off the background of both plume and down-
welling atmospheric radiance are neglected.
Under these assumptions, the at-sensor radiance in the 

absence of plume, as a function of wavelength, is given by radia-
tive transfer theory [26] to be

( ) ( ) ( ) ( ),L L La a boff m m x m m= + (1)

where ( )La m  represents atmospheric path radiance and the sec-
ond term is the contribution of background radiance ( )Lb m

modulated by the atmospheric transmittance ( ) .ax m

The presence of a plume has two effects: it absorbs part of 
the radiation emitted by the background, and it emits its own 
radiation. The resulting radiance is subsequently attenuated by 
transmission through the atmosphere and is given by

( ) ( ) ( ) ( ) ( )L L La a p bon m m x m x m m= +

( ) [ ( )] ( , ),B T1a p px m x m m+ - (2)

where ( )px m  is the plume transmittance, Tp  is its temperature, 
and ( , )B Tpm  is the Planck function, which describes the radia-
tion emitted by a black body at the plume’s temperature. Refer-
ring to Figure 6, we have used Kirchhoff’s law [27] to write 

( ) [ ( )] ( , ) .L B T1p p pm x m m= -  In (2), the three terms represent 
the at-sensor radiance due to the atmosphere, the background 
radiance as modulated by the plume and atmosphere, and the 
plume radiance as modulated by the atmosphere.

The spectral transmittance function, ( ),px m  of a plume with 
NG  gas species can be modeled using Beer’s law [27]

( ) ( ) .expp m
m

N

m
1

G

x m c a m= -
=

= G/ (3)

The function ( ),ma m  which is known as the absorption coef-
ficient spectrum, is unique for each gaseous chemical and can 
be used as a spectral fingerprint. The quantity ,mc  which is 
called the concentration pathlength, is the product of two 
terms: the length along the sensor boresight that represents the 
depth of the cloud, and the average concentration along that 
path. Figure 7 shows examples of spectra with and without 
plume. The spectral contrast ( ) ( )L Lon offm m-  is shown on the 
same plot with the absorption coefficient spectrum ( )ma m  of 
triethyl phosphate (TEP), which is the released CA. Notice how 
the presence of the CA modifies the radiance spectrum of the 
background; this is precisely the information used by data 
exploitation algorithms to detect and identify CAs.

In preparation for the discussion of signal processing 
algorithms in the following sections, we present a mathem-
atically equivalent form of the radiance equation that isolates 
the spectral contrast. Combining (1) with (2), we find after 
some algebra

( ) ( ) ( ( )) ( ( , ) ( )) ( ) .L B T L L1a p p bon offm x m x m m m m= - - + (4)

This form expresses the effect of a plume as a contrast between the 
on- and off-plume radiance. Also, it highlights the physical require-
ments for plume detection: each of the terms in the product on the 
right-hand side of (4) must be nonzero. Because of their impor-
tance, we enumerate these plume visibility conditions as

1) ( ) 0a 2x m  (atmosphere not opaque)
2) ( ) 1p 1x m  (plume not transparent)
3) ( , ) ( )B T L 0p b !m m-  (nonzero contrast between plume 
black body and background radiance).
In particular, plume detection is possible only if there is con-

trast between the plume black body and background radiance 
for at least some spectral channels.

The on-plume at-sensor radiance as a nonlinear function of 
parameters that characterize the plume, atmosphere, and back-
ground is represented in (4). For some tasks, this equation is of 
direct utility. Still, there are many situations in which simplify-
ing assumptions are both valid and advantageous in terms of 
algorithmic complexity and intuition. We describe three approx-
imations that, under a wide range of situations, lead to a power-
ful linear signal model.

Many applications call for maximum sensitivity to very 
weak plumes. In the optically thin plume approximation, 
Beer’s law (3) is linearized by using the first term of its Taylor 
expansion. The flat background emissivity approximation 
exploits the fact that many background emissivity functions 

( )b me  lack sharp spectral features, unlike most chemical 
plumes, leading to the approximation ( ) .1b -me  When 
T T Tp bD = -  is small in magnitude, typically less than 5 K, 

the linear Planck function approximation holds, in which the 
Planck function is linearized in the thermal contrast term. 
Furthermore, the wavelength dependence of this difference is 
weak over the LWIR window.

Taking into consideration all three approximations, the at-
sensor radiance signal model (4) becomes

( ) ( ) ( ) ( ) ( ),L C T L
m

N

B m a m
1

on off

G

m c x m a m mD= +
=

/ (5)

where CB  is a constant independent of wavelength and temper-
ature. This signal-plus-clutter model provides the basis for most 
detection, identification, and quantification algorithms used in 
practical applications.

The expression (5) represents the radiance present at the 
sensor input. The measurements of radiance that are output by 
the sensor contain the effects of the detector spectral response 
function ( ),RF m  along with noise ( )n m  introduced by the sen-
sor. If ( )L mr  denotes the measured radiance in a spectral chan-
nel centered at m  we have

( ) ( ) ( ) ( ),L L R non on Fm m m m= +*r (6)

where the convolution operator *  is defined by

( ) ( ) ( ) ( ) .L R L R don F on F_m m o m o o-
3

3

-
* # (7)
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We stress that sensor measured radiances are always affected by 
sensor noise and other artifacts.

Suppose next that the sensor measures radiance at p  spec-
tral bands centered at wavelengths ,km .k p1 # #  If we sample 
(6) at ,km m=  we obtain

, , , , ,x g s v k p1 2k m
m

N

mk k
1

G

f= + =
=

/ (8)

where

( ),x Lk kon_ mr (9a)

,g C Tm B m_ cD (9b)

{[ ( ) ( )] ( )} | ,s Rmk a m F k_ x m a m m m m=* (9c)

and

{ ( ) ( )} | ( )v L R nk koff F k_ m m m+m m=* (9d)

are, respectively, the measured radiance, chemical contrast, at-
sensor gas signature, and background clutter plus noise. There-
fore, the principal relationship for the analysis of radiance data 
can be written in a concise matrix form as

.x s v Sg vgm
m

N

m
1

G

_= + +
=

/ (10)

According to this model, the radiance spectrum of a plume pixel 
is a linear mixture of the at-sensor gas signatures superimposed 
upon the radiance spectrum of the background. In practice, it is 
usually assumed that chemical mixtures are made up of three or 
fewer gas species: .N 3G #

SIGNALS, DISTORTIONS, AND CLUTTER
The at-sensor radiance model illustrates that the fundamental 
exploitation problem is to detect a known signal after modifica-
tion by the surrounding environment and corruption by clutter 
and noise. This requires the mathematical representation of sig-
nal and clutter and understanding the effects of atmospheric 
transmission and temperature upon the observed data.

GAS SPECTRAL LIBRARIES
For ground-level remote sensing of chemical plumes, the 
absorbance spectra of chemicals of interest are needed at atmos-
pheric pressure and temperatures close to typical surface values. 
The preferred approach for obtaining these spectra is to use 
experimentally measured spectra from a quality-assured refer-
ence database. Two such databases are publicly available, one 
maintained by the National Institute of Science and Technology 
(NIST) [28] and the other by the Pacific Northwest National 
Laboratory (PNNL) [29].

Both databases were developed with a view toward ground-
level remote sensing applications and therefore use samples 
prepared at relevant pressure and temperatures. Both cover a 
spectral range that contains the LWIR atmospheric window, 
with similar spectral resolutions of about .0 1 cm 1oD = -

wavenumbers, consistent with the limiting values allowed by 
pressure broadening at one atmosphere. The gas species 
included differ in scope, although there is enough overlap to 
allow validating comparisons. The emphasis of the NIST data-
base is greenhouse gases, the U.S. EPA hazardous air pollut-
ants and freons, while that of the PNNL set is reactive 
compounds, industrial pollutants, and the Department of 
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[FIG8] The library spectrum corresponding to freon-12 at 25 °C. The two insets contain the first and second overtones of the 
fundamental vibrational bands, appearing between 838–1,227 cm–1. Note the large dynamic range of the spectral data and, in this 
case, a signal-to-noise (root mean square) of over one million.
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Energy fossil and nuclear fuel remediation species. The two 
groups deliberately chose different methods of sample prepar-
ation to allow meaningful cross-laboratory comparisons on 
common molecules. The interlaboratory comparison of 12 
common species showed a root-mean-square deviation of less 
than 2% for integrated band densities, including small system-
atic errors in measurement [30]. In practical applications, 
these errors are ignored; they are insignificant when com-
pared to the overwhelming effects introduced by non-Gaussian 
and nonstationary background clutter. A typical PNNL library 
spectrum is shown in Figure 8.

ATMOSPHERIC COMPENSATION AND 
TEMPERATURE-EMISSIVITY SEPARATION
The radiance signal due to the plume is modulated by those of 
the atmosphere and background before arriving at the sensor, as 
demonstrated by (2). To extract the plume signal, both of these 
effects must be suppressed, which is one of the central problems 
of the remote sensing of chemical plumes, as we discuss in the 
sections “Background Clutter” and “Detection Algorithms.” 
Atmospheric compensation techniques can sometimes be used 
to approximately remove the path radiance and the transmit-
tance of the atmosphere from the signal.

Many assumptions are required to render the compensation 
task feasible. All existing algorithms depend on the atmospheric 
properties remaining constant over the entire image, which 
effectively limits applicability to the down-looking geometry. 
The in-scene atmospheric compensation (ISAC) algorithm [31] 
further assumes that many pixels in the scene are well approxi-
mated as blackbodies and that there is temperature variability 

within these pixels. In the LWIR regime, surface materials that 
radiate as blackbodies include water, vegetation, and very rough 
mineral surfaces in which many reflections occur. After such 
pixels are identified, the temperature variation may be exploited 
to recover the atmosphere parameters. The autonomous atmos-
pheric compensation (AAC) algorithm [32] is a model-based 
alternative to ISAC. It assumes that the spatial variability of the 
atmospheric transmittance is primarily due to water vapor, with 
the other atmospheric constituents approximated by standard 
atmospheric profiles. A radiative transfer code is used to relate 
the atmospheric parameters to the observed radiances. There 
are several other approaches in the literature that refine and 
extend these two.

In gas-detection applications, the properties of the back-
ground are treated as nuisance parameters, and the objective 
is suppression of the background signal to observe that of the 
plume. However, there are many applications, such as mineral 
studies and hard target detection, in which study of the back-
ground properties is the goal. Radiance measured from the 
earth’s surface in the thermal IR region consists of emissivity 
and temperature information. Variations in emissivity relate to 
the chemistry and texture of materials at the surface. Temper-
ature variations, which are an order of magnitude larger than 
emissivity variations, may obscure emissivity changes among 
pixels of the same or different clusters. Therefore, meaningful 
background modeling requires temperature-emissivity separ-
ation (TES). A fundamental difficulty is that p  spectral band 
measurements alone cannot be used to unambiguously deter-
mine p  spectral emissivities and a temperature [33]. This 
ambiguity is a serious problem for hard target detection appli-
cations, where association of emissivity spectra to physical 
materials is crucial. TES algorithms use prior information or 
ancillary measurements to obtain unique parameter recovery. 
A highly developed optimization algorithm for this task is 
automatic retrieval of temperature and emissivity using spec-
tral smoothness (ARTEMISS) [34], [35], which exploits the 
relative smoothness of the background emissivity as compared 
to the sharp spectral features commonly present in gas signa-
tures. ARTEMISS is still under active validation.

BACKGROUND CLUTTER
Real-world hyperspectral imaging scenes are made up of several 
spectrally distinct physical constituents. But, because of the lim-
ited spatial resolution of the sensor, a given pixel in the scene may 
be composed of a single pure constituent (or end member) or it 
may contain a mixture of two or more constituents. Figure 9(a) 
shows the average radiance at every pixel for a LWIR hyperspec-
tral data cube collected with the aerospace GBSS sensor. 
Figure 9(b) shows a density scatterplot (2-D histogram) in the 
first two principal components [36] accounting for 99% of the 
overall data variance. The four significant clusters correspond to 
pixels associated with sky, clouds, mountain, and ground sur-
faces, respectively. These clusters comprise physically similar pix-
els that exhibit a certain amount of random variation about a 
nominal mean value due to changes in physical composition, 
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[FIG9] (a) The average spectral radiance for every pixel of a 
128-spectral band LWIR data cube collected using the aerospace 
GBSS sensor. (b) A density scatterplot (a 2-D histogram) in the 
first two principal components of the LWIR cube shown in (a).
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temperature, atmospheric transmission, and sensor noise. There 
is a set of pixels between the sky and cloud clusters that corres-
pond to the borderline between the sky and clouds. A plausible 
explanation is that the radiance spectra of these pixels are 
obtained from the mixing of sky and cloud spectra.

Two classes of hyperspectral background clutter models that 
are widely used in gas detection, identification, and quantifica-
tion applications are density mixture models and linear sub-
space models.

DENSITY MIXTURE MODELS
Inspection of several density scatterplots, like the one in Figure 9, 
suggests that LWIR radiance data cubes can be modeled as a 
mixture of unimodal densities, i.e.,

( ) ( ), , ,x xf f 0 1k
k

N

k k k
k

N

1 1

C C

$r r r= =
= =

/ / (11)

where x  is the spectral vector, ( )xf  is the probability density 
function (pdf) describing the entire data cube, kr  is the a priori 
probability of the kth class, ( )xfk  the pdf of the kth class, and 
NC  is the number of classes. This model is used to develop per-
formance-prediction models [37].

In most applications, we model each class by a multivariate 
normal distribution

( )
( ) | |

( ) ( ) ,expx
C

x m C x mf
2

1
2
1

p
T

2 2
1

1

r
= - - --; E (12)

where m  is a p 1#  vector with entries ( )m E xi i=  and C  is a 
p p#  covariance matrix with entries ( , ) .c x xCovij i j=  The 
expression ~ ( , )x m CNp  denotes a random vector x  with pdf 
given by (12).

In practice, the mean vector and covariance matrix are 
determined using the maximum likelihood estimators

,m xN
1

i
i

N

1
=

=

t / (13)

( ) ( ) .C x m x mN
1

i

N

i i
T

1
= - -

=

t t t/ (14)

C  is typically nonsingular in practice because noise is present 
and the number of pixels greatly exceeds the number of bands. 
The random vector

( ),z C x m/1 2= -- (15)

where C /1 2-  is the square root of ,C 1-  has the spherical distri-
bution ( , ) .IN 0p  The Mahalanobis square distance

( ) ( ) ~x m C x m z zT T
p

2 1 2|D = - - =- (16)

follows a central chi-square distribution. This distribution is used 
to assess deviations from normality in hyperspectral imaging 
data. The pdf of x  has elliptical contours centered at m,  whereas 
the pdf of z  has spherical contours centered at the origin. For 
this reason, the operation (15) is called whitening or spherizing.

Normal distribution models provide mathematical tractabil-
ity but often are inconsistent with empirical hyperspectral 
imaging data [38]. This is demonstrated in Figure 10, which 
shows probability of exceedance distributions of Mahalanobis 
square distance for the GBSS data in Figure 9(a) and the theor-
etical multivariate normal distribution. These results clearly 
indicate that LWIR backgrounds exhibit tails heavier than those 
predicted by a multivariate normal distribution.

The class of elliptically contoured distributions [39] has been 
an attractive generalization of the multivariate normal distribu-
tion. It contains many distributions, which, in general, have heav-
ier tails than the normal and provide a better model for the tails of 
hyperspectral data. One important application of elliptical distri-
butions with heavy tails is in investigating the robustness of deci-
sion and estimation procedures based on the normal distribution.

A random vector x  has an elliptical distribution with 
location vector m  and scale positive-definite matrix ,C0  if its 
density takes the form

( ) | | ( ) ( ) ,x C x m C x mf c g/
p

T
0

1 2
0

1= - -- -6 @ (17)

where the function g  is typically known as the density genera-
tor. For a vector x  distributed according to (17), we use the 
notation ( , ; )m CEC gp 0  or simply ( , ) .m CEC p 0  When m 0=
and ,C I0 =  we obtain the spherical family of densities. For the 
multivariate normal distribution ( , ),m CNp  we have 

( ) ( / ),expg u u 2= - ( ) ,c 2 /
p

p 2r= -  and .C C0 =  This class of 
symmetric distributions includes the normal, Student’s ,t
Cauchy, and logistic distributions, among others [39].

Many natural hyperspectral backgrounds in the reflective 
spectral region (400–2,500 nm) can be accurately modeled 
using mixtures of elliptically contoured multivariate t -distribu-
tions [40]. The development of models for LWIR hyperspectral 
backgrounds is more challenging because of complications 
resulting from temperature-emissivity coupling. In practice, 
modeling LWIR backgrounds as multivariate t  mixtures often 
leads to underestimated false-alarm rates [41].
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[FIG10] The empirical probability of exceedance for  
a GBSS data cube. The dashed line represents a theoretical 
exceedance curve for a Gaussian distribution, which 
underestimates tail heaviness even for individual classes  
(e.g., the mountain class).
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LINEAR SUBSPACE MODELS
These models assume that each spectrum can be expressed as

x b e Bc ec ,k
k

N

k
1

B

_= + +
=

/ (18)

where { , , },b bN1 Bf ,N pB #  is a fixed set of linearly independ-
ent vectors (which are not necessarily orthogonal), e  is an 
approximation error, and the values of the coefficients ck  vary 
from pixel to pixel.

The most practical ways to determine the basis vectors bk

from the radiance data cube are automated clustering techniques 
and end member extraction algorithms. Nevertheless, the appli-
cation of both approaches to thermal hyperspectral data can be 
quite challenging [3], [42]. The difficulties are due to the radiance 
fluctuations that are induced by those of the background temper-
ature, which varies over the scene, and possibly within individual 
pixels. This source of variability is absent in the VNIR/SWIR band, 
in which radiance is almost completely due to reflected light.

For gas-detection applications, it is sufficient to represent 
the background subspace using any basis equivalent to 
{ , , } .b bN1 Bf  For convenience, we use the orthogonal basis 
obtained from the singular value decomposition (SVD) of the 
p N#  data matrix XT  with columns the spectra , , ,x xN1 f  i.e., 

X U W u wT T
k

k

r

k k
T

1
vR= =

=

u/ , (19)

where r  is the rank of X  and kvu  its singular values. We note 
that uk  are the eigenvectors of the unscaled correlation matrix 
X X.T  If we retain only the first N rB 1  dominant terms of (19), 
we obtain an approximation Xt  of X,  which is optimum in the 
sense of least squares error. The resulting total squared error is 
given by the sum of squares of the dropped singular values.

The subspace matrix B  is constructed from the NB  most 
significant left singular vectors .uk  We point out that the col-
umns of B  do not have any physical meaning. Yet, this is not a 
problem for detection applications as long as the subspace 
model provides a good approximation of the background.

An affine representation can be obtained by centering the 
spectra xi  about their mean vector and computing the SVD of 

the centered data matrix. This is equivalent to forming B  using 
the dominant eigenvectors of the estimated covariance matrix. 
This subspace is centered at the mean background spectrum. 
When the approximations of the linear signal model (5) hold 
with high accuracy, the spectral mean plays no essential role 
and the affine representation is appropriate. When higher-order 
corrections to the radiance model are taken into account, the 
subspace representation may be preferred [43], [44].

APPLICATION REQUIREMENTS 
AND PERFORMANCE METRICS
Although different applications often have different specific 
needs, they share some key tasks and associated performance 
metrics. Figure 11 illustrates the use of a hyperspectral 
imaging sensor in a typical standoff chemical sensing applica-
tion. From a user’s perspective, the performance of a sensor 
system (sensor and exploitation algorithms) is specified by 
metrics that are specific to the application. Yet, many chemi-
cal sensor systems are characterized by four key parameters: 
sensitivity, probability of detection, false-alarm rate, and 
response time [45]. The performance of a sensor system 
depends upon the sensor, environmental conditions, and sig-
nal exploitation algorithms.

Sensitivity, which is also known as detection limit, is 
defined by the lowest concentration of a CA that can be 
detected with high confidence and is typically specified in 
units of particles per million [ppm] or mass per unit air vol-
ume (particles/liter or mg/m3). Sensitivity may also be a meas-
ure of a system’s ability to discriminate between small 
differences in the concentration of an agent. Hence, a sensitive 
detector gives a large change in signal intensity for a small 
change in concentration. A meaningful quantitative definition 
of detection limit depends upon a quantitative definition of 
confidence. Furthermore, sensitivity is not directly applicable 
to LWIR monitoring systems because a minimum concentra-
tion does not exist; the optical path length of the cloud must 
be taken into account. These issues are further discussed in 
the section “Quantification Algorithms.”

The sensor response time is defined as the time interval 
between the arrival of the target agent concentration and the 
sensor detection declaration [45]. Clearly, in detect-to-warn 
applications, the response time must be less than the time nec-
essary to take protective actions. 

An alarm or hit from a detection algorithm does not neces-
sarily mean that a CA is present. If the hit is the correct 
response to the presence of a CA, we have a detection (true 
positive). False alarms occur if a detector responds when a CA 
is not present (false positive). When a detector fails to respond 
to a CA that is present, we have a missed detection (false nega-
tive). For some applications, missed detections are more prob-
lematic than false alarms because the failure to produce an 
alarm may lead to dangerous situations. There is typically a 
tradeoff between probability of detection and probability of 
false alarm (or false-alarm rate). This tradeoff is captured by 
the receiver operating characteristic (ROC) curves, which 

Sensor
Interferent

False Alarm

Agent of
Interest

False Alarm

False Alarm

Background Clutter:
Pixel-to-Pixel
Spectral Variability

[FIG11] Detection, identification, and quantification are 
significantly hindered by environmental conditions, benign 
particulates, and background variability.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


IEEE SIGNAL PROCESSING MAGAZINE [131] JULY 2014

show the probability of detection as a function of probability of 
false alarm. We stress that detection performance, quantified 
by an ROC curve, depends on the combined effect of concen-
tration, path length, agent spectral signature, noise, and back-
ground clutter. Thus, it is meaningless to specify sensitivity 
without reference to a specific ROC curve because different 
concentrations correspond to different ROC curves.

False alarms are usually observed when the targeted com-
pound is in the presence of an interferent, which may be a 
chemical molecularly similar to a CA or a substance containing 
elements that are also present in CAs. In the context of CA sens-
ing, an interferent is defined as any material present in the 
environment that retards and/or inhibits a detector’s ability to 
accurately detect the agent or agents for which it is pro-
grammed, or causes a detector to false alarm or malfunction 
[45]. However, from a signal processing perspective, only clouds 
along the sensor line of sight act as interferents (see Figure 11). 
False alarms may also be due to background clutter, defined as a 
physical environmental condition that may adversely affect the 
performance of the detection system. In our context, clutter 
refers to the pixel-to-pixel spectral variability caused by differ-
ences in material composition and temperature over the scene.

The ability of a detection algorithm to deal with false alarms is 
affected by its selectivity. Selectivity is the ability of a detection 
algorithm to respond only to the targeted chemicals in the field of 
view. A selective detector must be able to separate targeted com-
pounds, over a broad range of concentrations, from any other sub-
stances that may be present. Selectivity is related to the topics of 
signature mismatch (see the section “Detection Algorithms”) and 
CA identification (see the section “Identification Algorithms”).

Every detector has limited selectivity, which depends upon the 
detection algorithm, spectral resolution, and background clutter. 
Therefore, to distinguish true CA threats from false alarms, further 
processing of the spectroscopic measurements obtained by the 
sensor and/or additional active sensor measurements are required. 
Typically, the detection algorithm is followed by discrimination and 
identification algorithms. A discrimination algorithm assigns the 
alarm to one of a number of predetermined CA classes or to a false-
alarm class. If each class, except for the false alarm class, consists 
of a single CA, we have a CA identification problem. The statistical 
variability of background clutter and the presence of sensor noise 
make inevitable the design and evaluation of CA detection, identifi-
cation, and quantification algorithms using statistical techniques. 
These techniques are the subject of the next three sections.

DETECTION ALGORITHMS
In this section, we use the optically thin plume approximation 
to derive optimum algorithms for chemical plume detection. 
Despite their simplicity, these algorithms provide acceptable 
performance for many practical applications and provide the 
benchmark for chemical detection systems.

THEORETICAL DEVELOPMENT
The simplest and most practical algorithms for chemical gas 
detection use the linear signal model

, ~ ( , )x Sg v v m CN b b= + (20)

developed in the section “At-Sensor Radiance Signal Models,” 
assuming normally distributed clutter. If we assume that ,S

,mb  and Cb  are known, the maximum likelihood estimate of g
is the weighted-least-squares solution

( )g S C S S C x.T
b

T
b

1 1 1= - - -t (21)

Because gt  is unbiased only when ( ) ,xE 0=  we routinely 
remove mb  from the observations. This yields the mean-
centered signal model

, ~ ( , ) .x Sg v v CN 0 b= + (22)

To avoid proliferation of notation, unless otherwise stated, we con-
tinue using the symbol x  to denote the demeaned vector .x mb-

The competing hypotheses for gas detection are

: ( ),gH 0 Plume absent0 = (23a)

: ( ) .gH 0 Plume present1 ! (23b)

Using the generalized likelihood ratio test (GLRT) approach 
[46], we obtain the matched filter (MF) detector

( ) ( )x x C S S C S S C xT .T
b

T
b

T
b

1 1 1 1
MF = - - - - (24)

If we assume that the clutter covariance matrix is given by 
,Cb b

2v  where b
2v  is an unknown constant, the GLRT leads to 

the normalized MF (NMF) detector

( ) ( ) .x
x C x

x
T

T
T

b
1NMF

MF
= - (25)

The NMF detector is also known as the adaptive cosine or 
coherence estimator algorithm [47].
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[FIG12] The performance of the MF with , , , ,N 1 2 5 10 15G =
chemicals. The sensor has p 20=  spectral channels and the SCR
is .D 20=  As the number of chemicals in S  increases, the MF’s 
performance approaches the anomaly detector’s performance. 
Equality occurs when the number of signatures in S  reaches the 
number of spectral channels.
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The MF and NMF for N 1G =  are given by

( ) ( ) ,x
s C s

x C s
T T

b

T
b

1

1 2

MF = -

-

(26)

( )
( ) ( )

( ) ,x
s C s x C x

s C x
T T

b
T

b

T
b

1 1

1 2

NMF = - -

-

(27)

because the matrix S  is reduced to a single vector .s
If the number of gases is equal to the number of spectral 

bands ( )N pG =  and S  has full rank, we have

( ) ,x x C xT T
b

1
AD = - (28)

i.e., the MF becomes an anomaly detector (AD) algorithm. 
The detector distributions under each hypothesis are

( )~ ( ),xT Dp
2

AD | n (29a) 

( )~ ( ),xT Db N
2 2

MF Gv | n (29b)

( )~ ( ),xT D/ ,( )/N p N2 2NMF G Gb n- (29c)

where 0n =  under ,H0 1n =  under ,H1  and

( ) ( ) ( )Sg C SgD T
b b
2 1v= - (30)

is the signal-to-clutter ratio (SCR). Using these distributions, 
we can determine detection performance using ROC curves. 
Inspection of the ROC curves in Figure 12 shows that the per-
formance of the MF deteriorates with increasing NG  and 
reaches the performance of AD for .N pG =  Thus, in practice, it 
is preferable to use a separate detector for each chemical than to 
use one subspace detector that includes all chemicals.

To understand the meaning of single-gas AD, MF, and NMF, 
we use the whitening transformation

x C x s C sand/ /
b b

1 2 1 2= =- -u u (31)

to express these detectors in the whitened space

( ) ,x x x xT T 2
AD = =u u u (32) 

( ) ( ) ( ) ( ),x
s s

s x
s s

s x xT TMFT

T

T

T2 2
2

MF = = =u
u u

u u

u u

u u= G (33)

( )
( ) ( )

( ) .cosx
s s x x

s x
T T T

T 2
2

NMF i= =u
u u u u

u u
(34)

Inspection of the whitened space in Figure 13 shows that for 
each whitened observation vector: 1) the AD uses only its length 
(the AD is omnidirectional because it does not use the target 
signature); 2) the MF uses the length of its projection along the 
whitened signature; and 3) the NMF uses its angle with the 
whitened signature. The effectiveness of the whitening opera-
tion is further illustrated in Figure 14.

The MF maximizes the output SCR, i.e., it provides the max-
imum separation between the output distributions. The NMF is 
scale invariant and it is robust to clutter distributions with 
heavy tails.

The application of MF and NMF detectors requires estima-
tion and inversion of the background covariance matrix .Cb

But, in practice, Cb  is often ill conditioned and its small eigen-
values and corresponding eigenvectors are difficult to estimate 
and hard to compute accurately. There are many ways to deal 
with this problem. We produce numerically stable and more 
robust detectors by eliminating the smaller eigenvalues 
through averaging and loading. Thus, we approximate Cb  by

C q q q q I,b k
k

d

k k
T

k
k d

p

k
T

1 1
m a d= + +

= = +

u / / (35)

where ( ) / ( )p dd p1 ga m m= + + -+  and .0$d  The inverse 
covariance matrix can be shown to be [48], [49]

.C I q q1
b

k

k

k

d

k k
T1

1a d m d
m a=

+
-

+
--

=

u e o/ (36)

This expression shows that the inverse covariance matrix is 
built from the first d  dominant eigenvectors.
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[FIG13] A geometric interpretation of the MF, NMF, and AD
algorithms in whitened space.
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[FIG14] An illustration of background-clutter-based whitening 
operation on at-sensor radiance and a library spectrum.
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Another approach to chemical detection assumes that back-
ground clutter can be represented by the subspace model (18), 
where ~ ( , ) .e IN 0 b

2v  Then, the signal model (22) becomes

, ~ ( , ) .x Sg Bc e e IN 0 b
2v= + + (37)

The GLRT approach for (2) with known b
2v  gives [50]

( )x x P x x P xT ,T
b

T
tb1 = -= = (38)

where Pb
=  and Ptb

=  are orthogonal projection matrices

( ) ,P I B B B Bb
T T1= -= - (39)

( ) , [ ] .P I A A A A A S Btb
T T1= - == - (40)

If b
2v  is unknown, the GLRT yields

( ) .x
x P x
x P x

P x
P xT T

tb

T
b

tb

b
2 2

2

= ==

=

=

=

(41)

We note that P xb
=  and P xtb

=  are distances from the 
background and target-background subspaces, respectively. 
Note that (38) and (41) use the difference or ratio of lengths of 
the same vectors (see Figure 15). The performance of subspace 
detectors depends upon the SCR given by

( ) ( ) / .Sg P SgD T
b b0

2v= = (42)

Finally, we note that if km  are much larger than a  and ,d
(36) yields C Pb b

1 ? =-  because bk  and qk  span the same space. 
Therefore, ,s P xy T

bMF ?
=  which reveals a relationship between 

full-covariance and subspace detectors [49].

PRACTICAL CONSIDERATIONS
The most relevant metric by which to judge a detector is the ROC 
curve, as discussed in the section “Application Requirements and 
Performance Metrics,” but we can gain a great deal of insight by 
also considering the SCR, defined in (30). While the SCR, as a sin-
gle summary statistic, cannot encode all of the information in the 
ROC curve in any but the simplest of models, it generally does 
correctly track the trends in the area-under-ROC (AUROC) statis-
tic for optically thin gases, and it is far more amenable to analysis 
[51], [52]. The SCR can give misleading results for optically thick 
plumes, due to the importance of nonlinear effects in this case. 
We note that most of the analytic results for SCR apply directly 
only to the MF (26), but similar conclusions are generally found 
to hold experimentally for the NMF (27).

The detectors that we have discussed require estimates of 
the at-sensor gas signature matrix S  along with the background 
mean and covariance mb  and .Cb  Recalling (9c), the first of 
these requires knowledge of the atmospheric transmittance as 
well as the gas spectral signature; the other two must be 
obtained from background training data. Estimation error in 
any of these quantities will adversely affect the detector, in some 
cases, substantially.

There will always be some degree of signature mismatch
between the estimated at-sensor gas signature and that 

present in the scene. A small part of this discrepancy is due to 
minor differences in sample composition and conditions (pres-
sure and temperature) of the gas signature measured in the 
lab as compared to that in the field, and sensor calibration 
error. More significantly, the observed signature varies with 
concentration path length according to Beer’s law (3), a minor 
effect for optically thin gases but a major effect for thick gases. 
Still more importantly, the atmospheric transmittance modu-
lates the gas signature in (9c), and must be estimated, either 
from ancillary measurements, substitution of a standard pro-
file, or though an in-scene compensation algorithm as dis-
cussed in the section “Atmospheric Compensation and 
Temperature-Emissivity Separation.” If the gas spectral fea-
tures overlap those of the local atmosphere, substantial uncer-
tainties in the at-sensor signatures will exist. Also, for 
slant-path imaging geometries ( )ax m  will vary throughout the 
scene, further complicating matters.

The most serious issue involving the estimation of mb  and 
Cb  is the possibility that some of the pixels used as background 
training data contain the plume signal, which we refer to as 
contamination of the background estimates. Contamination is 
primarily an issue through its effect on the covariance. It is well 
known that such contamination does not affect the MF detector 
statistic in the absence of signature mismatch, but we have seen 
that some amount of mismatch is inevitable. The MF SCR can 
be computed analytically in the case that the plume is uncorre-
lated with the background and the gas signature is constant 
over the plume and is given by [53]

( , )

( , ) ,
sin

cos

s s

s s

a a
1 2

SCR
SCR SCR

SCR

C

C

o o

o

a a
2

2

2

2
2

0

2
0

b

b

v v
=
+ +c cm m

(43)

where SCRo is the SCR under optimal conditions, a
2v  is the 

variance of the plume strength over all training pixels, a  is 
the plume strength in the pixel under test, and the trigono-
metric functions are defined according to the Mahalanobis 
inner product [see (34)]. This expression makes apparent the 
facts that covariance contamination does not cause SCR loss 
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[FIG15] A geometric interpretation of subspace detectors.
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without signature mismatch (i.e., ),s s0=  and that without 
covariance corruption ( ),0av =  a small amount of signature 
mismatch causes only minor SCR loss. However, the combin-
ation of the two can cause substantial loss due to the quadratic 
dependence on SCRo in the denominator. In Figure 16, we illus-
trate this phenomenon with a data cube collected by the aero-
space GBSS sensor containing a plume detection. The detection 
result is substantially improved when the plume is removed 
from the training data used for covariance estimation.

Another view of the contamination problem may be obtained 
by decomposing the SCR as a sum of projections onto the back-
ground’s principal components. When only a single gas is pre-
sent, (30) can be written as

,
q sg

SCR
b k

k
T

k
2

2 2

v m
=

^ h/ (44)

where km  and qk  are the eigenvectors and eigenvalues of .Cb

Figure 17 shows this decomposition for a GBSS cube containing 
a plume. The vast majority of the variation in the image is con-
tained in the first few eigenvectors (blue line, computed using 
plume-free training data), illustrating that principal-component-
based dimensionality reduction using only a few components 
would preserve the background pixels of this cube almost per-
fectly. Nonetheless, the SCR in these components (green line) is 
very small, showing that such a dimensionality reduction would 
retain almost no information about the plume. By contrast, very 
high SCR values are seen at many principal components corre-
sponding to much higher index eigenvalues. These are the plume 
signal components that are visible to detection algorithms. The 
inset images show projections of the cube onto individual princi-
pal components. The first (largest) component shows the back-
ground clearly but not the plume; the plume becomes visible in 
many of the higher-order components. The red line shows the 
SCR decomposition on the principal components of the plume-
contaminated covariance matrix. Very little of the signal remains, 
which demonstrates that the amount of signature mismatch pre-
sent was sufficient to almost completely obliterate the signal. This 
result underlines the necessity of mitigating plume contamina-
tion of background training data during detection processing. 

There are two main strategies for dealing with the contami-
nation problem. The first, plume-free background estimation, is 
to remove as much of the plume as possible from the covariance 
training data with a two-pass detection process [3]. The second 
is to introduce robust detectors [52], [54], [55]. The intuition 
behind this approach is that nearby signatures may be rendered 
effectively identical by sacrificing some of the discriminating 
ability of the detector. As it is the combination of mismatch and 
plume contamination that causes loss, small differences 
between the observed and assumed gas signatures are thus ren-
dered benign. A robust MF h xy T=  may be defined as the solu-
tion to the optimization problem

min h C h h s 1subject to
h

T
b

T $ (45)

for all signatures s  in the hypersphere .s s0
2 2# e-  The 

value of e  determines the selectivity of the detector. Several 
solutions to (45) have been proposed in the literature [56]; they 
all lead to some kind of diagonal loading. An interesting solu-
tion in [55] provides a direct link between e  and the diagonal 
loading factor g  in .C Ib

2g+  The resulting MFs are robust to 
signal mismatch and covariance contamination in exchange for 
a higher false-alarm rate. An alternate form of regularization is 
provided by dominant mode rejection [57]; both forms are 
included in the expression (36) for the inverse covariance.

There are many additional factors that affect the perform-
ance of practical detectors. The sample size of the covariance 
training set may be an issue with low-spatial-resolution (usually 
scanning) spectrometers, although it is not generally a problem 
with imaging spectrometers containing tens of thousands 
of pixels or more. Chemical plumes may be widely distributed 
spatially over a scene, with variations in plume strength, 
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[FIG16] Detection images and receiver operator characteristics for 
a gas plume imaged by the aerospace GBSS sensor illustrating the 
necessity of computing background statistics using plume-free 
training data. Each detection image is normalized by background 
response (0–30 dB color scale). The solid ROC curves correspond 
to the NMF, the dashed ROC curves to the MF. (a) Broadband 
image, (b) NMF map (contaminated background estimate),  
(c) NMF map (uncontaminated background estimate), (d) MF  
map (uncontaminated background estimate), (e) MF map 
(contaminated background estimate), and (f) ROC curves derived 
from (b)–(e).
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temperature, and background characteristics over the spatial 
envelope of the plume. A spatially extended plume may be cor-
related with the background when the statistics of the latter are 
spatially nonstationary. This plume-background correlation, in 
conjunction with signature mismatch and covariance contam-
ination, can cause additional performance loss [51], [58].

The detectors we have discussed operate on a pixel-by-pixel 
basis, but often detection of the entire plume is desired. In this 
case, spatial processing can be performed to integrate the deci-
sions of nearby pixels, for example via binary integration [59], 
and segment the scene into plume-present and plume-absent 
regions. When false alarms are spatially unstructured, this pro-
cedure boosts the probability of detection and drives down the 
probability of false alarm. Further ROC gains can be obtained by 
integrating across frames of a time series of hyperspectral 
images, resulting in an event detector.

IDENTIFICATION ALGORITHMS
The task of determining the constituent gases of a detected plume 
is known as identification. Mathematically, this problem can be 
formulated as one of selecting variables in a linear model with 
correlated predictors, or model selection. There is an abundance 
of classical and recent statistical techniques dealing with this 
problem. Before delving into this subject, we will discuss the 
necessity of an identification step following the detector in a sig-
nal processing chain.

DETECTION VERSUS IDENTIFICATION
We observed in Figure 12 that ROC performance drops when 
multiple gases are included in a single detector, implying that a 
bank of detectors, with a separate detector for each kind of gas, 
should be employed instead. The question immediately arises as 
to how best to process the results of such a filter bank. An 
example that illustrates the problem is given in Figure 18, 
which shows the detection statistics at the output of a NMF fil-
ter bank for a TEP release observed by the aerospace GBSS 

hyperspectral imaging sensor. We note that the TEP-tuned NMF 
shows the maximum response; on the other hand, the diethyl 
ethyl phosphonate (DEEP)-tuned filter shows a significant 
response, and some response is visible with the tributyl phos-
phate (TBP)-tuned filter. Another view of these results is 
afforded in Figure 19 by plotting the fraction of pixels that 
exceed a given threshold, for each detector, for sequences of 
cubes taken before and after the plume release. From the pre-
release exceedance plots, we observe that an optimal detection 
threshold is approximately 0.4; however, using this threshold, 
DEEP would incorrectly be declared as present in the scene.

Ideally, our signal processing chain would not only detect this 
TEP release but also reliably inform us if TEP is the only gas pre-
sent and, if not, what combination of gases is present. The detec-
tion algorithms that we discussed in the section “Detection 
Algorithms” do not address this latter task—they do not give any 
information as to whether simultaneous TEP and DEEP detections 
means that both gases are present or only one of them. They also 
do not indicate, in the latter case, whether the stronger NMF filter 
score corresponds to the gas that is present.  It is also possible for 
false alarms to occur in pixels in which no gas from the detector 
bank is present at all; this can happen for a variety of reasons. Iden-
tification algorithms are designed to address all of these issues.

MODEL SELECTION
We recall from (22) that under the linear signal model, the 
observed radiance may be written as

,x Sg v S g S g v1 1 2 2= + = + + (46)

where we have decomposed the gas signatures in the matrix S
into two subsets. The goal of model selection algorithms is to 
determine the subset of gases S1  that are present in the scene 
along with their amounts ,g1  with the amounts of the remain-
ing library gases set to .g 02 =

The most straightforward way to choose a subset of gases is 
to try every combination of gases in the CA library, and to 
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[FIG17] A signal-to-clutter illustration. As shown by the green and red curves, the SCR is significantly reduced when background 
estimates are contaminated with signal. We can also see that significant signal-to-clutter contributions come from seemingly 
insignificant principal components. Principal-component-based dimensionality reduction retains energy but reduces detectability.
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compare the results according to some criterion. This 
approach is known as all possible regressions (APRs) and is 
feasible when the library is small, and/or there is a prior belief 
that the number of gases present is small. When neither of 
these conditions hold, the combinatorics become prohibitive 
and other approaches must be used. A popular technique in 
this latter case is stepwise regression, in which individual 
gases are added and deleted in a stepwise fashion. There are 
also Bayesian approaches to this problem.

The primary difficulty in model selection is in comparing 
models of different complexity, i.e., different numbers of gases 
present. Even in the special case of searching for a single library 
gas, as may happen in a CWA detection system, we still must 
compare the single-gas models with the background-only 
model, to eliminate the possibility of a false alarm from the 
detector. A model that is a strict superset of another will always 
exhibit a superior fit to the data, because of its additional flexi-
bility. Therefore, any useful measure of goodness of fit must 
account for this flexibility. The partial F -test is one solution 
[46], [50], [60]. It tests whether the benefit in goodness of fit of 
added term(s) is greater than that due to chance alone. Refer-
ring to (46), this approach tests the hypotheses

: ,gH 00 2 = (47)
: .gH 01 2 ! (48)

If ( )gS t  and ( )gS 1t  are the sum of squared errors for the full 
model (under )H1  and the reduced model (under ),H0  the H0

hypothesis can be tested using the F -test

( ) ( )
( ) ( )

~ ( ),x g
g g

F p q
q

S
S S

F ,q p q
2 1

2 d=
-

-
-t

t t
(49)

where ( )F ,q p q2 d-  is a noncentral F -distribution with a noncen-
trality parameter

( ) ( ) .S g P S g1
S

v

T
2 2 2 2 21d
v

= = (50)

Under ,H0 ( )xF  follows a central F -distribution .F ,q p q2 -  There-
fore, if ( ) ,xF F ,q p q22 a

-  we reject H0  with ( )100 1 a-  percent 
confidence. The test (49) measures the contribution of gases ,S2

given that the other gases S1  are already in the model. The deriva-
tion of the distribution of the F -test can be found in [46] and [60].

The partial F -test applies to nested models and is therefore a
useful criterion for the stepwise regression approach. In this 
strategy, we begin with the background-only model. At each 
stage of the algorithm, we test for the addition of each gas in 
the library that is not already present, choosing that with the 
largest F  statistic above a threshold (forward selection). We 
then test whether the elimination of any single gas in the model 
is significant (backward elimination). The procedure is repeated 
until no further variables are added.

While it may appear that the thresholds employed for the 
F -test are directly related to the probability of choosing the
correct model, the situation is actually more complicated. 
The use of multiple tests, all based on the same data, to arrive 
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[FIG18] NMF images for various chemical signatures (0–1 color 
scale). TEP was released and imaged using the aerospace GBSS 
sensor; the other three chemicals are not present in the scene. 
(a) Broadband image, (b) acetic acid (AACID) signature, (c) TEP 
signature, (d) TBP signature, and (e) DEEP signature. 
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[FIG19] The probability of exceedance curves for a sequence of 
data cubes from the TEP release of Figure 18: (a) before and (b) 
after TEP’s release. The color of each curve corresponds to the 
signature used by the NMF algorithm; different curves of the 
same color correspond to different cubes.
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at a final model results in correlations that change the distri-
bution of the outcome. Therefore, thresholds must be chosen 
empirically. For the same reason, the naive use of standard 
inferences based on the result of the test, such as confidence 
intervals, is generally incorrect.

Other model selection criteria may be applied to the gas 
identification problem, including the adjusted ,R2  Mallow’s 

,C p  the Akaike information criterion, and the Bayesian infor-
mation criterion (BIC). Instead of selecting a single model, as is 
done in APR and stepwise regression, Bayesian methods assign 
a posterior probability to each model, given the observed radi-
ance. In general, the calculation of the posteriors requires 
time-consuming numerical methods such as Monte Carlo 
Markov chain [61], but approximate forms of BIC greatly sim-
plify the computation [62]. Existing comparisons do not iden-
tify any one technique as clearly superior to the others [63]. 
More development of these methods will be necessary to 
explore the wide variety of deployment scenarios, as well as to 
study the many sources of model mismatch, as discussed in the 
section “Practical Considerations.”

FALSE-ALARM MITIGATION
In most applications, the goal of a CA detection system is to flag 
the presence of one or more of a list of agents in a signature 
library. The output of the variable selection step of the section 
“Model Selection” is a subset of gases that were selected to best 
represent the observed radiance, along with estimates of their 
strengths. The gases that are chosen are those that are most sig-
nificant by the criteria of the variable selection algorithm, but it is 
not necessarily the case that the selected gases are present in the 
scene. A false alarm is defined as a gas that is identified as present 
in the scene, when in fact it is not. False alarms can be due to a 
number of factors, such as a gas or other interferent present in 
the scene but not included in the CA library, atypical background 
radiance or other phenomenological fluctuation in the data, or 
excessive sensor noise, due either to random variation or sensor 
malfunction. In the first case, the interferent may have signature 
indistinguishable from that of the real gas at the resolution of the 
sensor. There is little that can be done in this case, but other 
sources of false alarms can potentially be eliminated by false-
alarm mitigation (FAM) algorithms.

The root cause of a false alarm is that the observed radiance 
fits the class of models spanned by the CA library well enough 
that the presence of one or more gases is considered significant 
by the detection and identification algorithms, when the gas is 
not present. Nevertheless, this determination does not imply 
that the fit is good on an absolute scale. The goal of FAM algo-
rithms is to test the absolute goodness-of-fit of a selected model 
to decide between an actual detection and a false alarm. There 
are many ways in which a lack of fit may manifest itself; hence, 
it is useful to have several measures of lack of fit, which may be 
combined to arrive at a final determination. Most such tests are 
based on various decompositions of the residuals; a variety of 
methods are discussed in [64] and similar texts. An additional 
degree of freedom that is available with imaging spectrometers 

is the use of spatial information to pool the information con-
tained in nearby pixels.

The application of FAM techniques based on goodness-of-fit 
statistics in practice can be challenging. A major reason is that 
many sources of potential model mismatch exist even when the 
scene contains only library gases. As we have seen in the sections 
“At-Sensor Radiance Signal Models” and “Detection Algorithms,” 
the linear model (10) is only an approximate representation of the 
observed radiance. Many effects can influence the goodness of fit, 
including the presence of uncompensated atmospheric modula-
tion, the nonlinear dependence of the gas signature on both the 
gas concentration and background radiance, and sensor calibra-
tion. These effects may interact in complicated ways. Some may 
be ameliorated with additional algorithms; e.g., when the scene 
and deployment geometry support atmospheric compensation 
(see the section “Atmospheric Compensation and Temperature-
Emissivity Separation”), most of the atmospheric modulation may 
be removed. Nonlinear models (see the section “Quantification 
Algorithms”) may be employed to correct for these sources of mis-
match, but the additional complexity of these algorithms may con-
flict with other system requirements, such as real-time operation. 
In any case, some residual model mismatch will always be present, 
and the challenge in FAM is to distinguish between mismatch due 
to false alarms and that due to other sources. It is apparent that 
this area is in need of significant further development.

QUANTIFICATION ALGORITHMS
After a chemical plume has been detected, and its identity estab-
lished, it is often necessary to establish the amount of gas present, 
which is known as quantification. The central parameter in 
chemical plume quantification is the mean concentration–path 
length (CL) product. When combined with information about the 
sensor and scene geometry, such as field of view and distance to 
the plume, estimates of CL may be used to obtain estimates of 
absolute gas quantity in each pixel of a scene. For some applica-
tions, this ancillary information may be available for single scenes 
from an individual sensor. Alternatively, when the plume is viewed 
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[FIG20] Cramer–Rao lower bounds on ( )Var ct  for SF6 with a 
black body background at 295 K.
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from more than one aspect with multiple sensors, tomographic 
reconstruction algorithms may enable unique plume quantifica-
tion from CL estimates. Additionally, CL plays a large role as the 
key nonlinear parameter in the radiance signal model, through 
Beer’s law. This nonlinear dependence is important when optically 
thick plumes are observed, and indeed in these cases CL estima-
tion can play a role in identification as well as quantification.

PHYSICAL MECHANISMS
Before reviewing specific CL estimation algorithms, we 
describe the challenges posed by plume phenomenology and 
the various physical mechanisms that enable the algorithms 
to arrive at estimates. We begin by framing the task as a non-
linear optimization problem. In a scene containing a plume, 
we observe on-plume and off-plume pixels, with radiances 
modeled by (2) and (1), and we hope to recover estimates of 

the CL parameters { }i i
N

1
Gc =  in Beer’s law (3), with nuisance 

parameters ,Tp ,La ( ),Lb m  and ( ) .ax m  The observed radi-
ances are corrupted by measurement noise. To isolate the 
fundamental drivers of the problem, we note that, as 
described in the section “Atmospheric Compensation and 
Temperature-Emissivity Separation,” the atmospheric radi-
ance ( )La m  and transmittance ( )ax m  may in principle be 
estimated from the off-plume pixels ( ),Loff m  reducing the 
number of nuisance parameters. We see that the primary 
challenge of CL estimation is to separate the contributions of 
the plume from those of the background.

To illustrate some of the difficulties of and prospects for CL 
estimation, it is helpful to compute the Cramer–Rao (CR) 
bounds for unbiased estimates of CL. Such bounds allow us to 
probe the limits of performance that are imposed by various 
physical mechanisms, without being tied to any particular algo-
rithm. In [65], these bounds were computed under a variety of 
assumptions. Here, we will focus on a single example that illus-
trates a number of key points about the problem. We assume a 
single gas, sulfur hexafluoride, is present, and the atmospheric 
parameters are known exactly. The noise is taken to be Gauss-
ian, independent across pixels, with a typical covariance from an 
experimentally measured cube. We work with the limiting case 
of the flat background approximation, so the background radi-
ance is completely characterized by its temperature.

In Figure 20, the CR lower bound on the standard deviation of 
the estimator ct  for the CL parameter is plotted against the 
plume temperature and CL, with fixed background temperature. 
Several important points can be inferred from this figure. First, 
the bounds diverge in two limits, those of a thin plume, and zero 
plume-background temperature contrast. This behavior is a 
result of nonidentifiability of the model. In the case of the thin 
plume, an explanation is given by (5), in which we observe that 
the CL parameter appears as a term in the product .C TB cD
Therefore, c  cannot be estimated independently from ,TD  so the 
only way that c  may be independently estimated is with extrinsic 
knowledge of .Tp  The case of zero plume-background tempera-
ture contrast violates one of the plume visibility conditions given 
after (4). When this condition is violated the plume is completely 
invisible to the sensor. We note that the nonidentifiability is only 
strictly true for pure black body backgrounds, but when the flat 
background approximation is reasonable, the CR bounds will still 
be very large when the temperature contrast is small.

At a fixed value of plume temperature, distinct from that of 
the background, we observe that the CR bound for ct  drops 
sharply as CL increases from zero. This behavior suggests that 
the non-linear dependence on c  resulting from an optically 
thick plume can be exploited, as we will see below. However, 
when the plume starts to become opaque, little background 
radiance reaches the sensor, the plume spectral signature is 
washed out into that of a black body at the plume tempera-
ture, and differences in plume strength are no longer visible. 
The CR bound therefore increases at very large values of CL.

In addition to exploiting the nonlinearity of Beer’s law, there 
are other ways to determine the plume CL. If the plume is in 
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[FIG21] The availability of enabling phenomenological effects 
(rows) for a variety of plume dispersion mechanisms (columns).

[TABLE2] A SUMMARY OF EXISTING CL ESTIMATION
 ALGORITHMS.

ALGORITHM

RADIANCE APPROXIMATION
PLUME
 TRANSMITTANCE

BACKGROUND
CONTRAST

ELS, GLS [43] LINEAR LINEAR
ELSI, GLSI, GLSF [43] LINEAR ITERATIVE
OLS [3] LINEAR CONSTANT
SPATIAL OLS [3] LINEAR CONSTANT
OBS [66] LINEAR LINEAR
OBS [67] TAYLOR SERIES LINEAR
NLS [9] EXPONENTIAL ITERATIVE
NLS [12] EXPONENTIAL CONSTANT
SB [68] EXPONENTIAL ITERATIVE
BAYESIAN MAP [61], [69] EXPONENTIAL ITERATIVE
BAYESIAN MCMC [61] EXPONENTIAL ITERATIVE
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thermal equilibrium with the surrounding atmosphere, its tem-
perature may be recovered from an atmospheric compensation 
algorithm [31]. If the background temperature or spectrum var-
ies spatially across the image, some spatial resolution may be 
sacrificed in favor of estimating CL [3]. Finally, spectral struc-
ture in the background that overlaps that of the plume can ren-
der the model identifiable [65].

The physical mechanisms that enable CL estimation may 
each be present to a greater or lesser degree in a given scene, 
depending on the source of the gaseous plume. In Figure 21, 
we tabulate which phenomena may be available for exploita-
tion for a number of common plume sources, including: 
explosive, referring to a sudden release caused by an explosive 
device; fugitive, meaning a slow, inadvertent release; stack, 
emissions from an industrial stack, and disaster, correspond-
ing to a release caused by a man-made or natural disaster, 
such as a hurricane. For example, an explosive release would, 
at least initially, entail a large temperature differential 
between the plume and surrounding atmosphere. Such would 
not be the case for slow, fugitive emissions leaking from a 
chemical production facility. Therefore, algorithms that assume 
that the plume and ambient atmosphere share the same tem-
perature would not be applicable in the former case, but would 
in the latter. The algorithms referred to in Figure 21 are 
described in the section “Algorithms.”

ALGORITHMS
Existing algorithms for gas quantification may be broadly classi-
fied according to the approximations made in the plume trans-
mittance and plume-background thermal contrast terms in (4), 
as summarized in Table 2. Those that depend on a linearization 
of Beer’s law are appropriate for optically thin plumes, while 
those that exploit the full nonlinear form can accommodate 
thick plumes. Each of these classes can be further subdivided by 
the treatment of the background radiance in the thermal con-
trast term, which may be approximated by a constant vector, a 
linear expansion in some basis, or an iteratively updated linear 
model. A variety of statistical techniques have been employed, 
many of which were compared in [44].

A class of algorithms was proposed in [43] for the case of a 
thin plume assumed to be in thermal equilibrium with the 
atmosphere. The temperature, mean transmittance, and 
upwelling radiance of the atmosphere are assumed known, as 
would be estimated from an atmospheric compensation algo-
rithm or ancillary measurements. The algorithms are based on 
different variants of statistical linear models, including extended 
least squares (ELS) and generalized least squares (GLS), and 
iterative versions (ELSI, GLSI, and GLSF). Related techniques 
that allow the plume temperature to differ from that of the 
atmosphere were proposed in [3] and [66], based on ordinary 
least squares (OLS) and orthogonal background suppression 
(OBS), respectively.

A number of authors employ algorithms that exploit the 
nonlinearity in Beer’s law to estimate CL, which in principle 
avoids the need for ancillary temperature estimates. The 

approach taken in [67] is to expand Beer’s law (3) in a series 
expansion, retaining terms beyond the linear one. The coeffi-
cients of the powers of the gas signature are obtained via a bank 
of projection filters. The CL parameter is obtained as a ratio of 
such coefficients.

The series expansion of Beer’s law may be avoided by the use 
of nonlinear least-squares (NLS) techniques, as is done in [9] and 
[12]. This approach is in principle quite general, as it can be 
applied to the full radiance model (2). Still, special cases can lead 
to simplifications and improved performance of the algorithms. 
The algorithms in [9] are specific to the case of plume and atmos-
phere in thermal equilibrium, with their common temperature 
known from some ancillary measurement. By contrast, [12] 
treats the case of stack plumes, in which the gas and atmosphere 
are generally not in thermal equilibrium. The side-looking geom-
etry particular to the case of stack emissions may be exploited by 
the choice of pixels on the chimney and in the clear sky close to, 
but outside of, the plume. The chimney pixels, which are 
assumed to have gray body emissivity, may be used to estimate 
the atmospheric transmittance between the plume and sensor. 
The clear sky pixels are used to directly estimate the background 
radiance, obviating the need for a statistical treatment. With 
knowledge of these parameters, the plume CL may be recovered.

An alternate approach for optically thick plumes is given by 
the selected band (SB) algorithm [68], which exploits the fact that 
the off-plume radiance in an on-plume pixel may be estimated 
from the bands in which the gas absorption is nearly zero. It is 
then possible to directly compute the difference between the on- 
and off-plume radiances and solve for the plume strength from 
Beer’s law, assuming the atmospheric parameters are known. The 
CL retrieval may be performed in a single spectral band, which 
leads to efficiency improvements. This procedure works well for 
gases with narrow spectral features that are nearly transparent in 
many spectral bands, and has been generalized to an iterative ver-
sion that accommodates a wide variety of gas signatures.

Bayesian approaches are taken by [69] and [61], which both 
start with the full nonlinear radiance model (2) and a low-
dimensional subspace model for background emissivity. Both 
place Bayesian priors on the parameters, and compute the max-
imum a posteriori parameter values. In addition, [61] explores 
the full posterior distribution obtained by Markov chain Monte 
Carlo (MCMC). They present an example, with simulated data, 
to argue that estimates of the posterior distribution are particu-
larly useful to handle the case of multiple gas species.

The previous algorithms for CL estimation all operate on a 
single pixel. An approach introduced in [3], which we refer to as 
Spatial OLS, exploits the spatial as well as spectral structure of a 
scene and enables CL estimation even in the flat background, 
thin plume limit with no extrinsic knowledge of the plume tem-
perature. The crucial ingredient that must be present in the 
image is spatial variation of the background radiance, which is 
manifested as spatial variation of background temperature in 
the flat background limit. An essential assumption of this 
approach is that the spatial structure of the plume varies slowly 
compared to that of the background.
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SUMMARY AND CHALLENGES
Rapid advancements in sensor and computer technology have led 
to a growing list of standoff LWIR hyperspectral gas-detection 
applications for different deployment scenarios. The effective 
sensing of chemical clouds requires the joint exploitation of sig-
nal processing algorithms, imaging-spectrometer characteristics, 
and thermal-radiance phenomenology. The underlying signal 
models serve as an indispensable guide to both the development 
of practical detection, identification, and quantification algo-
rithms and the evaluation of their performance limits.

Detection algorithms based on MF theory are effective for 
optically thin plumes when the covariance matrix used for their 
implementation is not contaminated by the plume, i.e., it is 
plume-free. The development of effective algorithms for plume-
free background estimation is a major practical challenge. Exper-
imental results show that the NMF performs better than the MF 
detector. However, the performance of both algorithms deterio-
rates as plumes become optically thick. Although the detection of 
optically thick plumes is not a major obstacle, the identification 
of such plumes is still a challenge.

The gas identification problem may be framed as the statis-
tical problem of selecting an optimal subset of a large number of 
variables in a linear or nonlinear model. Variable selection has 
deep connections to classical and modern variable selection tech-
niques in regression models, Bayesian model averaging, and com-
pressive sensing. The related problem of mitigating the effects of 
false alarms due to interferents or background anomalies involves 
assessing the goodness of fit of the resulting models. Both of 
these problems become dramatically more demanding as the 
number of gases in the library, and those potentially present in 
the plume, increase. Furthermore, these algorithms are sensitive 
to subtle nonlinear interactions in the plume radiance, rendering 
application of standard techniques challenging. New ideas will be 
needed for further progress in these areas.

Quantifying the amount of chemical vapor that is present is 
a poorly conditioned problem and quantification algorithms 
must therefore rely on application-specific physical effects. 
Some existing algorithms exploit nonlinearity among the radi-
ance parameters, while others use spatial degrees of freedom or 
specific assumptions about elements of the scene. Important 
aspects of this area are in need of further development, e.g., the 
quantification of plumes not in thermal equilibrium with the 
surrounding atmosphere.

Although remote chemical plume sensing is already a widely 
deployed and successful technology, we are still some distance 
from the goal of fully autonomous, reliable, real-time systems. 
New developments in signal processing algorithms, properly 
informed by radiance phenomenology and statistical theory, will 
be needed to fully exploit this rapidly developing technology.
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Optimal Multiuser Transmit Beamforming: 
A Difficult Problem with a Simple Solution Structure

T
ransmit beamforming is a 
versatile technique for signal 
transmission from an array of 
N  antennas to one or multi-
ple users [1]. In wireless com-

munications, the goal is to increase the 
signal power at the intended user and 
reduce interference to nonintended users. 
A high signal power is achieved by trans-
mitting the same data signal from all 
antennas but with different amplitudes 
and phases, such that the signal compo-
nents add coherently at the user. Low 
interference is accomplished by making 
the signal components add destructively
at nonintended users. This corresponds 
mathematically to designing beamform-
ing vectors (that describe the amplitudes 
and phases) to have large inner products 
with the vectors describing the intended 
channels and small inner products with 
nonintended user channels. 

If there is line-of-sight (LoS) between 
the transmitter and receiver, beamform-
ing can be seen as forming a signal beam 
towards the receiver; see Figure 1. Beam-
forming can also be applied in non-LoS 
scenarios, if the multipath channel is 
known, by making the multipath compo-
nents add coherently or destructively. 

Since transmit beamforming focuses 
the signal energy at certain places, less 
energy arrives to other places. This allows 
for so-called space-division multiple access 
(SDMA), where K  spatially separated users 
are served simultaneously. One beamform-
ing vector is assigned to each user and can 
be matched to its channel. Unfortunately, 
the finite number of transmit antennas 
only provides a limited amount of spatial 
directivity, which means that there are 

energy leakages between the users that act 
as interference. 

While it is fairly easy to design a beam-
forming vector that maximizes the signal 
power at the intended user, it is difficult to 
strike a perfect balance between maximiz-
ing the signal power and minimizing the 
interference leakage. In fact, the optimiza-
tion of multiuser transmit beamforming is 
generally a nondeterministic polynomial-
time (NP)-hard problem [2]. Nevertheless, 
this lecture note shows that the optimal 
transmit beamforming has a simple struc-
ture with very intuitive properties and 
interpretations. This structure provides a 
theoretical foundation for practical low-
complexity beamforming schemes. 

RELEVANCE
Adaptive transmit beamforming is key to 
increased spectral and energy efficiency in 
next-generation wireless networks, which 
are expected to include very large antenna 
arrays [3]. In light of the difficulty to 
compute the optimal multiuser transmit 
beamforming, there is a plethora of 

heuristic schemes. Although each scheme 
might be optimal in some special case 
and can be tweaked to fit other cases, 
these heuristic schemes generally do not 
provide sufficient degrees of freedom to 
ever achieve the optimal performance. 
The main purpose of this lecture note is 
to provide a structure of optimal linear 
transmit beamforming, with a sufficient 
number of design parameters to not lose 
optimality. This simple structure provides 
many insights and is easily extended to 
take various design constraints of practi-
cal cellular networks into account. 

PREREQUISITES
The readers require basic knowledge in 
linear algebra, communication theory, 
and convex optimization. 

PROBLEM (P1): POWER
MINIMIZATION WITH SINR 
CONSTRAINTS
We consider a downlink channel where a 
base station (BS) equipped with N  anten-
nas communicates with K  single-antenna 

Digital Object Identifier 10.1109/MSP.2014.2312183

Date of publication: 13 June 2014

[FIG1] A visualization of transmit beamforming in an LoS scenario. The beamforming 
is adapted to the location of the intended user, such that a main-lobe with a strong 
signal power is achieved towards this user while the sidelobes that cause interference 
to other nonintended users are weak.
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users using SDMA. The data signal to user 
k  is denoted s Ck !  and is normalized to 
unit power, while the vector h Ck

N 1! #

describes the corresponding channel. The 
K  different data signals are separated spa-
tially using the linear beamforming vectors 

, , ,w w CK
N

1
1f ! #  where wk  is associ-

ated with user .k  The normalized version 
/w wk k^ h is called the beamforming 

direction and points out a direction in the 
N-dimensional vector space—note that it 
only corresponds to a physical direction in 
LoS scenarios. The squared norm wk

2  is 
the power allocated for transmission to 
user .k  We model the received signal 
r Ck !  at user k  as 

,r s nh wk k
H

i
i

K

i k
1

= +
=

e o/ (1)

where nk  is additive receiver noise with 
zero mean and variance .2v  Conse-
quently, the signal-to-interference-and-
noise ratio (SINR) at user k  is 
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We use the latter, noise-normalized 
expression in this lecture note since it 
emphasizes the impact of the noise. 

The transmit beamforming can be 
optimized to maximize some perfor-
mance utility metric, which is generally 
a function of the SINRs. The main goal 
of this lecture note is to analyze a gen-
eral formulation of such a problem, 
defined later as Problem (P2), and to 
derive the structure of the optimal 
beamforming. As a preparation toward 
this goal, we first solve the relatively 
simple power minimization problem 

.

minimize

subject to SINR

w
, , k

k

K

k k

1

2
w wK1

$ c

f
=

/
(P1)

The parameters , , K1 fc c  are the SINRs 
that each user shall achieve at the opti-
mum of (P1), using as little transmit 
power as possible. The c-parameters 
can, for example, describe the SINRs 
required for achieving certain data rates. 

The values of the c-parameters are con-
stant in (P1) and clearly impact the opti-
mal beamforming solution, but we will 
see later that the solution structure is 
always the same. 

SOLUTION TO PROBLEM (P1)
The first step toward solving (P1) is to 
reformulate it as a convex problem. The 
cost function wkk

K
1

2
=

/  is clearly a 
convex function of the beamforming vec-
tors. To extract the hidden convexity of 
the SINR constraints, ,SINRk k$ c  we 
make use of a trick from [4]. We note that 
the absolute values in the SINRs in (2) 
make wk  and ke wj

k
i  completely equiva-

lent for any common phase rotation 
.Rk !i  Without loss of optimality, we 

exploit this phase ambiguity to rotate the 
phase such that the inner product h wk

H
k

is real valued and positive. This implies 
that | | .0h w h wk

H
k k

H
k

2 $=  By letting 
( )R $  denoting the real part, the con-

straint SINRk k$ c  can be rewritten as
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The reformulated SINR constraint in (3) 
is a second-order cone constraint, which 
is a convex type of constraint [4]–[6], and 
it is easy to show that Slater’s constraint 
qualification is fulfilled [7]. Hence, opti-
mization theory provides many important 
properties for the reformulated convex 
problem; in particular, strong duality and 
that the Karush–Kuhn–Tucker (KKT) 
conditions are necessary and sufficient for 
the optimal solution. It is shown in [6, 
Appendix A] (by a simple parameter 
change) that these properties also hold 
for the original problem (P1), although 
(P1) is not convex. The strong duality and 
KKT conditions for (P1) play a key role in 
this lecture note. To show this, we define 
the Lagrangian function of (P1) as 
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where 0k $m  is the Lagrange multiplier 
associated with the kth  SINR constraint. 
The dual function is min L, ,w wK1 =f

kk

K

1
m

=
/  and the strong duality implies 
that it equals the total power wkk

K 2
1=/

at the optimal solution, which we utilize 
later. To solve (P1), we now exploit the sta-
tionarity KKT conditions, which say that 

/ ,0wL k2 2 =  for , ,k 1 f= ,K  at the opti-
mal solution. This implies

0w h h w h h wk
i

i i
H

k
i k k

k
k k

H
k2 2v

m

c v

m+ - =
!

/
(5)

1 1

I h h w

h h w

N
i

i

K

i i
H

k

k

k
k k

H
k

2
1

2

+
v

m

v

m
c

+

= +

=

e

c

o

m

/

(6)

,1 1

w I h h h

h w

k N
i

i

K

i i
H

k

k

k
k
H

k

2
1

1

2

scalar

+

#

v

m

v

m
c

= +

+

=

-

=

e

c

o

m
1 2 34444 4444

/

(7)

where IN  denotes the N N#  identity 
matrix. The expression (6) is achieved 
from (5) by adding the term ( / )k

2 #m v

h h wk k
H

k  to both sides and (7) is obtained 
by multiplying with an inverse. Since 
( / ) ( / )1 1 h wk k k

H
k

2v cm +  is a scalar, (7) 
shows that the optimal wk  must be paral-
lel to .( ( / ) )I h h hN ii

K
i i

H
k

2
1

1vm+
=

-/  In 
other words, the optimal beamforming 
vectors , ,w w**

K1 f  are 

, , ,

p

k K1for

w
I h h h

I h h h
*

i

K

i

K

k k

N
i

i i
H

k

N
i

i i
H

k

2
1

1

2
1

1

beamforming
power

beamforming directionw*
k

f

v

m

v

m

=

+

+

=

=

=

-

=

-

= =u

e

e

o

o

1 2 3444444 444444

9 /

/

(8)

where pk  denotes the beamforming 
power and w*

ku  denotes the unit-norm 
beamforming direction for user .k  The 
K  unknown beamforming powers are 
computed by noting that the SINR 
constraints (3) hold with equality at the 
optimal solution. This implies /1 k #c^ h

| | | |p ph w h w**
k k

H
k ii k k

H
i

2 2 2v- =
!

u u/  for 
, , .k K1 f=  Since we know the beam-

forming directions, we have K  linear 
equations and obtain the K  powers as 
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,
p

p
M

K

1
1

2

2
h h

v

v

= -> >H H
where

[ ]
| | ,

| | ,

,

,

i j

i j

1
M

h w

h w*

*

ij i
i
H

i

i
H

j

2

2 !

c=
-

=u

u
* (9)

and [ ]M ij  denotes the ( , )i j th  element 
of the matrix .M RK K! #

By combining (8) and (9), we obtain 
the structure of optimal beamforming as a 
function of the Lagrange multipliers 

., , K1 fm m  Finding these multipliers is 
outside the scope of this lecture note, for 
reasons that will be clear in the next sec-
tion. However, we note that the Lagrange 
multipliers can be computed by convex 
optimization [4] or from the fixed-point 
equations / ( ( / )) (1 1 h INk k k

H2m v c= + +`

( / ) )h h hi i i
H

ki
K 2 1

1
m v -

=
j/  for all k  [5], [6]. 

PROBLEM (P2): GENERAL TRANSMIT
BEAMFORMING OPTIMIZATION
The main goal of this lecture note is to 
analyze a very general transmit beamform-
ing optimization problem. We want to 
maximize some arbitrary utility function 

( , , )f SINR SINRK1 f  that is strictly in-
creasing in the SINR of each user, while 
the total transmit power is limited by .P
This is stated mathematically as 

( , , )

.

f

P

maximize

subject to

SINR SINR

w

, , K

k
k

K

1

1

w wK1
f

#

f

=

2/ (P2)

Despite the conciseness of (P2), it is 
generally very hard to solve [7]. Indeed, [2] 
proves that it is NP-hard for many 
common utility functions; for example, 
the sum rate ( , , )f SINR SINRK1 f =

.( )log 1 SINRkk

K
21
+

=
/  Nevertheless, we 
will show that the structure of the optimal 
solution to (P2) is easily obtained. 

SOLUTION STRUCTURE 
TO PROBLEM (P2)
Suppose for the moment that we know the 
SINR values , ,SINR SINR**

K1 f  that are 
achieved by the optimal solution to (P2). 
What would happen if we set ,SINR*

k kc =

for , , ,k K1 f=  and solve (P1) for these 
particular c-parameters? The answer is 
that the beamforming vectors that solve 

(P1) will now also solve (P2) [7]. This is 
understood as follows: (P1) finds beam-
forming vectors that achieve the SINR val-
ues ., ,SINR SINR**

K1 f  The solution to 
(P1) must satisfy the total power con-
straint in (P2), because (P1) gives the 
beamforming that achieves the given 
SINRs using the minimal amount of 
power. Since the beamforming vectors 
from (P1) are feasible for (P2) and achieves 
the optimal SINR values, they are an opti-
mal solution to (P2) as well. 

We can, of course, not know , ,SINR*
1 f

SINR*
K  unless we actually solve (P2). In 

fact, the difference between the relatively 
easy (P1) and the difficult (P2) is that the 
SINRs are predefined in (P1) while we 
need to find the optimal SINR values 
(along with the beamforming vectors) in 
(P2). The connection between the two 
problem implies, however, that the opti-
mal beamforming for (P2) is 

, ,

p

k K1for

w
I h h

I h h h

h

*

i

K

i

K

k k

N
i

i i
H

k

N
i

i i
H

k

2
1

2
1

1

1

f

v

m

v

m

=

+

+

=
=

=

-

-

e

e

o

o

/

/

(10)

for some positive parameters ., , K1 fm m

The strong duality property of (P1) 
implies ,Pii

K

1
m =

=
/  since P  is the 

optimal cost function in (P1) and 
ii

K

1
m

=
/  is the dual function. Finding 
the optimal parameter values in this 
range is equivalent to solving (P2), thus 
it is as hard as solving the original prob-
lem. However, the importance of (10) is 
that it provides a simple structure for the 
optimal beamforming. 

Since the matrix inverse in (10) is 
the same for all users, the matrix 

[ ]W w w C* **
K

N K
1f != #  with the opti-

mal beamforming vectors can be written 
in a compact form. To this end, we note 
that ( / ) ( / )1h h H Hi i i

H H
i
K 2 2

1
v v Km =

=
/

where [ ]H h h CK
N K

1f != #  contains 
the channels and ( , , )diag K1 fK m m=

is a diagonal matrix with the m -parame-
ters. By gathering the power allocation 
in a matrix ,P  we obtain 

,1W I H H HP*
N

H
2

1
2
1

v
K= +

-

c m (11)

where ( / ( / )p 1diagP I H HN
H

1
2 1#v K= + -^ h

, , / ( / ) )p 1h I H H hK N
H

K
2

1
2 1 2

f v K+ -^ h

and ( ) /1 2$  denotes the matrix square root. 
In the next section we study the structure 
of (10) and (11) and gain some insights. 

INTUITION BEHIND THE 
OPTIMAL STRUCTURE
The optimal beamforming direction in 
(10) consists of two main parts: 1) the 
channel vector hk  between the BS and the 
intended user ;k  and 2) the matrix 

/ .I h hN ii
K

i i
H2

1

1
m v+

=

-
^` h j/  Beamform-

ing in the same direction as the channel 
(i.e., / )w h h( )

k k k
MRT
=u  is known as maxi-

mum ratio transmission (MRT) or matched 
filtering [8]. This selection maximizes the 
received signal power | |p h wk k

H
k

2u  at the 
intended user, because 

| |argmax h w
h
h

:
k
H

k
k

k2

1w wk k
2

=
=

u
u u

(12)

due to the Cauchy–Schwarz inequality. 
This is the optimal beamforming direction 
for ,K 1=  but not when there are multi-
ple users because the interuser interfer-
ence is unaccounted for in MRT. This is 
basically what the multiplication of hk

with /I h hN ii
K

i i
H2

1

1
m v+

=

-
^` h j/  (before 

normalization) takes care of; it rotates 
MRT to reduce the interference that 
is caused in the co-user directions 

, , , , , .h h h hk k K1 1 1f f- +  This interpreta-
tion is illustrated in Figure 2, where the 
optimal beamforming lies somewhere in 
between MRT and the vector that is orthog-
onal to all co-user channels. The optimal 
beamforming direction depends ultimately 
on the utility function ( , , ) .f $ $f  However, 
the parameter 0i $m  can be seen as the 
priority of user ,i  where a larger value 
means that other users’ beamforming vec-
tors will be more orthogonal to .hi

ASYMPTOTIC PROPERTIES
Next, we study the asymptotic beamform-
ing properties. In the low signal-to-noise 
ratio (SNR) case, represented by ,2 " 3v

the system is noise-limited and the beam-
forming matrix in (11) converges to 

( ) ,0W I HP HP*
N

1 2
1

2
1

2
2 2= + =" " "3 3 3v
v v

-

(13)

where the matrix inverse vanishes and 
P 2"3v  denotes the asymptotic power 
allocation. This implies that w*

k  is a 
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scaled version of the channel vector ,hk

which is equivalent to MRT. 
At high SNRs, given by ,02 "v  the 

system is interference-limited. We focus on 
the case N K$  with at least one spatial 
degree-of-freedom per user—this is the 
meaningful operating regime for SDMA. 
To avoid singularity in the inverse when 2v

is small, we use the identity ( )I AB A1+ -

( )A I BA 1= + -  and rewrite (11) as 
W H I H H P /*

K
H2 1 1 2v K= +

- u^ h ,  where 
( / ( ) , ,pdiagP I H H hK

H
1

2 1
1

2
fv K= + -u

/ ( ) )p I H H hK K
H

K
2 1 2
v K+ -  denotes 

the corresponding rewritten power alloca-
tion matrix. It now follows that 

,

0W H I H H P

H H H P

*
K

H

H

0
1

0

1 1
0

2 2

2

K

K

= +

=

" "

"

v v

v

-

- -

u

u

^

^

h

h (14)

where the term IK2v  vanishes when 
02 "v  and P 02"v

u  denotes the asymptotic 
power allocation. This solution is known 
as channel inversion or zero-forcing 
beamforming (ZFBF) [9], because it con-
tains the pseudoinverse H H HH 1-^ h  of the 
channel matrix .HH  Hence, H W*H

02 ="v

P1
02K "v

- u  is a diagonal matrix. Since the 
off-diagonal elements are of the form 

0h w*
i
H

k =  for ,i k!  this beamforming 
causes zero interuser interference by pro-
jecting hk  onto the subspace that is 
orthogonal to the co-user channels. 

The asymptotic properties are intuitive 
if we look at the SINR in (2). The noise 
dominates over the interference at low 
SNRs, thus we should use MRT to maxi-
mize the signal power without caring 
about interference. On the contrary, the 
interference dominates over the noise at 
high SNRs, thus we should use ZFBF to 
remove it. We recall from Figure 2 that 
MRT and ZFBF are also the two extremes 
from a geometric perspective and the opti-
mal beamforming at arbitrary SNR balance 
between these extremes. 

Another asymptotic regime has 
received much attention: the use of very 
large arrays where the number of anten-
nas, ,N  goes to infinity in the perfor-
mance analysis [3]. A key motivation is 
that the squared channel norms hk

2^ h

are proportional to ,N  while the cross-
products (| |h hi

H
k  for )i k!  increase 

more slowly with N  (the exact scaling 
depends on the channel models). Hence, 

the user channels become orthogonal as 
,N " 3  which reduces interference and 

allows for less transmit power. Observe 
that I H H H HK

H H2 .v K K+  for large 
,N  since only the elements of H HH  grow 

with .N  Similar to (14), one can then 
prove that ZFBF is asymptotically optimal. 
MRT performs relatively well in this 
regime due to the asymptotic channel 
orthogonality, but will not reach the same 
performance as ZFBF [3, Table 1]. 

RELATIONSHIP TO RECEIVE 
BEAMFORMING
There are striking similarities between 
transmit beamforming in the downlink 
and receive beamforming in the uplink, 
but also fundamental differences. To 
describe these, we consider the uplink sce-
nario where the same K  users are trans-
mitting to the same BS. The received signal 
r CN 1! #  at the BS is ,sr h ni ii

K

1
= +

=
/

where user k  transmits the data signal sk

using the uplink transmit power .qk  The 
receiver noise n  has zero mean and the 
covariance matrix .IN

2v  The uplink SINR 
for the signal from user k  is 

| |

| |
,

q

q

SINR
h v v I v

h v
k

i
i
H

k k
H

N k
i k

k
k
H

k

2
2

2
2

uplink

v

v=

+
!

/
(15)

where v Ck
N 1! #  is the unit-norm receive 

beamforming vector used by the BS to spa-
tially discriminate the signal sent by user k
from the interfering signals. The uplink 
SINR in (15) is similar to the downlink 
SINR in (2), but the noise term is scaled by 

vk
2  and the indices are swapped in the 

interference term: | |h wk
H

i
2  in the down-

link is replaced by | |q h vi i
H

k
2  in the 

uplink. The latter is because downlink 
interference originates from the beam-
forming vectors of other users, while 
uplink interference arrives through the 
channels from other users. This tiny differ-
ence has a fundamental impact on the opti-
mization, because the uplink SINR of user 
k  only contains its own receive beamform-
ing vector .vk  We can therefore optimize 
the beamforming separately for each k:

| |

| |

.

argmax q

q

q

q

h v v I v

h v

I h h h

I h h h

:

i

K
i

K

i
i
H

k k
H

N k
i k

k
k
H

k

N
i

i i
H
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N
i

i i
H
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2
2

2
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2
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1

2
1

1

1

v vk k
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v

v

v

v

+

=

+

+

!

=

-
=

=

-

c

c

m

m

/

/

/

(16)

The solution follows since this is the maxi-
mization of a generalized Rayleigh quo-
tient [7]. Note that the same receive 
beamforming is optimal irrespective of 
which function of the uplink SINRs we 
want to optimize. In fact, (16) also mini-
mizes the mean squared error (MSE) 
between the transmitted signal and the 
processed received signal, thus it is known 
as the Wiener filter and minimum MSE 
(MMSE) filter [9]. 

The optimal transmit and receive 
beamforming have the same structure; the 
Wiener filter is obtained from (10) by set-
ting km  equal to the uplink transmit power 

.qk  This parameter choice is only optimal 

Subspace of
Co-User Channels

h1, ..., hk − 1, hk + 1, ..., hK

Zero Interuser
Interference

(ZFBF)

Maximize
Signal Power

(MRT)

hk wk

Optimal
Beamforming

Channel
Direction

[FIG2] The optimal beamforming w*
k  is based on the channel direction hk  but rotated 

to balance between high signal power and being orthogonal to the co-user channels.
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for the downlink in symmetric scenarios, 
as discussed later. In general, the parame-
ters are different because the uplink sig-
nals pass through different channels (thus, 
the uplink is affected by variations in the 
channel norms), while everything that 
reaches a user in the downlink has passed 
through a single channel [4]. 

HEURISTIC TRANSMIT 
BEAMFORMING
It is generally hard to find the optimal 
m-parameters, but the beamforming 
structure in (10) and (11) serves as a 
foundation for heuristic beamforming; 
that is, we can select the parameters 
judiciously and hope for close-to-optimal 
beamforming. If we make all the param-
eters equal, km m=  for all ,k  we obtain 

.

W I HH HP

H I H H P

N
H

K
H

2

1
2
1

2

1
2
1

v
m

v
m

= +

= +

-

-

c

c

m

m (17)

The heuristic beamforming in (17) is 
known as regularized ZFBF [10] since the 
identity matrix acts as a regularization of 
the ZFBF in (14). Regularization is a com-
mon way to achieve numerical stability 
and robustness to channel uncertainty. 
Since there is only a single parameter m

in regularized ZFBF, it can be optimized 
for a certain transmission scenario by con-
ventional line search. 

The sum property Pii

K

1
m =

=
/  sug-

gests that we set the parameter in regular-
ized ZFBF equal to the average transmit 
power: / .P Km =  This parameter choice 
has a simple interpretation, because the 
corresponding beamforming directions 

/P KI h h hN i
K

i i
H

k
2

1

1
v+

=

-
`` j j/  are the 

ones that maximize the ratio of the 
desired signal power to the noise power 
plus the interference power caused to 
other users; in other words,

| |

| |

.

argmax

K
P

K
P

K
P

K
P

1h w

h w

I h h h

I h h h
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i

K

i
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i
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i k

k
H

k

N i i
H
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H
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2
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v
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=

+
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=
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=
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e

e

o

o

/

/

/

(18)

This heuristic performance metric is 
identical to maximization of the uplink 
SINR in (15) for equal uplink powers 

/ .P Kqi =  Hence, (18) is solved, similar to 
(16), as a generalized Rayleigh quotient. 
The idea of maximizing the metric in (18) 

has been proposed independently by 
many authors and the resulting beam-
forming has received many different 
names. The earliest work might be [11] 
from 1995, where the authors suggested 
beamforming “such that the quotient of 
the mean power of the desired contribu-
tion to the undesired contributions is 
maximized.” Due to the relationship to 
receive beamforming, this scheme is also 
known as transmit Wiener filter [9], sig-
nal-to-leakage-and-noise ratio beam-
forming [12], transmit MMSE beamform-
ing, and virtual SINR beamforming; see 
[7, Remark 3.2] for a further historical 
background. 

The heuristic beamforming direction 
in (18) is truly optimal only in special 
cases. For example, consider a symmet-
ric scenario where the channels are 
equally strong and have well-separated 
directivity, while the utility function in 
(P2) is symmetric with respect to 

, , .SINR SINRK1 f  It then makes sense 
to let the m-parameters be symmetric as 
well, which implies /P Kkm =  for all k
since .Pii

K

1
m =

=
/  In other words, the 

reason that the transmit MMSE beam-
forming performs well is that it satisfies 
the optimal beamforming structure—at 
least in symmetric scenarios. In general, 
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Optimal Beamforming
Transmit MMSE/Regularized ZFBF
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Optimal Beamforming
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Signal Power

High SNR:
Suppress
Interuser

Interference

−10 −5 0 5 10 15 20 25 30
Average SNR (dB)

(a) (b)

[FIG3] The average sum rate for K 4=  users as a function of the average SNR. Heuristic beamforming can perform closely to the 
optimal beamforming, particularly when there are many more antennas than users. Transmit MMSE/regularized ZFBF always 
performs better, or equally well, as MRT and ZFBF. (a) N 4=  antennas. (b) N 12=  antennas.
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we need all the K  degrees of freedom 
provided by , , K1 fm m  to find the opti-
mal beamforming, because the single 
parameter in regularized ZFBF does not 
provide enough degrees of freedom to 
manage asymmetric user channel condi-
tions and utility functions. 

The properties of MRT, ZFBF, and 
transmit MMSE beamforming are illus-
trated by simulation in Figure 3. We 
consider K 4=  users and (P2) with the 
sum rate as utility function: ( , ,f SINR1 f

) ( ) .log 1SINR SINRkk4 21

4
= +

=
/  The 

simulation results are averaged over ran-
dom circularly symmetric complex Gauss-
ian channel realizations, ~ ( , ),0h ICNk N

and the SNR is measured as / .P 2v  The 
optimal beamforming is computed by the 
branch-reduce-and-bound algorithm in [7] 
whose computational complexity grows 
exponentially with .K  This huge complex-
ity stands in contrast to the closed-form 
heuristic beamforming directions that are 
combined with a closed-form power alloca-
tion scheme from [7, Theorem 3.16]. 

Figure 3 shows the simulation results 
for (a) N 4=  and (b) N 12=  transmit 
antennas. In the former case, we observe 
that MRT is near optimal at low SNRs, 
while ZFBF is asymptotically optimal at 
high SNRs. Transmit MMSE beamform-
ing is a more versatile scheme that com-
bines the respective asymptotic properties 
of MRT and ZFBF with good perfor-
mance at intermediate SNRs. However, 
there is still a significant gap to the opti-
mal solution, which is only bridged by 
fine-tuning the K 4=  parameters 

, ,1 4fm m  (with an exponential complex-
ity in ) .K  In the case of ,N 12=  there 
are many more antennas than users, 
which makes the need for fine-tuning 
much smaller; transmit MMSE beam-
forming is near optimal in the entire 
SNR range, which is an important obser-
vation for systems with very large 
antenna arrays [3] (these systems are 
often referred to as massive MIMO). Fig-
ure 3 was generated using MATLAB; the 
code is available for download in [13]. 

EXTENSIONS
Next, we briefly describe extensions to 
scenarios with multiple BSs and practi-
cal power constraints. 

MULTIPLE COOPERATING 
BASE STATIONS
Suppose the N  transmit antennas are dis-
tributed over multiple cooperating BSs. A 
key difference from (P2) is that only a sub-
set of the BSs transmits to each user, 
which has the advantage of not having to 
distribute all users’ data to all BSs. This is 
equivalent to letting only a subset of the 
antennas transmit to each user. We 
describe the association by a diagonal 
matrix ( , , ),d ddiagD , ,k k k N1 f=  where 
d 1,k n =  if antenna n  transmits to user k
and d 0,k n =  otherwise [7]. The effective 
beamforming vector of user k  is D wk k

instead of .wk  By plugging this into the 
derivations, the optimal beamforming in 
(10) becomes 

, ,

p

k K1for

D w

I D h h D D h
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for some positive parameters , , .K1 fm m

The balancing between high signal power 
and low interference leakage now takes 
place only among the antennas that actu-
ally transmit to the particular user. 

GENERAL POWER AND 
SHAPING CONSTRAINTS
Practical systems are constrained not 
only in terms of the total transmit power, 
as in (P1) and (P2), but also in other 
respects; for example, maximal per-
antenna power, limited power per BS, 
regulatory limits on the equivalent iso-
tropic radiated power, and interference 
suppression toward other systems. Such 
constraints can be well described by hav-
ing L  quadratic constraints of the form 

, , ,P L1forw Q w,k
H

k

K

k k
1

f,# =, ,

=

/ (20)

where the positive semidefinite weighting 
matrix Q C,k

N N! #
,  describes a subspace 

where the power is limited by a constant 
.P 0$,  The total power constraint in (P2) 

is given by L 1=  and Q I,k N1 =  for all ,k
while per-antenna constraints are given 
by L N=  and Q ,k,  being nonzero only at 

the th,  diagonal element. The weighting 
matrices are user specific and can be used 
for precise interference shaping; for 
example, the interference leakage at user 
i  is limited to P,  if we set Q h h,k i i

H=,  for 
k i!  and .0Q ,i =,

If the power constraints are plugged 
into (P2), it is proved in [6] and [7] that 
the optimal beamforming is 

,1W Q H H HP,
*

L

k
H

1
2

1

2
1

n
v
K= +,

,

,

=

-

e o/
(21)

where the L  new parameters , ,1 fn

0L $n  describe the importance of shap-
ing the beamforming to each power con-
straint; if n,  is large, very little power is 
transmitted into the subspace of .Q ,k,

On the contrary, inactive power con-
straints have 0n =,  and, thus, have no 
impact on the optimal beamforming. 
One can show that the parameters satisfy 

Pmaxii

K

1
m =

=
/  and P Pmax

L

1
n =, ,,=

/
where maxP Pmax = , ,  [7]. 

LESSONS LEARNED
AND FUTURE AVENUES
It is difficult to compute the optimal 
multiuser transmit beamforming, but 
the solution has a simple and intuitive 
structure with only one design parame-
ter per user. This fundamental property 
has enabled many researchers to propose 
heuristic beamforming schemes—there 
are many names for essentially the same 
simple scheme. The optimal beamform-
ing maximizes the received signal powers 
at low SNRs, minimizes the interference 
leakage at high SNRs, and balances 
between these conflicting goals at inter-
mediate SNRs. 

The optimal beamforming structure 
can be extended to practical multicell 
scenarios, as briefly described in this lec-
ture note. Alternative beamforming 
parameterizations based on local chan-
nel state information (CSI) or trans-
ceiver hardware impairments can be 
found in [7]. Some open problems in this 
field are the robustness to imperfect CSI, 
multistream beamforming to multian-
tenna users, multicasting where each 
signal is intended for a group of users, 
and adaptive m-parameter selection 
based on the utility function. 
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[special REPORTS] (continued from page 14)

has been on diabetes. A glucose meter has 
been out on the market for many years, 
and we have gone through at least one 
revision in that standard and we’re work-
ing on a second revision right now. We’re 
also working with an eHealth group at the 
University of Toronto that is developing a 
glucose monitor and insulin pump.

IEEE SPM: Batteries are always an 
issue, but probably more so with porta-
ble, or wearable, medical devices. Is this 
being addressed from a technical and/or 
standards development perspective?

Kirwan: Batteries are always an issue. 
As consumers, we turn off Wi-Fi and Blue-
tooth because we know it’s draining our 
battery. We need a better standard. But 
there are a lot of things happening now, 
and oneM2M is a good example of what we 
can do to help mobile devices in the 
future. Just looking at Continua; most of 

our certified devices have the Bluetooth 
transport in them; I would say 60–70%. 
So, as I already indicated, we’re seeing 
manufacturers moving away from the clas-
sic Bluetooth to Bluetooth Low Energy 
devices. But let’s say I get out of the hospi-
tal and I have a blood pressure monitor 
and maybe some other medical device, my 
phone is going to be dead before long. The 
difference between the technologies 
between classic Bluetooth and Bluetooth 
Low Energy is that the radio is always on 
versus the radio is always off. If the radio 
is always off, it comes on at a timed inter-
val. It comes on when it has to. It’s sup-
posedly more efficient. That’s the 
difference with medical devices. With 
more of these [Bluetooth Low Energy-
based] products going through the certifi-
cation process, it’s only a matter of time 
before we see more of them on the market 
as real consumer products.

IEEE SPM: Any special events we should 
watch out for that focus on mHealth 
this year and into 2015?

Kirwan: Continua will be back on 
track with our mHealth summits this 
year, holding three events with Plugfests 
over the remainder of 2014. Two of the 
events will be held in conjunction with 
mHealth Summit conferences, bringing 
new opportunities to increase Continua’s 
visibility as an immediate benefit of our 
new collaboration under the PCHA 
umbrella. We will also colocate the Con-
tinua Summer Summit with the Open 
Mobile Alliance.

The Plugfest dates will be announced 
shortly. Due to the timing of the currently 
scheduled events, we will move Conti-
nua’s AsiaPac Summit to spring 2015.

Editor’s Note: This interview was 
conducted by Ron Schneiderman, a reg-
ular contributor to SPM. [SP]
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Effective Feature Extraction and Data Reduction in Remote Sensing 
Using Hyperspectral Imaging

ith numerous and 
contiguous spectral 

bands acquired from 
visible light (400–

1,000 nm) to (near) 
infrared (1,000–1,700 nm and over), 
hyperspectral imaging (HSI) can poten-
tially identify different objects by detecting 
minor changes in temperature, moisture,  
and chemical content. As a result, HSI has 
been widely applied in a number of appli-
cation areas, including remote sensing [1]. 
HSI data contains two-dimensional (2-D)  
spatial and one-dimensional spectral 
information, and naturally forms a three-
dimensional (3-D) hypercube with a high 
spectral resolution in nanometers that 
enables robust discrimination of ground 
features. However, new challenges arise in 
dealing with extremely large data sets. For 
a hypercube with relatively small spatial 
dimension of 600 × 400 pixels at 16 bits-
per-band-per-pixel, the data volume 
becomes 120 MB for 250 spectral bands. 
In some cases, this large data volume can 
be linearly increased when multiple hyper-
cubes are acquired across time to monitor 
system dynamics in consecutive time 
instants. When the ratio between the fea-
ture dimension (spectral bands) and the 
number of data samples (in vector-based 
pixels) is vastly different, high-dimen-
sional data suffers from the well-known 
curse of dimensionality. For feature 
extraction and dimensionality reduction, 
principal components analysis (PCA) is 
widely used in HSI [2], where the number 
of extracted components is significantly 
reduced compared to the original feature 
dimension, i.e., the number of spectral 
bands. For effective analysis of large-scale 

data in HSI, conventional PCA faces three 
main challenges: 

■ obtain the covariance matrix in 
extremely large spatial dimension, 
which can lead to software tools such 
as MATLAB running out of memory
■ cope with the high computational 
cost required for analysis of large 
data sets
■ retain locally structured elements 
that only appear in a small number of 
bands (mainly local structures) for 
improved discriminating ability when 
feature bands are globally extracted as 
principal components. 

This article discusses several variations 
and extensions of conventional PCA to 
address the aforementioned challenges. 
These variations and extensions include 
slicing the HSI data for efficient computa-
tion of the covariance matrix similarly 
done in 2-D-PCA analysis [3] and group-
ing the spectral data to preserve the local 
structures and further speedup the pro-
cess to determine the covariance matrix 
[4]. In addition, we also discuss some 
non-PCA-based approaches for feature 
extraction and data reduction, based on 
techniques such as band selection, ran-
dom projection, singular value decompo-
sition, and machine-learning approaches 
such as the support vector machine 
(SVM) [2], [5], [6]. 

FEATURE EXTRACTION USING 
PCA AND ITS VARIATIONS
PCA has been widely used for unsupervised 
feature extraction and data reduction [2], 
[7]. Through orthogonal projection and 
truncation of the transformed feature data, 
PCA can successfully remove correlation 
inherent in the data. 

For a hypercube with F  spectral bands 
and a spatial size of R C#  (Figure 1), 

where R and C  are the number of rows 
and columns, respectively, conventional 
PCA first converts the data into an F S#
matrix (I), where .S RC= Then, the 
covariance matrix of , ,I K  is obtained as 
follows: eigendecomposition is followed 
by data projection to determine the prin-
cipal components. Due to the extremely 
large size of ,S  which can be over 100 kB, 
practical difficulties arise when directly 
determining K  from .I  To solve these 
problems, 2-D-PCA inspired data slicing
PCA (SPCA) [3] along with segmented 
PCA (Seg-PCA) [4] are used. 

DATA SLICING PCA
Rather than taking all spectral vectors in I
together, SPCA (Figure 1) treats each 
spectral vector In  separately when deter-
mining the corresponding covariance 
matrix ,K  where .[ , ]n S1!  For each 

,In
F 10! #  its associated partial covari-

ance matrix is obtained as ,I In n
F FT 0! #

and the overall covariance matrix K  is 
determined as the sum of all partial cova-
riance matrices by 

.I I
S
1

n n
n

S RC

1

TK =
=

=

/ (1)

SPCA is equivalent to PCA in determin-
ing the covariance matrix. The funda-
mental difference is that the calculation 
of K  is implemented by a series of S  
independent partial covariance matrices. 
As such, the memory requirement is 
reduced from F S# to .F 1# In addi-
tion to this, these partial covariance 
matrices can be separately calculated in 
parallel to improve efficiency.

SEGMENTED PCA
Although the spectral data in HSI natu-
rally form long vectors, the input spec-
tral data can be grouped to produce a 

W
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[applications CORNER]continued

series of small vectors for fast calculation 
of PCA in each group while enabling 
extraction of local structures from each 
group. As shown in Figure 1, in Seg-PCA 
each of the S spectral vectors is grouped 
to form k  subvectors. For each sub-
vector, the size of its covariance matrix is 
reduced to .n nk k#

For a particular group [ , ],b k1!  let 
[ ... ]i i i imb m m n m b1 2

T
b=  denote the cor-

responding small spectral vector formed 
from the original F  bands, where 

[ , ],m S1!  and bK  is the covariance 
matrix. Then, bK  can be determined as 

,
S
1 i ib mb mbm

S
1

TK =
=

/ (2)

where again S  denotes the spatial size of 
the hypercube. Also note that i imb mb

T  is 
the partial covariance matrix obtained 
from the grouped spectral vector .imb

For  a  g iven spectra l  vector 
,in

F 10! #  conventional PCA extracts 
all the principal components from the 
F  bands. In contrast, Seg-PCA divides 
in  into H  groups and ensures that vari-
able numbers of components are 
extracted from each group. As a result, 
Seg-PCA has the potential to preserve 
some local spectral structures, which 
are nondominant and thus are discarded 

in conventional PCA. Such local struc-
tures provide additional values to Seg-
PCA for superior discrimination ability 
as explained below. 

In Seg-PCA, as illustrated in Figure 1, 
each spectral vector of F  bands is 
grouped into H  groups or K groups as 
shown in Figure 1. When ,H 1=  Seg-
PCA defaults to SPCA, which is equivalent 
to the conventional PCA. In fact, the per-
formance of the Seg-PCA is strongly 
dependent on how the bands are grouped, 
as it affects how much additional infor-
mation can be extracted to improve the 
conventional PCA. 

In one particular case where all 
groups contain the same number of W
bands, ,HW F=  the covariance matrices 
from different groups share the same 
dimension. As a result, they can be 
summed to form one covariance matrix 

.Seg PCAK -  This can further simplify the 
eigendecomposition procedure for better 
efficiency, as only one matrix rather than 
k must be processed

.bb

k

1Seg PCAK K=- =
/ (3)

In conventional PCA, using SPCA for 
example, the covariance matrix in (1) 
can be rewritten as follows, where 

T[ , , ..., ] :i a a an n n Hn1 2=
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(4)

For the particular case in Seg-PCA
where all groups have the same number 
of bands, the covariance matrix can be 
further derived as

.
S
1 a a a a a a

b

k

n n
T

n n
T

Hn Hn
T

n
S

b1

1 1 2 21

Seg PCA

g

K K=

= + + +

- =

=
^ h

/
/

(5)

From (4) and (5), it is straightforward 
to demonstrate that Seg PCAK -  is formed 
by accumulating the W W#  sections in 
the main diagonal of ,SPCAK  the original 
covariance matrix. This is also illustrated 
in Figure 1 for comparison. Note that in 
a real hypercube, uneven band group-
ings are used to allow variable numbers 
of bands to be contained in different 
groups. However, this leads to the chal-
lenging problem of grouping bands for 
feature characterization, which is dis-
cussed in the following sections. 

W

W
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F = HW

Conventional PCA
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F

F

l1 l2 l3 ln

ln

lc

. . . . . . . . . .
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[FIG1] Diagrams of conventional PCA in comparison with the SPCA and Seg-PCA.
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FEATURE EXTRACTION USING 
NON-PCA-BASED APPROACHES
For non-PCA-based feature extraction and 
dimensionality reduction, the most com-
monly used approaches are based on band 
selection [5], machine learning [6], and 
steepest ascent search [7]. As adjacent 
spectral bands in HSI usually contain a 
large degree of redundant information, 
these approaches tend to select individual 
spectral bands rather than PCA compo-
nents for data classification.

In these approaches, bands that contain 
less discriminatory information are dis-
carded, which results in a much reduced 
number of remaining bands. Usually, the 
discriminatory information is reflected by 
how different a band is in comparison to 
adjacent bands. To determine the degree of 
similarity between two (band) images, a 
number of approaches can be used includ-
ing distance measurement, mutual infor-
mation, and the structural similarity 
measurement (SSIM) [2], [5]. 

For any two band images Am  and 
,An  the simplest distance-based similar-

ity is given below to measure an average 
distance/similarity over all pixels  

( , )

[ ( ( , ), ( , ))]

| ( , ) ( , ) |
,

max

S A A

A i j A i j

A i j A i j
1

d m n

m n
i

Y

i

X

m n
i

Y

i

X

11

11= -

-

m

m

==

==

//

//

(6)

where 02m  and ( , )i j  are the spatial 
coordinate indices of the two images sat-
isfying [ , ]i X1!  and [ , ];j Y1! X Y#
denotes the spatial dimension of the 
band images. 

In contrast, mutual information-
based similarity is determined by the 
image histograms [2], [5]. By treating 
the spectral images as random variables, 
their associated mutual information can 
be determined as follows:

( , ),H A A-( , ) ( ) ( )I A A H A H Am n m n m n= +

(7)

where ( )H Am  and ( )H An  are the entropy 
of Am  and ,An  and ( , )H A Am n  is their 
joint entropy.

( ) ( ) ( )logH A p a p am
a Am

=-
!

/ . (8)

The SSIM [8] contains three factors,
including consistency in terms of lumi-
nance ( , ),l A Am n  contrast ( , )c A Am n , and 
structure ( , )s A Am n  defined as follows: 

( , )l A A
C
C2

m n
m n

m n
2 2

1

1

n n

n n
=

+ +

+

( , )c A A
C
C2

m n
m n

m n
2 2

2

2

v v

v v=
+ +
+

( , )s A A C
C

m n
m n

mn

3

3

v v
v=

+
+ (9)

( , )

( , ) ( , ) ( , ),

A A

l A A c A A s A A

SSIM m n

m n m n m n

=
a b c

(10)

where , nmn n^ h  and ,m nv v^ h  are the 
mean intensity and the standard deviation 
of the band images Am  and ,An  respec-
tively; CC1 3-  are constants; and , ,a b c

are nonnegative weights. In the particular 
case where 1a b c= = =  and ,C C22 3=

SSIM can be further simplified as

( , )

( ) ( )
( ) ( )

.

A A

C C
C C2 2

SSIM m n

m n m n

m n
2 2

1
2 2

2

1 2mn

n n v v
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(11)

Due to the inclusion of a consistency
measurement in terms of luminance, 
contrast, and structural similarity, SSIM 
is found to produce more consistent sim-
ilarity measurements than distance and 
mutual information-based approaches 

[9]. For the 92AV3C data set as described 
in detail in the next section, SSIM-based 
band similarity maps are shown in 
Figure 2. As can be seen, bands are natu-
rally divided into similar groups, with 
exceptions to bands just over 100 and 
150 where adjacent bands show low sim-
ilarity to each other. These are noisy 
bands that contain very little useful 
information, hence the low correlation 
with adjacent bands. 

Based on the similarity maps men-
tioned earlier, band groups and the key 
bands can be easily determined by 
thresholding [3] or the Jeffries–Matusita 
interclass distance [7] with the steepest 
ascent search strategy [2], [7]. For 
machine-learning-based approaches, 
ground truth information is usually used 
to determine the discriminatory ability 
of bands in any classification-based tests.

PERFORMANCE EVALUATION 
AND ANALYSIS
We compare the performance of SPCA 
and Seg-PCA with conventional PCA 
using the publicly available hyperspectral 
data set 92AV3C from the original Indian 
Pines [10]. The 92AV3C data set was col-
lected by the AVIRIS instrument over an 
agricultural study site in Northwest Indi-
ana [10] for land cover classification in 
remote sensing applications. The hyper-
spectral data set contains 220 spectral 
reflectance bands in the wavelength range 
of 400–2,500 nm, and the spatial size is 

[FIG2] The correlation matrix among the band images of the 92AV3C data set. 
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[applications CORNER]continued

21,025 (145 × 145) pixels. The data set 
contains different land cover classes corre-
sponding to agriculture, forest, vegetation, 
and buildings. One sample band and the 
ground truth of the 16 land cover classes 
are illustrated in Figure 3. Disregarding 
the white regions that are unclassified 
background, the other colored regions in 
the ground truth refer to alfalfa, corn 
(three types), wheat, grass (three types), 
oats, woods, soybeans (three types), hay, 
and two others. 

FEATURE EXTRACTION
AND DATA CLASSIFICATION
SVM has been widely used for hyperspec-
tral image classification [6], [7]. The 
implementation using the bSVM library 
[11] is employed for performance assess-
ment. As a supervised classifier, SVM relies 
on training data for model optimization. 
In the experiments, the principal compo-
nents extracted from the original spectral 
data using the conventional PCA, SPCA 
and Seg-PCA approaches are used as fea-
tures for the SVM. For the labeled pixels in 
the data set, 30% of them are used for 
training the SVM and the remaining 70% 

for testing. The kernel function used for 
SVM is the radial basis function, whose 
parameters, the penalty c^ h, and the 
gamma ,c^ h  were optimized in the train-
ing process through a grid search of possi-
ble combinations of these parameters. 

As suggested in the literature [5], [7], 
the noisy bands covering the region of 
water absorption (104–108, 150–163, 
220) are removed from the spectral vec-
tors before applying PCA for feature 
extraction. To this end, the effective num-
ber of spectral bands for the data sets is 
reduced from 220 to 200. In total, four 
groups of features are used for compari-
son. The first is referred to as the whole 
spectral band (WSB), in which the total 
200 spectral bands are used directly as 
features. This is taken as a baseline 
approach for benchmarking. The remain-
ing three groups use principal compo-
nents as features, extracted from the 
conventional PCA, SPCA, and Seg-PCA 
approaches, respectively. 

For each group of features as samples, 
ten experiments were carried out with 
data samples randomly selected for train-
ing and testing. No data sample overlap 

was allowed in the training set and testing 
set. The average testing result over these 
tests and the corresponding standard 
deviation of classification accuracy were 
obtained and reported below for evalua-
tion and assessment. 

PERFORMANCE ASSESSMENT
We assess performance in terms of reduc-
tion of computation cost, memory 
requirement, and improvement of classifi-
cation accuracy. 

The computation costs of the SPCA 
and Seg-PCA are compared against those 
of the conventional PCA in Table 1, for the 
three stages involved, where S  and K
refer, respectively, to the number of sam-
ples (pixels) and the number of principal 
components extracted. Since the compu-
tational cost for PCA and SPCA is the 
same, they are put together to be com-
pared with Seg-PCA. The saving factor of 
computational cost for Seg-PCA is H  or 
H3  in comparison to conventional PCA 
and SPCA. With H 10=  and ,K 30=  the 
number of multiply-accumulates required 
in PCA/SPCA is 9.75e8, where in Seg-PCA 
it is reduced to 9.67e7. In effect, the com-
putational cost has reduced to 9.92%. In 
other words, Seg-PCA has achieved a sav-
ing factor of ten, i.e., an order of magni-
tude for the hyperspectral remote sensing 
data set used. 

In Table 2, memory requirements for 
PCA, SPCA, and Seg-PCA over different 
stages are compared. SPCA only reduces 
memory requirement in the first stage 
when the covariance matrix is obtained. 
The other two stages require the same 
amount of memory as the conventional 
PCA. Seg-PCA has significantly lower 
memory requirements, and the mini-
mum saving factor achieved is .H2

When H 10=  Seg-PCA only requires 
1% of the memory compared to the con-
ventional PCA. 

With local structures extracted over 
the spectral domain, Seg-PCA has great 
potential to improve the efficacy in fea-
ture extraction resulting in higher dis-
crimination power and better classifi-
cation. With ,H 10= ,W 20=^ h  the 
classification results using various num-
bers of principal components are plotted 
in Figure 4, where K  covers a large 

(a) (b)

[FIG3] (a) One sample band image and (b) the ground truth of land cover of the 
92AV3C data set. (Images used courtesy of [10].)

[TABLE 1] COMPARISONS OF COMPUTATIONAL COST.

STAGES/APPROACHES COVARIANCE MATRIX EIGENPROBLEM DATA PROJECTION

PCA/SPCA O S H W2 2^ h O H W3 3^ h O S HWK^ h

Seg-PCA O S H W2^ h O HW3^ h O S WK^ h

SAVING FACTOR H H2 H
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range from ten to 110. First, Seg-PCA is 
found to consistently outperform con-
ventional PCA (and also SPCA). As can be 
seen, Seg-PCA significantly improves on 
the conventional PCA when the number 
of components is less than 110, i.e., 50% 
of the dimensionality of original fea-
tures. When K  is ten and over, Seg-PCA 
achieves comparable or even slightly bet-
ter results in comparison to WSB for 
classification, a significant advantage for 
feature extraction as the dimensionality 
of features used in WSB is 200. 

NON-PCA-BASED APPROACHES
The mutual information-based band 
selection approach [5], SVM-based 
approach [6], and the steepest ascent 
search-based approach [7] are compared 
in this group of experiments, along with 
the PCA-based methods. Again SVM is 
used as the preferred classifier yet under 
60% training ratio. The results are sum-
marized in Table 3 for comparison. As one 
can see, PCA-based approaches have gen-
erated reasonably good results, where 
Seg-PCA is found to be the best among 
the five approaches evaluated. The SVM-
based approach outperforms conventional 
PCA and the steepest ascent search-based 
approach, and the mutual information-
based approach is found to be the poorest 
performing in this group of tests. 

EFFECT OF NOISE
Due to atmospheric water absorption 
and other effects, the hyperspectral 
images obtained may contain severe 
noise, where the corresponding band 
image is effectively useless as it has no 
correlation to any adjacent bands (see 
Figure 2). As a result, noise removal 
becomes a very important issue. Without 

noisy band removal, the classification 
accuracy achieved for the 92AV3C data 
set by PCA with ten components is only 
around 70%, in comparison to nearly 
87% obtained in Table 3. Furthermore, 
some researchers also apply noise 
removal in the spatial domain, using the 
known wavelet shrinkage approach [12]. 
After removal of the noisy bands, it is 
found that this pre-processing can fur-
ther improve the overall classification
accuracy by 2–3% [12].

CONCLUSIONS
Although PCA has been widely used for
feature extraction and data reduction, it 
suffers from three main drawbacks: high 
computational cost, large memory re-
quirement, and low efficacy in processing 
large data sets such as HSI. This article 
analyzed two variations of PCA, specifical-
ly SPCA and Seg-PCA. Seg-PCA can fur-
ther improve classification accuracy while 
significantly reducing the computational 
cost and memory requirement, without 

[TABLE 2] A COMPARISON OF MEMORY REQUIREMENTS IN PCA, SPCA, AND SEG-PCA AT DIFFERENT STAGES.

STAGES/
APPROACHES

COVARIANCE
COMPUTATION

COVARIANCE
MATRIX SIZE

PROJECTION
MATRIX SIZE

PROJECTION
MULTIPLICATION

PCA S HW# HW HW# HW K# SHW HWK#

SPCA 1HW# HW HW# HW K# SHW HW#

SAVING FACTOR S 1 1 1

Seg-PCA W#S WW# W K/H# HW WK/H#

SAVING FACTOR H H2 H2 SH2
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[TABLE 3] A COMPARISON OF THE OVERALL ACCURACY OF DIFFERENT APPROACHES
UNDER A VARIOUS NUMBER OF FEATURES USED FOR CLASSIFICATION.

METHODS PCA Seg-PCA [4] MUTUAL
INFORMATION [5]

SVM-BASED
BAND
SELECTION [6]

STEEPEST
ASCENT SEARCH
METHOD [7]

10 86.76 91.40 73.06 87.55 85.79

20 89.56 92.49 73.95 90.68 87.92

30 89.17 92.61 76.58 91.03 89.45

[FIG4] The classification results for the 92AV3C data set from PCA/SPCA and Seg-
PCA in benchmarking with WSB approach under various numbers of principal 
components used, where the training ratio is 30%.
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[applications CORNER]continued

requiring prior knowledge. There is po-
tential to apply similar feature extraction 
and data reduction techniques in applica-
tion areas beyond HSI when the analysis 
of large-dimensional data sets is required, 
such as magnetic resonance imaging and 
digital video processing. 

RESOURCES
For hyperspectral remote sensing, a 
series of sensors have been applied in the 
world, which include AVIRIS [10], ROSIS 
[13], and HYDICE [10] as well as many 
others such as TRWIS, CASI, OKSI AVS, 
MERIS, Hyperio, HICO, CHRIS, NEON,  
and TERN. Detailed specifications in 
terms of the spectral range and spectral/
spatial resolution etc. for these sensors 
are summarized in [14] and [15]. 

For the AVIRIS sensor, the data were 
acquired since the early 1990s, and they 
can be obtained from NASA by accessing 
the link http://aviris.jpl.nasa.gov/data/get_
aviris_data.html. Alternatively, some asso-
ciated data sets such as 92AV3C, Salinas, 
and Cuprite can be downloaded online 
from [10] and/or [13]. For the ROSIS sen-
sor, the Pavia Center and Pavia University 
data sets can be obtained from [13]. In 
addition, the DC Mall data set from the 
HYDICE sensor is also available online 
[10]. Note that for 92AV3C, Salinas, the 
Pavia Center, and the Pavia University data 
sets, there are available ground truth to 
facilitate objective assessment in data clas-
sification-based applications. 
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Signal Processing in Visual Optics

I
often finish my digital signal process-
ing lecture on Fourier transformation 
asking students to think of a Fourier 
transform application that is close to 
them. The answers I usually get are 

“it’s in my cell phone” or “in my laptop.” 
“It is much close to your skin,” I probe 
further. Rarely, I get the expected answer 
that the eye is essentially a Fourier trans-
form operator. Hence, the human eye is 
an excellent object to study for a signal 
processing practitioner. 

The eye, despite being extraordinarily 
well developed through evolution, is not an 
ideal optical system and produces retinal 
images of moderate quality. On the other 
hand, a simple textbook comparison of the 
eye to a man-made optical instrument, 
such as a camera, for example, is totally 
unjust. The eye is a complicated, dynamic, 
and robust optical system [1]. The image of 
a distant object needs to travel through a 
thin, few micrometers thick layer of tear 
film, cornea, aqueous humour, pupil, crys-
talline lens with a gradient refractive index, 
before it falls on the photosensitive retina 
at the back of the eye. All of the eye ele-
ments, which the rays that form the image 
of a distant object pass, are dynamic in 
nature and are not fully synchronized with 
each other. Figure 1 depicts the considered 
eye elements and the major signals that 
affect their performance. 

First, the eye globe, as a whole, per-
forms complicated micromovements in 
lateral as well as longitudinal directions. 
Tear film dynamically changes the optical 
characteristics of the eye from a blink to 
another [2]. The cornea, despite its name 
being derived from a horn, is not a rigid 
body and is suggested to undergo slow 
dynamic changes in central curvature, 

possibly due to eye’s accommodation (i.e., 
changes in its focal point). The shape and 
size of the pupil are not fixed; they vary 
with light intensity and level of accommo-
dation. Pupil size undergoes small micro-
fluctuations called hippus (pupillary 
athetosis). Additionally, the center of the 
pupil is not concentric with the geometri-
cal center of the cornea. Hence, with 
changes in size its relevant position to cor-
nea also changes. This is an important fac-
tor when relating optical characteristics of 
the cornea to those of the whole eye.

The crystalline lens is a flexible eye ele-
ment that allows changing the eye’s focal 
point. In a young eye, those changes can 
reach over a dozen diopters. The accom-
modative status of the crystalline lens is 
additionally modulated by the signals from 
the cardiopulmonary system [3]. At the 
end of their paths, the rays forming the 
image of an object fall on a dynamic retina, 
connected with the cardiopulmonary sys-
tem, which may also undergo slow diurnal 
structural changes in its choroid [4]. 

All of the eye’s elements, described 
above, together with signals associated 
with accommodation, pupillary response, 
and those of cardiopulmonary system lead 
to a static retinal image that is far from 
ideal at a given point of time. However, 
due to the dynamic nature of all those ele-
ments, the human eye is able to resolve 
images with high acuity of about 1 min of 
arc mainly because of the match between 
moderate optical image quality and the 
resolution of the retinal mosaic [1]. The 
actual image that a human being can 
resolve also depends on neural processes 
occurring in the retina and the brain. 
Those could involve elements of stochastic 
resonance where the naturally occurring 
eye vibrations may result in an improved 
visual quality [5], [6].

Some aspects of the dynamics in opti-
cal characteristics of the eye, particularly 
those related to changes in the tear film 
structure and microfluctuations of the 
steady-state accommodation, have been 
considered. The latter can be associated 
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[FIG1] The human eye as a dynamic system.
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with the refractive status of the eye from 
which emmetropization mechanisms (i.e., 
processes that optimize the eye’s optics) 
could be learned. However, the wealth of 
information available when examining the 
dynamic nature of optical characteristics 
of the eye has not been fully exploited. 
Challenges exist to develop analytic meth-
odologies that would adequately account 
for all such variations and their interde-
pendencies with the major physiological 
signals of the human body. To achieve this 
goal, an overall system of the eye’s optics 
that takes into account the aberration 
dynamics needs to be considered. This col-
umn summarizes the recent endeavors 
undertaken in search of adequate charac-
terization of the human eye’s optics that 
involves application of various levels of 
signal processing tools. In particular, we 
focus on temporal changes in tear film 
and natural microfluctuations in a steady-
state accommodation—the two factors 
that have the greatest influence on optical 
quality of the human eye. 

DATA ACQUISITION 
Some progress in the development of 
instrumentation for acquisition of the sig-
nals shown in Figure 1 has already been 
made. For example, the movements associ-
ated with the eye/head interface can be 
measured with high-speed cameras, optical 
distance sensors, or ultrasonic sensors. The 
kinetics of tear film can be assessed with 
high-speed videokeratoscopy, interferome-
try, wavefront sensing, or retroillumination 
techniques [2], [7]. Videokeratoscopy is the 
current standard for measuring corneal 
topography but reflective-based systems 
such as the Placido disk videokeratoscope 
are being utilized for assessing tear film 
surface quality. Interferometric techniques 
are used to measure the thickness of the 
tear film lipid layer or the quality of its sur-
face as is the case with lateral shearing 
interferometry [2]. Wavefront sensing, usu-
ally based on the Shack–Hartmann princi-
ple, is the current standard for measuring 
the eye’s optical aberrations. It can also be 
utilized to assess tear film quality within 
the pupil area [3]. Similar assessment area 
can be obtained with the retroillumination 
technique in which an external light 
source is used to illuminate the retina that, 

subsequently, retroilluminates the cornea 
and the tear film [7]. 

The dynamics of the anterior cornea 
can be currently assessed with high-speed 
videokeratoscopy. In the future, the ante-
rior and posterior corneal surfaces could 
be evaluated with dynamic Scheimpflug 
imaging or dynamic spectral optical 
coherence tomography—techniques cur-
rently well developed for static acquisition 
of those surfaces. 

Scheimpflug imaging is a well-estab-
lished technique in which the lens plane is 
not parallel to the image plane. This 
allows achieving a well-focused image of a 
wide cross-section of the cornea extending 
to the corneoscleral region. Optical coher-
ence tomography, particularly the spectral 
domain based, became the standard for 
imaging both anterior and posterior seg-
ments of the eye. 

The effect of the intraocular pressure 
(IOP) on corneal surface can be assessed 
by measuring temporal variations in IOP 
using dynamic contour tonometry [8]. 
Further, the changes in pupil size and 
shape and their relation to the geometric 
center of the cornea can be simply 
assessed with high-speed pupillometry and 
appropriate image processing routines for 
estimating the corneal limbus. The 
dynamics of the crystalline lens, those 
associated with accommodation, and 
those related to the cardiopulmonary sys-
tem can be assessed using a combined sys-
tem of a wavefront sensor and a 
bioamplifier with sensors for measuring 
pulse, respiration, and the electric heart 
activity [9]. Finally, the dynamics related 
to the retina can be assessed by measuring 
fundus pulsation [10].

Although there are no instruments 
currently available that would acquire a 
complete dynamic “picture” of the eye’s 
optical and physiological characteristics, 
some progress has been made in this 
direction. For example, a combined topog-
rapher/wavefront sensors instrument has 
been recently commercially realized. Sev-
eral ophthalmic instruments include 
dynamic measurement of the pupil size 
and its position with respect to the cornea. 
There is also a growing body of laboratory 
settings where researchers try to combine 
several devices to assess correlation 

(coherence) between the parameters (sig-
nals) estimated from each of the consid-
ered instruments [7], [9]. 

Problems associated with acquisition 
of dynamic data range from prosaic stor-
age shortages and limits in computing 
power, as in the case of the three-dimen-
sional optical coherence tomography, to 
more complex associated with limits in 
optical technology and lack of robust algo-
rithms for data processing. The latest is of 
interest to signal processing community.

TEAR FILM
The tear film is the first optical element of 
the eye that the rays forming the image of 
an object in the field of view encounter. 
The tear film broadly comprises three dis-
tinct layers, an outer lipid layer, a middle 
aqueous layer, and an inner mucin layer. It 
renews with every blink and will eventu-
ally rupture/evaporate if blinking does not 
occur. At the air/tear film interface the 
rays undergo the strongest refraction 
(from about n 1=  to about .. )n 1 336=

Hence, the stability of tear film surface 
smoothness is essential for the retinal 
image to have good quality. 

Currently accepted assessment of tear 
film includes a range of clinical diagnostic 
methods that are time-consuming and 
unreliable. They are also inadequate to 
study the kinetics of tear film and their 
influence on visual performance of the eye 
[2]. Recently, more attention has been 
given to the developments of noninvasive 
methods for tear film surface analysis 
such as repeated measure videokeratog-
raphy, high-speed videokeratoscopy, 
dynamic wavefront sensing, and interfer-
ometry. There are also attempts of comb-
ing several techniques as in the case of 
wavefront sensing and retroillumination 
[7]. A recent study comparing several non-
invasive measurement technologies indi-
cated that high-speed videokeratoscopy 
appears to be the most precise method for 
measuring tear film surface quality while 
lateral shearing interferometry appears to 
be the most sensitive method for analyz-
ing tear film kinetics [2].

One of the important parameters char-
acterizing tear film quality, particularly in 
the diagnosis of dry eye syndrome, is the 
tear film break-up time. In clinical 
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practice, it is measured with a stop watch 
by observing postblink tear film thinning 
patterns in a slit-lamp biomicroscope after 
instillation of fluorescein into the eye. The 
method is both invasive (i.e., instillation of 
small amount of fluorescein to the eye is 
required) and nonphysiological as it 
requires the patient to keep their eyes 
open for a period of time significantly 
exceeding that of an average interblink 
interval. Noninvasive methods of tear film 
assessment resolve the first problem while 
robust estimation techniques applied to 
the acquired dynamic measurements help 
resolve the other [11]. Noninvasive mea-
surement techniques that acquire dynamic 
data in natural blinking conditions bring 
several other parameters such as the tear 
film build-up time, tear film thinning rate, 
and the predicted tear film break-up time. 
For those, methods of data fitting involv-
ing iterative orthogonal least square proce-
dures and information criteria had to be 
developed [12]. 

Measurement and modeling of tear 
film surface kinetics is important for 
studying the loss of retinal image quality 
associated with poor term film, but their 
main purposes are to help diagnosing dry 
eye syndrome, and study the efficacy of 
tear film substitutes and biocompatibility 
of contact lens material. 

MICROFLUCTUATIONS IN 
STEADY-STATE ACCOMMODATION 
The eye displays small movements even in 
a steady viewing condition. This particular 
phenomenon is not limited to the eye 
globe but also occurs in individual compo-
nents of the eye such as the pupil, crystal-
line lens, and retina (choroid). This results 
in the optical characteristics of the eye to 
exhibit some temporal variations, the mag-
nitude of which is not large. Such varia-
tions are referred to as microfluctuations 
in steady-state accommodation [3]. The 
first works on the character of measured 
dynamics of the eye’s monochromatic 
aberrations revealed their nonstationary 
character and possible correlation with the 
signals of the cardiopulmonary system [3]. 
Utilizing a set of metrics derived from a 
time-frequency coherence estimator, it was 
later confirmed that there exist periods of 
time during which the coherence between 

aberration dynamics and signals of cardio-
pulmonary systems is very high and peri-
ods when quite opposite occurs [9]. This 
finding suggests that the microfluctuations 
in a steady-state accommodation are the 
result of not only the dynamics associated 
with crystalline lens—an idea well estab-
lished earlier—but also to those related to 
choroidal pulsation. It has been hypothe-
sized that the observed high coherence lev-
els may be associated with the crystalline 
lens micromovements being in phase with 
those of choroid. 

There were also attempts to model the 
individual aberration components, now 
standardly expressed as time-varying coef-
ficients of a Zernike polynomial expansion 
to the dynamically measured wavefront 
aberrations [3], [13], [14]. Those models 
ranged from simple parametric autore-
gressive (AR) and AR moving-average 
(ARMA) processes, to amplitude modula-
tion-frequency modulation (AM-FM) sig-
nals, to more intricate approaches 
involving wavelet-based multifractal anal-
ysis and chaos theory. For example, 
Hampson and Mallen [13] have found that 
the aberration dynamics cannot be char-
acterized by a single fractal dimension. 
They showed that the most frequently 
found Hölder exponent for the root mean 
square (RMS) wavefront error averaged 
across subjects was 0.31, indicating that 
the aberration dynamics are antipersistant 
( / ) .H 1 21  In their latest developments 
[14], they showed that aberrations 

dynamics can be well modeled as a chaotic 
process with the attractor embedding 
dimension equal to three and the average 
Lyapunov exponent of the RMS wavefront
error of 0.44 μm/s. These recent develop-
ments are very interesting and indicate 
how intricate the problem of adequate 
modeling of eye’s visual optics is.

A VIBRATING EYE?
The more we study the dynamics of the 
human eye’s optical system, the more 
questions arise. Taking into account all 
individual elements of the eye and the 
range of unsynchronized physiological 
signals of mechanical and electrical nature 
that affect their performance, how is it 
possible to achieve good retinal image 
quality? Are the elements of stochastic res-
onance truly involved in the eye’s opera-
tion? Is the only reason that we see so well 
because of the properly selected resolution 
of our photoreceptors? How then does the 
eye cope with both transversal and longi-
tudinal changes in the retinal image? 

One previously unconsidered aspect of 
human visual system can be related to an 
old study of Lohmann and Paris [15] who 
have shown that, under certain condi-
tions, the transfer function of a defocused 
lens can be considerably improved by 
introducing to a system a certain amount 
of longitudinal vibrations. Contrarily, such 
improvement could not be demonstrated 
in the case of transverse vibrations. A sim-
ple simulation demonstrates that using a 

∑
t

A

A′

O Longitudinal
Vibrations

[FIG2] Longitudinal vibrations at a point away from focus improve the overall 
image quality.
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low level of defocus, say about ±0.25 of a 
diopter and allowing for longitudinal 
vibrations of a similar order can result in a 
threefold increase in the eye’s visual Strehl 
ratio—a popular metric of retinal image 
quality [16]. Such levels of defocus are 
typically encountered in emmetropic sub-
jects (i.e., those exhibiting good vision 
without any corrective implements). 
Figure 2 depicts the concept of improving 
integrated image quality with longitudinal 
vibrations, provided that the retinal image 
plane is not at the focal point. Whether the 
temporal summation of longitudinal vibra-
tions truly occurs in the human eye is yet 
to be proved. For this, wavefront sensors 
equipped with high speed (exceeding the 
Nyquist frequency of 120 Hz) and sensitive 
enough cameras need to be employed. 

The optical system of the human eye 
presents challenges for future generations 
of signal processing professionals. Current 
approaches to study its dynamics are often 
reduced to an application of the off-the-
shelf signal processing tools to a limited 
aspect of the system. However, a more 
comprehensive approach that integrates 
all available information in some form of 
data fusion is needed to fully understand 
all its intricacies. Gaining such knowledge 

would benefit not only the visual optic 
community but also those interested in 
computer and machine vision. 

AUTHOR
D. Robert Iskander (robert.iskander@pwr.
edu.pl) is a professor of biomedical signal 
processing at the Institute of Biomedical 
Engineering and Instrumentation, 
Wroclaw University of Technology, Poland.

REFERENCES
[1] P. Artal, A. Benito, and J. Tabernero, “The human 
eye is an example of robust optical design,” J. Vis.,
vol. 10, no. 6, pt. 1, pp. 1–7, 2006.

[2] D. H. Szczesna, D. Alonso-Caneiro, D. R. Iskander,
S. A. Read, and M. J. Collins, “Lateral shearing in-
terferometry, dynamic wavefront sensing, and high-
speed videokeratoscopy for non-invasive assessment 
of tear film surface characteristics: A comparative 
study,” J. Biomed. Opt., vol. 15, no. 3, p. 037005,
2010.

[3] D. R. Iskander, M. J. Collins, M. R. Morelande,
and M. Zhu, “Analyzing the dynamic wavefront aber-
rations in human eye,” IEEE Trans. Biomed. Eng., 
vol. 51, no. 11, pp. 1969–1980, 2004.

[4] S. A. Read, M. J. Collins, and D. R. Iskander, “Di-
urnal variation of axial length, intraocular pressure 
and anterior eye biometrics,” Invest. Ophthalmol. 
Vis. Sci., vol. 49, no. 7, pp. 2911–2918, 2008.

[5] M. H. Hennig, N. J. Kerscher, K. Funke, and F.
Wörgötter, “Stochastic resonance in visual cor-
tical neurons: Does the eye-tremor actually im-
prove visual acuity?” Neurocomputing, vol. 44–46,
pp. 115–120, 2002. 

[6] M.-O. Hongler, Y. L. de Meneses, A. Beyeler, and 
J. Jacot, “The resonant retina: Exploiting vibration 
noise to optimally detect edges in an image,” IEEE 

Trans. Pattern Anal. Mach. Intel., vol. 25, no. 9,
pp. 1051–1062, 2003.

[7] N. L. Himebaugh, J. Nam, A. Bradley, H. Liu,
L. N. Thibos, and C. G. Begley, “Scale and spatial 
distribution of aberrations associated with tear break-
up,” Optom. Vis. Sci., vol. 89, no. 11, pp. 1590–1600,
2012.

[8] E. M. Hoffmann, F. H. Grus, and N. Pfeiffer, “In-
traocular pressure and ocular pulse amplitude using 
dynamic contour tonometry and contact lens tonom-
etry,” BMC Ophthalmol., vol. 4, no. 4, pp. 1–7, 2004.

[9] M. Muma, D. R. Iskander, and M. J. Collins, “The 
role of cardiopulmonary signals in the dynamics of 
eye’s wavefront aberrations,” IEEE Trans. Biomed. 
Eng., vol. 57, no. 2, pp. 373–383, 2010.

[10] L. F. Schmetterer, F. Lexer, C. J. Unfried, H.
Sattmann, and A. F. Fercher, “Topical measure-
ment of fundus pulsations,” Opt. Eng., vol. 34, no. 3,
pp. 711–716, 1995.

[11] D. H. Szczesna and D. R. Iskander, “Robust es-
timation of tear film surface quality in lateral shear-
ing interferometry,” J. Biomed. Opt., vol. 14, no. 6,
p. 064039, 2009.

[12] D. H. Szczesna and D. R. Iskander, “Lateral 
shearing interferometry: A technique for complete 
temporal analysis of tear film surface kinetics,” Op-
tom. Vis. Sci., vol. 87, no. 7, pp. 513517, 2010.

[13] K. M. Hampson and E. A. H. Mallen, “Mul-
tifractal nature of ocular aberration dynamics of 
the human eye,” Biomed. Opt. Exp., vol. 2, no. 3,
pp. 464–477, 2011.

[14] K. M. Hampson and E. A. H. Mallen, “Chaos 
in ocular aberration dynamics of the human eye,” 
Biomed. Opt. Exp., vol. 3, no. 5, pp. 863–877, 2012.

[15] A. W. Lohmann and D. P. Paris, “Influence of 
longitudinal vibrations on image quality,” Appl. Opt.,
vol. 4, no. 4, pp. 393–397, 1965.

[16] D. R. Iskander, “Computational aspects of the 
visual Strehl ratio,” Optom. Vis. Sci., vol. 83, no. 1,
pp. 57–59, 2006.

[SP]

[from the GUEST EDITORS] (continued from page 15)

Zhu and Bamler provide a further 
insight into SAR tomography, and their 
article demonstrates the ability of com-
pressive sensing to achieve vertical super-
resolution with data acquired by SAR 
systems operating in very high horizontal 
resolutions modes. 

Still in the context of SAR interferome-
try, the article by Baselice et al. investigates 
methods based on the use of contextual 
information and addresses statistical meth-
ods to solve the multichannel interfero-
metric SAR phase unwrapping problem for 
digital elevation model generation.

The article by Deledalle et al. covers the 
methods of filtering multichannel SAR data, 
represented by interferometric, polarimet-
ric, or interferometric/polarimetric, to pro-
vide preservation of texture and structures. 

SAR polarimetry, the topic of the arti-
cle by Chen et al., provides insights in 

polarimetric target decomposition tech-
niques for the interpretation of scattering 
mechanisms, including extension and 
fusion with interferometry. 

Solimene et al.’s contribution deals with 
a unified treatment from the mathematical 
viewpoint of SAR imaging algorithms and 
discusses their generalizations to handle 
unconventional scenarios, such as through-
wall imaging, imaging of urban canyons, 
and underground tunnel detection.

A further contribution to the imaging 
of buried targets is provided by the article 
by Kedzierawski et al., which addresses the 
topic of airborne ground penetrating radar 
(GPR), a combination of SAR and GPR, 
based on the use of time-reversal data pro-
cessing algorithms.

Finally, Leigsnering et al. deal with the 
problem of scatterings and multipath 
when using SAR for imaging of building 

interiors. The article discusses both mul-
tipath mitigation and exploitation tech-
niques and shows how to perform the 
latter with compressed observations. 

We would like to express our deep 
gratitude to the many individuals who 
made this special issue of SPM possible. 
We thank all authors who submitted pro-
posals and all reviewers whose recommen-
dations significantly helped in improving 
the selected articles. We are also grateful 
to Abdelhak Zoubir, SPM’s editor-in-chief, 
and we are indebted to Fulvio Gini, special 
issues area editor, for his constant support 
and guidance throughout the solicitation 
and reviewing process, as well as to 
Rebecca Wollman for her valuable admin-
istrative assistance.
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Please send calendar submissions to:  
Dates Ahead, c/o Jessica Barragué  
IEEE Signal Processing Magazine  
445 Hoes Lane  
Piscataway, NJ 08855 USA  
e-mail: j.barrague@ieee.org
(Colored conference title indicates 
SP-sponsored conference.)

2014

[JUNE]
IEEE Sensor Array and Multichannel 
Signal Processing Workshop (SAM)
22–25 June, A Caruña, Spain.
URL: http://www.gtec.udc.es/sam2014/

15th IEEE International Workshop  
on Signal Processing Advances in 
Wireless Communications (SPAWC)
22–25 June, Toronto, Canada.
General Cochairs: Tim Davidson and Wei Yu
URL: http://www.spawc2014.info/joomla30/

IEEE Statistical Signal Processing 
Workshop (SSP)
29 June–2 July, Gold Coast, Australia.
General Cochairs: Rob Evans and 
Abd-Krim Seghouane
URL: http://www.ee.unimelb.edu.au/SSP2014/
index.html 

[JULY]
2nd IEEE China Summit and 
International Conference on Signal  
and Information Processing (ChinaSIP)
9–13 July, Xi’an, China. 
General Chairs: Mingyi He and Kung Yao
URL: http://www.chinasip2014.org/CfP.htm

IEEE International Conference 
on Multimedia and Expo (ICME)
14–18 July, Chengdu, China.
General Cochairs: Touradj Ebrahimi, 
Shipeng Li, Houjun Wang, and Jie Yang
URL: http://www.icme2014.org/

[AUGUST]
2014 International Conference on 
Digital Signal Processing (DSP)
20–23 August, Hong Kong.
General Chairs:Yong Ching Lim, Daniel P.K. 
Lun, A.N. Skodras, and Danilo Mandic
URL:http://www.dsp2014.org/

11th IEEE International Conference  
on Advanced Video and Signal-Based 
Surveillance (AVSS)
26–29 August, Seoul, South Korea.
General Chair: Hanseok Ko 
General Cochair: Jin Young Choi 
URL: http://www.avss2014.org/

[SEPTEMBER]
22nd European Signal Processing 
Conference (EUSIPCO)
1–5 September, Lisbon, Portugal. 
Honorary Chair: Carlos Salema
General Chair: Leonel Sousa 
URL: http://www.eusipco2014.org/

2014 Sensor Signal Processing for 
Defence (SSPD)
8–9 September, Edinburgh, United Kingdom. 
General Chairs: Mike Davies, Paul Thomas, 
and Jonathon Chambers
URL: http://www.see.ed.ac.uk/drupal/udrc/
sspd/

24th IEEE International Workshop on 
Machine Learning for Signal Processing 
(MLSP)
21–24 September, Reims, France.
General Chair: Mamadou Mboup  
URL: http://mlsp2014.conwiz.dk/home.htm

16th IEEE International Workshop on 
Multimedia Signal Processing (MMSP)
22–24 September, Jakarta, Indonesia. 
General Chairs: Susanto Rahardja and 
Zhengyou Zhang  
URL: http://mmsp2014.ilearning.me/call-for-
paper/

[OCTOBER]
IEEE Workshop on Signal Processing 
Systems (SIPS)
20–23 October, Belfast, Ireland.

[DECEMBER]
IEEE Global Conference on Signal and 
Information Processing (GlobalSIP)
3–5 December, Atlanta, Georgia.
General Chairs: Geoffrey Li and Fred Juang
URL: http://renyi.ece.iastate.edu/globalsip2014/

IEEE International Workshop on 
Information Forensics and Security (WIFS)
3–5 December, Atlanta, Georgia. 
General Chairs: Yan (Lindsay) Sun and 
Vicky H. Zhao
URL: http://ieeewifs.org/

IEEE Spoken Language Technology 
Workshop (SLT)
6–9 December, South Lake Tahoe, California.
General Chairs: Murat Akbacak 
and John Hansen

2014 Asia-Pacific Signal and Information 
Processing Association Annual Summit 
and Conference (APSIPA)
9–12 December, Chiang Mai, Thailand. 
Honorary Cochairs: Sadaoki Furui, 
K.J. Ray Liu, and Prayoot Akkaraekthalin
General Cochairs: Kosin Chamnongthai, 
C.-C. Jay Kuo, and Hitoshi Kiya
URL: http://www.apsipa2014.org/home/

2015
[APRIL]
IEEE International Conference  
on Acoustics, Speech, and
Signal Processing (ICASSP)
19–24 April, Brisbane, Australia.
General Cochairs: Vaughan Clarkson 
and Jonathan Manton
URL: http://icassp2015.org/

[SEPTEMBER]
IEEE International Conference  
on Image Processing (ICIP)
28 September–1 October, Quebec City, 
Quebec, Canada. 
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Discrete Signal Processing on Graphs: Frequency Analysis http://dx.doi.org/10.1109/TSP.2014.2321121 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A. Sandryhaila and J. M. F. Moura 3042

Optimal Periodic Sensor Scheduling in Networks of Dynamical Systems http://dx.doi.org/10.1109/TSP.2014.2320455 . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S. Liu, M. Fardad, P. K. Varshney, and E. Masazade 3055

Collective Ratings for Online Communities With Strategic Users http://dx.doi.org/10.1109/TSP.2014.2320457 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Y. Zhang and M. van der Schaar 3069

SUMIS: Near-Optimal Soft-In Soft-Out MIMO Detection With Low and Fixed Complexity http://dx.doi.org/10.1109/TSP.2014.2303945 . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . M. Cirkić and E. G. Larsson 3084
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CALL FOR PAPERS
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

Special Issue on Biometric Spoofing and Countermeasures
Guest Editors
Nicholas Evans EURECOM, France (evans@eurecom.fr)
Sébastien Marcel Idiap Research Institute, Switzerland (marcel@idiap.ch)
Arun Ross Michigan State University, USA (rossarun@cse.msu.edu)
Stan Z. Li Chinese Academy of Sciences, China (szli@nlpr.ia.ac.cn)

While biometrics technology has revolutionized approaches to person authentication and has evolved to play a 
critical role in personal, national and global security, the potential for the technology to be fooled or ‘spoofed’ is 
widely acknowledged.  Efforts to study such threats and to develop countermeasures are now well underway 
resulting in some promising solutions. While progress with respect to each biometric modality has attained varying 
degrees of maturity, there are some notable shortcomings in research methodologies. Current spoofing studies 
focus on specific, known attacks. Existing countermeasures designed to detect and deflect such attacks are often 
based on unrealistic a priori knowledge and typically learned using training data produced using exactly the same 
spoofing method that is to be detected. Current countermeasures thus have questionable application in practical 
scenarios where the nature of the attack can never be known. This special issue will focus on the latest research on 
the topic of biometric spoofing and countermeasures, with a particular emphasis on novel methodologies and 
generalized spoofing countermeasures that have the potential to protect biometric systems against varying or 
previously unseen attacks. The aim is to further the state-of-the-art in this field, to stimulate interactions between 
the biometrics and information forensic communities, to encourage the development of reliable methodologies in 
spoofing and countermeasure assessment and solutions, and to promote the development of generalized 
countermeasures. Papers on biometric obfuscation (e.g., fingerprint or face alteration) and relevant 
countermeasures will also be considered in the special issue. Novel contributions related to both traditional 
biometric modalities such as face, iris, fingerprint, and voice, and other modalities such as vasculature and 
electrophysiological signals will be considered. The focus includes, but is not limited to, the following topics 
related to spoofing and anti-spoofing countermeasures in biometrics:

vulnerability analysis with an emphasis on 
previously unconsidered spoofing attacks;
theoretical models for attack vectors;
advanced machine learning and pattern 
recognition algorithms for anti-spoofing;
information theoretic approaches to quantify 
spoofing vulnerability;
spoofing and anti-spoofing in mobile devices;
generalized countermeasures;

challenge-response countermeasures;
sensor-based solutions to spoof attacks;
biometric obfuscation schemes;
information forensic approaches to spoofing 
detection;
new evaluation protocols, datasets, and 
performance metrics;
reproducible research (public databases, open 
source software and experimental setups). 

Submission Procedure: Manuscripts are to be submitted according to the Information for Authors at 
http://www.signalprocessingsociety.org/publications/periodicals/forensics/forensics-authors-info/ using the IEEE 
online manuscript system, Manuscript Central. Papers must not have appeared or be under review elsewhere.
Manuscripts by the guest editors submitted to this SI will be handled by the EIC of IEEE-TIFS.

Schedule:
Submission deadline: 1st July 2014
First Review: 15th September 2014
Revisions Due: 1st November 2014
Final Decision: 15th December 2014
Final manuscript due: 15th January 2015
Tentative publication date: 1st April 2015
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General Chairs
Vaughan Clarkson

University of Queensland
Jonathan Manton

University of Melbourne

Technical Program Chairs
Doug Cochran

Arizona State University
Doug Gray

University of Adelaide

Finance Chair
Lang White

University of Adelaide

Special Session Chairs
Robert Calderbank

Duke University
Stephen Howard

DSTO

Tutorials Chair
Daniel Palomar

Hong Kong University of S&T

Local Arrangements Chair
Andrew Bradley

University of Queensland

Registration Chair
Paul Teal

Victoria University of Wellington

Publicity Chair
Matt McKay

Hong Kong University of S&T

Publication Chair
Leif Hanlen

NICTA

Exhibits Chair
Iain Collings

CSIRO

Student Paper Contest Chair
Nikos Sidiropoulos

University of Minnesota

Conference Managers

Registration & Program Enquiries:
Conference Management 
Services, Inc
3833 S Texas Ave, Ste 221,
Bryan TX 77802, USA

General Enquiries:
arinex pty limited 
S3, The Precinct, 12 Browning St
Brisbane QLD 4101, Australia
Ph: +61 2 9265 0700
Email: icassp2015@arinex.com.au

First Call for Papers

ICASSP 2015
2015 IEEE International Conference on Acoustics,

Speech, and Signal Processing (ICASSP)
Brisbane Convention & Exhibition Centre
April 19 – 24, 2015  Brisbane, Australia

www.ICASSP2015.org
The 40th International Conference on Acoustics, Speech, and Signal Processing (ICASSP) 
will be held in the Brisbane Convention & Exhibition Centre, Brisbane, Australia, between 
April 19th and 24th, 2015.  ICASSP is the world’s largest and most comprehensive technical 
conference focused on signal processing and its applications. The conference will feature 
world-class speakers, tutorials, exhibits, and over 120 lecture and poster sessions. Topics 
include but are not limited to:

Audio and acoustic signal processing Multimedia signal processing
Bio- imaging and biomedical signal processing Sensor array & multichannel signal processing
Signal processing education Design /implementation of signal processing systems
Speech processing Signal processing for communications & networking
Industry technology tracks Image, video & multidimensional signal processing
Information forensics and security Signal processing theory & methods
Machine learning for signal processing Spoken language processing
Localisation and tracking Remote sensing signal processing

Brisbane – Australia’s New World City: Brisbane provides a beautiful location for ICASSP 
2015 with its picturesque winding river, attractive modern buildings, thriving retail centre, 
excellent restaurants and year-round pleasant weather. Brisbane is a city of alluring 
character, from its distinctive architecture (the charming “Queenslanders” and workers’ 
cottages that line inner-suburban streets) to its swimming beach right in the middle of the 
central business district. As the capital of Queensland, Australia’s “Sunshine State”, 
Brisbane is an ideal gateway to the world-famous beaches and theme parks of the Gold and 
Sunshine Coasts, the rainforests of the islands and hinterlands, and the Great Barrier Reef.

Submission of Papers: Prospective authors are invited to submit full-length papers, with up 
to four pages for technical content including figures and possible references, and with one 
additional optional 5th page containing only references. A selection of best papers will be 
made by the ICASSP 2015 committee upon recommendations from Technical Committees.

Notice: The IEEE Signal Processing Society enforces a “no-show” policy. Any accepted 
paper included in the final program is expected to have at least one author or qualified proxy 
attend and present the paper at the conference. Authors of the accepted papers included in 
the final program who do not attend the conference will be subscribed to a “No-Show List”, 
compiled by the Society. The “no-show” papers will not be published by IEEE on IEEEXplore 
or other public access forums, but these papers will be distributed as part of the on-site 
electronic proceedings and the copyright of these papers will belong to the IEEE.

Tutorial and Special Sessions Proposals: Tutorials will be held on April 19 and 20. Brief 
proposals should be submitted by August 17, 2014, to tutorials@icassp2015.org and must 
include title, outline, contact information, biography and selected publications for the 
presenter(s), and a description of the tutorial and material to be distributed to participants. 
Special sessions proposals should be submitted by August 17, 2014, to
specialsessions@icassp2015.org and must include a topical title, rationale, session outline, 
contact information, and a list of invited papers. Refer to the ICASSP 2015 website for 
additional information.

Important Deadlines: 

Special session & tutorial proposals due.................................Sunday, August 17th 2014
Notification of special session & tutorial acceptance .......... Sunday, September 7th 2014
Submission of regular papers.................................................. Sunday, October 5th 2014
Early registration opens........................................................ Monday, January 12th 2015
Notification of paper acceptance .................................... Wednesday, January 14th 2015
Revised paper upload ............................................................Friday, February 13th 2015
Author registration..................................................................Friday, February 13th 2015
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Audio/Video Analysis and Synthesis
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3-D Audio/Video Processing
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length page charges. The IEEE Signal Processing Society has determined
that the standard manuscript length shall be no more than 10 published pages
(double-column format, 10 point type) for a regular submission, or 6 published
pages (9 point type) for a Correspondence item, respectively. Manuscripts that
exceed these limits will incur mandatory over length page charges, as discussed
below. Since changes recommended as a result of peer review may require
additions to the manuscript, it is strongly recommended that you practice
economy in preparing original submissions.
Exceptions to the 30-page (regular paper) or 12-page (Correspondences)

manuscript length may, under extraordinary circumstances, be granted by the
Editor-in-Chief. However, such exception does not obviate your requirement to
pay any and all over length or additional charges that attach to the manuscript.

Authors of rejected
manuscripts are allowed to resubmit their manuscripts only once. The Signal
Processing Society strongly discourages resubmission of rejected manuscripts
more than once. At the time of submission, you will be asked whether you con-
sider your manuscript to be a new submission or a resubmission of an earlier
rejected manuscript. If you choose to submit a new version of your manuscript,
you will be asked to submit supporting documents detailing how your new ver-
sion addresses all of the reviewers’ comments.
Full details of the resubmission process can be found in the Signal Processing

Society “Policy andProceduresManual” at http://www.signalprocessingsociety.
org/about/governance/policy-procedure/. Also, please refer to the decision letter
andyourAuthorCenter on theon-line submission system.

Author Misconduct Policy: Plagiarism includes copying someone else’s work
without appropriate credit, using someone else’s work without clear delineation
of citation, and the uncited reuse of an authors previously published work that
also involves other authors. Plagiarism is unacceptable.
Self-plagiarism involves the verbatim copying or reuse of an authors own

prior work without appropriate citation; it is also unacceptable. Self-plagiarism
includes duplicate submission of a single journal manuscript to two different
journals, and submission of two different journal manuscripts which overlap
substantially in language or technical contribution.
Authors may only submit original work that has not appeared elsewhere in a

journal publication, nor is under review for another journal publication. Limited
overlap with prior journal publications with a common author is allowed only
if it is necessary for the readability of the paper. If authors have used their own
previously published work as a basis for a new submission, they are required

fers substantively novel contributions beyond those of the previously published
work.
It is acceptable for conference papers to be used as the basis for a more fully

developed journal submission. Still, authors are required to cite related prior
work; the papers cannot be identical; and the journal publication must include
novel aspects.
Author Misconduct Procedures: The procedures that will be used by the

Signal Processing Society in the investigation of author misconduct allegations
are described in the IEEE SPS Policies and Procedures Manual.
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Author Misconduct Sanctions: The IEEE Signal Processing Society will
apply the following sanctions in any case of plagiarism, or in cases of
self-plagiarism that involve an overlap of more than 25% with another journal
manuscript:
1) immediate rejection of the manuscript in question;
2) immediate withdrawal of all other submitted manuscripts by any of the
authors, submitted to any of the Society’s publications (journals, con-
ferences, workshops), except for manuscripts that also involve innocent
co-authors; immediate withdrawal of all other submitted manuscripts by
any of the authors, submitted to any of the Society’s publications (jour-
nals, conferences, workshops), except for manuscripts that also involve
innocent co-authors;

3) prohibition against each of the authors for any new submissions, either in-
dividually, in combination with the authors of the plagiarizing manuscript,
or in combination with new co-authors, to all of the Society’s publications
(journals, conferences, workshops). The prohibition shall continue for one
year from notice of suspension.

Further, plagiarism and self-plagiarism may also be actionable by the IEEE
under the rules of Member Conduct.

Authors are encouraged to prepare manuscripts employing the on-line style

are available on the web at http://www.ieee.org/publications_standards/publi-
cations/authors/authors_journals.html#sect2 under “Template for all Transac-
tions.” (LaTeX and MS Word).
Authors using LaTeX: the two PDF versions of the manuscript needed for

document is generated by including \documentclass[11pt,draftcls,onecolumn]

double-column document for estimating the publication page charges via
\documentclass[10pt,twocolumn,twoside]{IEEEtran} for a regular submission,
or \documentclass[9pt,twocolumn,twoside]{IEEEtran} for a Correspondence
item.

Title page and abstract:
title, names and contact information for all authors (full mailing address, in-

An asterisk * should be placed next to the name of the Corresponding Au-
thor who will serve as the main point of contact for the manuscript during
the review and publication processes.
An abstract should have not more than 200 words for a regular paper,

or 50 words for a Correspondence item. The abstract should indicate
the scope of the paper or Correspondence, and summarize the author’s
conclusions. This will make the abstract, by itself, a useful tool for
information retrieval.
EDICS:

EDICS published online at http://www.signalprocessingsociety.org/publi-
cations/periodicals/tsp/TSP-EDICS/

mission of a newmanuscript, please choose the EDICS categories that best
suit your manuscript. Failure to do so will likely result in a delay of the peer
review process.

abstract page—of the manuscript.
Illustrations and tables:
intelligible without requiring reference to the text. Illustrations/tables may
be worked into the text of a newly-submitted manuscript, or placed at the

tables must be submitted separately and not interwoven with the text.)

is understandable.
In preparing your illustrations, note that in the printing process, most

illustrations are reduced to single-column width to conserve space. This
may result in as much as a 4:1 reduction from the original. Therefore, make
sure that all words are in a type size that will reduce to a minimum of
9 points or 3/16 inch high in the printed version. Only the major grid lines
on graphs should be indicated.
Abbreviations: This TRANSACTIONS follows the practices of the IEEE
on units and abbreviations, as outlined in the Institute’s published
standards. See http://www.ieee.org/portal/cms_docs_iportals/iportals/pub-
lications/authors/transjnl/auinfo07.pdf for details.
Mathematics: All mathematical expressions must be legible. Do not give
derivations that are easily found in the literature; merely cite the reference.

Upon formal acceptance of a manuscript for publication, instructions for

sponding Author. Finalized manuscripts should be prepared in LaTeX or MS

http://www.ieee.org/publications_standards/publications/authors/authors_jour-
nals.html#sect2.

setup.
RANSACTIONS, the name of

the author, and the software used to format the manuscript.

(although this is acceptable for your initial submission). If submitting on

text, but include callouts like “(a),” “(b).”

Powerpoint, Excel or PDF.Not acceptable is GIF, JPEG,WMF, PNG,BMP
or any other format (JPEG is accepted for author photographs only). The
provided resolution needs to be at least 600 dpi (400 dpi for color).

note that this will be at the expense of the author. Without other indica-
tions, color graphics will appear in color in the online version, but will be
converted to grayscale in the print version.

Additional instructions for preparing, verifying the quality, and submitting
graphics are available via http://www.ieee.org/publications_standards/publica-
tions/ authors/authors_journals.html.

http://www.ieee.org/publications_standards/publications/authors/authors_jour-
nals.html#sect6 under “Multimedia.” To make your work reproducible by
others, the TRANSACTIONS

Voluntary Page Charges. Upon acceptance of a manuscript for publication,
the author(s) or his/her/their company or institution will be asked to pay a charge

that comprise the standard length (six pages, in the case of Correspondences).
Mandatory Page Charges. The author(s) or his/her/their company or insti-

pages for regular papers and six published pages for correspondence items.
These are mandatory page charges and the author(s) will be held responsible

ingness to pay these charges simply by submitting his/her/their manuscript to
the TRANSACTIONS. The Publisher holds the right to withhold publication under
any circumstance, as well as publication of the current or future submissions of
authors who have outstanding mandatory page charge debt.
Color Charges.

in the hardcopy version in grayscale, and the author is responsible that the cor-

sive, and all charges for color are the responsibility of the author. The estimated

preparation charges which may be estimated as follows: color reproductions
on four or fewer pages of the manuscript: a total of approximately $1045; color

color reproductions on nine through 12 pages: a total of approximately $3135,
and so on. Payment of fees on color reproduction is not negotiable or voluntary,
and the author’s agreement to publish the manuscript in the TRANSACTIONS is
considered acceptance of this requirement.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

______________________________________
________

__________________

______________________________________
_______

___________________
_____________________________

_________________
______________________

_____________________
________________________

_________________

http://www.signalprocessingsociety.org
http://www.ieee.org/publications_standards/publications/authors/authors_journals.html#sect2
http://www.signalprocessingsociety.org/publications/periodicals/tsp/TSP-EDICS/
http://www.ieee.org/portal/cms_docs_iportals/iportals/publications/authors/transjnl/auinfo07.pdf
http://www.ieee.org/publications_standards/publications/authors/authors_journals.html#sect2
http://www.ieee.org/publications_standards/publications/authors/authors_journals.html
http://www.ieee.org/publications_standards/publications/authors/authors_journals.html#sect6
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org


                                                                             www.signalprocessingsociety.org     [57]  JULY 2014

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

______________

http://www.signalprocessingsociety.org
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com
mailto:new.membership@ieee.org


The 2014 Workshop on Genomic Signal Processing and Statistics (GENSIPS’14) will join the 2014 IEEE 
Global Conference on Signal and Information Processing (GlobalSIP’14) to be held in Atlanta on Dec. 3-5, 
2014. GENSIPS’14 will continually provide a forum for researchers in signal processing, bioinformatics, 
computational biology, and biostatistics to share the state-of-art advances in the fast growing genomics, 
proteomics, metabolomics, lipidomics, and metagenomics areas and to tackle the challenges of high 
dimensionality, high heterogeneity, and high complexity.  

Papers on unpublished original research are solicited. Topics of interest include, and not limited to:
metabolomics, lipidomics, and metagenomics data 

Prospective authors should submit to GENSISP 2014 by EDAS http://edas.info/newPaper.php?c=17341.
Please use 2-column IEEE template available at http://www.ieeeglobalsip.org/formatting.html) for paper up 
to 4 pages.  The key dates are: 

Paper submission deadline  July 25th, 2014 
Notification of Acceptance  Sept. 15th, 2014 
Camera Ready paper due  Oct.15th, 2014 
GENSIPS’14 December 3-5, 2014 

Selected papers will be invited to submit to IEEE Journal of Biomedical and Health Informatics, and
other journal(s) for peer-review and publication.

Workshop Co-Chairs:
Peng Qiu, Ph.D.   Biomedical Engineering, Georgia Institute of Technology & Emory University 
May D. Wang, Ph.D.  Biomedical Engineering and Electrical and Computer Engineering,  

Georgia Institute of Technology & Emory University 
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