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Call for Papers and Sponsors

ICASSP2018
The 43rd IEEE International Conference on Acoustics, Speech and Signal Processing

April 22 - 27, 2018, Seoul, Korea

http://2018.ieeeicassp.org

Signal Processing and Artificial Intelligence: Changing the World

Important Dates

August 4, 2017  
Special Session Proposals Due

August 11, 2017  
Tutorial Proposals Due

September 8, 2017  
Notification of Special Session Acceptance

September 15, 2017 
Notification of Tutorial Acceptance

October 27, 2017 
Paper Submissions Due

January 12, 2018 
Signal Processing Letters Due

January 26, 2018 
Notification of Paper Acceptance

February 9, 2018 
Revised Paper Upload Deadline 

February 16, 2018 
Author Registration Deadline

General Chairs
Monson Hayes
Hanseok Ko

Technical Program Chairs
Dan Schonfeld
Pascale Fung
Nam Ik Cho

Sponsored by

Submission of Papers
Authors are invited to submit papers of not more than four pages of technical content including figures 
and references, with an optional fifth page containing only references. Submission instructions, paper 
format templates, and other important information will be made available on the ICASSP 2018 website, 
http://2018.ieeeicassp.org. 

Conference Topics
The conference will feature world-class international speakers, tutorials, exhibits, lectures and poster 
sessions from around the world. Topics include but are not limited to:

Call for Tutorials 
Tutorials at ICASSP form an important part of the program, giving attendees the opportunity to learn 
about current research areas that are of growing interest to the signal processing community. Those 
who are interested in presenting a tutorial may want to contact one of the tutorial chairs before 
preparing a formal proposal. It is important to keep in mind, for any tutorial, that it should be tutorial in 
nature, and within the grasp of a wide audience. 

Call for Special Sessions 
The program for ICASSP 2018 will include Special Sessions that complement the traditional program 
with new and emerging topics of significant interest to the signal-processing community, particularly 
those that are in line with the theme of the conference. Please refer to the conference webpage for 
information about Special Session proposals. 

Call for Exhibitors and Sponsors 
ICASSP 2018 offers exhibitors and sponsors an opportunity to showcase their company's products and 
innovative solutions at the Signal Processing Society's flagship conference that will be held for the first 
time in the Korean Peninsula. Please refer to the conference webpage for information about signing up 
to become an exhibitor or sponsor at ICASSP. 

Signal Processing Letters
Authors of IEEE Signal Processing Letters (SPL) papers will be given the opportunity to present their 
work at ICASSP 2018, subject to space availability and approval by the Technical Program Chairs. SPL 
papers published between January 1, 2017 and December 31, 2017 are eligible for presentation at 

2018 will neither be reviewed nor included in the proceedings. 
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FROM THE EDITOR
Min Wu  |  Editor-in-Chief  |  minwu@umd.edu

Innovations Powered by Signal Processing

T o many people around the world, 
Abraham Lincoln was a highly re-
garded president of the United States 

whose pursuit of social justice paved the 
way to end the slavery in this country. 
Fewer people, however, know his dis-
tinction as an engineering innovator and 
that he was the fi rst and only U.S. presi-
dent thus far to hold a patent. President 
Lincoln received the U.S. Patent 6469 in 
May 1849 titled “Buoying Vessels over 
Shoals,” which was inspired by his expe-
rience navigating boats on the Ohio and 
Mississippi Rivers. When commenting on 
the role of the patent system that offers the 
inventor the exclusive use of his/her in-
vention for a limited time, President Lin-
coln noted that the patent system “added 
the fuel of interest to the fi re of genius, in 
the discovery and production of new and 
useful things.”

From about a century after Lincoln’s 
invention and throughout the next sev-
eral decades, signal processing has con        -
tributed significantly to technology 
innovations and changed how we work 
and live. Smartphones, digital photogra-
phy, the global positioning system, and 
medical diagnosis are tangible exam-
ples around us, and our magazine has 
touched on them through special issues 
and column articles. What many of us 
take for granted and wouldn’t pause to 
think about are numerous examples that 
we don’t see, such as when we store our 
data on hard drives. This is one of the best 

examples that recently comes to mind to 
showcase the profound impact of signal 
processing research. 

Aleksandar Kavcic and José Moura’s 
academic research at Carnegie Mellon 
University in the 1990s studied the ef-
fect when data would become densely 
packed in magnetic disk drives, and they 
proposed signal processing algorithms 
to enable the accurate detection of data 
stored in high-density disks—which 
became the norm a decade later in bil-
lions of computers. Their pioneering 
research also made front-page news 
when a US$750  million settlement was 
announced concerning the infringe-
ment of their corresponding patents, the 
second-largest payment over any technol-
ogy patents to date. You can read more 
about the Kavcic–Moura detector for 
high-density magnetic recording on the 
IEEE Signal Processing Society’s online 
blog: http://signalprocessingsociety.org/
publications-resources/blog/why-
signal-processing-pioneer-takes-road-
less-traveled.

Innovations have continuously come 
from both industry and universities, 
often in complementary ways, although 
there may be stereotypical views on the 
roles that each side plays. Every once in a 
while, I have friends working in industry 
questioning the practical values of univer-
sity research beyond writing papers and 
training students. Indeed, many publica-
tions may not see widespread real-world 
use. More often, we see academic pub-
lications as well as industrial products 
making incremental improvements over 

the prior art as opposed to making revo-
lutionary advances, and it is common that 
exploratory research has been carried out 
well before the market ecosystem or the 
supporting technologies to become ready. 

The immediacy of deployment is 
perhaps one of the differentiating fac-
tors between product development and 
exploratory research, but as history 
reveals, it is not the primary indicator of 
the impact of innovations. Kavcic and 
Moura showed to the world the impact 
of their innovations from what started 
out as exploratory research in signal pro-
cessing. One attribute that enables their 
impact (as opposed to a purely intellec-
tual exercise or a bean-counting effort 
to add to one’s publication list) is the 
educated anticipation of the technologi-
cal trends (in their case, the increasing 
density of the data being packed in stor-
age drives) and the willingness to tackle 
challenges beyond making epsilon-del-
ta improvement. 

To qualify my words here, incremen-
tal improvements have their important 
roles in technological advances, and 
many progresses made—big or small—
are standing on the shoulders of giants; 
we continuously build on the efforts of 
our technical community in direct and 
indirect ways. But the willingness to go 
beyond, to nurture out-of-the-box think-
ing, and to encourage taking higher risks 
opens up opportunities for bigger leaps in 
innovation, even if we may not succeed at 
most attempts.
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PRESIDENT’S MESSAGE
Rabab Ward  |  SPS President  |  rababw@ece.ubc.ca

 Mind the (Gender) Gap

In my last “President’s Message” [1], I 
talked about the many ways that diver-
sity drives innovation in our field and in 

all facets of life. Returning to this discus-
sion, I’d now like to focus on women in 
engineering (WIE). There are numerous 
examples of women throughout history 
who had to overcome serious hurdles to 
make valuable contributions to science 
and culture. I will mention three exem-
plary role models.

Sophie Germain, the great French 
mathematician, was not allowed to attend 
the Ecole Polytechnique in the late 1700s; 
she used a male pseudonym and eventu-
ally won the Paris Academy of Science 
grand prize for the theory of elasticity. 
Another famous renegade in popular cul-
ture and in the signal processing field is 
the actress Hedy Lamarr, who invented 
a spread spectrum technology in 1941 
to scramble radio signals on torpedoes. 
In the 1960s, her technology was imple-
mented on naval ships during the Cuban 
Missile Crisis. Her applications ultimately 
galvanized the digital communications 
boom and are currently used in many 
devices, including the global positioning 
system, cell phones, and fax machines.

Last but not least is Madam Curie, 
whose incredible achievements influ-
enced me from an early age. She was my 
idol, and I used to dream that one day I 
would also do great things. As a young 
girl, I did not know exactly what my own 
“great thing” would be. But I was lucky to 
also have a mother who instilled in me the 

confidence that, with hard work, I could 
reach any goals I set. I certainly faced 
many obstacles, but whenever I came up 
against a closed door, I looked for another 
door to open.

I was born and raised in Lebanon. In 
1961, I was not allowed to study engineer-
ing at the American University of Beirut, 
even though my grades were higher than 
all of the male students in the country at 
that time. So I went to Egypt and enrolled 
in medical school. But my heart wasn’t 
in medicine, so I switched to engineer-
ing. I returned home in 1967 and became 
the first female member of the Lebanese 
Professional Engineering Society. When 
I later joined the University of California 
in Berkeley, I was the only woman among 
all of the Ph.D students in electrical engi-
neering. In fact, the first woman to earn 
her Ph.D.  degree in electrical engineering 
at Berkeley was an Egyptian woman who 
graduated four years before me.

Upon my graduation in 1972, unlike 
my male colleagues, I could not find a 
job in academia. I looked upon that as an 
opportunity—to have children and also to 
work abroad, which led to my becoming 
the first woman appointed in engineering 
at the University of Zimbabwe. Eventually 
I joined the University of British Colum-
bia’s Faculty of Applied Science, and, in 
1981, I received a tenure track professor-
ship and became the first woman engi-
neer professor at British Columbia.

Looking back, I realize that the vast 
majority of those who helped me suc-
ceed were males as, at that time, I did not 
know other female engineers in my field 
who could extend a mentoring hand. I’ve 

enjoyed a fulfilling career in electrical 
engineering, specifically in the signal pro-
cessing field. And I’ve since enjoyed the 
privilege of working with many talented 
women students, colleagues, scientists, 
engineers, innovators, and business people.

The number of women studying and 
working in science, technology, engi-
neering, and mathematics (STEM) has 
increased so much since I was a girl. But 
since the early 2000s, the number of 
women engineering undergraduates has 
remained stagnant at about 20% in the 
United States, and only 11% of practicing 
engineers in the United States are women, 
with typically lower annual salaries lower 
than men (in 2013, it was US$65,000 
for women compared to US$79,000 for 
men). It’s no wonder that only 27% of 
women remain in the STEM fields after 
the age of 30.

According to 2016 research, STEM 
Fortune 500 firms are no more diverse 
than in 2001, indicating an entrenched 
gender gap. The picture is similar in the 
United Kingdom, where only 9% of the 
engineering workforce are women. At the 
same time, the United States and the Unit-
ed Kingdom are dealing with a shortage 
of STEM workers. With STEM jobs set 
to grow 17% by 2024, we need to provide 
more resources and incentives to women, 
to fill the labor market gap. Furthermore, 
according to research, companies with 
gender parity are 15% more likely to per-
form better.

There is encouraging news coming 
from other countries. Thirty-five percent of 
 engineering students in India are women. 
In some Arab countries, enrollments are 
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as high as 60%. The number of women 
studying and working in computer science 
has surged, and by 2014, 25% of startups in 
the Middle East were owned by women. In 
China, women account for approximately 
40% of the STEM workforce. However, 
women in every country have to contend 
with their own culture’s biases and work-
place challenges.

At the IEEE, the percentage of female 
Members is approximately 10.6%—a 3% 
point increase (from 7.5%) since 2000. 
Over the past few years, the IEEE WIE 
has become one of the world’s largest 
international professional organizations, 
dedicated to the professional development 
of women. WIE has made big strides, 
growing from 3,000 members in 2001 
to 15,000 in 2013 and is now extremely 
active in more than 70 countries.

During an outreach activity for the 
SPS in 2015, I met an outstanding female 
engineer, Maryam Al Thani, in Abu 
Dhabi who is very active with WIE. 
That year she ran for election to the 
United Arab Emirates Federal National 
Council (the body that represents the 
Emirates’ nationals). How how did she 
acquire the confidence, at this relatively 
young age, to run for the highest posi-
tion in her country? She told me that her 
leadership skills came by actively vol-
unteering in IEEE WIE. Although she 
did not win that election, she is confident 
that she will one day.

Today, women account for 9.4% of the 
IEEE Signal Processing Society’s (SPS’s) 
membership. The SPS started holding the 
Women in Signal Processing (WISP) lun-
cheon at the International Conference on 
Acoustics, Speech, and Signal Process-
ing (ICASSP) in 1997. Since 2015, this 
luncheon has been held at the majority of 
our large conferences: ICASSP, the IEEE 
International Conference on Image Pro-
cessing, and GlobalSIP. Each luncheon 
features an invited guest speaker, dis-
cussions, and networking. Although it is 
called Women in Signal Processing, men 
also enjoy attending this event.

This year, the activities of the SPS 
committee on women have expanded be-
yond conference events. During the WISP 
Luncheon at ICASSP 2017, we debuted 
the new Women in Signal Processing 
Directory. The directory, visualized by 

Namrata Vaswani, will act as a resource 
for women in the SPS and engineering, 
building a global community of women 
in signal processing fields and positioning 
them to gain visibility and raise awareness 
about opportunities for leadership roles, 
award nominations, and more.

A recent report on women in the SPS 
by a committee chaired by Mari Osten-
dorf found that women make up approxi-
mately 15% of our technical committees, 
10.7% of our associate editors, and 17% of 
leadership roles in our Society. The per-
centage of women winning major SPS 
(nonservice) awards since 1990 (2.2%) is, 
however, much lower than the percentage 
of female fellows (10%). We hope that the 
establishment of the Women in Signal 
Processing Directory will increase visibil-
ity of women in the field to be considered 
for awards and leadership roles.

There is a delicate line to walk be-
tween inclusivity and tokenism. How can 
we include and empower women with-
out exploiting their gender or placing too 
much focus on gender? I think it starts 

with not only nurturing their confidence 
but having confidence in them and their 
abilities. The availability of hands-on ex-
perience in elementary and high schools 
is crucial as is the dedication of teachers 
who truly believe in girls’ abilities, chal-
lenging and encouraging boys and girls 
equally. A supportive, inclusive network 
would provide girls and women with the 
tools to build communities that motivate 
them to persist in this field.

Gender inclusivity in engineering is 
not only good for society, it is also ben-
eficial for business. It fuels innovation and 
enriches every facet of our life. Let’s do 
more to make our businesses, our research 
labs, our academic institutions, and our 
domestic environments enriching places, 
where girls and women can thrive.

Reference
[1] R. Ward, “Diversity through adversity,” IEEE Signal 
Process. Mag., vol. 34, no. 3, pp. 4–5, May 2017.
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READER’S CHOICE

Top Downloads in IEEE Xplore

E ach “Reader’s Choice” column in 
IEEE Signal Processing Magazine 
focuses on a different publication of 

the IEEE Signal Processing Society 
(SPS). This issue of the magazine high-
lights articles in IEEE Journal of Select-
ed Topics in Signal Processing (JSTSP).

JSTSP solicits special issues on 
topics that cover the entire scope of the 
SPS. JSTSP only publishes papers that 
are submitted in response to a specific 
call for papers, which can be found at 
https://signalprocessingsociety.org/
publications-resources/ieee-journal-
selected-topics-signal-processing. 
Instructions for submitting papers to a 
particular special issue can be found 
by clicking on the “Information for 
Authors” tab under the “JSTP Menu” 
on this page. The procedure for prepar-
ing and submitting a proposal for a 
special issue can be found by selecting 
the “Special Issue Proposal Submis-
sion” tab. All special issue proposals 
are evaluated by our senior editorial 
board for relevance, timeliness, techni-
cal merit, impact, and general interest 
to the Society. 

This issue’s “Reader’s Choice” col-
umn lists the top ten papers most down-
loaded from January 2015 to March 
2017. Your suggestions and comments 
are welcome and should be sent to  
Associate Editor Chungshui Zhang at  
zcs@mail.tsinghua.edu.cn.

An Overview of Massive MIMO: 
Benefits and Challenges
Lu, L.; Li, G.Y.; Swindlehurst, A.L.; 
Ashikhmin, A.; Zhang, R.
In this paper, the authors present a com-
prehensive overview of state-of-the-art 
research on the topic. The paper includes 
an informational theoretic analysis; 
implementation issues related to channel 
 estimation, detection, and precoding 
schemes; the energy efficiency; and the 
challenges and opportunities.

October 2014

Channel Estimation and Hybrid 
Precoding for Millimeter Wave 
Cellular Systems
Alkhateeb, A.; Ayach, O.E.; Leus, G.; 
Heath, R.W.

This p aper develops an adaptive algo-
rithm to estimate the millimeter wave 
channel parameters, which exploits the 
poor scattering nature of the channel. 
Furthermore, a novel hierarchical multi-
resolution codebook is designed to con-
struct training beamforming vectors 
with different beamwidths.

October 2014 

Standardized Extensions of High 
Efficiency Video Coding (HEVC)
Sullivan, G.J.; Boyce, J.M.; Chen, Y.; 
Ohm, J.-R.; Segall, C.A.; Vetro, A.
This p aper describes extensions to the 
High-Efficiency Video Coding (HEVC) 
standard that are active areas of current 
development in the relevant international 
standardization committees. The design 

Digital Object Identifier 10.1109/MSP.2017.2697178
Date of publication: 11 July 2017

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_________________________

________________________

________________

https://signalprocessingsociety.org/publications-resources/ieee-journal-selected-topics-signal-processing
mailto:zcs@mail.tsinghua.edu.cn
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


7IEEE SIGNAL PROCESSING MAGAZINE |   July 2017 |

for these extensions represents the latest 
state of the art for video coding and 
its applications.

December 2013 

MPEG-H 3D Audio—The New 
Standard for Coding of Immersive 
Spatial Audio
Herre, J.; Hilpert, J.; Kuntz, A.; 
Plogsties, J.
The ISO/MPEG standardization group 
has started the MPEG-H 3D Audio 
development effort to facilitate high-
quality bit rate-efficient production, 
transmission, and reproduction of such 
immersive audio material. This paper 
provides an overview of the MPEG-H 
3D Audio project and technology and an 
assessment of the system capabilities 
and performance.

August 2015

Gradient Projection for Sparse 
Reconstruction: Application to 
Compressed Sensing and Other 
Inverse Problems
Figueiredo, M.A.T.; Nowak, R.D.; 
Wright, S.J.
This paper proposes gradient projec-
tion (GP) algorithms for the bound-
constrained quadratic programming 
formulation of sparse reconstruction. 
Computational experiments show that 

these GP approaches perform well in 
a wide range of applications, often 
being significantly faster (in terms 
of computation time) than compet-
ing methods.

December 2007

Advances in Cognitive Radio 
Networks: A Survey
Wang, B.; Liu, K.J.R.
This paper surveys recent advances in 
research related to cognitive radios. The 
fundamentals of cognitive radio technol-
ogy and architecture of a cognitive radio 
network and its applications are intro-
duced. The existing works in spectrum 
sensing are reviewed, and important 
issues in dynamic spectrum allocation 
and sharing are investigated in detail.

February 2011

An Overview of Signal Processing 
Techniques for Millimeter Wave 
MIMO Systems
Heath, R.W.; González-Prelcic, N.; 
Rangan, S.; Roh, W.; Sayeed, A.M.
This article provides an overview of sig-
nal processing challenges in millimeter 
wave wireless systems, with an emphasis 
on those faced by using multiple-input, 
multiple output communication at higher 
carrier frequencies.

April 2016

A Real-Time End-to-End Multilingual 
Speech Recognition Architecture
Gonzalez-Dominguez, J.; Eustis, D.; 
Lopez-Moreno, I.; Senior, A.; 
Beaufays, F.; Moreno, P.J.
In this paper, the authors present an end-
to-end multilingual automatic speech rec-
ognition system architecture, developed 
and deployed at Google, that allows users 
to select arbitrary combinations of spo-
ken languages. They leverage recent 
advances in language identification and a 
novel method of real-time language 
selection to achieve similar recognition 
accuracy and nearly identical latency 
characteristics as a monolingual system.

June 2015

Hybrid Digital and Analog 
Beamforming Design for 
Large-Scale Antenna Arrays
Sohrabi, F.; Yu, W.
This paper considers a hybrid beamform-
ing architecture in which the overall 
beamformer consists of a low-dimen-
sional digital beamformer followed by a 
radio-frequency (RF) beamformer imple-
mented using analog phase shifters. This 
paper establishes that if the number of 
RF chains is twice the total number of 
data streams, the hybrid beamforming 
structure can realize any fully digital 
beamformer exactly, regardless of the 
number of antenna elements.

April 2016 

A Survey of Stochastic Simulation 
and Optimization Methods in 
Signal Processing
Pereyra, M.; Schniter, P.; Chouzenoux, 
É.; Pesquet, J.-C.; Tourneret, J.-Y.; 
Hero, A.O.; McLaughlin S.
This survey paper offers an introduction 
to stochastic simulation and optimization 
methods in signal and image processing. 
The paper addresses a variety of high-
dimensional Markov chain Monte Carlo 
methods as well as deterministic surro-
gate methods, such as variational Bayes, 
the Bethe approach, belief and expecta-
tion propagation, and approximate mes-
sage-passing algorithms. 

March 2016
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SOCIETY NEWS

Nominations Open for 2017 
IEEE Signal Processing Society Awards

T he IEEE Signal Processing Society 
(SPS) Awards Board is now accept-
ing nominations for all Society-lev-

el awards, from paper awards to the 
major society awards. Nominations are 
due by 1 September 2017 and should be 
submitted to Theresa Argiropoulos 
(t.argiropoulos@ieee.org), who will 
collect the nominations on behalf of 
Awards Board Chair H. Vincent Poor. 
Nominators should take into consider-
ation the need for representation of 
diversity in the nomination slate when 
submitting their nominations. Detailed 
information and nomination/endorse-
ment forms for SPS awards can be found 
online. Full details on the nomination 
process are available at http://signal
processingsociety.org/get-involved/
awards-submit-award-nomination. 

Please note that, this year, the Society 
will be testing new awards software, so 
nominations for the Technical Achieve-
ment Award must be submitted online 
through this link: https://ieee.secure-
platform.com/a/page/society_awards/
ieeesignalprocessingsocietyawards.

All other awards will be handled 
though the normal submission process 
and should be submitted to Theresa 
Argiropoulos via e-mail.
■ Who can nominate: Nominations are 

accepted from any Society individu-
al member, Society committee, or 
Society board. Nominations from 

individual members can be support-
ed by up to two endorsement forms 
from two other individual members.

■ Which Awards: Each year, the SPS 
honors outstanding individuals who 
have made significant contributions 
related to signal processing through 
the Society Award, the Industrial 
Leader  Award,  the  Indust r ia l 
Innovation Award, the Technical 
Achievement Award, the Education 
Award, the Meritorious Service 
Award, and the Meritorious Chapter/
Regional Service Award. The Society 
also recognizes outstanding publica-
tions in SPS journals and the maga-
zine through the Best Paper Award, 
Donald G. Fink Overview Paper 
Award, Sustained Impact Paper 
Award, Signal Processing Letters Best 
Paper Award, Signal Processing 
Magazine Best Column Award, 
Signal Processing Magazine Best 
Paper Award, and the Young Author 
Best Paper Award.
Nominations for the Best Paper 

Award and Young Author Best Paper 
Award should refer to the papers pub-
lished in the following Society journals:
■ IEEE Journal of Selected Topics in 

Signal Processing (JSTSP)
■ IEEE/ACM Transactions on Audio, 

Speech, and Language Processing 
(T-ASLP)

■ IEEE Transactions on Image Process-
ing (T-IP)

■ IEEE Transactions on Information 
Forensics and Security (T-IFS)

■ IEEE Transactions on Signal Pro-
cessing (T-SP).

SPS awards changes
Over the past few years, the Society 
approved some procedural changes to 
the SPS Awards program, including 
some new changes approved late last 
year. Please note that these changes 
are in effect for the 2017 nomination 
period. The changes are intended to 
provide an effective means to encour-
age award nominations in all catego-
ries from the SPS community at large, 
including individuals, technical com-
mittees, editorial boards, and other 
major boards, except in the cases of 
conflict of interests. Technical com-
mittees and boards may pass on to 
the Awards Board one or multiple 
nominations that they receive for 
all awards.

The Society created a new award 
called the Meritorious Regional/
Chapter Service Award, which focuses 
on outstanding contributions of any 
member of the Society to regional 
activities of the SPS. As a result of the 
creation of this award, the judging crite-
ria for the Meritorious Service Award
was redefined. The Meritorious Service 
Award judging criteria now reflects that 
judging will be based on recognizing 
outstanding efforts and contributions 
aimed at promoting the technical and 
educational activities of the entire SPS, 
i.e., that benefit the membership of the 
SPS at large.

Digital Object Identifier 10.1109/MSP.2017.2697105
Date of publication: 11 July 2017
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The Overview Paper Award was 
renamed the Donald G. Fink Overview 
Paper Award. The award description 
remains untouched; just the name of the 
award was modified.

The Society Award was modified to 
incorporate a presentation of an Interna-
tional Conference on Acoustics, Speech, 
and Signal Processing (ICASSP) plenary 
lecture, which will be called the “Norbert 
Wiener Lecture.” Each Society Award 
recipient is expected to present a Norbert 
Wiener lecture at the 2018 ICASSP. This 
lecture is one of the plenary lectures 
given on the day of the banquet of 
ICASSP, but it is not a banquet speech.

As a reminder, for the Young Author 
Best Paper Award, a board or committee 
cannot nominate one of its members for 
the award. Please note that this includes 
nominating an author of a paper where a 
member of a nominating board or com-
mittee is also an author on the paper, even 
though this member is not the “young 
author” being considered for the award.

The paper awards nomination form 
requests citation impact information, so 
please provide this valuable information. 
The Awards Board will continue to 
review the nominations and make selec-
tions on paper awards.

For all major awards other than paper 
awards, the Awards Board will be 
responsible for vetting the nominations 
and producing a short list of no more 
than three nominations per award. The 
Board of Governors will continue to vote 
on the selection of the major awards.

A board or committee cannot nominate 
one of its current members for an award. 
However, the board/committee member 
can be nominated by another board or 
committee. Current elected members 
of a committee/board may participate as 
individual nominators for other mem-
bers of the same board/committee. In 
the case of major award nominations, 
please note: boards or committees that 
submit nominations, but have voting 
Board of Governors members sitting on 
their boards or committees, must ensure 
that Board of Governors voting members 
do not participate in the board/commit-
tee award nomination or selection process.

Individual nominations can have multi-
ple conominators listed on the nomination 
form. In addition, individual nomi  nations 
can include up to two endorsements to 
strengthen the nomination from two 
other individual members. Nominations 
supported by committee/boards cannot 
be accompanied by endorsements. IEEE 

SPS membership is no longer required 
for endorsements. All endorsements must 
be submitted via e-mail to the specified 
address, which will provide the nomina-
tion with a date and time stamp. If more 
than two endorsements are submitted, 
only the first two received endorsements 
will be forwarded to the SPS Awards 
Board for consideration. A nominator 
cannot serve as an endorser for a nomi-
nation he/she is submitting. If the Society 
policies state that a particular board/
committee/individual is not eligible to 
nominate for a particular award, then 
members of that same group of individu-
als are not eligible to be endorsers.

Technical committee and special 
interest group award nomination proce-
dures have been approved with suggested 
award nomination and voting procedures. 
For full details on each award as well as 
the new Society and technical commit-
tee/special interest group awards policies 
and endorsement form, please visit http://
signalprocessingsociety.org/get-involved/
awards-submit-award-nomination.

If you have any questions regarding 
the process, please do not hesitate to con-
tact Awards Board Chair H. Vincent Poor 
at poor@princeton.edu.

SP

opens up opportunities for bigger leaps in 
innovation, even if we may not succeed 
at most attempts.

As in almost any litigation, for col-
leagues who either work for or hold 
shares and other interests in the opposing 
company involved in the patent dispute, 
the success of the inventors and their insti-
tution in this high-profile litigation may 
be rather bitter. This is understandable as 
one’s judgment can be influenced when 
such personal interests are involved. Still, 
I hope as professionals working on the 
forefront of technology advances, we can 
look beyond our personal gains or losses 
to celebrate the positive impact of innova-
tions powered by signal processing.

Perhaps our discussions on the inno-
vations powered by signal processing 
have stimulated reflections from you. To 
help capture the thoughts of our read-
ers, we formally launch the “Community 
Voices” column on page 10 in this issue. 
The first discussion topic is “What is 
considered a successful career for signal 
processing trained professionals?” 
SPM’s Area Editor Dr. Andres Kwasinski 
took the lead and gathered input from the 
community and compiled highlights. My 
appreciation also goes to Dr. Charles 
Casimiro Cavalcante, a reader in Brazil, 
who was the very first to respond to the 
open calls on this new initiative, and to 
several readers from a variety of sectors 

together with our retired veterans of the 
magazine editorial board who kindly 
share their perspectives.

The second topic for the “Commu-
nity Voices” column is “What’s the fu-
ture of signal processing?” Please take 
a moment to share your views on this 
web form https://www.surveymonkey
.com/r/SPSCommunityVoices2. We 
look forward to reading your input and 
sharing highlights in a future issue 
of SPM.

SP

FROM THE EDITOR (continued from page 3)
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COMMUNITY VOICES
Andres Kwasinski and Min Wu

elcome to the first article in a newly 
launched column, “Community 
Voices,” in IEEE Signal Processing 

Magazine. The motivation behind this 
column is to strengthen ties with read-
ers and members in the signal process-
ing community. In doing so, we set out to 
collect reflections from diverse members 
of our community on questions that are 
of interest to many. A readily available 
form on the Internet as well as e-mail 
exchanges were used to gather respons-
es. This first article of the “Community 
Voices” column focuses on the question 
“For a person with signal processing 
training, what do you consider as a suc-
cessful career?” 

We begin with input from Charles 
Casimiro Cavalacante from Brazil, who 
was the first to respond to the web form. 
We welcome your feedback on this new 
initiative and your ideas in suggesting 
future topic questions. The second topic 
on the future of signal processing is 
open for input. Please refer to “The Fu-
ture of Signal Processing” for the topic 
and web links. We hope that you enjoy 
this new column and look forward to 
hearing from you.

Charles Casimiro Cavalacante
Signal processing is broad, and career 
prospects for signal processing prac-
titioners are just as diverse. There are 
practitioners in biomedical engineering, 
industrial automation, electronic design, 

acoustics and audio 
applications, image 
and video process-
ing; robotics, navi-
gation systems, data 
and financial analyt-
ics, communication 

systems, and many others. There are 
growing research areas in data analyt-
ics, perceptual computing, smart energy 
technologies, and sensor systems for 
enterprise and industrial applications. 
There is a wealth of signal processing 
expertise in research institutions pushing 
signal processing reach into many fields 
through research projects and training of 
the next cadre of practitioners.

While judging career success is a 
subjective exercise, there are good indi-
cators common to most people’s ideal 
of a successful career. These include 
drawing satisfaction from day to day job 
activities, progressive growth in project 

responsibilities and influence, and doing 
recognized and rewarding work that 
has measurable impact.

Given the breadth of signal pro-
cessing career opportunities and un-
derstanding what constitutes career 
success, what does a successful signal 
processing career look like? I am a 
midcareer practitioner with experience 
in both academia and in industry. I 
consider myself a work in progress to-
ward career success. Signal processing 
has enabled me to contribute to model-
ing high-speed computer interconnects 
and gain insight into channel equaliza-
tion challenges, train students on filter 
design, and witness the excitement of 
translating design-rule steps to circuit im-
plementation for a rudimentary working 
guitar pickup. These are some rungs on a 
ladder toward a satisfying career.

Listening to senior engineers dis-
cuss their most impactful work and the 

What Do You Consider a “Successful” Career? 
Perspectives from signal processing-trained professionals

Digital Object Identifier 10.1109/MSP.2017.2698118
Date of publication: 11 July 2017

After half a century of development, some say signal processing is already 
matured in terms of theories and techniques and perhaps would not have a new 
research breakthrough. Others have observed the problem of “signal processing 
inside.” 

What are your thoughts about the future of signal processing? Please pro-
vide your input by filling out this web form: https://www.surveymonkey
.com/r/SPSCommunityVoices2.

A selection of the responses will be published in an upcoming issue of IEEE 
Signal Processing Magazine or Inside Signal Processing eNewsletter, subject to 
editing for language and length.

The Future of Signal ProcessingW
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process that took them from ideation to re-
sults shows that careers are a journey 
indeed. In short, a successful career is 
a hodgepodge of experiences, growth 
through overcoming challenges, project 
successes, and willingness to embrace 
new ways of using signal processing train-
ing in different engineering problems.

Author
Charles Casimiro Cavalcante (charles@
gtel.ufc.br) received a Ph.D. degree 
from the University of Campinas. He 
is an associate professor at the Univer-
sidade Federal do Ceará, Brazil, and 
holds the Statistical Signal Processing 
Chair. He has been a visiting assistant 
professor in the Department of Com-
puter Science and Electr ical Engi-
neering at the University of Maryland, 
Baltimore County. He is a Senior Mem-
ber of the IEEE and of the Brazilian 
Telecommunications Society.

Khaled El-Maleh
I have witnessed the 
great impact of sig-
nal processing in our 
lives! With signal pro-
cessing training span-
ning three degrees 
(my B.Eng., M.Eng., 

and Ph.D. degrees) followed by more 
than 17 years of industry experience, I 
have been fortunate to have a successful 
and rich signal processing career. I think 
the main reasons for this success have 
been realizing the great value of continu-
ing my relationship with academic insti-
tutions (both students and professors), 
with the IEEE Signal Processing Soci-
ety, as well as working on developing 
multimedia consumer products using 
signal processing algorithms. Examples 
of such products are smartphones with 
wide-band telephony, advanced camera 
and video telephony, and streaming. 
In addition, I have recently expanded 
my signal processing knowledge in 
emerging areas like the Internet of 
Things, automotive, mobile health care, 
and smart cities.

Author
Khaled El-Maleh (kelmaleh@qualcomm
.com) received his Ph.D. degree in 

electrical and computer engineering 
from McGill University, Canada. He 
is a senior director of technology in the 
Intellectual Property (IP) Department 
of Qualcomm leading the Sensor and  
Display IP Portfolio Team, Multime-
dia Technology Team, and related IP 
Strategy areas. He is a technologist 
and strategist with focus on entrepre-
neurship and innovation, as well as an 
accomplished inventor with more than 
200 U.S. and international patents. He 
was awarded the Qualcomm Career 
Thought Leadership Award in 2009 
and the IP Department 2013 Distin-
guished Contributor Award. 

Gene A. Frantz
I first will start with 
an equation, which 
is the basis for my 
answer: DSP + Divide 
= Math.

When we began 
the drive into digital 

signal proessing (DSP), both in theory 
and hardware, we avoided the divide 
operator, as hardware didn’t do the 
divide operation well. In spite of that, 
DSP technology advanced in both theo-
ry and hardware, finding new uses and 
new users. These new uses demanded 
high-performance math engines. Late-
ly, new terms such as cloud comput-
ing, the Internet of Things, big data, 
smart sensors, etc. are driving us even 
harder than those initial drivers of DSP 
(speech, modems, hard disk drives, 
and three-dimensional graphics). Now, 
with this as a background, I can answer 
the question of what does a successful 
career look like? It is a career where the 
technology I helped to create became 
a societal necessity within the span 
of my career. For many of us, this has 
happened multiple times. It will con-
tinue to happen. All we need to do is to 
continue to look for those new uses and 
new users and then make it happen.

Author
Gene A. Frantz (Gene.Frantz@octa
vosystems.com) is an engineering man-
ager/professor in practice at Rice Uni-
versity, Houston, Texas. He took this 
position after 39 years at Texas In-

struments (TI), where he retired as 
TI’s Principal Fellow. He is a recog-
nized leader in DSP technology both 
within TI and throughout the indus-
try. He holds 48 patents in the area of 
memories, speech, consumer products, 
and DSP. He has written more than 
100 papers and articles and continually 
presents at universities and conferences 
worldwide. He is an IEEE Fellow. 

Shan He
A successful career 
with signal process-
ing training is one 
where you can utilize 
your analytical skill 
obtained during the 
t ra in ing to either 

directly solve a technical problem, such 
as working as an engineer, or assist oth-
ers to clarify their solution and to obtain 
rights associated with solution, for 
example, working in the patent law area. 
I am currently practicing patent law, 
and I found my signal processing back-
ground bring me tremendous advantage 
over other patent practitioners. This 
is because my strong technical back-
ground enables me to understand the 
invention quicker and deeper, which 
allows me to assist inventors to achieve 
the broadest possible legal protection for 
their invention.

Author
Shan He (shanhe@gmail.com) received 
her Ph.D. degree in 2007 from the Uni-
versity of Maryland, majoring in com-
munications and signal processing. She 
worked as a research scientist in the 
research lab of Thomson Multimedia 
for three years. She then switched her 
career path in 2010 to become a patent 
agent with Lee & Hayes, PLLC, serving 
clients including the world’s most valu-
able technology companies. She expects 
to obtain her law degree in Decem-
ber 2017.

Hing Cheung So
From my point of view, a successful 
engineer is an excellent problem solver. 
To solve a problem, the first step is to 
identify it and investigate if it is worth 
tackling. The second step is to formulate 
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the problem—de-
scribe it clearly with 
unambiguous require-
ments. Next, we ap-
ply our knowledge as 
well as creativity to 
devise solutions and 

then choose the best among the pro-
posed alternatives according to the pre-
set criteria or via balancing all the pros 
and cons. Finally, the solution is put 
into practice.

In fact, the problem-solving skill set 
is well trained through fundamental sig-
nal processing courses including Sig-
nals and Systems and Digital Signal 
Processing. For example, we learn that 
problems in linear time-invariant sys-
tems can be solved by either a time- or 
transform-domain approach, and a digi-
tal system can be designed using differ-
ent finite impulse-response or infinite 
impulse-response filters that meet the 
same specifications. In the former, we 
also experience that the time-domain 
solver is easier in certain scenarios 
and vice versa, while one filter can be 
implemented with minimum complex-
ity in the latter, stimulating us to think 
about the optimum choice. In addition, 
to be successful, I believe we should 
only focus on the most investable prob-
lems (i.e., think big) and realize the best 
solution in an efficient and persistent 
manner. A spirit of humility, open-
mindedness, and willingness to learn is 
important, too.

Author
Hing Cheung So (h.c.so@cityu.edu.hk) 
received his Ph.D. degree in electronic 
engineering from The Chinese Univer-
sity of Hong Kong. He is a professor 
in the Department of Electronic Engi-
neering, City University of Hong Kong. 
From 1990 to 1991, he was an electronic 
engineer with the Research and Devel-
opment Division, Everex Systems Engi-
neering Ltd., Hong Kong. He has been 
on the editorial boards of IEEE Signal 
Processing Magazine, IEEE Transac-
tions on Signal Processing, Signal Pro-
cessing, and Digital Signal Processing.
He is a Fellow of the IEEE.

Pramod K. Varshney
Signal processing is 
involved in a very 
wide variety of sys-
tems and applications, 
and a person trained 
in this field can have 
a broad impact. Pos-

sibilities include hardware, software, 
and algorithmic developments in the 
areas of defense, security, health, educa-
tion, quality of life, and even social good. 
Since signal processing training prepares 
one to tackle a broad range of problems, a 
successful career will include agility and 
the ability to learn quickly so as to con-
tribute to ever-changing technological 
trends and needs. The key is to be able 
to adapt and move to new areas. When I 
look back at my career, with my training 

in statistical signal processing, I have 
been able to contribute to wide-ranging 
applications such as intelligent radars 
deployed on several U.S. Air Force 
platforms, fault detection for health 
management of air and space vehicles, 
mammography automation, and secur-
ing wireless sensor networks. In my 
opinion, a successful career would be 
one in which signal processing training 
is applied to solve diverse problems so 
as to impact societal needs and improve 
quality of life.

Author
Pramod K. Varshney (varshney@syr
.edu) received his Ph.D. degree in elec-
trical engineering from the University 
of Illinois at Urbana-Champaign. He 
is with Syracuse University, New York, 
where he is currently a distinguished 
professor of electrical engineering and 
computer science and the Director of 
the Center for Advanced Systems and 
Engineering. He is also an adjunct pro-
fessor of radiology at Upstate Medical 
University, Syracuse. He received the 
IEEE 2012 Judith A. Resnik Award, 
Doctor of Engineering Honoris causa 
from Drexel University in 2014, and 
the ECE Distinguished Alumni Award 
from the University of Illinois in 2015. 
He was the president of the International 
Society of Information Fusion during 
2001 and is a Fellow of the IEEE.
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SPECIAL REPORTS
John Edwards

1053-5888/17©2017IEEE

e live in a world full of sensors, and 
sensors are changing how we live 
and, more significantly, how long 

we live.
The health-care and medical appli-

cations sensor market is projected to 
expand at a compound annual growth 
rate of 13.1% between 2016 and 2022, 
according to a report issued in March 
2017 by the research firm Frost & Sul-
livan. A key factor driving sensor sales 
is the growing availability of consumer 
and clinical devices that use sensor 
technology to diagnose, monitor, and 
track disease and fitness.

Within the next few years, an emerg-
ing generation of smaller, less expen-
sive, and highly sophisticated sensors 
will find their way into a wide range of 
personal and professional devices. With 
more patient care moving out of hos-
pitals, the use of sensor-enabled home 
diagnostic and monitoring devices is 
expected to soar, the report notes. The 
market for sensors used in wearable 
health and fitness devices is also poised 
to grow rapidly.

As sensor demand grows, research 
incorporating signal processing is lead-
ing to the development of innovative 
sensors designed to provide noninva-
sive diagnostics of different diseases, 
reliably monitor body functions and 
measure the impact of medications and 
activities on the human body.

Magnetic nerve field sensing
The human body is controlled by elec-
trical impulses. These signals create 
ultraweak magnetic fields that physi-
cians could potentially use to diagnose 
various diseases. Niels Bohr Institute 
researchers recently succeeded in devel-
oping an optical magnetic field sensor 
that promises to provide extremely pre-
cise measurements of weak magnetic 
fields emitted by nerve signals within 
real-world environments.

Until now, minute magnetic fields 
generated by nerves within a human 
body could only be detected with very 
sensitive superconducting magnetic 
field sensors cooled by liquid helium 

to near absolute zero (−273 °C). But the 
Niels Bohr researchers were able to cre-
ate a far more practical optical magnetic 
field sensor that’s capable of functioning 
at both room and body temperatures.

“We have a small glass container—
1 mm × 1 mm × 8 mm—which is filled 
with cesium gas,” says research term 
member Kasper Jensen, an assistant 
professor at the institute’s Center for 
Quantum Optics (Figure 1). Each cesi-
um atom rotates around itself, with the 
axis acting like a tiny bar magnet. When 
a sensor incorporating the container is 
held close to a nerve that’s emitting an 
electrical pulse, it detects the magnetic 
field, which causes a change in the tilt 

Innovative Sensors Promise Longer and Healthier Lives
Signal processing leads to devices that provide faster 
and more insightful monitoring and diagnoses

Digital Object Identifier 10.1109/MSP.2017.2697158
Date of publication: 11 July 2017

FIGURE 1. Assistant Prof. Kasper Jensen investigates optical magnetic field sensor technology in a 
laboratory at the Niels Bohr Institute’s Center for Quantum Optics. 
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of the cesium atoms’ axes. By sending a 
laser beam through the gas, it becomes 
possible to read the nerve signals’ 
ultrasmall magnetic fields. Recent labo-
ratory tests conducted by the research-
ers showed that it is possible to use the 
sensor to detect the magnetic field in a 
frog’s sciatic nerve, which resembles 
nerves in the human body.

A magnetometer-type sensor can 
be used for the noninvasive diagnostics 
of various afflictions, including brain 
and heart diseases. “The key point is 
that a magnetometer placed outside the 
human body can detect signals from 
organs inside the human body,” Jensen 
says. “The magnetometer does not have 
to touch the human body, and it is, there-
fore, a noninvasive method.”

The sensor’s operation relies on both 
quantum mechanics and atomic phys-
ics. “Each cesium atom has a quantum 
mechanical property called ‘spin,’ and, 
due to this property, the atom responds to 
magnetic fields,” Jensen says. “One can 
think of the total spin of all the cesium 
atoms in the glass container as one large 
vector that points in a certain direction.” 
When a magnetic field arrives, the spin-
vector changes its direction.

“The spin-vector’s direction can be 
measured optically with laser light,” 
Jensen continues. “The light is detected 
with a photodiode, and from this detect-
ed signal we can determine the direc-
tion of the spin-vector and the magnetic 
field.” The actual detected signal is the 
photo-detector’s output voltage. “From 
that voltage we need to do some signal 
processing to get information about the 
magnetic field,” Jensen says.

The photo-detector has a high band-
width (greater than 10 MHz), and the 
computer-based data-acquisition card the 
researchers use offers a high sampling 
rate (fixed to 10 MHz). “To avoid alias-
ing, we placed a 1.9-MHz low-pass filter 
in between the photo-detector and the 
data-acquisition card,” Jensen says. “The 
data is acquired and then processed, 
visualized and saved with [National 
Instruments] LabVIEW program.”

The nerve impulse itself is relative-
ly slow, corresponding to dc −2-kHz 
frequency components. “We do not 
really need the high sampling rate 

that the data-acquisition card provides,” 
Jensen says. “Our LabVIEW program, 
therefore, bins the data.” This action 
reduces the amount of data (in mega-
bytes), enabling further data analysis to 
be accomplished faster. “We now have a 
time-signal S(t), which has been low-pass 
filtered and binned,” Jensen says. “That 
time-signal is saved to the computer, and 
we do further analysis using [The Math-
Works] MATLAB software.”

The researchers’ experiments are 
run in two modes: pulsed and continuous. 
The data analysis 
is different for each 
mode. “In the con-
t inuous mode, we 
need to do a decon-
volution procedure to 
calculate the mag-
netic field ( )B t  from 
the time-signal ( ),S t ”
Jensen  says .  “ We 
deconvolve with the response func-
tion: ( ) ( ) ( / ) .cos expf t t t TX- - ” The re-
sponse function tells the researchers how 
the spin of the cesium atoms responds to 
a magnetic field. If there is a short pulse of 
magnetic field, the spin will start to oscillate 
at the frequency 400 HzX =  and then de-
cay exponentially with the time constant 

.T 0 5 ms=  (numbers are approximate). 
“In the pulsed mode, we calculate the 
Fourier transform of ( )S t  and find the 
Fourier component at a specific fre-
quency—in our case ,400 HzX = ” Jen-
sen says. “The amplitude of the 400 Hz 
component tells us whether the nerve 
impulse was there or not.”

Jensen says the researchers did con-
sider using a software lock-in amplifier 
for data analysis. “Compared to a Fou-
rier transform, lock-in detection can be 
useful when one has a phase-stable sig-
nal,” Jensen remarks. “We tried it out a 
bit but abandoned it as the phase of the 
signals we were looking for was chang-
ing in a way we did not fully under-
stand.” The researchers also pondered 
using a wavelet analysis. “This was, 
however, complicated by the fact that 
we did not know in advance the exact 
temporal shape of the signals we were 
looking for,” Jensen says.

Jensen is optimistic that the tech-
nology will eventually find multiple 

real-world diagnostic applications. 
“However, so far, our main focus has 
been to do basic and applied research, 
and we do not have our magnetometers 
for sale,” he states.

Sensing skin hydration
North Carol ina State University 
researchers have developed a wear-
able, wireless sensor that can moni-
tor a person’s skin hydration to detect 
dehydration before it can begin posing 
health issues. The lightweight, flex-

ible, and stretchable 
device can be built 
into devices that are 
worn on t he  wr is t 
or  a t tached to the 
body as a chest patch 
(Figure 2). “It turns 
out that measuring hy-
dration of the human 
body is challenging, 

making it hard to make quantitative 
measurements,” says research team 
member John Muth, a professor of 
electrical and computer engineering at 
North Carolina State University. In ath-
letic training, for instance, the typical ap-
proach has been for an athlete measuring 
himself or herself, without any clothes, 
before and after activity. “This provides 
a measure of the change in hydration, 
since the weight change corresponds to 
water loss,” Muth says. In cl inical 
settings, however, a caregiver typically 
makes a relatively qualitative assessment 
simply by looking at the patient or by 
pulling some skin and seeing how rap-
idly it relaxes.

Adhesive Ag
Nanowire Patch

Circuit + Battery

FIGURE 2. North Carolina State University 
researchers have developed a wearable, wire-
less sensor that can monitor a person’s skin 
hydration to detect dehydration before it can 
begin posing health issues.

A key factor driving sensor 
sales is the growing 
availability of consumer 
and clinical devices that 
use sensor technology to 
diagnose, monitor, and 
track disease and fitness.
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Health and medicine experts have 
long known that the skin’s dielectric 
proper ties change 
with hydration. Exist-
ing desktop hydra-
tion measurement 
systems typically use 
a rigid probe pressed 
against the skin to 
determine impedance. 
Yet such calculations tend to vary in 
accordance to the amount of pressure 
applied. “Our innovations were to devel-
op a conformal, somewhat stretchable, 
electrode that can be worn against the 
body and to miniaturize the electronics,” 
Muth says. The new sensor includes two 
electrodes that are constructed out of an 
elastic polymer composite containing 
conductive silver nanowires to monitor 
impedance. Since the skin’s electrical 
properties change in a predictable man-
ner based on the individual’s hydration 
state, the electrodes can tell how hydrat-
ed the skin is. The entire system is about 
the size of an Apple Watch.

The device offers multiple potential 
applications, Muth notes. “High-perfor-
mance athletes would like to know more 
about their hydration state when train-
ing, since this can be directly linked 

to athletic performance,” he explains. 
“First responders can dehydrate when 

working in extreme 
conditions.” In tests 
performed on custom-
made artificial skins 
incorporating a wide 
range of hydration 
levels, the research-
ers found that the 

wearable sensor’s performance was 
unaffected by ambient humidity.

An Analog Devices 5933 network 
analyzer chip handles most of the sig-
nal processing. “When the skin is in 
contact with the electrode, we are look-
ing for a change in impedance that is 
connected to the hydration state of the 
skin,” he says. “The network analyzer 
chip approach allows us to measure the 
complex impedance as a function 
of frequency.”

The chip uses direct digital syntheses 
to produce a sinusoidal output voltage 
at a known frequency and amplitude 
that is then applied to the electrode. 
“The voltage across the electrode is 
received and amplified, and passes 
through a low pass filter,” Muth says. “A 
discrete Fourier transform (DFT) is per-
formed for each frequency in the sweep, 

storing both the real and imaginary 
components of the DFT result.” The 
impedance is then calculated by multi-
plying a scaling factor obtained by mea-
suring a known impedance by one over 
the magnitude of the DFT result. “The 
phase angle in radians is calculated by 
taking the arctangent of the ratio of the 
imaginary and real parts,” Muth says. 
“Once the magnitude of the impedance 
and phase angle are known, the resistive 
and reactive components are calculated 
for each frequency.”

Once an individual measurement has 
been made, a variety of techniques can 
be used to average the data or to detect 
specific events, such as the onset of 
sweating. “We still need to investigate 
how motion artifacts can influence the 
data,” Muth says. “Knowledge of how to 
fuse other data, such as the body tem-
perature, external humidity, heart rate 
or other parameters, could also be useful 
since often people are also interested in 
these other parameters.”

Both the watch and patch can wire-
lessly transmit sensor data to external 
devices, allowing data to be monitored 
by the user or a designated third party, 
such as a doctor in a hospital or clinic. 
Muth estimates that adding the sensor to 
a wearable smart device would cost only 
about US$1.

Monitoring glucose via 
perspiration
Can a person’s glucose level be quickly 
and conveniently monitored through 
skin perspiration? That was the question 
University of Texas at Dallas research-
ers sought to answer as they began 
designing a wearable device that could 
be used by individuals with diabetes, or 
at risk of developing the disease, to mea-
sure their blood sugar levels.

Shalini Prasad, a University of Texas 
at Dallas professor of bioengineering, 
and doctoral student Rujuta Munje 
recently demonstrated a sensor they 
designed to reliably detect and quantify 
glucose in human perspiration (Fig-
ure 3). Conventional patient-type blood 
glucose readers use a small blood sam-
ple, typically obtained via a finger prick. 
The new textile-based sensor, however, 
detects glucose from a tiny amount of 

FIGURE 3. Shalini Prasad (right), professor of bioengineering at the University of Texas at Dallas, and 
doctoral student Rujuta Munje have designed a wearable, flexible biosensor that can reliably detect 
and quantify glucose from very small amounts of human perspiration. A close-up of the sensor is 
shown in the top-left corner.

Muth estimates that 
adding the sensor to a 
wearable smart device 
would cost only 
about US$1.
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ambient perspiration on a person’s skin. 
“Our sensor mechanism uses the same 
chemistry and enzymatic reaction found 
in blood glucose testing strips,” Prasad 
says. “Our design, however, accounts 
for the low volume of ambient sweat 
typically present in areas such as under 
a wrist device or patch.”

The new device requires perspira-
tion volumes of under a microliter—
approximately equal the amount of 
liquid that would fit into a cube the size 
of a salt crystal—to make an accurate 
measurement that’s then displayed on 
a digital readout, according to Prasad. 
The sensor is based on an off-the-shelf 
polymer-based textile material. The 
current prototype is a small, flexible, 
rod-shaped device measuring about an 
inch long. “The innovation is that we 
positioned the electrodes onto the tex-
tile in a manner that allows a very small 
volume of sweat to spread effectively 
through the surface,” Prasad says.

The researchers turned to Kalman 
filtering to differentiate readings. “The 

Kalman filter is one that works very 
well for dynamic systems that have a lot 
of uncertainty associated with them,” 
Prasad remarks. “You apply Kalman 
filtering to a particular sector to try to 
establish, with a great degree of cer-
tainty, whether glucose is the molecule 
that is specifically interacting with 
the sensor surface or whether the cur-
rent change that’s happening is due to 
something else.”

According to Prasad, sensor calibra-
tion response was calculated using n 4=
samples. The response to the varying 
glucose concentration was captured 
in terms of percentage change in total 
impedance (Zmod) between the base-
line step impedance and the impedance 
obtained for that particular concentra-
tion. The Zmod was captured at 100 Hz, 
the highest signal over noise ratio. 
Specific signal threshold (SST) was 
estimated by measuring replicates of 
a blank buffer sample and calculating 
the mean result and standard deviation. 
The noise level was defined as the three 

times of standard deviation in base-
line (zero dose) measurement. Limit of 
detection was identified as the lowest 
glucose concentration likely to be reli-
ably distinguished from the SST and at 
which detection is feasible. “We have 
shown that this particular sensor works 
robustly not just in a lab environment, 
but kind of in a translation environment 
as well,” Prasad says. It can adjust itself 
to variations in environmental condi-
tion such as temperature, humidity, the 
people who are wearing it, and so forth.”

The researchers are now look-
ing toward refining the sensor into a 
device that could potentially replace 
blood sample-based glucose readers. 
“We believe it could easily be incorpo-
rated into existing consumer electronics 
platforms,” Prasad says.

Author
John Edwards (jedwards@johnedwards 
media.com) is a technolgy writer based 
in the Phoenix, Arizona, area. 
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M
any scientific fields study data with an underlying 
structure that is non-Euclidean. Some examples 
include social networks in computational social sci-
ences, sensor networks in communications, func-

tional networks in brain imaging, regulatory networks in 
genetics, and meshed surfaces in computer graphics. In 
many applications, such geometric data are large and com-
plex (in the case of social networks, on the scale of billions) 
and are natural targets for machine-learning techniques. 
In particular, we would like to use deep neural networks, 
which have recently proven to be powerful tools for a broad 
range of problems from computer vision, natural-language 
processing, and audio analysis. However, these tools have 
been most successful on data with an underlying Euclidean or 
grid-like structure and in cases where the invariances of these 
structures are built into networks used to model them.

Geometric deep learning is an umbrella term for emerging 
techniques attempting to generalize (structured) deep neural mod-
els to non-Euclidean domains, such as graphs and manifolds. The 
purpose of this article is to overview different examples of geometric 
deep-learning problems and present available solutions, key difficul-
ties, applications, and future research directions in this nascent field.

Overview of deep learning
Deep learning refers to learning complicated concepts by building them from 
simpler ones in a hierarchical or multilayer manner. Artificial neural networks are 
popular realizations of such deep multilayer hierarchies. In the past few years, the growing 
computational power of modern graphics processing unit (GPU)-based computers and the avail-
ability of large training data sets have allowed successfully training neural networks with many layers 
and degrees of freedom (DoF) [1]. This has led to qualitative breakthroughs on a wide variety of tasks, from 
speech recognition [2], [3] and machine translation [4] to image analysis and computer vision [5]–[11] (see [12]

Michael M. Bronstein, Joan Bruna, Yann LeCun, 
Arthur Szlam, and Pierre Vandergheynst

Going beyond Euclidean data

Geometric Deep Learning
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and [13] for many additional examples of successful applications of deep learning). Today, deep learning 
has matured into a technology that is widely used in commercial applications, including Siri speech recog-

nition in Apple iPhone, Google text translation, and Mobileye vision-based technology for autonomously 
driving cars.

One of the key reasons for the success of deep neural networks is their ability to leverage sta-
tistical properties of the data, such as stationarity and compositionality through local statistics, 

which are present in natural images, video, and speech [14], [15]. These statistical properties 
have been related to physics [16] and formalized in specific classes of convolutional neural 

networks (CNNs) [17]–[19]. In image analysis applications, one can consider images as 
functions on the Euclidean space (plane), sampled on a grid. In this setting, stationarity 

is owed to shift invariance, locality is due to the local connectivity, and compositional-
ity stems from the multiresolution structure of the grid. These properties are exploited 
by convolutional architectures [20], which are built of alternating convolutional and 
downsampling (pooling) layers. The use of convolutions has a twofold effect. First, it 
allows extracting local features that are shared across the image domain and great-
ly reduces the number of parameters in the network with respect to generic deep 
architectures (and thus also the risk of overfitting), without sacrificing the expres-
sive capacity of the network. Second, the convolutional architecture itself imposes 
some priors about the data, which appear very suitable especially for natural images 
[17]–[19], [21].

While deep-learning models have been particularly successful when dealing 
with speech, image, and video signals, in which there are an underlying Euclide-
an structure, recently there has been a growing interest in trying to apply learning 
on non-Euclidean geometric data. Such kinds of data arise in numerous applica-

tions. For instance, in social networks, the characteristics of users can be modeled 
as signals on the vertices of the social graph [22]. Sensor networks are graph models 

of distributed interconnected sensors, whose readings are modeled as time-depen-
dent signals on the vertices. In genetics, gene expression data are modeled as signals 

defined on the regulatory network [23]. In neuroscience, graph models are used to rep-
resent anatomical and functional structures of the brain. In computer graphics and vision, 

three-dimensional (3-D) objects are modeled as Riemannian manifolds (surfaces) endowed 
with properties such as color texture.

The non-Euclidean nature of such data implies that there are no such familiar properties as 
global parameterization, common system of coordinates, vector space structure, or shift 

invariance. Consequently, basic operations like convolution that are taken for granted in 
the Euclidean case are even not well defined on non-Euclidean domains. The purpose 

of this article is to show different methods of translating the key ingredients of suc-
cessful deep-learning methods, such as CNNs, to non-Euclidean data.

Geometric learning problems
Broadly speaking, we can distinguish between two classes of geometric 
learning problems. In the first class of problems, the goal is to characterize 
the structure of the data. The second class of problems deals with analyz-
ing functions defined on a given non-Euclidean domain. These two class-
es are related, because understanding the properties of functions defined 
on a domain conveys certain information about the domain, and vice 
versa, the structure of the domain imposes certain properties on the func-
tions on it.

Structure of the domain
As an example of the first class of problems, assume to be given a set of 

data points with some underlying low-dimensional structure embedded into a 
high-dimensional Euclidean space. Recovering that low-dimensional structure 

is often referred to as manifold learning or nonlinear dimensionality reduction
and is an instance of unsupervised learning (note that the notion of manifold in this 

setting can be considerably more general than a classical smooth manifold; see, e.g., 
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[24] and [25]). Many methods for nonlinear dimensionality 
reduction consist of two steps: first, they start with con-
structing a representation of local affinity of the data points 
(typically, a sparsely connected graph). Second, the data 
points are embedded into a low-dimensional space, trying to 
preserve some criterion of the original affinity. For example, 
spectral embeddings tend to map points with many connec-
tions between them to nearby locations, and multidimension-
al scaling (MDS)-type methods try to 
preserve global information, such as graph 
geodesic distances. Examples of manifold 
learning include different flavors of MDS 
[26], locally linear embedding [27], sto-
chastic neighbor embedding [28], spectral 
embeddings, such as Laplacian eigenmaps 
[29] and diffusion maps [30], and deep models [31]. Instead 
of embedding the vertices, the graph structure can be pro-
cessed by decomposing it into small subgraphs called motifs
[36] or graphlets [37]. Finally, most recent approaches [32]–
[34] tried to apply the successful word-embedding model 
[35] to graphs.

In some cases, the data are presented as a manifold or 
graph at the outset, and the first step of constructing the affin-
ity structure described previously is unnecessary. For instance, 
in computer graphics and vision applications, one can analyze 
3-D shapes represented as meshes by constructing local geo-
metric descriptors capturing, e.g., curvature-like properties 
[38], [39]. In social network analysis applications the topologi-
cal structure of the social graph representing the social rela-
tions between people carries important insights allowing, e.g., 
to classify the vertices and detect communities [40]. In natural-
language processing, words in a corpus can be represented by 
the co-occurrence graph, where two words are connected if 
they often appear near each other [41].

Data on a domain
Our second class of problems deals with analyzing functions 
defined on a given non-Euclidean domain. We can further 
break down such problems into two subclasses: problems 
where the domain is fixed and those where multiple domains 
are given. For example, assume that we are given the geo-
graphic coordinates of the users of a social network, represent-
ed as a time-dependent signal on the vertices of the social 
graph. An important application in location-based social net-
works is to predict the position of the user given his or her 
past behavior as well as that of his or her friends [42]. In this 
problem, the domain (social graph) is assumed to be fixed; 
methods of signal processing on graphs, which have previous-
ly been reviewed in IEEE Signal Processing Magazine [43],
can be applied to this setting, in particular, to define an 
operation similar to convolution in the spectral domain. This, 
in turn, allows generalizing CNN models to graphs [44], [45].
In computer graphics and vision applications, finding similari-
ty and correspondence between shapes are examples of the 
second subclass of problems: each shape is modeled as a man-
ifold, and one has to work with multiple such domains. In this 

setting, a generalization of convolution in the spatial domain 
using local charting [46]–[48] appears to be more appropriate.

Brief history
The main focus of this review is on this second class of prob-
lems, namely, learning functions on non-Euclidean structured 
domains, and, in particular, attempts to generalize the popular 
CNNs to such settings. The first attempts to generalize neural 

networks to graphs we are aware of are due 
to Gori et al. [49], who proposed a scheme 
combining recurrent neural networks (RNNs) 
and random walk models. This approach 
went almost unnoticed, reemerging in a 
modern form in [50] and [51] due to the 
renewed recent interest in deep learning. 

The first formulation of CNNs on graphs is due to Bruna et al. 
[52], who used the definition of convolutions in the spectral 
domain. Their article, while being of conceptual importance, 
came with significant computational drawbacks that fell short 
of a truly useful method. These drawbacks were subsequently 
addressed in the follow-up works of Henaff et al. [44] and 
Defferrard et al. [45]. In the latter article, graph CNNs (GCNNs) 
allowed achieving some state-of-the-art results.

In a parallel effort in the computer vision and graphics 
community, Masci et al. [47] showed the first CNN model on 
meshed surfaces, resorting to a spatial definition of the convo-
lution operation based on local intrinsic patches. Among other 
applications, such models were shown to achieve state-of-the-
art performance in finding correspondence between deformable 
3-D shapes. Follow-up works proposed different construction of 
intrinsic patches on point clouds [48], [53] and general graphs [54].

The interest in deep learning on graphs or manifolds has 
exploded in the past year, resulting in numerous attempts to 
apply these methods to a broad spectrum of problems ranging 
from biochemistry [55] to recommender systems [56]. Because 
such applications originate in different fields that usually do 
not cross-fertilize, publications in this domain tend to use dif-
ferent terminology and notation, making it difficult for a new-
comer to grasp the foundations and current state-of-the-art 
methods. We believe that our article comes at the right time, 
attempting to systemize and bring some order into the field.

Signal processing, differential geometry, 
and graph theory
Geometric deep-learning frameworks dealt with in this paper are 
based on notions in differential geometry and graph theory. 
Unfortunately, these topics are insufficiently known in the signal 
processing community, and to our knowledge, there is no intro-
ductory-level reference treating these so different structures in a 
common way. One of our goals is to provide an accessible over-
view of these models, resorting as much as possible to the 
intuition of traditional signal processing.

One of the key differences between Euclidean and non-
Euclidean learning settings is the lack of traditional opera-
tions such as convolutions. Various non-Euclidean convolutional 
architectures differ in the way a convolution-like operation is 

Today, deep learning has 
matured into a technology 
that is widely used in 
commercial applications.
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formulated on graphs and manifolds. One way is to resort to the 
analogy of the convolution theorem, defining the convolution in 
the spectral domain. An alternative is to think of the convolu-
tion as a template matching in the spatial domain. Such a distinc-
tion is, however, far from being clear-cut: as we will see, some 
approaches draw their formulation from the spectral domain, 
essentially boiling down to applying filters in the spatial domain. 
It is also possible to combine these two approaches, resorting 
to spatio-frequency analysis techniques, such as wavelets or 
the windowed Fourier transform. We have provided sidebars  to 
illustrate important concepts, and Table 1 lists the notations used 
throughout the article. Additional materials, data, and examples 
of code are available at geometricdeeplearning.com. Table 2 pro-
vides a summary of the geometric deep-learning methods pre-
sented in this article.

Deep learning on Euclidean domains

Geometric priors
Consider a compact d-dimensional Euclidean domain 

[ , ]0 1 Rd d1X =  on which square-integrable functions 
( )f L2! X  are defined (e.g., in image analysis applications, 

images can be thought of as functions on the unit square 
[ , ] ) .0 1 2X =  We consider a generic supervised learning 

setting, in which an unknown function : ( )y L Y2 "X  is ob -
served on a training set

.( ), ( )f L y y fi i i i
2

I! X = !" , (1)

In a supervised classification setting, the target space Y
can be thought discrete, with | |Y  being the number of classes. 
In a multiple object recognition setting, we can replace Y  by 
a multi-K-dimensional simplex, which represents the poste-
rior class probabilities ( | ) .p y x  In regression tasks, we may 
consider .RY m=  In the vast majority of computer-vision and 
speech-analysis tasks, there are several crucial prior assump-
tions on the unknown function y. As we will see in the fol-
lowing sections, these assumptions are effectively exploited by 
CNN architectures.

Stationarity
Let

( ) ( ), , ,f x f x v x vTv ! X= - (2)

be a translation operator acting on functions ( )f L2! X  [we 
assume periodic boundary conditions to ensure that the opera-
tion is well defined over ( )L2 X ]. Our first assumption is that 
the function y  is either invariant or equivariant with respect to 
translations, depending on the task. In the former case, we 
have f( ) (y yTv = )f  for any ( )f L2! X  and .v ! X  This is 
typically the case in object classification tasks. In the latter, 
we have fv v y( ) ( ),y fT T=  which is well defined when the 
output of the model is a space in which translations can act 
(e.g., in problems of object localization, semantic segmenta-
tion, or motion estimation). Our definition of invariance 

should not be confused with the traditional notion of transla-
tion invariant systems in signal processing, which corresponds 
to translation equivariance in our language (because the output 
translates whenever the input translates).

Local deformations and scale separation
Similarly, a deformation ,Lx  where : "x X X  is a smooth 
vector field, acts on ( )L2 X  as ( ) ( ( ))f x f x xL x= -x . De -
formations can model local translations, changes in point 
of view, rotations, and frequency transpositions [18]. Most 
tasks studied in computer vision are not only translation 
invariant/equivariant but also stable with respect to local 
deformations [57], [18]. In tasks that are translation invari-
ant, we have

( ) ( ,y f yL d. x-x )f (3)

Table 1. The notations used in this article.

Notation 

Rm m -dimensional Euclidean space 

, ,a Aa Scalar, vector, matrix 

ar Complex conjugate of a

,xX Arbitrary domain, coordinate on it 

( )Lf 2! X Square-integrable function on X

( ),xx ijd dl Delta function at xl, Kronecker delta 

{ , }f yi i i I! Training set 

Tv Translation operator 

,Lx x Deformation field, operator 

ft Fourier transform of f

f g* Convolution of f  and g

, ,T TX X Xx Manifold, its tangent bundle, tangent space at x

, ·,· TXG H Riemannian metric 

( )f L X2! Scalar field on manifold X

( )F L TX2! Tangent vector field on manifold X

A* Adjoint of operator A

, ,divd D Gradient, divergence, Laplace operators 

, ,V E F Vertices and edges of a graph, faces of a mesh 

,Wwij Weight matrix of a graph

( )f L V2! Functions on vertices of a graph 

( )F L E2! Functions on edges of a graph 

,i iz m Laplacian eigenfunctions, eigenvalues 

(·, ·)ht Heat kernel 

kU Matrix of first k  Laplacian eigenvectors 

kK Diagonal matrix of first k  Laplacian eigenvalues 

p Pointwise nonlinearity (ReLU)

( ),x, ,l l l lc Cl l Convolutional filter in spatial and spectral domain 
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for all ,f x . Here, dx  measures the smoothness of a given 
deformation field. In other words, the quantity to be predicted 
does not change much if the input image is slightly deformed. 
In tasks that are translation equivariant, we have

.( ) (y f yL L d. x-x x )f (4)

This property is much stronger than the previous one, because 
the space of local deformations has a high dimensionality, as 
opposed to the d-dimensional translation group. It follows 
from (3) that we can extract sufficient statistics at a lower spa-
tial resolution by downsampling demodulated localized filter 
responses without losing approximation power. An important 
consequence of this is that long-range dependencies can be 
broken into multiscale local interaction terms, leading to hier-
archical models in which spatial resolution is progressively 
reduced. To illustrate this principle, denote by

( , ; ) ( ( ) ( ) )Y x x v f u x f u v xProb and1 2 1 2= = + = (5)

the joint distribution of two image pixels at an offset v from 
each other. In the presence of long-range dependencies, 
this joint distribution will not be separable for any v.
However, the deformation stability prior states that 

( , ; ) ( , ; ( ))Y x x v Y x x v 11 2 1 2. e+  for small .e  In other words, 

CNNs are currently among the most successful deep-learn-
ing architectures in a variety of tasks; in particular, in com-
puter vision. A typical CNN used in computer-vision 
applications (see Figure S1) consists of multiple convolu-
tional layers (6), passing the input image through a set of 
filters C followed by pointwise nonlinearity p  (typically, 
half-rectifiers ( ) ( , )maxz z0p =  are used, although practi-
tioners have experimented with a diverse range of choices 
[13]). The model can also include a bias term, which is 
equivalent to adding a constant coordinate to the input.

A network composed of K  convolutional layers put 
together ( ) ( ) ( )U f C C C f( ( ) ( )K 2 1% %f= C C C)  produces pixel-
wise features that are covariant with respect to translation 
and approximately covariant to local deformations. 

Typical computer-vision applications requiring covari-
ance are semantic image segmentation [8] or motion 
estimation [59].

In applications requiring invariance, such as image clas-
sification [7], the convolutional layers are typically inter-
leaved with pooling layers (8) progressively reducing the 
resolution of the image passing through the network. 
Alternatively, one can integrate the convolution and 
downsampling in a single linear operator (convolution 
with stride). Recently, some authors have also experiment-
ed with convolutional layers that increase the spatial reso-
lution using interpolation kernels [60]. These kernels can 
be learned efficiently by mimicking the so-called algo-
rithme à trous [61], also referred to as dilated convolution.

CNN Architecture

Input Image Convolutions
+ ReLU 

Convolutions
+ ReLU 

Convolutions
+ ReLU 

Max
Pooling

Max
Pooling ...

Airedale Terrier (16)

Fox Terrier (5.7)

Pomeranian (2.7)

Arctic Fox (1.0)

Eskimo Dog (0.6)

Wolf (0.4)

Siberian Husky (0.4)

FIGURE S1. The typical CNN architecture used in computer-vision applications such as image classification.

Table 2. The dichotomy of geometric deep-learning methods.

Method Type Data 

SCNN [52] Spectral Graph 

GCNN/ChebNet [45] Spectrum free Graph 

GCN [77] Spectrum free Graph 

GNN [78] Spectrum free Graph 

Geodesic CNN [47] Charting Mesh 

Anisotropic CNN [48] Charting Mesh/point cloud 

MoNet [54] Charting Graph/mesh/point cloud 

Localized SCNN [89] Combined Mesh/point cloud 
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whereas long-range dependencies indeed exist in natural 
images and are critical to object recognition, they can be 
captured and downsampled at different scales. This princi-
ple of stability to local deformations has been exploited in 
the computer-vision community in models other than 
CNNs, for instance, deformable parts models [58]. In prac-
tice, the Euclidean domain Ω is discretized using a regular 
grid with n points; the translation and deformation operators 
are still well defined so the above properties also hold in the 
discrete setting.

CNNs
Stationarity and stability to local translations are both lever-
aged in CNNs (see “CNN Architecture” and [1], [12], [13], 
and references therein for a more in-depth review of CNNs 
and their applications.) A CNN consists of several con-
volutional layers of the form (g fC= C ),  acting on a 
p-dimensional input ( ) (f x p1= ( ), , ( ))f x f xf  by applying a 
bank of filters ( ), , , , , ,l q l p1 1,l l f fcC = = =ll  and point-
wise nonlinearity ,p

( ) ( ,) ( )g x f x,l l l l
l

p

1

*p c=
=

l l

l

e o/ (6)

producing a q-dimensional output ( ) ( ( ),  , ( ))g x g x g xq1 f=

often referred to as the feature maps. Here,

( ) ( ) ( ) ( )f x f x x x dx* c c= -
X

l l l# (7)

denotes the standard convolution. According to the local 
deformation prior, the filters C  have compact spatial support.

Additionally, a downsampling or pooling layer (g fP= )
may be used, defined as

( ) ({ ( ): ( )}), , , ,g x P f x x x l q1Nl l f!= =l l (8)

where ( )xN 1 X is a neighborhood around x and P is a per-
mutation-invariant function, such as an Lp -norm (in the latter 
case, the choice of p = 1, 2, or 3 results in average, energy, or 
max pooling).

A convolutional network is constructed by composing sev-
eral convolutional and optionally pooling layers, obtaining a 
generic hierarchical representation

( ) ( )( )U f C P C C f( ) ( ) ( )K 2 1% %g g= C C CH , (9)

where , ,( ) ( )K1 fC CH = " , is the hypervector of the network 
parameters (all the filter coefficients). The model is said to be 
deep if it comprises multiple layers, though this notion is 
rather vague, and one can find examples of CNNs with as few 
as a couple and as many as hundreds of layers [11]. The output 
features enjoy translation invariance/covariance depending on 
whether spatial resolution is progressively lost by means of 
pooling or kept fixed. Moreover, if one specifies the convolu-
tional tensors to be complex wavelet decomposition operators 

and uses complex modulus as pointwise nonlinearities, one 
can provably obtain stability to local deformations [17].
Although this stability is not rigorously proved for generic 
compactly supported convolutional tensors, it underpins the 
empirical success of CNN architectures across a variety of 
computer-vision applications [1].

In supervised learning tasks, one can obtain the CNN 
parameters by minimizing a task-specific cost L on the train-
ing set , ,f yi i i I!" ,

f( ( ), ),min L U y
i

i i
I!H

H/ (10)

for instance, .( , )L x y x y= -  If the model is sufficiently 
complex and the training set is sufficiently representative, 
when applying the learned model to previously unseen data, 
one expects ( ) (U y.f f .)  Although (10) is a nonconvex 
optimization problem, stochastic optimization methods offer 
excellent empirical performance. Understanding the structure 
of the optimization problems (10) and finding efficient strate-
gies for its solution is an active area of research in deep 
learning [62]–[66].

A key advantage of CNNs explaining their success in nu -
merous tasks is that the geometric priors on which CNNs are 
based result in a learning complexity that avoids the curse of 
dimensionality. Thanks to the stationarity and local defor-
mation priors, the linear operators at each layer have a con-
stant number of parameters, independent of the input size 
n (number of pixels in an image). Moreover, thanks to the 
multiscale hierarchical property, the number of layers grows 
at a rate ( ),log nO  resulting in a total learning complexity of 

( )log nO  parameters.

The geometry of manifolds and graphs
Our main goal is to generalize CNN-type constructions to 
non-Euclidean domains. In this article, by non-Euclidean 
domains, we refer to two prototypical structures: manifolds 
and graphs. While arising in very different fields of mathemat-
ics (differential geometry and graph theory, respectively), in 
our context, these structures share several common character-
istics that we will try to emphasize throughout our review.

Manifolds
Roughly, a manifold is a space that is locally Euclidean. One 
of the simplest examples is a spherical surface modeling our 
planet: around a point, it seems to be planar, which has 
led  generations of people to believe in the flatness of the 
Earth. Formally speaking, a (differentiable) d-dimensional 
manifold X  is a topological space where each point x has a 
neighborhood that is topologically equivalent (homeomor-
phic) to a d-dimensional Euclidean space, called the tangent 
space and denoted by T Xx  [see Figure 1(a)]. The collection 
of tangent spaces at all points (more formally, their disjoint 
union) is referred to as the tangent bundle and denoted by 

.TX  On each tangent space, we define an inner product 
, · : ,T T· RX XT x xXx "#G H  which is additionally assumed to 

depend smoothly on the position x. This inner product is 
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called a Riemannian metric in differential geometry and 
allows performing local measurements of angles, distances, 
and volumes. A manifold equipped with a metric is called a 
Riemannian manifold.

It is important to note that the definition of a Rieman-
nian manifold is completely abstract and does not require a 
geometric realization in any space. However, a Riemannian 
manifold can be realized as a subset of a Euclidean space (in 
which case it is said to be embedded in that space) by using the 
structure of the Euclidean space to induce a Riemannian met-
ric. The celebrated Nash embedding theorem guarantees that 
any sufficiently smooth Riemannian manifold can be realized 
in a Euclidean space of sufficiently high dimension [67]. An 
embedding is not necessarily unique; two different realizations 
of a Riemannian metric are called isometries.

Two-dimensional (2-D) manifolds (surfaces) embedded 
into R3  are used in computer graphics and vision to describe 
boundary surfaces of 3-D objects, colloquially referred to as 
3-D shapes. This term is somewhat misleading because 3-D
here refers to the dimensionality of the embedding space rath-
er than that of the manifold. Thinking of such a shape as made 
of infinitely thin material, inelastic deformations that do not 
stretch or tear it are isometric. Isometries do not affect the met-
ric structure of the manifold, and consequently, they preserve 
any quantities that can be expressed in terms of the Rieman-
nian metric (called intrinsic). Conversely, properties pertain-
ing to the specific realization of the manifold in the Euclidean 
space are called extrinsic. As an intuitive illustration of this 
difference, imagine an insect that lives on a 2-D surface [Fig-
ure 1(b)]. The surface can be placed in the Euclidean space 
in any way, but as long as it is transformed isometrically, the 

insect would not notice any difference. The insect in fact does 
not even know of the existence of the embedding space, as its 
only world is 2-D. This is an intrinsic viewpoint. A human 
observer, on the other hand, sees a surface in 3-D space—this 
is an extrinsic point of view.

Calculus on manifolds
Our next step is to consider functions defined on manifolds. 
We are particularly interested in two types of functions: A sca-
lar field is a smooth real function :f RX "  on the manifold. 
A tangent vector field :F TXX "  is a mapping attaching a 
tangent vector ( )F x T Xx!  to each point x. As we will see in 
the following, tangent vector fields are used to formalize the 
notion of infinitesimal displacements on the manifold. We 
define the Hilbert spaces of scalar and vector fields on mani-
folds, denoted by L X2 ^ h and ,L TX2 ^ h  respectively, with the 
following inner products:

, ( ) ( ) ,f g f x g x dxL
X

( )
2
XG H = # (11)

., ( ), ( ) dxF G F x G x( )L T T
X

XX x
2G H G H= # (12)

Here, dx denotes a d-dimensional volume element induced by 
the Riemannian metric.

In calculus, the notion of derivative describes how the 
value of a function changes with an infinitesimal change of 
its argument. One of the big differences distinguishing clas-
sical calculus from differential geometry is a lack of vector 
space structure on the manifold, prohibiting us from naively 
using expressions like ( )f x dx+ . The conceptual leap that is 
required to generalize such notions to manifolds is the need to 
work locally in the tangent space.

To this end, we define the differential of f as an opera-
tor :df T RX "  acting on tangent vector fields. At each 
point x, the differential can be defined as a linear functional 

( ) ( ), ·df x f x T XxdG H=  acting on tangent vectors ( ) ,F x T Xx!

which model a small displacement around x. The change 
of the function value as the result of this displacement 
is given by applying the functional to the tangent vector, 

( ) ( ) ( ), ( ) ,df x F x f x F x T XxdG H=  and can be thought of as an 
extension of the notion of the classical directional derivative.

The operator : ( ) (f L L TXX2 2"d ) in the previous defi-
nition is called the intrinsic gradient and is similar to the 
classical notion of the gradient defining the direction of the 
steepest change of the function at a point, with the only dif-
ference that the direction is now a tangent vector. Similarly, 
the intrinsic divergence is an operator : ( (L T Ldiv XX2 2") )
acting on tangent vector fields and is (formal) adjoint to the 
gradient operator [71],

, , , .F f F f F fdiv( * ( ) ()L T L LX XX2 2 2d dG H G H G H= = - ) (13)

Physically, a tangent vector field can be thought of as a flow 
of material on a manifold. The divergence measures the net 
flow of a field at a point, allowing to distinguish between field 
sources and sinks. Finally, the Laplacian (or Laplace–Beltrami 

(a)

(b)

TxX

Tx´X

F(x)

F(x´ )

x

x´

FIGURE 1. (a) The tangent space and tangent vectors on a 2-D manifold 
(surface). (b) Examples of isometric deformations.
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operator in differential geometric jargon) : ( (L LX X2 2"D ) ) is 
an operator,

(f fdiv dD =- ), (14)

acting on scalar fields. Employing relation (13), it is easy to 
see that the Laplacian is self-adjoint (symmetric),

, , , .f f f f f f( ( (L T L LX XX2 2 2d dG H G H G HD D= =) )) (15)

The left-hand-side in (15) is known as the Dirichlet energy 
in physics and measures the smoothness of a scalar field on 
the manifold (see “Physical Interpretation of Laplacian Eigen-
functions”). The Laplacian can be interpreted as the differ-
ence between the average of a function on an infinitesimal 

Given a function f  on the domain ,X  the Dirichlet energy

( ) ( ) ( ) ( ) ,f f x dx f x f x dxDir
Tx

2

X X X
d Tf = =# # (S1)

measures how smooth it is [the last identity in (S1) stems 
from (15)]. We are looking for an orthonormal basis on 

,X  containing k  smoothest possible functions (Figure S2), 
by solving the optimization problem

( ) , , ,
span{ ,  , } .

( )E

E

min
min i k1 1 2 1

1
s.t.
s.t.

i i

i i0 1

0 0

Dir

Dir

i

0

f

= f

z z

z z

z z z

= = -

=

-

z

z

(S2)

In the discrete setting, when the domain is sampled at n
points, (S2) can be rewritten as

trace( ) ,Imin s.t.k k k k
Rk n k

TU U U U =<<

!U #
(S3)

where ( , )k k0 1fz zU = - . The solution of (S3) is given by 
the first k  eigenvectors of T satisfying

,k k kTU U K= (S4)

where diag( , , )k k0 1fm mK = -  is the diagonal matrix of 
cor responding e igenva lues .  The e igenva lues 
0 k0 1 1g# #m m m= -  are nonnegative due to the posi-
tive semidefiniteness of the Laplacian and can be inter-
preted as frequencies, where const0z =  with the 
corresponding eigenvalue 00m =  plays the role of the 
direct current component.

The Laplacian eigendecomposition can be carried out 
in two ways. First, (S4) can be rewritten as a general-
ized eigenproblem ( )D W Ak k kU U K- = , resulting in 
A -orthogonal eigenvectors, A Ik kU U =< . Alternatively, 
introducing a change of variables A /

k k
1 2W U= , we can 

obtain a standard eigendecomposition problem 
( )A D W A/ /

k k k
1 2 1 2W W K- =- -  with orthogonal eigen-

vectors Ik kW W =< . When A D=  is used, the matrix 
( )A D W A/ /1 2 1 2T = -- -  is referred to as the normalized 

symmetric Laplacian.

Physical Interpretation of Laplacian Eigenfunctions

FIGURE S2. An example of the first four Laplacian eigenfunctions , ,0 3fz z  on (a) a Euclidean domain (1-D line), and (b) and (c) non-Euclidean 
domains [(b) a human shape modeled as a 2-D manifold, and (c) a Minnesota road graph]. In the Euclidean case, the result is the standard Fourier 
basis comprising sinusoids of increasing frequency. In all cases, the eigenfunction 0z  corresponding to zero eigenvalue is constant (direct current 
component).1-D: one-dimensional. 
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sphere around a point and the value of the function at the point 
itself. It is one of the most important operators in mathemati-
cal physics, used to describe phenomena as diverse as heat 
diffusion (see “Heat Diffusion on Non-Euclidean Domains”), 
quantum mechanics, and wave propagation. As we will see in 
the following, the Laplacian plays a central role in signal pro-
cessing and learning on non-Euclidean domains, as its eigen-
functions generalize the classical Fourier bases, allowing to 
perform spectral analysis on manifolds and graphs. 

It is important to note that all the previous definitions are 
coordinate free. By defining a basis in the tangent space, it is 
possible to express tangent vectors as d-dimensional vectors 
and the Riemannian metric as a d × d symmetric positive-
definite matrix.

Graphs and discrete differential operators
Another type of constructions we are interested in are graphs, 
which are popular models of networks, interactions, and 

An important application of spectral analysis and, histori-
cally, the main motivation for its development by Joseph 
Fourier, is the solution of partial differential equations. 
Here, we are particularly interested in heat propagation 
on non-Euclidean domains. This process is governed by 
the heat diffusion equation, which in the simplest setting of 
homogeneous and isotropic diffusion has the form

( , ) ( , )
( , ) ( ) (Initial condition)
f x t c f x t
f x f x0

t

0

T=-

=
)

(S5)

with additional boundary conditions if the domain has a 
boundary. ( , )xf t represents the temperature at point x  at 
time .t  Equation (S5) encodes Newton’s law of cooling, 
according to which the rate of temperature change of a 
body (left-hand side) is proportional to the difference 
between its own temperature and that of the surrounding 

right-hand side. The proportion coefficient c  is referred to 
as the thermal diffusivity constant; here, we assume it to 
be equal to one for the sake of simplicity. The solution of 
(S5) is given by applying the heat operator H et t= D-  to 
the initial condition and can be expressed in the spectral 
domain as

( , ) ( ) , ( )

( ) ( ) ( ) .

f x t e f x f e x

f x e x x dx

(

( , )

)
t

i L
i

t
i

t

i
i i

h x x

0 0
0

0
0X

X
i

i

t

2G Hz z

z z

= =

=

$

$

m

m

D- -

-l l l

l
1 2 344444 44444

/

/# (S6)

( , )h x xt l  is known as the heat kernel (Figure S3) and repre-
sents the solution of the heat equation with an initial condi-
tion ( ) ( )f x xx0 d= l , or, in signal processing terms, an impulse 
response. In physical terms, ( , )h x xt l  describes how much 
heat flows from a point x  to point xl in time .t  In the 
Euclidean case, the heat kernel is shift invariant, 

( , ) ( )h x x h x xt t= -l l , allowing to interpret the integral in (S6) 
as a convolution ( , ) ( ) ( )f x t f h xt0 *= . In the spectral domain, 
convolution with the heat kernel amounts to low-pass filtering 
with frequency response .e tm-  Larger values of diffusion time t
result in lower effective cutoff frequency and thus smoother 
solutions in space (corresponding to the intuition that longer 
diffusion smoothes more the initial heat distribution).

The crosstalk between two heat kernels positioned at 
points x  and xl allows to measure an intrinsic distance

( , ) ( ( , ) ( , ))d x x h x y h x y dyt t t
2 2

X
= -l l# (S7)

( ))( ( ) xe xt
i i

i

2 2

0

i zz= -
$

m- l/ (S8)

referred to as the diffusion distance [30]. Note that when 
interpreting (S7) and (S8) as spatial- and frequency-
domain norms ( )L X2$  and 2$ , , respectively, their equiv-
alence is the consequence of the Parseval identity. Unlike 
geodesic distance that measures the length of the shortest 
path on the manifold or graph, the diffusion distance has 
an effect of averaging over different paths. It is thus more 
robust to perturbations of the domain, e.g., introduction or 
removal of edges in a graph or cuts on a manifold.

Heat Diffusion on Non-Euclidean Domains
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Max

0
(a)

(b)

FIGURE S3. The examples of heat kernels on non-Euclidean domains 
[(a) manifold, and (b) graph]. Observe how moving the heat kernel 
to a different location changes its shape, which is an indication of the 
lack of shift invariance.
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similarities between different objects. For simplicity, we will 
consider weighted undirected graphs, formally defined as a 
pair ( , )V E , where { ,  , }n1V f=  is the set of n vertices, and 
E V V#3  is the set of edges, where the graph being undi-
rected implies that ( , )i j E!  if ( , )j i E! . Furthermore, we 
associate a weight a 0i 2  with each vertex ,i V!  and a 
weight w 0ij $  with each edge ( , ) .i j E!

Real functions :f RV "  and :F RE "  on the vertices 
and edges of the graph, respectively, are roughly the discrete 
analogy of continuous scalar and tangent vector fields in 
differential geometry (it is tacitly assumed here that F is 
alternating, i.e., F Fij ji=- ). We define Hilbert spaces ( )L V2

and ( )L E2  of such functions by specifying the respective inner 
products,

, ,f f gg a( )L i
i

i i
V

V2G H =
!

/ (16)

.,F G w F G( )L ij
i

ij ij
E

E2G H =
!

/ (17)

Let ( )f L V2!  and ( )F L E2!  be functions on the ver-
tices and edges of the graphs, respectively. We can define 
differential operators acting on such functions analogously to 
differential operators on manifolds [72]. The graph gradient is 
an operator : ( ) ( )L L EV2 2"d  mapping functions defined on 
vertices to functions defined on edges,

( ) ,f f fij i jd = - (18)

automatically satisfying .( ) ( )ij ji=-f fd d  The graph divergence 
is an operator : ( ) ( )L Ldiv E V2 2"  doing the converse,

( ) .F
a

w F1div
:( , )

i
i

ij
j i j

ij
E

=
!

/ (19)

It is easy to verify that the two operators are adjoint with 
respect to the inner products (16) and (17),

., , ,F f F f F fdiv(
*

( ) ( ))L L LV VE2 2 2d dG H G H G H= = - (20)

The graph Laplacian is an operator : ( (L L VV2 2"D ) )
defined as .divdD =-  Combining definitions (18) and (19), it 
can be expressed in the familiar form

( ( ) .f
a

w f f1
( , )

i
i

ij
i j

i j
E

D = -
!

) / (21)

Note that (21) captures the intuitive geometric interpreta-
tion of the Laplacian as the difference between the local aver-
age of a function around a point and the value of the function 
at the point itself.

Denoting by ( )W wij=  the n × n matrix of edge weights [it is 
assumed that w 0ij =  if ( , )i j E" ], by ( , , )A a adiag n1f=  the 
diagonal matrix of vertex weights, and by D wdiag

: ijj j i
=

!
` j/

the degree matrix, the graph Laplacian application to a function 
(f L V2! )  represented as a column vector ( , , )f f fn1 f= <

can be written in matrix-vector form as

( ) .f A D W f1D = -- (22)

The choice of A I=  in (22) is referred to as the unnormal-
ized graph Laplacian; another popular choice is A D=  pro-
ducing the random walk Laplacian [73].

Discrete manifolds
As previously mentioned, there are many practical situations 
in which one is given a sampling of points arising from a 
manifold but not the manifold itself. In computer graphics 
applications, reconstructing a correct discretization of a man-
ifold from a point cloud is a difficult problem of its own, 
referred to as meshing (see “Laplacian on Discrete Manifolds”). 
In manifold-learning problems, the manifold is typically approxi-
mated as a graph capturing the local affinity structure. We 
stress that the term manifold as used in the context of generic 
data science is not geometrically rigorous and can have less 
structure than a classical smooth manifold we have defined 
beforehand. For example, a set of points that looks locally Eu -
clidean in practice may have self-intersections, infinite curva-
ture, different dimensions depending on the scale and 
location at which one looks, extreme variations in density, 
and noise with confounding structure.

Fourier analysis on non-Euclidean domains
The Laplacian operator is a self-adjoint positive-semidefinite 
operator, admitting on a compact domain an eigendecomposi-
tion with a discrete set of orthonormal eigenfunctions 

, ,0 1 fz z  (satisfying , )( )i j L ijX2G Hz z d=  and nonnegative real 
eigenvalues 0 0 1 f# #m m=  (referred to as the spectrum of 
the Laplacian),

, , , .i 0 1i i i fz m zD = = (23)

[Note that in the Euclidean case, the Fourier transform of a 
function defined on a finite interval (which is a compact set) or 
its periodic extension is discrete. In practical settings, all 
domains we are dealing with are compact.]

The eigenfunctions are the smoothest functions in the 
sense of the Dirichlet energy (see “Physical Interpretation 
of Laplacian Eigenfunctions”) and can be interpreted as a 
generalization of the standard Fourier basis [given, in fact, 
by the eigenfunctions of the one-dimensional (1-D) Euclid-
ean Laplacian, d x e ei x i x2 2 2~- =~ ~` j ] to a non-Euclidean 
domain. It is important to emphasize that the Laplacian 
eigenbasis is intrinsic due to the intrinsic construction of the 
Laplacian itself.

A square-integrable function f on X  can be decomposed 
into Fourier series as

( ) , ( ),f x f x( )i L

f
i

i
0

X

i

2G Hz z=
$ t
1 2 344 44
/ (24)

where the projection on the basis functions producing a dis-
crete set of Fourier coefficients ( , , )f f0 1 ft t  generalizes the analy-
sis (forward transform) stage in classical signal processing, 
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and summing up the basis functions with these coefficients is 
the synthesis (inverse transform) stage.

A centerpiece of classical Euclidean signal processing is the 
property of the Fourier transform diagonalizing the convolu-
tion operator, colloquially referred to as the convolution theo-
rem. This property allows to express the convolution f g*  of 
two functions in the spectral domain as the elementwise prod-
uct of their Fourier transforms,

( )( ) ( ) ( ) .f g f x e dx g x e dxi x i x* ~ =
3

3

3

3~ ~

-

-

-

-\ # # (25)

Unfortunately, in the non-Euclidean case, we cannot even 
define the operation x x- l on the manifold or graph, so the 

notion of convolution (7) does not directly extend to this case. 
One possibility to generalize convolution to non-Euclidean 
domains is by using the convolution theorem as a definition,

( ) ( ) , , ( ) .f g x f g x( ) (i L
i

i L i
0

X X2 2* G H G Hz z z=
$

)/ (26)

One of the key differences of such a construction from the 
classical convolution is the lack of shift invariance. In terms 
of signal processing, it can be interpreted as a position-
dependent filter. While parameterized by a fixed number of 
coefficients in the frequency domain, the spatial representa-
tion of the filter can vary dramatically at different points 
(see Figure S3).

In computer graphics and vision applications, 2-D mani-
folds are commonly used to model 3-D shapes. There are 
several common ways of discretizing such manifolds. First, 
the manifold is assumed to be sampled at n points. Their 
embedding coordinates , ,x xn1 f  are referred to as a point 
cloud. Second, a graph is constructed upon these points, 
acting as its vertices. The edges of the graph represent the 
local connectivity of the manifold, telling whether two 
points belong to a neighborhood or not. The graph can 
be endowed, e.g., with Gaussian-edge weights

.w e x x /
ij

2ji
2

= v- - 2
(S9)

This simplest discretization, however, does not correctly 
capture the geometry of the underlying continuous mani-
fold (e.g., the graph Laplacian would typically not con-
verge to the continuous Laplacian operator of the 
manifold with the increase of the sampling density [68]).
A geometrically consistent discretization is possible with 
an additional structure of faces ,F V V V# #!  where 
( , , )i j k F!  implies ( , ), ( , ), ( , ) .i j i k k j E!  The collection of 
faces represents the underlying continuous manifold as 

a polyhedral surface consisting of small triangles glued 
together. The triplet ( , , )V E F  is referred to as tri -
angular mesh. To be a correct discretization of a mani-
fold (a manifold mesh), every edge must be shared by 
exactly two triangular faces; if the manifold has a 
boundary, any boundary edge must belong to exactly 
one triangle.

On a triangular mesh, the simplest discretization of the 
Riemannian metric is given by assigning each edge a 
length 0ij, 2 , which must additionally satisfy the triangle 
inequality in every triangular face. The mesh Laplacian is 
given by (21) with

;w a a8 8ij
ijk

ij jk ik

ijh

ij jh ih
2 2 2 2 2 2, , , , ,,

=
- + +

+
- + +

(S10)

,a a3
1

:( , , )
i ijk

jk i j k F

=
!

/ (S11)

where ( ) ( ) ( )a s s s sijk ijk ijk ij ijk jk ijk ik, , ,= - - -  is the area of 
triangle ijk given by the Heron formula, and 

/ ( )s 1 2ijk ij jk ki, , ,= + +^ h  is the semiperimeter of triangle 
ijk. The vertex weight ai is interpreted as the local area 
element (shown in red in Figure S4). Note that the weights 
(S10) and (S11) are expressed solely in terms of the dis-
crete metric ,  and are thus intrinsic. When the mesh is infi-
nitely refined under some technical conditions, such a 
construction can be shown to converge to the continuous 
Laplacian of the underlying manifold [69].

An embedding of the mesh (amounting to specifying the 
vertex coordinates x x, , n1 f ) induces a discrete metric 

x xij i j, = - 2, whereby (S10) become the cotangent 
weights

cot cotw 2
1

ij ij ija b= +^ h (S12)

ubiquitously used in computer graphics [70].

Laplacian on Discrete Manifolds

j

i

wij

j

i

k

h

αij
βij

ai

aijk

(a) (b)

Oij

FIGURE S4. The two commonly used discretizations of a 2-D manifold: 
(a) an undirected graph and (b) a triangular mesh.
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The previous discussion also applies to graphs instead of 
manifolds, where one only has to replace the inner product in 
(24) and (26) with the discrete one (16). All of the sums over 
i would become finite, as the graph Laplacian matrix T  has n
eigenvectors. In matrix-vector notation, the generalized convo-
lution f g*  can be expressed as ( )Gf g fdiag UU= < ,t  where 

( , , )g g gn1 f=t t t  is the spectral representation of the filter, 
and ( , , )n1 fz zU =  denotes the Laplacian eigenvectors (S8). 
The lack of shift invariance results in the absence of circulant 
(Toeplitz) structure in the matrix G, which characterizes the 
Euclidean setting. Furthermore, it is easy to see that the convo-
lution operation commutes with the Laplacian, .G f GfT T=

Uniqueness and stability
Finally, it is important to note that the Laplacian eigenfunctions 
are not uniquely defined. To start with, they are defined up to 
sign, i.e., ( ) ( ) .! !z m zD =  Thus, even isometric domains 
might have different Laplacian eigenfunctions. Furthermore, if 
a Laplacian eigenvalue has multiplicity, then the associated 
eigenfunctions can be defined as orthonormal basis spanning 
the corresponding eigensubspace (or said differently, the eigen-
functions are defined up to an orthogonal transformation in the 

In situations where the graph is constructed from the data, 
a straightforward choice of the edge weights (S9) of the 
graph is the covariance of the data Let F denote the input 
data distribution and

(F F) (F F)E E ER = - - < (S13)

be the data covariance matrix. If each point has the same 
variance ,ii

2v v=  then diagonal operators on the 
Laplacian simply scale the principal components of F.

In natural images, because their distribution is approxi-
mately stationary, the covariance matrix has a circulant 
structure ij i j.v v -  and is thus diagonalized by the 
standard discrete cosine transform (DCT) basis. It 
follows that the principal components of F roughly corre-
spond to the DCT basis vectors ordered by frequency. 
Moreover, natural images exhibit a power spectrum 

~fE 2
~

-
~

2t^ h , because nearby pixels are more corre-
lated than faraway pixels [14]. It results that principal 
components of the covariance are essentially ordered 
from low to high frequencies, which is consistent with 
the standard group structure of the Fourier basis. When 
applied to natural images represented as graphs with 
weights defined by the covariance, the SCNN construc-
tion recovers the standard CNN, without any prior 
knowledge [76] (Figure S5). Indeed, the linear operators 

,l lUC U<l  in (27) are by the previous argument diagonal 

in the Fourier basis, hence translation invariant, hence 
classical convolutions. Furthermore, the “Spectrum-Free 
Methods” section explains how spatial subsampling can 
also be obtained via dropping the last part of the spec-
trum of the Laplacian, leading to pooling, and ultimately 
to standard CNNs.

Rediscovering Standard CNNs Using Correlation Kernels

(a) (b)

FIGURE S5. The 2-D embedding of pixels in 16 × 16 image patches 
using a Euclidean radial basis function (RBF) kernel. The RBF kernel is 
constructed as in (S9), by using the covariance ijv  as Euclidean dis-
tance between two features. The pixels are embedded in a 2-D space 
using the first two eigenvectors of the resulting graph Laplacian. The 
colors in (a) and (b) represent the horizontal and vertical coordinates 
of the pixels, respectively. The spatial arrangement of pixels is roughly 
recovered from correlation measurements.

Domain
Basis
Signal

X X Y

f
(a) (b) (c)

Γ Tf Γ Tf

FIGURE 2. A toy example illustrating the difficulty of generalizing spectral 
filtering across non-Euclidean domains. (a) A function defined on a mani-
fold (function values are represented by color). (b) The result of the ap-
plication of an edge-detection filter in the frequency domain. (c) The same 
filter applied on the same function but on a different (nearly isometric)
domain produces a completely different result. The reason for this 
behavior is that the Fourier basis is domain dependent and the filter 
coefficients learned on one domain cannot be applied to another one 
in a straightforward manner.
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eigensubspace). A small perturbation of the domain can lead to 
very large changes in the Laplacian eigenvectors, especially 
those associated with high frequencies. At the same time, the 
definition of heat kernels (S6) and diffusion distances (S8) 
does not suffer from these ambiguities, e.g., the sign ambiguity 
disappears as the eigenfunctions are squared. Heat kernels also 
appear to be robust to domain perturbations.

Spectral methods
We have now finally gotten to our main goal, namely, con-
structing a generalization of the CNN architecture on non-
Euclidean domains. We will start with the assumption that the 
domain on which we are working is fixed, and for the rest of 

this section, we will use the problem of classification of a sig-
nal on a fixed graph as the prototypical application. We have 
seen that convolutions are linear operators that commute with 
the Laplacian operator. Therefore, given a weighted graph, a 
first route to generalize a convolutional architecture is by first 
restricting our interest to linear operators that commute with 
the graph Laplacian. This property, in turn, implies operating 
on the spectrum of the graph weights, given by the eigenvec-
tors of the graph Laplacian.

Spectral CNN
Similarly to the convolutional layer (6) of a classical 
Euclidean CNN, Bruna et al. [52] define a spectral convolu-
tional layer as

g f,l k
l

q

l l k l
1

p U C U= <

=

,
l

l le o/ (27)

where the n p# and n q# matrices ( , , )F f fp1 f=  and 
( ,  , )G g gq1 f=  represent the p- and q-dimensional input and 

output signals on the vertices of the graph, respectively (we 
use n V=  to denote the number of vertices in the graph), 

,l lC l  is a k k# diagonal matrix of spectral multipliers 
representing a filter in the frequency domain, and p  is a 
nonlinearity applied on the vertex-wise function values. Using 
only the first k  eigenvectors in (27) sets a cutoff frequency that 
depends on the intrinsic regularity of the graph and also the 
sample size. Typically, ,k n%  because only the first Laplacian 
eigenvectors describing the smooth structure of the graph are 
useful in practice.

If the graph has an underlying group invariance, such a 
construction can discover it. In particular, standard CNNs 
can be redefined from the spectral domain (see “Rediscover-
ing Standard CNNs Using Correlation Kernels”). However, 
in many cases the graph does not have a group structure, or 
the group structure does not commute with the Laplacian, 
and so we cannot think of each filter as passing a template 
across V  and recording the correlation of the template with 
that location.

We should stress that a fundamental limitation of the 
spectral construction is its restriction to a single domain. The 
reason is that spectral filter coefficients (27) are basis depen-
dent. It implies that if we learn a filter with respect to basis 

kU  on one domain, and then try to apply it on another domain 
with another basis kW , the result could be very different (see 
Figure 2). It is possible to construct compatible orthogonal bases 
across different domains resorting to a joint diagonalization 
procedure [74], [75]. However, such a construction requires the 
knowledge of some correspondence between the domains. In 
applications like social network analysis, e.g., where dealing 
with two time instances of a social graph in which new ver-
tices and edges have been added, such a correspondence can 
be easily computed and is therefore a reasonable assumption. 
Conversely, in computer graphics applications, finding cor-
respondence between shapes is in itself a very hard problem, 
so assuming known correspondence between the domains is a 
rather unreasonable assumption.

Citation Network Analysis Application
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FIGURE S6. The classifying of a research article in the CORA data 
set with MoNet. Shown is the citation graph, where each node 
is an article and an edge represents a citation. Vertex fill and 
outline colors represent the predicted and ground-truth labels, 
respectively; ideally, the two colors should coincide. (Figure 
reproduced from [54].)

The CORA citation network [90] is a graph containing 
2,708 vertices representing articles and 5,429 edges 
representing citations (Figure S6). Each article is 
described by a 1,433-dimensional bag-of-words feature 
vector and belongs to seven classes. For simplicity, the 
network is treated as an undirected graph. Applying the 
SCNN with two spectral convolutional layers parame-
terized according to (37), the authors of [77] obtained 
classification accuracy of 81.6% (compared to the pre-
vious best result of 75.7%). In [54], this result was slight-
ly improved further, reaching 81.7% accuracy with the 
use of MoNet architecture.
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Assuming that ( )k O n=  eigenvectors of the Laplacian 
are kept, a convolutional layer (27) requires ( )pqk O n=

parameters to train. We will see next how the global and 
local regularity of the graph can be combined to produce 
layers with constant number of parameters (i.e., such that 
the number of learnable parameters per layer does not depend 
upon the size of the input), which is the case in classical 
Euclidean CNNs.

The non-Euclidean analogy of pooling is graph coarsen-
ing, in which only a fraction 11a  of the graph vertices is 
retained. The eigenvectors of graph Laplacians at two differ-
ent resolutions are related by the following multigrid property: 
let ,UU u  denote the n n#  and n n#a a  matrices of Laplacian 
eigenvectors of the original and the coarsened graph, respec-
tively. Then,

,P
I
0

n
.U U

au c m (28)

where P is an n n#a  binary matrix whose ith row encodes the 
position of the ith vertex of the coarse graph on the original 
graph. It follows that strided convolutions can be generalized 
using the spectral construction by keeping only the low-fre-
quency components of the spectrum. This property also allows 
us to interpret (via interpolation) the local filters at deeper lay-
ers in the spatial construction to be low frequency. However, 
because in (27) the nonlinearity is applied in the spatial 
domain, in practice one has to recompute the graph Laplacian 
eigenvectors at each resolution and apply them directly after 
each pooling step.

The spectral construction (27) assigns a DoF for each 
eigenvector of the graph Laplacian. In most graphs, indi-
vidual high-frequency eigenvectors become highly unstable. 
However, similarly as the wavelet construction in Euclidean 
domains, by appropriately grouping high-frequency eigenvec-
tors in each octave, one can recover meaningful and stable 
information. As shown next, this principle also entails better 
learning complexity.

Spectral CNN with smooth spectral multipliers
To reduce the risk of overfitting, it is important to adapt the 
learning complexity to reduce the number of free parameters 
of the model [44], [52]. On Euclidean domains, this is 
achieved by learning convolutional kernels with small spatial 
support, which enables the model to learn a number of param-
eters independent of the input size. To achieve a similar learn-
ing complexity in the spectral domain, it is thus necessary to 
restrict the class of spectral multipliers to those corresponding 
to localized filters.

For that purpose, we have to express spatial localization 
of filters in the frequency domain. In the Euclidean case, 
smoothness in the frequency domain corresponds to spatial 
decay, because

| | | ( ) |
( )

,x f x dx
f

dk
k

k
2 2

2

2

2

~

~
~=

3

3

3

3

-

+

-

+ t
# # (29)

by virtue of the Parseval identity. This suggests that, to learn a 
layer in which features will be not only shared across loca-
tions but also well localized in the spatial domain, one can 
learn spectral multipliers that are smooth. Smoothness can be 
prescribed by learning only a subsampled set of spectral 
multipliers and using an interpolation kernel to obtain the rest, 
such as cubic splines.

However, the notion of smoothness also requires some 
geometry in the spectral domain. In the Euclidean setting, such 
a geometry naturally arises from the notion of frequency, e.g., 
in the plane, the similarity between two Fourier atoms e xi~<

and e xi~ <l  can be quantified by the distance ~ ~- l , where 
x denotes the 2-D planar coordinates, and ~  is the 2-D fre-
quency vector. On graphs, such a relation can be defined by 
means of a dual graph with weights wiju  encoding the similarity 
between two eigenvectors iz  and jz .

A particularly simple choice consists in choosing a 1-D 
arrangement, obtained by ordering the eigenvectors according 
to their eigenvalues. [In the mentioned 2-D example, this would 
correspond to ordering the Fourier basis function according to 
the sum of the corresponding frequencies .1 2~ ~+  Although 
numerical results on simple low-dimensional graphs show that 
the 1-D arrangement given by the spectrum of the Laplacian 
is efficient at creating spatially localized filters [52], an open 
fundamental question is how to define a dual graph on the 
eigenvectors of the Laplacian in which smoothness (obtained 
by applying the diffusion operator) corresponds to localization 
in the original graph.] In this setting, the spectral multipliers 
are parameterized as

( ) ,Bdiag , ,l l l laC =l l (30)

where ( ) ( ( ))B bij j ib m= =  is a k q#  fixed interpolation ker-
nel [e.g., ( )jb m  can be cubic splines], and a  is a vector of q
interpolation coefficients. To obtain filters with constant spa-
tial support (i.e., independent of the input size n), one should 
choose a sampling step n+c  in the spectral domain, which 
results in a constant number ( )n 1O1c =-  of coefficients ,l la l

per filter. Therefore, by combining spectral layers with graph 
coarsening, this model has ( )log nO  total trainable parameters 
for inputs of size n, thus recovering the same learning com-
plexity as CNNs on Euclidean grids.

Even with such a parameterization of the filters, the spec-
tral CNN (27) entails a high computational complexity of per-
forming forward and backward passes, because they require an 
expensive step of matrix multiplication by kU  and .kU<  While 
on Euclidean domains such a multiplication can be efficiently 
carried in ( )logn nO  operations using fast-Fourier-transform-
type algorithms, for general graphs such algorithms do not 
exist and the complexity is ( )nO 2 . We will see next how to 
alleviate this cost by avoiding explicit computation of the 
Laplacian eigenvectors.

Spectrum-free methods
A polynomial of the Laplacian acts as a polynomial on its eigen-
values. Thus, instead of explicitly operating in the frequency 
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domain with spectral multipliers as in (30), it is possible to 
represent the filters via a polynomial expansion:

,( ) ( )g gT U K U= <
a a (31)

where

( ) ,g j
j

r
j

0

1

m a m=a

=

-

/ (32)

a  is the r-dimensional vector of polynomial coefficients, and 
( ) , , ,g g gdiag n1 fm mK =a a a^ ^ ^h hh  resulting in filter matrices 

g,l l ,l lC K= al l^ h whose entries have an explicit form in terms 
of the eigenvalues.

An important property of this representation is that it auto-
matically yields localized filters, for the following reason. 
Because the Laplacian is a local operator (working on one-hop 
neighborhoods), the action of its jth power is constrained to j
hops. Because the filter is a linear combination of powers of 
the Laplacian, overall (32) behaves like a diffusion operator 
limited to r hops around each vertex.

GCNN, also known as ChebNet
Defferrard et al. used the Chebyshev polynomials generated 
by the recurrence relation [45]

,

.

,T T T

T

T

2

1

j j j1 2

0

1

m m m m

m

m m

= -

=

=

- -^

^

^

^ ^h

h

h

h h

(33)

A filter (32) can thus be parameterized uniquely via an expan-
sion of order r 1-  such that

( ) ( )

( ),

g T

T

j
j

r

j

j
j

r

j

0

1

0

1

T

T

a

a

U K U=

=

<
a

=

-

=

-

u u

u

/

/ (34)

where I2 n
1T Tm= --u  and I2 n

1mK K= --u  denotes a rescal-
ing of the Laplacian mapping its eigenvalues from the interval 
[ , ]0 nm  to [ , ]1 1-  (necessary because the Chebyshev polyno-
mials form an orthonormal basis in [ , ]1 1- ).

Denoting ( ) ,f fT( )j
j D=r u  we can use the recurrence rela-

tion (33) to compute f f f2( ) ( ) ( )j j j1 2D= -- -r u r r , with f f( )0 =r  and 
.f f( )1 D=r u  The computational complexity of this procedure is 

therefore ( )rnO  operations and does not require an explicit 
computation of the Laplacian eigenvectors.

Graph convolutional network
Kipf and Welling [77] simplified this construction by further 
assuming r 2. and ,2n .m  resulting in filters of the form

( ) ( )

.

f f I f

f D WD f

g
/ /

0 1

0 1
1 2 1 2

a a

a a

D= + -

= -

a

- - (35)

Further constraining ,0 1a a a= =-  one obtains filters repre-
sented by a single parameter,

( ) ( ) .f I D WD fg / /1 2 1 2a= +a
- - (36)

Because the eigenvalues of I D WD/ /1 2 1 2+ - -  are now in the 
range [ , ],0 2  repeated application of such a filter can result in 
numerical instability. This can be remedied by a renormalization

( ) ,f D WD fg / /1 2 1 2a=a
- -u u u (37)

where W W I= +u  and .D wdiag ijj i
=

!
u u` j/

Note that though we arrived at the constructions of Cheb-
Net and graph convolutional network (GCN) starting in the 
spectral domain, they boil down to applying simple filters act-
ing on the r- or one-hop neighborhood of the graph in the spa-
tial domain. We consider these constructions to be examples 
of the more general graph neural network (GNN) framework.

GNN
GNNs [78] generalize the notion of applying the filtering 
operations directly on the graph via the graph weights. 
Similarly as Euclidean CNNs learn generic filters as linear 
combinations of localized, oriented bandpass and low-pass fil-
ters, a GNN learns at each layer a generic linear combination 
of graph low-pass and high-pass operators. These are given, 
respectively, by Wf f7  and f f7 D  and are thus generated 
by the degree matrix D and the diffusion matrix W. Given a 
p-dimensional input signal on the vertices of the graph, repre-
sented by the n p#  matrix F, the GNN considers a generic 
nonlinear function : ,R R Rp p q"#hi  parameterized by train-
able parameters i  that is applied to all nodes of the graph,

( ) , ( ) .g Wf Dfi i ih= i ^ h (38)

In particular, choosing ( , ) ,a b b ah = -  one recovers the 
Laplacian operator ,fD  but more general, nonlinear choices 
for h  yield trainable, task-specific diffusion operators. 
Similarly as with a CNN architecture, one can stack the result-
ing GNN layers (g fC= i ) and interleave them with graph 
pooling operators. Chebyshev polynomials ( )Tr D  can be 
obtained with r layers of (38), making it possible, in principle, 
to consider ChebNet and GCN as particular instances of the 
GNN framework.

Historically, a version of GNN was the first formulation 
of deep learning on graphs, proposed in [49] and [78]. These 
works optimized over the parameterized steady state of some 
diffusion process (or random walk) on the graph. This can be 
interpreted as in (38) but using a large number of layers where 
each Ci  is identical, as the forward propagation through the 
Ci  approximate the steady state. Recent works [50], [51], [55],
[79], [80] relax the requirements of approaching the steady 
state or using repeated applications of the same .Ci

Because the communication at each layer is local to a ver-
tex neighborhood, one may worry that it would take many lay-
ers to get information from one part of the graph to another, 
requiring multiple hops (this was one of the reasons for the 
use of the steady state in [78]). However, for many applica-
tions, it is not necessary for information to completely traverse 
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the graph. Furthermore, note that the graphs at each layer of 
the network need not be the same. Thus, we can replace the 
original neighborhood structure with one’s favorite multiscale 
coarsening of the input graph and operate on that to obtain the 
same flow of information as with the convolutional nets above 
(or rather more like a locally connected network [81]). This 
also allows producing a single output for the whole graph (for 
translation-invariant tasks), rather than a per-vertex output, by 
connecting each vertex to a special output node. Alternatively, 
one can allow h  to use not only Wf  and fD  at each node but 
also W fs  for several diffusion scales s 1>  (as in [45]), giving 
the GNN the ability to learn algorithms like the power method 
and more directly accessing spectral properties of the graph. 
The GNN model can be further generalized to replicate other 
operators on graphs. For instance, the pointwise nonlinearity h

can depend on the vertex type, allowing extremely rich archi-
tectures [50], [51], [55], [79], [80].

Charting-based methods
We now consider the second subclass of non-Euclidean learn-
ing problems, where we are given multiple domains. A proto-
typical application the reader should have in mind throughout 
this section is the problem of finding correspondence between 
shapes, modeled as manifolds (see “Three-Dimensional 
Shape Correspondence Application”). As we have seen, defin-
ing convolution in the spectral domain has an inherent draw-
back of the inability to adapt the model across different 
domains. We will therefore need to resort to an alternative 
generalization of the convolution in the spatial domain that 
does not suffer from this drawback.

Finding intrinsic correspondence between deformable 
shapes is a classical tough problem that underlies a broad 
range of vision and graphics applications, including tex-
ture mapping, animation, editing, and scene understand-
ing [107]. From the machine-learning standpoint, 
correspondence can be thought of as a classification 
problem, where each point on the query shape is 
assigned to one of the points on a reference shape (serv-
ing as a label space) [108]. It is possible to learn the cor-
respondence with a deep intrinsic network applied to 
some input feature vector ( )f x  at each point x  of the 
query shape ,X  producing an output ( ( )) ( )fU x yH , which is 
interpreted as the conditional probability ( | )p y x  of x
being mapped to y  [Figure S7(a)]. Using a training set of 
points with their ground-truth correspondence ,{ , }x yi i i I!

supervised learning is performed minimizing the multino-
mial regression loss

( ( )) ( )fmin logU x y
i

i i
I

-
!

H
H/ (S14)

with respect to the network parameters H. The loss penal-
izes for the deviation of the predicted correspondence 
from the ground truth. We note that, while producing 
impressive results [Figure S7(b)], such an approach 
essentially learns pointwise correspondence, which then 
has to be postprocessed to satisfy certain properties, 
such as smoothness or bijectivity. Correspondence is an 
example of structured output, where the output of the net-
work at one point depends on the output in other points 
(in the simplest setting, correspondence should be 
smooth, i.e., the output at nearby points should be simi-
lar) Litany et al. [109] proposed intrinsic structured pre-
diction of shape correspondence by integrating a layer 
computing functional correspondence [106] into the deep 
neural network.

Three-Dimensional Shape Correspondence Application

xi
UΘ

yi

X Y

(a) (b)

FIGURE S7. (a) The learning shape correspondence: an intrinsic deep network UH  is applied pointwise to some input features defined at each point. 
The output of the network at each point x of the query shape X  is a probability distribution of the reference shape Y  that can be thought of as a 
soft correspondence. (b) The intrinsic correspondence established between human shapes using intrinsic deep architecture (MoNet [54] with three 
convolutional layers). Signature of histogram orientations (SHOT) descriptors capturing the local normal vector orientations [110] were used in 
this example as input features. The correspondence is visualized by transferring texture from the leftmost reference shape. For additional examples, 
see [54].
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Furthermore, note that in the setting of multiple domains, 
there is no immediate way to define a meaningful spatial pool-
ing operation, as the number of points on different domains can 
vary, and their order can be arbitrary. It is, however, possible to 
pool pointwise features produced by a network by aggregating 
all the local information into a single vector. One possibility 
for such a pooling is computing the statistics of the pointwise 
features, e.g., the mean or covariance [47]. Note that after such 
a pooling, all of the spatial information is lost.

On a Euclidean domain, due to shift invariance the con-
volution can be thought of as passing a template at each point 
of the domain and recording the correlation of the template 
with the function at that point. Thinking of image filtering, 
this amounts to extracting a (typically square) patch of pix-
els, multiplying it elementwise with a template and summing 
up the results, then moving to the next position in a slid-
ing window manner. Shift invariance implies that the very 
operation of extracting the patch at each position is always 
the same.

One of the major problems in applying the same para-
digm to non-Euclidean domains is the lack of shift invariance, 
implying that the patch operator extracting a local patch would 
be position dependent. Furthermore, the typical lack of mean-
ingful global parameterization for a graph or manifold forces 
to represent the patch in some local intrinsic system of coor-
dinates. Such a mapping can be obtained by defining a set of 
weighting functions ( , ), , ( , )x xv vJ1 $ $f  localized to positions 

near x (see examples in Figure 3). Extracting a patch amounts 
to averaging the function f at each point by these weights,

( ) ( ) ( , ) , , , ,D x f f x v x x dx j J1j j
X

f= =l l l# (39)

providing for a spatial definition of an intrinsic equivalent of 
convolution

( )( ) ( ) ,f g x g D x fj
j

j* =/ (40)

where g denotes the template coefficients applied on the patch 
extracted at each point. Overall, (39) and (40) act as a kind of 
nonlinear filtering of f, and the patch operator D is specified 
by defining the weighting functions , ,v vJ1 f . Such filters are 
localized by construction, and the number of parameters is 
equal to the number of weighting functions ( )J 1O= . Several 
frameworks for non-Euclidean CNNs essentially amount to 
different choices of these weights. The spectrum-free methods 
(ChebNet and GCN) described in the previous section can 
also be thought of in terms of local weighting functions, as it is 
easy to see the analogy between (40) and (34).

Geodesic CNN 
Because manifolds naturally come with a low-dimensional 
tangent space associated with each point, it is natural to work 
in a local system of coordinates in the tangent space [47]. In 
particular, on 2-D manifolds one can create a polar system of 
coordinates around x where the radial coordinate is given by 
some intrinsic distance ( ) ( , ),x d x xt =l l  and the angular coor-
dinate ( )xi  is obtained by ray shooting from a point at equi-
spaced angles. The weighting functions in this case can be 
obtained as a product of Gaussians

( , ) ,v x x e e( ( ) ) / ( ( ) ) /
ij

x x2 2i j
2 2 2 2

= t t v i i v- - - -t il l l (41)

where , ,i J1 f=  and , ,j J1 f= l denote the indices of the 
radial and angular bins, respectively. The resulting JJl weights 
are bins of width #v vt i  in the polar coordinates [Figure 3(c) 
and (f)].

Anisotropic CNN 
We have already seen the non-Euclidean heat equation (S5), 
whose heat kernel ( , ·)h xt  produces localized blob-like 
weights around the point x [see Figure S3(a)]. Varying the dif-
fusion time t  controls the spread of the kernel. However, such 
kernels are isotropic, meaning that the heat flows equally fast 
in all the directions. A more general anisotropic diffusion [48]
equation on a manifold

( ) ( ( ) ( )), ,Af x t x f x tdivt d=- (42)

involves the thermal conductivity tensor ( )A x  (in the case of 
2-D manifolds, a 2 × 2 matrix is applied to the intrinsic gradient 

Diffusion
Distance

Geodesic Polar
Coordinates

Anisotropic
Heat Kernel

(a) (b) (c)

(d) (e) (f)

FIGURE 3. (a)–(c) The examples of intrinsic weighting functions used to 
construct a patch operator at the point marked in black (different colors 
represent different weighting functions). (a) Diffusion distance allows to 
map neighbor points according to their distance from the reference point, 
thus defining a 1-D system of local intrinsic coordinates. (b) Anisotropic 
heat kernels of different scale and orientations and (c) geodesic polar 
weights are 2-D systems of coordinates. (d)–(f) The representation of 
the weighting functions in the local polar ( , )t i  system of coordinates 
(red curves represent the 0.5 level set).
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in the tangent plane at each point), allowing modeling heat 
flow that is position and direction dependent [82]. A particular 
choice of the heat conductivity tensor proposed in [53] is

( ) ( ) ( ),A R Rx x x
1

a
= <

ai i ie o (43)

where the 2 × 2 matrix ( )R xi  performs rotation of i  with 
respect to some reference (e.g., the maximum curvature) 
direction and 02a  is a parameter controlling the degree of 
anisotropy 1a =^  corresponds to the classical isotropic case). 
The heat kernel of such anisotropic diffusion equation is given 
by the spectral expansion

( , ) ( ) ( ),h x x e x xt
t

i
i i

0

iz z=
$

ai
m

ai ai
- ail l/ (44)

where ( ), ( ),x x0 1 fz zai ai  are the eigenfunctions and 
, ,0 1 fm mai ai  the corresponding eigenvalues of the anisotro-

pic Laplacian

( ) ( ( ) ( )) .Af x x f xdiv dD =-ai ai (45)

The discretization of the anisotropic Laplacian is a modifica-
tion of the cotangent formula (S12) on meshes or graph 
Laplacian (S9) on point clouds [48]. The anisotropic heat ker-
nels ( , ·)h xtai  look like elongated rotated blobs [see Figure 3(b) 
and (e)], where the parameters ,a i  and t  control the elonga-
tion, orientation, and scale, respectively. Using such kernels as 
weighting functions v  in the construction of the patch operator 
(39), it is possible to obtain a charting similar to the geodesic 
patches (roughly, i  plays the role of the angular coordinate and 
t  of the radial one).

Mixture model network
Finally, as the most general construction of patches, Monti et 
al. [54] proposed defining at each point a local system of 
d-dimensional pseudocoordinates ( , )u x xl  around x. On these 
coordinates, a set of parametric kernels ( ), , ( )u uv vJ1 f  is 
applied, producing the weighting functions in (39). Rather 
than using fixed kernels, as in the previous constructions, 
Monti et al. use Gaussian kernels

( ) ( ) ( )u u uexpv
2
1

j j j j
1n nR= - - -< -` j,

whose parameters dd #^  covariance matrices , , J1 fR R  and 
d 1#  mean vectors , , J1 f nn ) are learned [this choice allows 
interpreting intrinsic convolution (40) as a mixture of 
Gaussians, hence the name of the approach]. Learning not 
only the filters but also the patch operators in (40) affords 
additional DoF to the mixture model network (MoNet) archi-
tecture, which makes it currently the state-of-the-art approach 
in several applications. It is also easy to see that this approach 
generalizes the previous models, and, e.g., classical Euclidean 
CNNs as well as geodesic and anisotropic CNNs can be 
obtained as particular instances thereof [54]. MoNet can also 
be applied on general graphs using as the pseudocoordinates u

some local graph features, such as vertex degree, geodesic dis-
tance, and so forth.

Combined spatial/spectral methods
The third alternative for constructing convolutionlike opera-
tions of non-Euclidean domains is jointly in spatial-frequen-
cy domain.

Windowed Fourier transform
One of the notable drawbacks of classical Fourier analysis is 
its lack of spatial localization. By virtue of the uncertainty 
principle, one of the fundamental properties of Fourier trans-
forms, spatial localization comes at the expense of frequency 
localization and vice versa. In classical signal processing, this 
problem is remedied by localizing frequency analysis in a 
window ( )g x , leading to the definition of the windowed 
Fourier transform (WFT, also known as short-time Fourier 
transform or spectrogram in signal processing),

( ) ( , ) ( ) ( )Sf x f x g x x e dx
( )

i x

g x,x

~ = -
3

3 ~

-

-

~

l l ll

l
1 2 3444 444# (46)

, .f g , ( )x L R2G H= ~ (47)

The WFT is a function of two variables: spatial location of 
the window x  and the modulation frequency ~ . The choice 
of the window function g  allows control of the tradeoff 
between spatial and frequency localization (wider windows 
result in better frequency resolution). Note that WFT can be 
interpreted as inner products (47) of the function f with 
translated and modulated windows g ,x ~ , referred to as the 
WFT atoms.

The generalization of such a construction to non-Euclide-
an domains requires the definition of translation and modu-
lation operators [83]. While modulation simply amounts to 
multiplication by a Laplacian eigenfunction, translation is not 
well defined due to the lack of shift invariance. It is possible 
to resort again to the spectral definition of a convolution-like 
operation (26), defining translation as convolution with a 
delta function,

(

( ) ( ) .

) ( ) , , ( )g x g x

g x x

( ) ( )x i L
i

x i L i

i
i

i i
0

0
X X2 2* G H G H

z z

d z d z z

=

=

$

$

l

l l

t/
/

(48)

The translated and modulated atoms can be expressed as

( ) ( ) ( ) ( ),g x x g x x,x j j i
i

i i
0

z z z=
$

l ll t/ (49)

where the window is specified in the spectral domain by its 
Fourier coefficients .gt   The WFT on non-Euclidean domains 
thus takes the form

.( )( , ) , ( ) ,Sf x j f g g x f, ( ( ))x j L i
i

i i j L
0

XX2 2G H G Hz z z= =
$

l ll t/ (50)

Due to the intrinsic nature of all the quantities involved in its 
definition, the WFT is also intrinsic.
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Wavelets
Replacing the notion of frequency in time–frequency repre-
sentations by that of scale leads to wavelet decompositions. 
Wavelets have been extensively studied in general graph 
domains [84]. Their objective is to define stable linear decom-
positions with atoms well localized both in space and frequency 
that can efficiently approximate signals with isolated singu-
larities. Similarly to the Euclidean setting, wavelet families 
can be constructed either from spectral constraints or from 
spatial constraints.

The simplest of such families are Haar wavelets. Several 
bottom-up wavelet constructions on graphs were studied in 
[85] and [86]. In [87], the authors developed an unsupervised 
method that learns wavelet decompositions on graphs by 
optimizing a sparse reconstruction objective. In [88], ensem-
bles of Haar wavelet decompositions were used to define deep 
wavelet scattering transforms on general domains, obtaining 
excellent numerical performance. Learning amounts to find-
ing optimal pairings of nodes at each scale, which can be effi-
ciently solved in polynomial time.

Localized SCNN
Boscaini et al. used the WFT as a way of constructing patch 
operators (39) on manifolds and point clouds and used in an 
intrinsic convolution-like construction (40). The WFT allows 
expressing a function around a point in the spectral domain in 
the form ( ) ( ) ( , )D x f Sf x jj = [89]. Applying learnable filters to 
such patches (which in this case can be 
interpreted as spectral multipliers), it is 
possible to extract meaningful features that 
also appear to generalize across different 
domains. An additional DoF is the defini-
tion of the window, which can also be 
learned [89].

Applications

Network analysis
One of the classical examples used in many 
works on network analysis is citation net-
works. A citation network is a graph where 
vertices represent articles and there is a 
directed edge (i, j) if article i cites article j.
Typically, vertex-wise features representing 
the content of the article (e.g., histogram of frequent terms in 
the article) are available. A prototypical classification applica-
tion is to attribute each article to a field. Traditional approach-
es work vertex-wise, performing classification of each vertex’s 
feature vector individually. More recently, it was shown that 
classification can be considerably improved using information 
from neighbor vertices, e.g., with a CNN on graphs [45], [77].
An example of the application of spectral and spatial graph 
CNN models on a citation network is shown in “Citation 
Network Analysis Application.”

Another fundamental problem in network analysis is rank-
ing and community detection. These can be estimated by solving 

an eigenvalue problem on an appropriately defined operator on 
the graph. For instance, the Fiedler vector (the eigenvector asso-
ciated with the smallest nontrivial eigenvalue of the Laplacian) 
carries information on the graph partition with minimal cut 
[73], and the popular PageRank algorithm approximates page 
ranks with the principal eigenvector of a modified Laplacian 
operator. In some contexts, one may want develop data-driven 
versions of such algorithms that can adapt to model mismatch 
and perhaps provide a faster alternative to diagonalization 
methods. By unrolling power iterations, one obtains a GNN 
architecture whose parameters can be learned with backpropa-
gation from labeled examples, similarly to the learned sparse 
coding paradigm [91]. We are currently exploring this connec-
tion by constructing multiscale versions of GNNs.

Recommender systems
Recommending movies on Netflix, friends on Facebook, or 
products on Amazon are a few examples of recommender 
systems that have recently become ubiquitous in a broad range 
of applications. Mathematically, a recommendation method 
can be posed as a matrix completion problem [92], where col-
umns and rows represent users and items, respectively, and 
matrix values represent a score determining whether a user 
would like an item or not. Given a small subset of known ele-
ments of the matrix, the goal is to fill in the rest. A famous 
example is the Netflix challenge [93] offered in 2009 and car-
rying a US$1 million prize for the algorithm that can best pre-

dict user ratings for movies based on 
previous ratings. The size of the Netflix 
matrix is 480,000 movies × 18,000 users 
(8.5 billion elements), with only 0.011% 
known entries.

Several recent works proposed to incor-
porate geometric structure into matrix com-
pletion problems [94]–[97] in the form of 
column and row graphs representing simi-
larity of users and items, respectively (see 
Figure 4). Such a geometric matrix comple-
tion setting makes meaningful, e.g., the 
notion of smoothness of the matrix values 
and was shown beneficial for the perfor-
mance of recommender systems.

In a recent work, Monti et al. [56] pro-
posed addressing the geometric matrix 

completion problem by means of a learnable model combining 
a multigraph CNN (MGCNN) and a recurrent neural network 
(RNN). Multigraph convolution can be thought of as a general-
ization of the standard bidimensional image convolution, where 
the domains of the rows and the columns are now different (in 
our case, user and item graphs). The features extracted from 
the score matrix by means of the MGCNN are then passed to 
an RNN, which produces a sequence of incremental updates 
of the score values. Overall, the model can be considered as 
a learnable diffusion of the scores, with the main advantage 
compared to traditional approach being a fixed number of vari-
ables independent of the matrix size. The MGCNN achieved 

Recommending movies 
on Netflix, friends on 
Facebook, or products 
on Amazon are a few 
examples of recommender 
systems that have recently 
become ubiquitous 
in a broad range of 
applications. Such 
applications may benefit 
from geometric deep 
learning methods.
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state-of-the-art results on several classical matrix completion 
challenges and, on a more conceptual level, could be a very 
interesting practical application of geometric deep learning to 
a classical signal processing problem of matrix completion.

Computer vision and graphics
The computer-vision community has recently shown an 
increasing interest in working with 3-D geometric data, 
mainly due to the emergence of affordable range-sensing 
technology, such as Microsoft Kinect or Intel RealSense. 
Many machine-learning techniques successfully working on 
images were tried as is on 3-D geometric data, represented 
for this purpose in some way digestible by standard frame-
works, e.g., as range images [98], [99] or 
rasterized volumes [100], [101]. The main 
drawback of such approaches is their 
treatment of geometric data as Euclidean 
structures. First, for complex 3-D objects, 
Euclidean representations, such as depth 
images or voxels, may lose significant 
parts of the object or its fine details or even 
break its topological structure. Second, Euclidean representa-
tions are not intrinsic and vary when changing pose or 
deforming the object. Achieving invariance to shape defor-
mations, a common requirement in many vision applications, 
demands very complex models and huge training sets due to 
the large number of DoF involved in describing nonrigid 
deformations [see Figure 5(a)].

In the domain of computer graphics, on the other hand, 
working intrinsically with geometric shapes is a standard prac-
tice. In this field, 3-D shapes are typically modeled as Rie-
mannian manifolds and are discretized as meshes. Numerous 
studies (see, e.g., [102]–[106]) have been devoted to designing 
local and global features, e.g., for establishing similarity or 

correspondence between deformable shapes with guaranteed 
invariance to isometries.

However, different applications in computer vision and 
graphics may require completely different features. For instance, 
to establish feature-based correspondence between a collection 
of human shapes, one would desire the descriptors of corre-
sponding anatomical parts (e.g., noses, mouths) to be as simi-
lar as possible across the collection (see Figure 6(a)). In other 

words, such descriptors should be invariant 
to the collection variability. Conversely, for 
shape classification, one would like descrip-
tors that emphasize the subject-specific char-
acteristics and, e.g., distinguish between two 
different nose shapes (see Figure 6b). Decid-
ing a priori which structures should be used 
and which should be ignored is often hard 

or sometimes even impossible. Moreover, axiomatic modeling 
of geometric noise, such as 3-D scanning artifacts, turns out to 
be extremely hard.

By resorting to intrinsic deep neural networks on mani-
folds, the invariance to isometric deformations is automati-
cally built into the model, thus vastly reducing the number 
of DoF required to describe the invariance class. Roughly 
speaking, the intrinsic deep model will try to learn residual 
deformations that deviate from the isometric model. Geomet-
ric deep learning can be applied to several problems in 3-D 
shape analysis, which can be divided into two classes. First are 
problems like local descriptor learning [47], [53] or correspon-
dence learning [48] (see the example in “Three-Dimensional 

m
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FIGURE 4. The geometric matrix completion exemplified on the famous 
Netflix movie recommendation problem. The column and row graphs 
represent the relationships between users and items, respectively.

Filter

Filter

Filter

Filter

(a) (b)

FIGURE 5. An illustration of the difference between (a) classical CNN 
applied to a 3-D shape (checkered surface) considered as a Euclidean 
object and (b) a geometric CNN applied intrinsically on the surface. In the 
latter case, the convolutional filters (visualized as a colored window) are 
deformation invariant by construction.

The computer-vision 
community has recently 
shown an increasing 
interest in working with 
3-D geometric data.
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Shape Correspondence Application”), in which the output 
of the network is pointwise. The inputs to the network are 
some pointwise features, e.g., color texture or simple geo-
metric features, such as normals. Using a 
CNN architecture with multiple intrinsic 
convolutional layers, it is possible to pro-
duce nonlocal features that capture the con-
text around each point. The second type 
of problems, such as shape recognition, 
require the network to produce a global 
shape descriptor, aggregating all the local 
information into a single vector using, e.g., 
the covariance pooling [47].

Particle physics and chemistry
Many areas of experimental science are interested in studying 
systems of discrete particles defined over a low-dimensional 
phase space. For instance, the chemical properties of a mole-
cule are determined by the relative positions of its atoms, and 
the classification of events in particle accelerators depends 
upon position, momentum, and spin of all the particles involved 
in the collision.

The behavior of an N-particle system is ultimately derived 
from solutions of the Schrödinger equation, but its exact 
solution involves diagonalizing a linear system of exponential 
size. In this context, an important question is whether one can 
approximate the dynamics with a tractable model that incor-
porates by construction the geometric stability postulated by 
the Schrödinger equation and at the same time has enough 
flexibility to adapt to data-driven scenarios and capture com-
plex interactions.

An instance l of an Nl-particle system can be expressed as

( ) ( ),f t t x, ,l j l
j

N

j l
1

l

a d= -
=

/

where ( ),j la  model particle-specific information, such as the 
spin, and ( )x ,j l  are the locations of the particles in a given 

phase space. Such a system can be recast as a signal defined 
over a graph with NVl l=  vertices and edge weights 

( ( , , , ))W x x, , , ,l i l j l i l j lz a a=  expressed through a similarity 
kernel capturing the appropriate priors. GNNs are currently 
being applied to perform event classification, energy 
regression, and anomaly detection in high-energy physics 
experiments, such as the Large Hadron Collider, and neutri-
no detection in the IceCube Observatory. Recently, models 
based on GNNs have been applied to predict the dynamics 
of N-body systems [111], [112], showing excellent predic-
tion performance.

Molecule design
A key problem in material and drug design is predicting the 
physical, chemical, or biological properties (such as solubility 
of toxicity) of a novel molecule from its structure. State-of-
the-art methods rely on hand-crafted molecule descriptors, 
such as circular fingerprints [113]–[115]. A recent work from 
Harvard University in Cambridge, Massachusetts [55] pro-
posed modeling molecules as graphs (where vertices represent 
atoms and edges represent chemical bonds) and employing 

GCNNs to learn the desired molecule prop-
erties. The authors’ approach has signifi-
cantly outperformed handcrafted features. 
This work opens a new avenue in molecule 
design that might revolutionize the field.

Medical imaging
An application area where signals are natu-
rally collected on non-Euclidean domains 
and where the methodologies we reviewed 
could be very useful is brain imaging. A 
recent trend in neuroscience is to associate 

functional magnetic resonance imaging traces with a precom-
puted connectivity rather than inferring it from the traces 
themselves [116]. In this case, the challenge consists in pro-
cessing and analyzing an array of signals collected over a 
complex topology, which results in subtle dependencies. For 
example, in a recent work from Imperial College London 
[117], GCNNs were used to detect disruptions of the brain 
functional networks associated with autism.

Open problems and future directions
The recent emergence of geometric deep-learning methods in 
various communities and application domains, which we tried 
to overview in this article, allows us to proclaim, perhaps with 
some caution, that we might be witnessing a new field being 
born. We expect the following years to bring exciting new 
methods and applications, and conclude our review with a few 
observations of current key difficulties and potential directions 
of future research.

Many disciplines dealing with geometric data employ 
some empirical models or handcrafted features. This is a typi-
cal situation in geometry processing and computer graphics, 
where axiomatically constructed features are used to analyze 
3-D shapes, or computational sociology, where it is common 

The recent emergence 
of geometric deep-
learning methods in 
various communities 
and application domains 
allows us to proclaim that 
we might be witnessing a 
new field being born.

(a) (b)

FIGURE 6. (a) The features used for shape correspondence should ideally 
manifest invariance across the shape class (e.g., the knee feature shown 
here should not depend on the specific person). (b) The features used for 
shape retrieval, on the contrary, should be specific to a shape within the 
class to allow distinguishing between different people. Similar features 
are marked with the same color. Handcrafting the right feature for each 
application is a very challenging task.
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to first come up with a hypothesis and then test it on the data 
[22]. Yet, such models assume some prior knowledge (e.g., 
isometric shape deformation model) and often fail to cor-
rectly capture the full complexity and richness of the data. 
In computer vision, departing from handcrafted features 
toward generic models learnable from the data in a task-
specific manner has brought a breakthrough in performance 
and led to an overwhelming trend in the community to favor 
deep-learning methods. Such a shift has not occurred yet 
in the fields dealing with geometric data due to the lack of 
adequate methods, but there are the first indications of a 
coming paradigm shift.

Generalization
Generalizing deep-learning models to geometric data 
requires not only finding non-Euclidean counterparts of basic 
building blocks (such as convolutional and pooling layers) 
but also generalization across different domains. Ge -
neralization capability is a key requirement in many applica-
tions, including computer graphics, where a model is learned 
on a training set of non-Euclidean domains (3-D shapes) and 
then applied to previously unseen ones. Spectral formulation 
of convolution allows designing CNNs on 
a graph, but the model learned this way on 
one graph cannot be straightforwardly 
applied to another one, because the spec-
tral representation of convolution is domain 
dependent. A possible remedy to the gen-
eralization problem of spectral methods is 
the recent architecture proposed in [118],
applying the idea of spatial transformer 
networks [119] in the spectral domain. 
This approach is reminiscent of the con-
struction of compatible orthogonal bases by means of joint 
Laplacian diagonalization [75], which can be interpreted as 
an alignment of two Laplacian eigenbases in a k-dimension-
al space.

The spatial methods, on the other hand, allow generaliza-
tion across different domains, but the construction of low-
dimensional local spatial coordinates on graphs turns out to 
be rather challenging. In particular, the construction of aniso-
tropic diffusion on general graphs is an interesting research 
direction. The spectrum-free approaches also allow general-
ization across graphs, at least in terms of their functional form. 
However, if multiple layers of (38) are used with no nonlinear-
ity or learned parameters i , simulating a high power of the 
diffusion, the model may behave differently on different kinds 
of graphs. Understanding under what circumstances and to 
what extent these methods generalize across graphs is currently 
being studied.

Time-varying domains
An interesting extension of geometric deep-learning problems 
discussed in this review is coping with signals defined over a 
dynamically changing structure. In this case, we cannot 
assume a fixed domain and must track how these changes 

affect signals. This could prove useful to tackle applications 
like abnormal activity detection in social or financial net-
works. In the domain of computer graphics and vision, poten-
tial applications deal with dynamic shapes (e.g., 3-D video 
captured by a range sensor).

Directed graphs
Dealing with directed graphs is also a challenging topic, as 
such graphs typically have nonsymmetric Laplacian matri-
ces that do not have orthogonal eigendecomposition allow-
ing easily interpretable spectral-domain constructions. 
Citation networks, which are directed graphs, are often treat-
ed as undirected graphs (including in our example in 
“Three-Dimensional Shape Correspondence Application”) 
considering citations between two articles without distin-
guishing which article cites which. This obviously may lose 
important information.

Synthesis problems
Our main focus in this review was primarily on analysis prob-
lems on non-Euclidean domains. Not less important is the 
question of data synthesis. There have been several recent 

attempts to try to learn a generative model 
allowing to synthesize new images [120]
and speech waveforms [121]. Extending 
such methods to the geometric setting 
seems a promising direction, though the 
key difficulty is the need to reconstruct the 
geometric structure (e.g., an embedding of 
a 2-D manifold in the 3-D Euclidean space 
modeling a deformable shape) from some 
intrinsic representation [122].

Computation
The final consideration is a computational one. All existing 
deep-learning software frameworks are primarily optimized 
for Euclidean data. One of the main reasons for the computa-
tional efficiency of deep-learning architectures (and one of the 
factors that contributed to their renaissance) is the assump-
tion of regularly structured data on a 1-D or 2-D grid, allow-
ing to take advantage of modern GPU hardware. Geometric 
data, on the other hand, in most cases do not have a grid 
structure, requiring different ways to achieve efficient com-
putations. It seems that computational paradigms developed 
for large-scale graph processing are more adequate frame-
works for such applications.
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T
ransport-based techniques for signal and data analysis have 
recently received increased interest. Given their ability to 
provide accurate generative models for signal intensities and 
other data distributions, they have been used in a variety of 

applications, including content-based retrieval, cancer detection, 
image superresolution, and statistical machine learning, to name a 
few, and they have been shown to produce state-of-the-art results. 
Moreover, the geometric characteristics of transport-related met-
rics have inspired new kinds of algorithms for interpreting the 
meaning of data distributions. Here, we provide a practical over-
view of the mathematical underpinnings of mass transport-related 
methods, including numerical implementation, as well as a review, 
with demonstrations, of several applications. Software accompa-
nying this article is available from [43].

Purposes for optimal mass transport

Motivation and goals
Numerous applications in science and technology depend on 
effective modeling and information extraction from signal and 
image data. Examples include being able to distinguish between 
benign and malignant tumors in medical images; learning mod-
els (e.g., dictionaries) for solving inverse problems; identifying 
people from images of faces, voice profiles, or fingerprints; and 
many others. Techniques based on the mathematics of optimal 
mass transport, also known as Earth Mover’s Distance in engi-
neering-related fields, have received significant attention 
recently given their ability to incorporate spatial (in addition to 
intensity) information when comparing signals, images, and 
other data sources, thus giving rise to different geometric inter-
pretations of data distributions. These techniques have been 
used to simplify and augment the accuracy of numerous pattern 
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recognition-related problems. Some examples covered in 
this article include image retrieval [32], [44], signal and 
image representation [25], [27], [40], [50], inverse problems 
[30], cancer detection [4], [39], texture and color modeling 
[18], [41], shape and image registration [22], [29], and 
machine learning [12], [17], [19], [28], [36], [42], to name a 
few. This article is meant to serve as an introductory guide 
to those wishing to familiarize themselves with these emerg-
ing techniques. Specifically, we
■ provide a brief overview of key mathematical concepts 

related to optimal mass transport
■ describe recent advances in transport-related methodology 

and theory 
■ provide a practical overview of their applications in mod-

ern signal analysis, modeling, and learning problems.

Why transport?
In recent years, numerous techniques for signal and image 
analysis have been developed to address important learning 
and estimation problems. Researchers working to unveil solu-
tions to these problems have found it necessary to develop 
techniques to compare signal intensities across different sig-
nal/image coordinates. A common problem in medical imag-
ing, for example, is the analysis of magnetic resonance 
images with the goal of learning about brain morphology dif-
ferences between healthy and diseased populations. Decades 
of research in this area have culminated with techniques such 
as voxel- and deformation-based morphology that make use 
of nonlinear registration methods to understand differences in 
tissue density and locations. Likewise, the development of 
dynamic time-warping techniques was necessary to enable the 
comparison of time series data more meaningfully without 
confounds from commonly encountered variations in time. 
Furthermore, researchers desiring to create realistic models of 
facial appearance have long understood that appearance mod-
els for the eyes, lips, nose, and other facial features are signifi-
cantly different and thus must be dependent on a position 
relative to a fixed anatomy. The pervasive success of these as 
well as other techniques, such as optical flow, level-set meth-
ods, and deep neural networks, have shown that 1) nonlinearity 
and 2) modeling the location of pixel intensities are essential 
concepts to keep in mind when solving modern regression 
problems related to estimation and classification.

The previously mentioned methodology for modeling 
appearance and learning morphology, time series analysis and 
predictive modeling, deep neural networks for classification of 
sensor data, and the like is algorithmic in nature. The trans-
port-related techniques reviewed in this article are nonlinear 
methods that, unlike linear methods such as Fourier, wave-
lets, and dictionary models, explicitly model signal intensities 
and their locations. Furthermore, they are often based on the 
theory of optimal mass transport from which fundamental 
principles can be put to use. Thus, they hold the promise to 
ultimately play a significant role in the development of a theo-
retical foundation for certain subclasses of modern learning 
and estimation problems. 

A brief historical note
The optimal mass transport problem seeks the most efficient 
way of transforming one distribution of mass to another, rela-
tive to a given cost function. The problem was initially studied 
by the French mathematician Gaspard Monge in his seminal 
work “Mémoire sur la Théorie des Déblais et des Remblais” 
[35] in 1781. In 1942, Leonid V. Kantorovich, who, at that 
time, was unaware of Monge’s work, proposed a general for-
mulation of the problem by considering optimal mass trans-
port plans, which, as opposed to Monge’s formulation, allows 
for mass splitting [23]. Kantorovich shared the 1975 Nobel 
Prize in Economic Sciences with Tjalling Koopmans for 
his work in the optimal allocation of scarce resources. 
Kantorovich’s contribution is considered “the birth of the 
modern formulation of optimal transport” [49], and it made the 
optimal mass transport problem an active field of research in 
the following years.

A significant portion of the theory of the optimal mass 
transport problem was developed in the 1990s, starting with 
Brenier’s seminal work on the characterization, existence, and 
uniqueness of optimal transport maps [9], followed by Caf-
farelli’s work on regularity conditions of such mappings [10]
and Gangbo and McCann’s work on a geometric interpreta-
tion of the problem [20]. A more thorough history and back-
ground on the optimal mass transport problem can be found 
in Villani’s book Optimal Transport: Old and New [49] and 
Santambrogio’s book Optimal Transport for Applied Math-
ematicians [45]. The significant contributions in mathemati-
cal foundations of the optimal transport problem together 
with recent advancements in numerical methods [6], [14], [31],
[37] have spurred the recent development of numerous data-
analysis techniques for modern estimation and detection (e.g., 
classification) problems.

Formulation of the problem and methodology
While reviewing both the continuous and discrete formula-
tions of the optimal transport problem (i.e., Monge’s and 
Kantorovich’s formulations), the geometrical characteristics of 
the problem, and the transport-based signal/image embed-
dings, we have elected to avoid measure-theoretic notation, 
and other detailed mathematical language, in lieu of a more 
informal and intuitive description of the problem. However, it 
must be said that certain mathematical precision is required to 
best understand the differences between Monge’s and 
Kantorivich’s formulation, their geometric interpretations, and 
other points. The interested reader may find it useful to con-
sult [24] for a more complete and mathematical description of 
the concepts explained in the following sections.

Optimal transport: Formulation
Over the past century or so, the theory of optimal transport 
(Earth mover’s distance) has developed two main for  mulations, 
one utilizing a continuous map (Monge’s formulation) and 
another utilizing what is called a transport plan (Kantarovich’s 
formulation), for assigning the spatial correspondence neces-
sary for the related transport problem. Although Monge’s 
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continuous formulation is helpful in problems where a point-to-
point assignment is desired, Kantarovich’s formulation is more 
general and also covers the case of discrete (Dirac) masses (in 
our case, signal intensities). These not only differ in mathemat-
ical formulation but also have consequences with regard to 
their respective numerical solutions as well as applications.

Monge’s continuous formulation
The Monge optimal mass transport problem is formulated as 
follows. Consider two signals or images I0 and I1 defined over 
their respective domains 0X  and .1X  Here, 0X  and 1X  are 
typically subsets of Rd  and can often be taken as the unit 
square (or cube in three dimensions). Although a detailed 
measure-theoretic formulation is typically required (see [24]), 
we bypass the rigorous formulation here and simply assume 
that ( )I x0  and ( )I y1  correspond to signal intensities at posi-
tions x 0! X  and .y 1! X  For digital signals, an interpolating 
model can be used to construct these functions defined over 
continuous domains from sampled discrete data. The signals 
are required to be nonnegative, i.e., ( )I x 00 $ x 06 ! X
and ( )I y 01 $ .y 16 ! X  In addition, the total amount of 
signal  (or mass) for both signals should be equal to the 
same constant (which is generally chosen to be 1): 

( ) ( ) .I x dx I y dy 10 1
0 1

= =
X X
# #  In other words, I0 and I1 are 

assumed to be probability density functions (PDFs).
Monge’s optimal transportation problem is to find a func-

tion :f 0 1"X X  that pushes I0 onto I1 and minimizes the 
objective function,

( , ) ( , ( )) ( ) ,infM I I c x f x I x dx
f MP

0 1 0
0

=
! X
# (1)

where :c R0 1 "#X X +  is the cost of moving pixel intensity 
( )I x0  from x to f(x) [Monge considered the Euclidean distance 

as the cost function in his original formulation, 
( , ( )) ( ) ,c x f x x f x= - @  and MP stands for a measure preserv-

ing map that moves all the signal intensity from I0 to I1. That 
is, for a subset B 11 X  the MP requirement is that

( ) ( ) .I x dx I y dy
{ : ( ) }x f x B B

0 1=
!

# # (2)

If f is one to one, this just means that for ,A 01 X

( ) ( ) .I x dx I y dy
( )A f A

0 1=# #

Such maps f MP!  are sometimes called transport maps
or mass-preserving maps. Simply put, the Monge formulation 
of the problem seeks to rearrange signal I0 into signal I1 while 
minimizing a specific cost function. In cases when f is smooth 
and one to one, then the requirement (2) can be written in a 
differential form as

( ( )) ( ( )) ( )det Df x I f x I x1 0= (3)

almost everywhere, where Df is the Jacobian of f [see 
Figure 1(a)]. Note that both the objective function and the 
constraint in (1) are nonlinear with respect to f(x). Hence, for 

more than a century, the answers to questions regarding 
existence and characterization of the Monge’s problem 
remained unknown.

For certain measures, the Monge’s formulation of the opti-
mal transport problem is ill posed in the sense that there is no 
transport map to rearrange one PDF to another. For instance, 
consider the case where I0 is a Dirac mass and I1 is not. Kan-
torovich’s formulation alleviates this problem by finding the 
optimal transport plan as opposed to the transport map.

Kantorovich’s formulation
Kantorovich formulated the transport problem by optimizing 
over transportation plans, which we denote as .c  One can 
think of c  as the joint distribution of I0 and I1 describing 
how much mass is being moved to different coordinates; i.e., 
let A be a subset of 0X  and similarly B 13 X . For notation-
al simplicity, we will not make a distinction between a 
probability distribution and its density. More precisely, 
we associate a probability distribution to a signal I0 by 

( ) ( ) .I A I x dx
A

0 0= #
The quantity ( )A B#c  tells us how much mass in set A is 

being moved to set B. Here, the MP constraint can be expressed 
as ( ) ( )B I B0 1#c X =  and ( ) ( ) .A I A1 0#c X =  Kantorovich’s 
formulation for the optimal transport problem can then be 
written as

( , ) ( , ) ( , ) .minK I I c x y d x y0 1
MP 0 1

c=
#X X!c
# (4)

Note that the integration notation ( , )d x yc  is meant to rep-
resent the fact that this integral is more general than the routine 

I0 I1f

X B Y

A = {x : f (x ) ∈ B }
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δ (y – y1) + δ (y – y2)

1
4

δ (y – y3)

(a)

(b)
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FIGURE 1. (a) The Monge transport map and (b) Kantorovich’s 
transport plan.
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Riemman-type integral commonly used in signal processing, 
and the integral can cover integration over domains that are more 
general. The minimizer of the optimization problem above, ,*c

is called the optimal transport plan. However, unlike the Monge 
problem, in Kantorovich’s formulation, the objective function 
and the constraints are linear with respect to ( , ) .x yc  Moreover, 
Kantorovich’s formulation is in the form of a convex optimi-
zation problem. We also note that the Monge problem is more 
restrictive than the Kantorovich problem; i.e., in Monge’s ver-
sion, mass from a single location in 0X  is being sent to a single 
location in .1X  Kantorovich’s formulation, however, considers 
transport plans that can deal with arbitrary measurable sets and 
has the ability to distribute mass from the one location in one 
density to multiple locations in another [see Figure 1(b)]. For any 
transport map :f 0 1"X X  there is an associated transport plan, 
determined by

( ) ( ) .A B I x dx
{ : ( ) }x A f x B

0#c =
! !
# (5)

Furthermore, when an optimal transport map f *  exists, it can 
be shown that the transport plan *c  derived from (5) is an 
optimal transportation plan [49].

The Kantorovich problem is especially interesting in a dis-
crete setting, i.e., for PDFs of the form ( )I p x xii

M
i0 1

d= -
=
/

and ( ),I q y yjj

N
j1 1

d= -
=
/  where ( )xd  is the Dirac delta 

function. Generally speaking, for such PDFs a transport map 
that pushes I0 into I1 does not exist. In these cases, mass split-
ting, as allowed by the Kantorovich formulation, is necessary 
[see Figure 1(b)]. The Kantorovich problem can be written as

( , ) ( , )

 ,

, , ..., , , ..., ,

minK I I c x y

p q

i M j N0 1 1

. .s t
ji

i j ij

ij
j

i ij
i

j

ij

0 1

$

c

c c

c

=

= =

= =

c
//

/ /
(6)

where ijc identifies how much of the mass particle mi at xi

needs to be moved to yj [see Figure 1(b)]. The optimization 
above has a linear objective function and linear constraints; 
therefore, it is a linear programming problem. This problem 
is convex (which, in practice, translates to a relatively easier 
process of finding a global minimum), but not strictly so, 
and the constraint provides a polyhedral set of M × N matri-
ces. In practice, a nondiscrete measure is often approximated 
by a discrete measure, and the Kantorovich problem is 
solved through the linear programming optimization 
expressed in (6).

Basic properties
Consider a transportation cost c(x, y) that is continuous and 
bounded from below. Given two signals I0 and I1 as previously 
shown, there always exists a transportation plan minimiz-
ing (4). This holds true for both when signals I0 and I1 are 
functions and when they are discrete probability distribu-
tions [49]. Another important question is regarding the exis-
tence of an optimal transport map instead of a plan. Brenier 

[9] addressed this problem for the special case where 
( , ) | | .c x y x y 2= -  Bernier’s results were later relaxed to 

more general cases by Gangbo and McCann [20], which led 
to the following theorem.

Theorem
Let I0 and I1 be nonnegative functions of the same total mass 
and with bounded support. When ( , ) ( )c x y h x y= -  for some 
strictly convex function h, then there exists a unique optimal 
transportation map f *  minimizing (1). In addition, the opti-
mal transport plan is unique and given by (5). Moreover, if 

( , ) | | ,c x y x y 2= -  then there exists a (unique up to adding a 
constant) convex function z  such that .f * dz=  A proof is 
available in [20] and [49].

Optimal mass transport: Geometric properties

Wasserstein metric
Let Ω be a bounded subset of Rd  on which the signals are 
defined. As an example, for signals (d = 1) or images (d = 2), 
this can simply be the space [ , ] .0 1 d  Let ( )P X  be the set of 
probability densities supported on Ω. The p-Wasserstein met-
ric, Wp, for p 1$  on ( )P X  is then defined as using the opti-
mal transportation problem (4) with the cost function 

( , ) | | .c x y x y p= -  For I0 and I1 in ( )P X ,

( , ) * | | ( , ) .infW I I x y d x yp MP
p p

0 1

1

c= -
#

!c
X X

` j#

For any ,p 1$ Wp is a metric on ( ) .P X  The metric space 
( ( ), )P W pX  is referred to as the p-Wasserstein space. To under-
stand the nature of the optimal transportation distances, it is 
useful to note that for any ,p 1$  the convergence with respect 
to Wp is equivalent to the weak convergence of measures; i.e., 

( , )W I I 0p n "  as n " 3 if and only if for every bounded and 
continuous function :f R"X

( ) ( ) ( ) ( ) .f x I x dx f x I x dxn "
X X
# #

For the specific case of p = 1, the p-Wasserstein metric 
is also known as the Monge–Rubinstein metric [49] or the 
Earth mover’s distance [44]. The p-Wasserstein metric in one 
dimension has a simple characterization. For one-dimensional 
(1-D) signals I0 and I1, the optimal transport map has a closed-
form solution. Let Fi be the cumulative distribution function 
of Ii for i = 0, 1, i.e.,

( ) ( ) , .forF x I x dx i 0 1
( )inf

i i
x

= =
X
#

Note that this is a nondecreasing function going from 0 to 1. 
We define the pseudoinverse of F0 as follows: for ( , ),z 0 1!

( )F z1-  is the smallest x for which ( )F x z0 $ , i.e.,

( ) { : ( ) }.infF z x F x z0
1

0! $X=-

If I 00 2 , then F0 is continuous and increasing (and thus 
invertible), and the inverse of the function F0 is equal to 
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the pseudoinverse we just defined. In other words, the pseu-
doinverse is a generalization of the notion of the inverse of 
a function. The pseudoinverse (i.e., the inverse if I 00 2
and )I 01 2  provides a closed-form solution for the p-Was-
serstein distance:

( , ) ( ) ( ) .W I I F z F z dzp
p

p
0 1 0

1
1

1

0

1
1

= -- -` j# (7)

The closed-form solution of the p-Wasserstein distance in one 
dimension is an attractive property, as it alleviates the need for 
optimization. This property was employed in the sliced-
Wasserstein metrics as defined below.

Sliced-Wasserstein metric
The idea behind the sliced-Wasserstein metric is to first obtain 
a set of 1-D representations for a higher-dimensional proba-
bility distribution through projections (slicing the measure) 
and then calculate the distance between two input distribu-
tions as a functional on the Wasserstein distance of their 1-D 
representations. In this sense, the distance is obtained by 
solving several 1-D optimal transport problems, which have 
closed-form solutions.

The projection of high-dimensional PDFs is closely relat-
ed to the well-known Radon transform in the imaging and 
image processing community [8], [25]. The d-dimensional 
Radon transform R  maps a function ( )I L Rd

1!  where 
( ): { : | | ( ) | }L I I x dxR R Rd d

1
Rd

" 3#= #  into the set of its 
integrals over the hyperplanes of .Rn  It is defined as

( , ): ( ) ,

, ;

I t I t s ds

t R S

R

d 1
R

6 6! !

i i i

i

= + =

-

#

here, i=  is the subspace orthogonal to ,i and Sd 1-  is the unit 
sphere in .Rd  Note that : .L LR R SR d d

1 1
1" # -^ ^h h  In other 

words, the Radon transform projects a PDF, ,I P Rd! ^ h

where d > 1, into an infinite set of 1-D PDFs (., ) .IR i  The 
sliced-Wasserstein metric for PDFs I0 and I1 on Rd  is then 
defined as

( , ) ( (., ), (., ))SW I I W I I dR Rp p
p p

0 1 0 1

1

Sd 1
i i i=

-
` j# ,

where p 1$ , and Wp is the p-Wasserstein metric, which, 
for 1-D PDFs, (., )IR 0 i  and (., )IR 1 i  has a closed-form 
solution [see (7)]. For more details and definitions of the 
sliced-Wasserstein metric, we refer the reader to [8], [25]
and [29].

Wasserstein spaces, geodesics, and Riemannian structure
In this section, we assume that Ω is convex. Here, we highlight 
that the p-Wasserstein space ( ( ), )P W pX  is not just a metric 
space but has additional geometric structure. In particular, for 
any p 1$  and any , ( ),I I P0 1 ! X  there exists a continuous 
path (interpolation) between I0 and I1 whose length is the 
distance between I0 and I1.

Furthermore, the space with p = 2 is special because it pos-
sesses a structure of a formal, infinite dimensional, Rieman-
nian manifold. That structure was first noted by Otto [38], who 
developed the formal calculations for using this structure. The  
precise description of the manifold of probability measures 
endowed with Wasserstein metric can be found in [1].

Next, we review the two main notions that have a wide 
use. We characterize the geodesics in ( ( ), ),P W pX  and in the 
case of p = 2, we describe what is the local, Riemannian 
metric of ( ( ), ) .P W2X  Finally, we state the seminal result 
of Benamou and Brenier [5], who provided a characteriza-
tion of geodesics via action minimization, which is useful in 
computations and also gives an intuitive explanation of the 
Wasserstein metric.

We first recall the definition of the length of a curve in a 
metric space. Let (X, d) be a metric space and : [ , ] .I a b X"
Then the length of I, denoted by L(I) is

( ) ( ( ), ( )) .supL I d I t I t
,m a t t t b i

m

i i
1

1
N m0 1

=
g1 1 1! = = =

-/

A metric space (X, d) is a geodesic space if, for any I0 and I1,
there exists a curve : [ , ]I X0 1 "  such that ( ) , ( )I I I I0 10 1= =

and for all , ( ( ), ( )) ( | )s t d I s I t L I0 1 [ , ]s t1# # = . In particu-
lar, the length of I is equal to the distance from I0 to I1. Such a 
curve I is called a geodesic. The existence of geodesics is use-
ful because it allows one to define the average of I0 and I1 as 
the midpoint of the geodesic connection between them.

An important property of ( ( ), )P W pX  is that it is a geodesic 
space and that geodesics are easy to characterize. Specifically, 
they are given by the displacement interpolation (also known as 
a McCann interpolation). When a unique transportation map 
f *  from I0 to I1 exists that minimizes (1) for ( , ) | | ,c x y x y p= -

the geodesic is obtained by moving the mass at constant speed 
from x to ( ) .f x*  More precisely, for [ , ]t 0 1!  and x ! X let

( ) ( ) ( )f x t x tf x1* *
t = - +

be the position at time t of the mass initially at x. Note that f *
0

is identity mapping and .f f* *
1 =  Pushing forward the mass by 

,f *
t  which by (3) has the form

( ( ))
( ( ))

( )
det

I f x
Df x
I x*

*t t
t

0
=

if f *  is smooth, provides the desired geodesic from I0 to I1. The 
velocity of each particle ( )f f x x* *

t t2 = -  is the displacement of 
the optimal transportation map. Figure 2 conceptualizes the geo-
desic between two PDFs in ( )P X  and visualizes it for three dif-
ferent pairs of PDFs.

An important fact regarding the 2-Wasserstein space is 
Otto’s presentation of a formal Riemannian metric for this 
space [38]. It involves shifting to a Lagrangian point of view. 
To explain, consider the path I(x, t) in ( )P X  with I(x, t) smooth. 
Then ( , ) ( , )/s x t I t x t2 2=  can be considered a tangent vector 
to the manifold or a density perturbation. Instead of thinking 
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of increasing/decreasing the density, this perturbation can be 
viewed as resulting from moving the mass by a vector field. In 
other words, consider vector fields v(x, t) such that

· ( ) .s Ivd=- (8)

There are many such vector fields. Otto defined the size of 
( · , )s t  as the square root of the minimal kinetic energy of the 

vector field that produces the perturbation to density s, i.e.,

, | | .mins s v Idx2
( )v 8satisfies

G H= # (9)

Utilizing the Riemmanian manifold structure of ( )P X  togeth-
er with the inner product presented in (9), the 2-Wasserstein 
metric can be reformulated into finding the minimizer of the 
following action among all curves in ( )P X  connecting 
I0 and I1 [5],

, , ,

, , , ,

infW I I I x t v x t dxdt

I Iv

I I I I

0

0 1

s.t.

,I v

t

2
2

0 1
0

1 2

0 1

4$

$ $ $ $

2

=

+ =

= =

X
^

^ ^

^

^

^

^

^

h

h h

h

h

h

h

h

##

where the first constraint is the well-known continu-
ity equation.

Optimal transport: Embeddings and transforms
The optimal transport problem and, specifically, the 
2-Wasserstein metric and the sliced-2-Wasserstein metric 
have been recently used to define nonlinear transforms for 
signals and images [25], [27], [40], [50]. In contrast to com-
monly used linear signal transformation frameworks (e.g., 
Fourier and wavelet transforms) that employ signal intensi-
ties only at fixed coordinate points, thus adopting an Eulerian 
point of view, the idea behind transport-based transforms is 
to consider the intensity variations together with the loca-
tions of the intensity variations in the signal. Therefore, such 

transforms adopt a Lagrangian point 
of view for analyzing signals; i.e., they 
are able to move signal (pixel) intensi-
ties around. Moreover, the transforms 
can be viewed as Eucli  dean embedd-
ings for the data, under the previously 
described transport-related metric space 
structure. The benefit of such a Eu -
clidean embedding is that they facili-
tate the application of many standard 
data-analysis algorithms (e.g., learn-
ing). Here, we briefly describe these 
transforms and some of their promi-
nent properties.

The linear optimal transportation 
framework
The linear optimal transportation (LOT) 
framework was proposed by Wang et al. 

[50]. The framework was used in [4] and [39] for pattern rec-
ognition in biomedical images and specifically histopathology 
and cytology images. Later, it was extended in [27] as a gener-
ic framework for pattern recognition, and it was used in [26]
for the single-frame superresolution reconstruction of face 
images. The LOT framework, which provides an invertible 
Lagrangian transform for images, was initially proposed as a 
method to simultaneously amend the computationally expen-
sive requirement of calculating pairwise 2-Wasserstein dis-
tance between N signals for pattern recognition purposes and 
to allow for the construction of generative models for images 
involving textures and shapes. For a given set of images 

( ),I Pi 2! X  for , ..., ,i N1=  and a fixed template I0, all non-
negative and having been normalized to have the same sum, 
the transform projects the images to the tangent space at I0.
The projections are acquired by finding the optimal velocity 
fields corresponding to the optimal transport plans between I0

and each image in the set.
The framework provides a linear embedding for ( )P2 X

with respect to a fixed signal ( )I P0 2! X . This means that the 
Euclidean distance between an embedded signal, denoted as 

,Iiu  and the fixed reference, I0, is equal to ( , ),W I Ii2 0  and the 
Euclidean distance between two embedded normalized signals 
is, generally speaking, an approximation of their 2-Wasserstein 
distance. The geometric interpretation of the LOT framework 
is presented in Figure 3. The linear embedding then facilitates 
the application of linear techniques such as principal compo-
nent analysis (PCA) and linear discriminant analysis (LDA) to 
probability measures.

The cumulative distribution transform
Park et al. [40] considered the LOT framework for 1-D PDFs 
(positive signals normalized to integrate to 1), and since in 
dimension one the transport maps are explicit, they were able 
to characterize the properties of the transformed densities. 
Similar to the LOT framework, let Ii for , ...,i N1=  and I0

be signals (PDFs) defined on .R  The framework first 

t = 0 t = 0.25 t = 0.75t = 0.5 t = 1 t = 0 t = 0.25 t = 0.75t = 0.5 t = 1

I(x, t ) = det(Dgt(x))I0(gt (x))
∗ ∗

∗∗gt (ft(x)) = x

I(x, t ) = (1 – t )I0(x ) + t I1(x )

(a) (b)

FIGURE 2. Geodesics in (a) the 2-Wasserstein space and in (b) the Euclidean space between various 
1-D and two-dimensional (2-D) PDFs. Note that the geodesic in the 2-Wasserstein space captures 
the nonlinear structure of the signals and images and provides a natural morphing. (Face portraits 
courtesy of the public CMU Pose, Illumination, and Expression database.)
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calculates the optimal transport maps between Ii and I0 using 
( ) ( )f x F F xi i

1
0%= -  for all , ...,i N1= . Then the forward and 

inverse transport-based transform, denoted as the cumulative 
distribution transform (CDT) by Park et al. [40], for these 
density functions with respect to the fixed template I0 is 
defined as

( )
( ) ( )

,
IdI f I

I f I f
(Analysis)
(Synthesis)

i i

i i i

0
1

0
1%

= -

= - -l

u
)

where ( )( ) ( ( )) .I f x I f xi i0
1

0
1% = --  Note that the L2-norm 

(Euclidean distance) of the transformed signals, ,Iiu  corre-
sponds to the 2-Wasserstein distance between I0 and Ii. In con-
trast to the higher-dimensional LOT, however, the Euclidean 
distance between two transformed (embedded) signals Iiu  and 

,I ju  is the exact 2-Wasserstein distance between Ii and Ij (see 
[40] for a proof) and not just an approximation. Hence, the 
transformation is isometric (preserves) with respect to the 
2-Wasserstein metric. This isometric nature of the CDT was 
utilized in [28] to provide positive definite kernels for machine 
learning of n-dimensional signals.

From a signal processing point of view, the CDT is a non-
linear signal transformation that captures certain nonlinear 
variations in signals including translation and scaling. Specifi-
cally, it gives rise to the transformation pairs presented in Table 1.
From Table 1, one can observe that although ( )I t x-  is non-
linear in x  (when (.)I  is not a linear function), its CDT repre-
sentation ( ) ( )I t I t0x+u  becomes affine in x  (a similar effect 
is observed for scaling). In effect, the Lagrangian transforma-
tions (compositions) in original signal space are rendered into 
Eulerian perturbations in transform space, borrowing from 
the partial differential equation (PDE) parlance. Furthermore, 
Park et al. [40] demonstrated that the CDT facilitates certain 
pattern recognition problems. More precisely, the transforma-
tion turns certain not linearly separable and disjoint classes of 
signals into linearly separable ones. Formally, let C be a set of 
1-D maps, and let , ( )P Q P21 X  be sets of positive PDFs born 
from two positive PDFs , ( )p q P0 0 2! X  (which we denote as 
mother density functions or signals) as 

{ | ( ), },

{ | ( ), }.

P p p h p h h C

Q q q h q h h C

0

0

%

%

6

6

!

!

= =

= =

l

l

If there exists no h C!  for which ( )p h q h0 0 %= l , then the 
sets P and Q are disjoint but not necessarily linearly separable 
in the signal space. A main result of [40] states that the sig-
nal classes P and Q are guaranteed to be linearly separable in 
the transform space (regardless of the choice of the reference 
signal I0) if C satisfies the following conditions:
1) h C h C1&! !-

2) , ( ) ,  [ , ]h h C h h C1 0 11 2 1 2& 6! ! !t t t+ -

3) , ( ), ( )h h C h h h h C1 2 1 2 2 1&! !

4) ( ) , .h p h q h C0 0% 6! !l

The set of translations { | ( ) , }C f f x x R!x x= = +  and 
scaling { | ( ) , },C f f x ax a R!= = +  for instance, satisfy the 

above conditions. We refer the reader to [40] for further infor-
mation. Figure 4(a) and (b) demonstrates the linear separation 
property of the CDT. The signal classes P and Q are chosen to 
be the set of all translations of a single Gaussian and a Gauss-
ian mixture including two Gaussian functions with a fixed 
mean difference, respectively. The discriminant subspace is 
calculated for these classes, and it is shown that although the 
signal classes are not linearly separable in the signal domain, 
they become linearly separable in the transform domain.

The Radon CDT
The CDT framework was extended to 2-D density functions 
(images) through the sliced-Wasserstein distance in [25] and 
was denoted the Radon CDT. It is shown in [25] that similar 
characteristics of the CDT, including the linear separation 
property, also hold for the Radon CDT. Figure 4 clarifies the 
linear separation property of the Radon CDT and demonstrate 
the capability of such transformations. In particular, Figure 4(c) 
and (d) shows a facial expression data set with two classes (i.e., 
neutral and smiling expressions) and its corresponding repre-
sentations in the LDA discriminant subspace calculated from 
the images [Figure 4(c)] and the Radon CDT of the data set 

Table 1. The CDT pairs. Note that the composition holds for all strictly 
monotonically increasing functions g.

Property 
Signal Domain
I(x)

CDT Domain 
( )I xu

Translation ( )I x x- ( ) ( )I x I x0x+u

Scaling ( )aI ax
( ) ( )

( )a
I x

x a
a

I x
1

0-
-u

Composition ( ) ( ( ))g x I g xl ( (
( )

( )
) ) ( )g

I x
I x

x x I x1

0
0+ --

u

W2(I0, I1)

W2(I1, I2)

I0
I2

I1

I1
~

I2
~

I0 = 0
~

P2(Ω)

Ii = (fi – Id) √I0
~

~ ~ ~ ~ ~|I0 – Ii | = |Ii | = W2(I0, Ii), |I1 – I2| ≈ W2(I1, I2)

∗

W2(I0, I2)

FIGURE 3. A graphical representation of the LOT framework. The framework 
embeds the PDFs (i.e., signals or images) Ii in the tangent space (i.e., the 
set of all tangent vectors) of ( )P X  with respect to a fixed PDF I0. As a con-
sequence, the Euclidean distance between the embedded functions I1

u  and 
I2
u  provides an approximation for the 2-Wasserstein distance, ( , ) .W I I2 1 2
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P
Q

P
Q

~
~

Class 1
Class 2

Class 1
Class 2

CDT

Random CDT

Signal Space Transform Space

P Q P Q
~ ~

P = {p|p = h ′(p0 o h), ∀h ∈ C}
Q = {q|q = h ′(q0 o h), ∀h ∈ C}
C = {h|h(x) = x + t, t ∈R}

Projection of the Data Onto a 3-D
Discriminant Subspace

Projection of the Transformed Data Onto a
3-D Discriminant Subspace

Projection of the Data Onto a 2-D
Discriminant Subspace

Projection of the Transformed Data Onto a
2-D Discriminant Subspace

Class 1

Class 2

Class 1

Class 2

p(x) = p0(x + t)

q(x) = q0(x + t)

p(x) = p0(x) + t √

q(x) = q0(x) + t √

I0(x)

I0(x)

~

~

~

~

Image Space Transform Space

CDT

CDT

(a) (b)

(c) (d)

FIGURE 4. Examples for the linear separability characteristic of the CDT and the Radon CDT. The discriminant subspace for each case is calculated using 
the penalized-linear discriminant analysis. It can be seen that the nonlinear structure of the data is well captured in the transform spaces. (a) and (b) The 
linear separation property of the CDT. (c) A facial expression data set with two classes and its corresponding representations in the LDA discriminant 
subspace and (d) the Radon CDT of the data set and the corresponding representation of the transformed data in the LDA discriminant subspace. 3-D: 
three-dimensional. (Face portraits courtesy of the public CMU Pose, Illumination, and Expression database.)
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and the corresponding representation of the transformed data 
in the LDA discriminant subspace [Figure 4(d)]. It is clear that 
the image classes become more linearly separable in the trans-
form space. In addition, the cumulative percentage variation 
(CPV) of the data set in the image space, the Radon transform 
space, the Ridgelet transform space, and the Radon-CDT space 
are shown in Figure 5. The figure shows that the variations in 
the data set could be explained with fewer components in the 
Radon-CDT space.

Numerical methods
The development of robust and efficient numerical methods 
for computing transport-related maps, plans, metrics, and geo-
desics is crucial for the development of algorithms that can be 
used in practical applications. We next present several notable 
approaches for finding transportation maps and plans. Table 2
provides a high-level overview of these methods.

A linear programming problem
The linear programming problem is an optimization problem 
with a linear objective function and linear equality and 
inequality constraints. Several numerical methods exist for 
solving linear programming problems, among which are 
the simplex method and its variations and the interior-point 
methods. The computational complexity of the mentioned 
numerical methods, however, scales at best cubically in the 
size of the domain. Hence, assuming the measures considered 
have N particles, the number of unknowns sijc is N2 and the 
computational complexities of the solvers are at best 

( )logN NO 3 [14], [44]. The computational complexity of the 
linear programming methods is a very important limiting fac-
tor for the applications of the Kantorovich problem.

We note that, in the special case where I0 and I1 both have 
N equidistributed particles, the optimal transport problem 

simplifies to a one-to-one assignment problem that can be solved 
in ( ) .logN NO 2  In addition, several multiscale approaches and 
sparse approximation approaches have recently been intro-
duced to improve the computational performance of the linear 
programming solvers [37], [46].

Entropy-regularized solution
Cuturi’s work [14] provides a fast and easy-to-implement vari-
ation of the Kantorovich problem by considering the transpor-
tation problem from a maximum-entropy perspective. The 
idea is to regularize the Wasserstein metric by the entropy of 
the transport plan. This modification simplifies the problem 
and enables much faster numerical schemes with complexity 

CPV
100

80

60

40

20

0
0 20 40 60

Number of Eigenvalues (k)

80

C
P

V

Image Space
Radon Space+
Ridgelet Space
Radon-CDT Space

CPV =
∑i=1λi
k

∑n=1λn
N

λi  = i th Eigenvalue

FIGURE 5. The cumulative percentage of the face data set in Figure 4 in the 
image space, the Radon transform space, the Ridgelet transform space, 
and the Radon-CDT transform space.

Table 2. The key properties of various numerical approaches.

Comparison of Numerical Approaches

Method Remark 

Linear programming Applicable to general costs. Good approach if the PDFs are supported at very few sites. 

Multiscale linear programming Applicable to general costs. Fast and robust method, though truncation involved can lead to 
imprecise distances. 

Auction algorithm Applicable only when the number of particles in the source and the target is equal and all of their 
masses are the same. 

Entropy-regularized linear 
programming 

Applicable to general costs. Simple and performs very well in practice for moderately large problems. 
Difficult to obtain high accuracy. 

Fluid mechanics This approach can be adapted to generalizations of the quadratic cost, based on action along paths. 

AHT minimization Quadratic cost. Requires some smoothness and positivity of densities. Convergence is guaranteed 
only for infinitesimal step size. 

Gradient descent on the dual problem Quadratic cost. Convergence depends on the smoothness of the densities, hence a multiscale 
approach is needed for nonsmooth densities (i.e., normalized images). 

Monge–Ampère solver Quadratic cost. One in [7] is proved to be convergent. Accuracy is an issue due to the wide stencil used. 

Semidiscrete approximation An efficient way to find the map between a continuous and discrete signal [31].

AHT: Angenent, Haker, and Tannenbaum.
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( )NO 2 [14] or ( ( ))logN NO  using the convolutional 
Wasserstein distance presented in [47] (compared to ( )NO 3  of 
the linear programming methods), where N is the number of 
delta masses in each of the measures. The disadvantage is that 
it is difficult to obtain high-accuracy approximations of the 
optimal transport plan. The entropy-regularized p-Wasserstein 
distance, also known as the Sinkhorn distance, between PDFs 
I0 and I1 defined on the metric space ( , )dX  is defined as

( , ) ( , ) ( , )

( , ) ( ( , )) ,ln

infW I I d x y x y dxdy

x y x y dxdy

,p
p

MP
p

0 1 c

m c c

=

+

#

#

!m c
X X

X X

#
# (10)

where the regularizer is the negative entropy of the plan. We 
note that this is not a true metric since ( , ) .W I I 0,p

p
0 1 2m  Since 

the entropy term is strictly concave, the overall optimization 
in (10) becomes strictly convex. It is shown in [14] that the 
entropy-regularized p-Wasserstein distance in (10) can be 
reformulated as

( , ) * ( | ),inf KLW I I K,p
p

0 1
MP

m c=m m
!c

where ( , ) ( ( , ) / )expx y d x yK p m= -m  and ( | )KL Kc m  is the 
Kullback–Leibler (KL) divergence between c and .Km  In 
short, the regularizer enforces the plan to be within /1 m  radius 
in the KL-divergence sense from the transport plan 

( , ) ( ) ( ) .x y I x I y*
0 1c =3

Cuturi shows that the optimal transport plan c  in (10) is of 
the form ,D DKv wm  where Dv and Dw are diagonal matrices 
with diagonal entries ,v w RN! [14]; therefore, the number of 
unknowns in the regularized formulation is reduced from N2

to 2N. The new problem can then be solved through computa-
tionally efficient algorithms such as the iterative proportional 
fitting procedure, also known as the iterative proportional fit-
ting procedure algorithm, or, alternatively, through the Sink-
horn–Knopp algorithm.

Flow minimization (AHT)
Angenent, Haker, and Tannenbaum [2], proposed a flow min-
imization scheme to obtain the optimal transport map from 
the Monge problem. The method was used in several image-
registration applications [22], pattern recognition [27], [50],
and computer vision [26]. A brief review of the method is 
provided here.

Let :I X R0 " +  and :I Y R1 " +  be continuous probability 
densities defined on convex domains , .X Y Rd3  To find the 
optimal transport map, ,f*  AHT starts with an initial trans-
port map, :f X Y0 "  calculated from the Knothe–Rosenblatt 
coupling [49]. Then it updates f0 to minimize the transport cost 
while constraining it to remain a transport map from I0 to I1.
The updated equation for finding the optimal transport map in 
AHT is calculated to be

( ) ( ) ( ( ( ))),f x f x
I

Df f div f1
k k k k k1

0

1de D= + -+
-

where e  is the step size, Dfk is the Jacobian matrix, and 1D-

is the Poisson solver with Neumann boundary conditions. 
AHT show that for infinitesimal step size, ,e ( )f xk  converges 
to the optimal transport map. For a detailed derivation of the 
preceding equation, see [2] and [24].

The AHT method is, in essence, a gradient descent method 
on the Monge formulation of the optimal transport problem. 
Chartrand, Wohlberg, Vixie, and Bollt (CWVB) [11] proposed 
an alternative gradient-descent method based on Kantorovich’s 
dual formulation of the transport problem that updates the 
optimal potential transport field, ( ),xh  where ( ) ( ) .f x xdh=

Figure 6 presents the iterations of the CWVB method for two 
face images taken from the YaleB face database.

Monge–Ampère equation
The Monge–Ampère PDE is defined as

( ) ( , , )det H h x Dz z z=

for some functional h and where Hz is the Hessian matrix of 
.z  The Monge–Ampère PDE is closely related to the Monge 

problem for the quadratic cost function. According to Bernier’s 
theorem (discussed in the “Basic Properties” section), when I0

and I1 are absolutely continuous PDFs defined on sets 
, ,X Y Rn1  the optimal transport map that minimizes the 

2-Wasserstein metric is uniquely characterized as the gradi-
ent of a convex function : .X Y"z  Moreover, we showed that 
the mass-preserving constraint of the Monge problem can be 
written as ( ) ( ) .det Df I f I1 0=  Combining these results, one 
can have

( ( ( )))
( )
( )

,det D x
I
I x
1

0
d

d
z

z
= (11)

where ,D Hdz z=  and, therefore, the equation shown above 
is in the form of the Monge–Ampère PDE. Now, if z is a con-
vex function on X satisfying ( )X Ydz =  and solving (11), 
then f * dz=  is the optimal transportation map from I0 to I1.

k = 0 k = 20 k = 40 k = 60 k = 80

φk

∇φk

Ik

Ik = det(D∇ηk)I1(∇ηk), φk(x) = 1
2 x

2 – ηk(x)

FIGURE 6. A visualization of the iterative update of the transport potential 
and correspondingly the transport displacement map through CWVB itera-
tions. (Face portraits courtesy of the public Extended Yale Face Database B.)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


53IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

The geometrical constraint on this problem is rather unusual 
in PDEs and is often referred to as the optimal transport 
boundary conditions. Several authors have proposed numeri-
cal methods to obtain the optimal transport map through solv-
ing the Monge–Ampère PDE in (11) [7], [33]. In particular, the 
scheme in [7] is monotone, has complexity O(N) (up to 
logarithms), and is provably convergent. We conclude by 
remarking that several regularity results on the optimal trans-
port maps were established through the Monge–Ampère 
equation (see [24] for references).

Semidiscrete approximation
Several works [31], [34] have considered the problem in which 
one PDF, I0, has a continuous form while the other, I1 is dis-
crete, ( ) ( ) .I y q y yi i1 d= -/  It turns out there exist weights 
wi such that the optimal transport map :f X Y"  can be 
described via a power diagram. More precisely, the set of x
mapping to yi is the following cell of the power diagram:

( ) { : | | | | , }.PD y x x y w x y w jw i i i j j
2 2 6#= - - - -

The main observation is that the weights wi are minimizers 
of the following unconstrained convex functional:

(| | | | ) ( ) ) .q w x y w I x dxi i i i
i

2
0

( )PD yw i

- - -e o/ #

Works by Mérigot [34] and Levy [31] use Newton-based 
schemes and multiscale approaches to minimize the functional. 
The need to integrate over the power diagram makes the imple-
mentation somewhat geometrically delicate. Nevertheless, a 
recent implementation by Levy [31] gives impressive results 
in terms of speed. This approach provides the transportation 
mapping (not just the approximation of a plan).

Applications

Image retrieval
One of the earliest applications of the optimal transport prob-
lem was in image retrieval. Rubner et al. [44] employed the dis-
crete Wasserstein metric, which they denoted the Earth mover’s 
distance, to measure the dissimilarity between image signa-
tures. In image-retrieval applications, it is common practice 
first to extract features (i.e., color features, texture feature, 
shape features, and so on) and then generate high-dimensional 
histograms or signatures (histograms with dynamic/adaptive 
binning) to represent images. The retrieval task then simplifies 
to finding images with similar representations (e.g., small dis-
tance between their histograms/signatures). The Wasserstein 
metric is specifically suitable for such applications because it 
can compare histograms/signatures of different sizes (histo-
grams with different binning). This unique capability turns the 
Wasserstein metric into an attractive candidate in image-
retrieval applications [32], [44]. In [44], the Wasserstein metric 
was compared with common metrics such as Jeffrey’s diver-
gence, the 2|  statistic, the L1 distance, and the L2 distance in an 

image-retrieval task, and it was shown that the Wasserstein 
metric achieves the highest precision/recall performance 
among all.

Speed of computation is an important practical consid-
eration in image-retrieval applications. For almost a decade, 
the high computational cost of the optimal transport problem 
overshadowed its practicality in large-scale image-retrieval 
applications. Recent advancements in numerical methods, 
including the work of Merigot [34] and Cuturi [14], among 
many others, have reinvigorated optimal transport-based dis-
tances as a feasible and appealing candidate for large-scale 
image-retrieval problems.

Registration and morphing
Image registration deals with finding a common geometric 
reference frame between two or more images. It plays an 
important role in analyzing images obtained at different times 
or using different imaging modalities. Image registration and, 
more specifically, biomedical image registration are active 
areas of research. Registration methods find a transformation f
that maximizes the similarity between two or more image rep-
resentations (e.g., image intensities and image features). 
Among the plethora of registration methods, nonrigid registra-
tion methods are especially important given their numerous 
applications in biomedical problems. They can be used to 
quantify the morphology of different organs, correct for physi-
ological motion, and allow for comparison of image intensi-
ties in a fixed coordinate space (atlas). Generally speaking, 
nonrigid registration is a nonconvex and nonsymmetric prob-
lem, with no guarantee of the existence of a globally opti-
mal transformation.

Various works in the literature deploy the Monge prob-
lem for image warping and elastic registration. Utilizing the 
Monge problem in an image-warping/registration setting has 
a number of advantages. First, the existence and uniqueness 
of the global transformation (the optimal transport map) is 
known. Second, the problem is symmetric, meaning that the 
optimal transport map for warping I0 to I1 is the inverse of 
the optimal transport map for warping I1 to I0. Last, it pro-
vides a landmark-free and parameter-free registration scheme 
with a built-in mass preservation constraint. These advan-
tages motivated several follow-up works to investigate the 
application of the Monge problem in image registration and 
warping [21], [22].

In addition to images, the optimal mass transport prob-
lem has also been used in point cloud and mesh registration 
[29] (see [24] for more references), which have various appli-
cations in shape analysis and graphics. In these applications, 
shape images (2-D or 3-D binary images) are first represented 
using either sets of weighted points (e.g., point clouds), using 
clustering techniques such as K-means or fuzzy C-means, 
or with meshes. Then a regularized variation of the optimal 
transport problem is solved to match such representations. The 
regularization on the transportation problem is often imposed 
to enforce the neighboring points (or vertices) to remain near 
each other after the transformation.
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Color transfer and texture synthesis
Texture mixing and color transfer are appealing applica-
tions of the optimal transport framework in image analysis, 
graphics, and computer vision. Here, we briefly discuss 
these applications.

Color transfer
The purpose of color transfer is to change the color palette 
of an image to impose the feel and look of another image. 
Color transfer is generally performed through finding a 
map, which morphs the color distribution of the first 
image into the second one. For grayscale images, the color-
transfer problem simplifies to a histogram-matching prob-
lem, which is solved through the 1-D optimal transport 
formulation [16]. In fact, the classic problem of histogram 
equalization is a 1-D transport problem [16]. The color-
transfer problem, on the other hand, is concerned with 
pushing the 3-D color distribution of the first image into the 
second one. This problem can also be formulated as an 
optimal transport problem, as demonstrated in [41] (see [24]
for more references).

A complication that occurs in the color transfer on real 
images, however, is that a perfect match between color dis-

tributions of the images is often not 
satisfying, because a color-transfer 
map may not transfer the colors of 
neighboring pixels in a coherent 
manner and may introduce arti-
facts in the color-transferred image. 
Therefore, the color-transfer map 
is often regularized to make the 
transfer map spatially coherent [41].
Figure 7 shows a simple example of 
gray-value and color transfer via the 
optimal transport framework. It can 
be seen that the cumulative distri-
bution of the gray-value and col-
or-transferred images are similar to 
that of the input image.

Texture synthesis and mixing
Texture synthesis is the problem of 
synthesizing a texture image that 
is visually similar to an exemplar 
input-texture image and has vari-
ous applications in computer graph-
ics and image processing. Many 
methods have been proposed for 
texture synthesis, such as synthesis 
by recopy and synthesis by statis -
tical modeling. Texture mixing, 
however, considers the problem of 
synthesizing a texture image from 
a collection of input-texture images 
in a way that the synthesized tex-
ture provides a meaningful integra-

tion of the colors and textures of the input-texture images. 
Meta  morphosis is one of the successful ap   proaches in texture 
mixing; it performs the mixing via identifying correspon-
dences between elementary features (i.e., textons) among 
input textures and progressively morphing between the shapes 
of elements. In other approaches, texture images are first param-
etrized through a tight frame (often steerable wavelets), and sta-
tistical modeling is performed on the parameters.

Other successful approaches include random phase and 
spot noise texture modeling [18], which model textures as sta-
tionary Gaussian random fields. These models are based on 
the assumption that the visual texture perception is based on 
the spectral magnitude of the texture image. Therefore, uti-
lizing the spectral magnitude of an input image and random-
izing its phase will lead to a new synthetic texture image that 
is visually similar to the input image. Ferradans et al. [18] uti-
lized this assumption together with the Wasserstein geodesics 
to interpolate between spectral magnitude of texture images 
and provide synthetic mixed texture images. Figure 8 shows 
an example of texture missing via the Wasserstein geodesic 
between the spectral magnitudes of the input-texture images. 
The in-between images are synthetically generated using the 
random-phase technique.
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FIGURE 7. (a) Gray value and (b) color transfer via optimal transportation. RGB: red, green, blue.
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Image denoising and restoration
The optimal transport problem has also been used in several 
image-denoising and -restoration problems [30]. The goal in 
these applications is to restore or reconstruct an image from 
noisy or incomplete observation. Lellmann et al. [30] utilized 
the Kantorovich–Rubinsten discrepancy term together with a 
total variation (TV) term in the context of image denoising. 
They called their method Kantorovich–Rubinstein-TV (KR-
TV ) denoising. Note that the KR metric is closely related to 
the 1-Wasserstein metric (for 1-D signals they are equivalent). 
The KR term in their proposed functional provides a fidelity 
term for denoising, and the TV term enforces a piecewise con-
stant reconstruction.

Transport-based morphometry
Given their suitability for comparing mass distributions, 
transport-based approaches for performing pattern recogni-
tion of morphometry encoded in image intensity values have 
also lately emerged. Recently described approaches for 
transport-based morphometry (TBM) [4], [27], [50] work by 
computing transport maps or plans between a set of images 
and a reference or template image. The transport plans/maps 
are then utilized as an invertible feature/transform onto 
which pattern recognition algorithms such as PCA or LDA 
can be applied. In effect, it utilizes the LOT framework 
described in the “The Linear Optimal Transportation 
Framework” section. These techniques have recently been 
employed to decode differences in cell and nuclear morphol-
ogy for drug screening [4], cancer detection histopathology 
[39], and cytology images, as well as applications such as the 
analysis of galaxy morphologies [27].

Deformation-based methods have long been used in ana-
lyzing biomedical images. TBM, however, is different from 

those deformation-based methods in that it has numerically 
exact, uniquely defined solutions for the transport plans or 
maps used; i.e., images can be matched with little perceptible 
error. The same is not true in methods that rely on registration 
via the computation of deformations, given the significant 
topology differences commonly found in medical images. 
Moreover, TBM allows for comparison of the entire inten-
sity information present in the images (shapes and textures), 
while deformation-based methods are usually employed to 
deal with shape differences. Figure 9 shows a schematic of 
the TBM steps applied to a cell nuclei data set. It can be seen 
that TBM is capable of modeling the variation in the data set. 
In addition, it enables one to visualize the classifier, which 
discriminates between image classes (in this case malignant 
versus benign).
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FIGURE 9. The schematic of the TBM framework. (a) The optimal transport maps between input images , ...,I IN1  and a template image I0 are calculated. 
(b) and (c) Next, linear statistical modeling such as PCA, LDA, and canonical correlation analysis is performed on the optimal transport maps. The resulting 
transport maps obtained from the statistical modeling step are then applied to the template image to visualize the results of the analysis in the image space.
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FIGURE 8. An example of texture mixing via optimal transport using the 
method presented in Ferradans et al. [18].
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Superresolution
Superresolution is the process of reconstructing a high-
resolution image from one or several corresponding low-
resolution images. Superresolution algorithms can be broadly 
categorized into two major classes, multiframe superresolu-
tion and single-frame superresolution, based on the number of 
low-resolution images they require to reconstruct the 
corresponding high-resolution image. The TBM approach was 
used for single-frame superresolution in [26] to reconstruct 
high-resolution faces from very low-resolution-input face 
images. The authors utilized the TBM in combination with 
subspace learning techniques to learn a nonlinear model for 
the high-resolution face images in the training set.

In short, the method consists of a training and a testing 
phase. In the training phase, it uses high-resolution face 
images and morphs them to a template high-resolution face 
through optimal transport maps. Next, it learns a subspace 

for the calculated optimal transport maps. A transport map 
in this subspace can then be applied to the template image to 
synthesize a high-resolution face image. In the testing phase, 
the goal is to reconstruct a high-resolution image from the 
low-resolution input image. The method searches for a syn-
thetic high-resolution face image (generated from the trans-
port subspace) that provides a corresponding low-resolution 
image, which is similar to the input low-resolution image. 
Figure 10 shows the steps used in this method and demon-
strates reconstruction results.

Machine learning and statistics
The optimal transport framework has recently attracted ample 
attention from the machine-learning and statistics communities 
[12], [19], [25], [28], [36]. Some applications of the optimal 
transport in these arenas include various transport-based learning 
methods [19], [28], [36], [48], domain adaptation, Bayesian 
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FIGURE 10. (a) In the training phase, optimal transport maps that morph the template image to high-resolution training face images are calculated. 
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results in transport-based single-frame superresolution. (Face portraits courtesy of the public Extended Yale Face Database B.)
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inference [12], [13] and hypothesis testing [15], [42] among oth-
ers. Here, we provide a brief overview of the recent developments 
of transport-based methods in machine learning and statistics.

Learning
Transport-based distances have recently been used in several 
works as a loss function for regression, classification, and 
other techniques. Montavon, Müller, and Cuturi [36], for 
instance, utilized the dual formulation of the entropy-regu-
larized Wasserstein distance to train restricted Boltzmann 
machines (RBMs). Boltzmann machines are probabilistic 
graphical models (Markov random fields) that can be catego-
rized as stochastic neural networks and are capable of extract-
ing hierarchical features at multiple scales. RBMs are bipartite 
graphs that are special cases of Boltzmann machines, which 
define parameterized probability distributions over a set of 
d-binary input variables (observations) whose states are repre-
sented by h binary output variables (hidden variables). The 
parameters of RBMs are often learned through information 
theoretic divergences such as KL divergence. Montavon et al. 
[36] proposed an alternative approach through a scalable 
entropy-regularized Wasserstein distance estimator for RBMs 
and showed the practical advantages of this distance over the 
commonly used information divergence-based loss functions.

In another approach, Frogner et al. [19] used the entropy-
regularized Wasserstein loss for multilabel classification. They 
proposed a relaxation of the transport problem to deal with 
unnormalized measures by replacing the equality constraints 
in (6) with soft penalties with respect to KL divergence. In 
addition, Frogner et al. [19] provided statistical bounds on 
the expected semantic distance between the prediction and 
the ground truth. In yet another approach, Kolouri et al. [28]
utilized the sliced-Wasserstein metric and provided a family 
of positive definite kernels, denoted sliced-Wasserstein ker-
nels, and showed the advantages of learning with such kernels. 
The sliced-Wasserstein kernels were shown to be effective 
in various machine-learning tasks, including classification, 
clustering, and regression.

Solomon et al. [48] considered the problem of graph-based 
semisupervised learning, in which graph nodes are partially 
labeled and the task is to propagate the labels throughout the 
nodes. Specifically, they considered a problem in which the 
labels are histograms. This problem arises, for example, in traf-
fic density prediction, in which the traffic density is observed 
for a few stop lights over 24 h in a city and the city is interested 
in predicting the traffic density at the unobserved stop lights. 
They pose the problem as an optimization of a Dirichlet ener-
gy for distribution-valued maps based on the 2-Wasserstein 
distance and present a Wasserstein propagation scheme for 
semisupervised distribution propagation along graphs.

More recently, Arjovskly et al. [3] compared various dis-
tances, i.e., TV, KL divergence, Jenson–Shannon divergence, 
and the Wasserstein distance in training generative adversar-
ial networks (GANs). They demonstrated (theoretically and 
numerically) that the Wasserstein distance leads to a superior 
performance compared to the later dissimilarity measures. 

They specifically showed that their proposed Wasserstein 
GAN does not suffer from common issues in such networks, 
including instability and mode collapse.

Domain adaptation
Domain adaptation is one of the fundamental problems in 
machine learning that has gained proper attention from the 
machine-learning research community in the past decade. 
Domain adaptation is the task of transferring knowledge from 
classifiers trained on available labeled data to unlabeled test 
domains with data distributions that differ from that of the train-
ing data. The optimal transport framework was recently present-
ed as a potential major player in domain adaptation problems 
[12], [13]. Courty et al. [12], for instance, assumed that there 
exists a nonrigid transformation between the source and target 
distributions, and they find this transformation using an entropy-
regularized optimal transport problem. They also proposed a 
label-aware version of the problem in which the transport plan 
is regularized so a given target point (testing exemplar) is asso-
ciated only with source points (training exemplars) belonging to 
the same class. Courty et al. [12] showed that domain adaptation 
via regularized optimal transport outperforms the state-of-the-
art results in several challenging domain adaptation problems.

Bayesian inference
Another interesting and emerging application of the optimal 
transport problem is in Bayesian inference [17]. In Bayesian 
inference, one critical step is the evaluation of expectations 
with respect to a posterior probability function, which leads to 
complex multidimensional integrals. These integrals are com-
monly solved through the Monte Carlo numerical integration, 
which requires independent sampling from the posterior distri-
bution. In practice, sampling from a general posterior dis-
tribution might be difficult, so, therefore, the sampling is 
per  formed via a Markov chain that converges to the posterior 
probability after a certain number of steps. This leads to the 
celebrated Markov chain Monte Carlo (MCMC) method. The 
downside of the MCMC method is that the samples are not 
independent, and, hence, the convergence of the empirical 
expectation is slow. El Moselhy and Marzouk [17] proposed a 
transport-based method that evades the need for Markov-chain 
simulation by allowing direct sampling from the posterior dis-
tribution. The core idea in their work is to find a transport map 
(via a regularized Monge formulation) that pushes forward the 
prior measure to the posterior measure. Then, sampling the 
prior distribution and applying the transport map to the sam-
ples will lead to a sampling scheme from the posterior distri-
bution. Figure 11 shows the basic idea behind these methods.

Hypothesis testing
The Wasserstein distance is used for goodness-of-fit testing in 
[15] and for two-sample testing in [42]. Ramdas et al. [42] pre-
sented connections between the entropy-regularized 
Wasserstein distance, multivariate Energy distance, and the 
kernel maximum mean discrepancy and provided a “distribu-
tion-free” univariate Wasserstein test statistic. These and other 
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applications of transport-related concepts show the promise of 
the mathematical modeling technique in the design of statisti-
cal data-analysis methods to tackle modern learning problems. 
Finally, note that, in the interest of brevity, a number of other 
important applications of transport-related techniques were 
not discussed above but are certainly interesting in their own 
right. For a more detailed discussion and more references please 
refer to [24].

Summary and conclusions
Transport-related methods and applications have come a long 
way. Although earlier applications focused primarily in civil 
engineering and economics problems, they have recently begun 
to be employed in a wide variety of problems related to signal 
and image analysis and pattern recognition. In this article, 
seven main areas of application were reviewed: image retrieval, 
registration and morphing, color transfer and texture analysis, 
image restoration, TBM, image superresolution, and machine 
learning and statistics. Transport and related techniques have 
gained increased interest in recent years. Overall, researchers 
have found that the application of transport-related concepts 
can be helpful in solving problems in diverse applications. 
Given recent trends, it seems safe to expect that the number of 
application areas will continue to grow.

In its most general form, the transport-related techniques 
reviewed in this article can be thought as mathematical mod-
els for signals and images and in general data distributions. 
Transport-related metrics involve calculating differences not 
only of pixel or distribution intensities but also where they are 
located in the corresponding coordinate space (a pixel coor-
dinate in an image or a particular axis in some arbitrary fea-
ture space). As such, the geometry (e.g., geodesics) induced by 
such metrics can give rise to dramatically different algorithms 
and data interpretation results. The interesting performance 
improvements recently obtained could motivate the search for 
a more rigorous mathematical understanding of transport-relat-
ed metrics and applications.

The emergence of numerically precise and efficient ways 
of computing transport-related metrics and geodesics, as pre-
sented in the “Numerical Methods” section, also serves as 
an enabling mechanism. Coupled with the fact that several 

mathematical properties of transport-based metrics have 
been extensively studied, we believe that the foundation is 
set for their increased use as tools or building blocks based 
on which complex computational systems can be built. The 
confluence of these emerging ideas may spur a significant 
amount of innovation in a world where sensor and other data 
are becoming abundant and computational intelligence to 
analyze these is in high demand. We believe transport-based 
models will become an important component of the ever-
expanding tool set available to modern signal-processing and 
data-science experts.
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FIGURE 11. (a) The prior distribution p, the posterior distribution q, and the 
corresponding transport map f  that pushes p into q. One million samples, 
xi, were generated from distribution p. (b) The empirical distribution 
of these samples denoted as pt  and (c) the empirical distribution of 
transformed samples, ( ),y f xi i=  denoted as .qt
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fundamental problem in signal processing is the estimation of 
unknown parameters or functions from noisy observations. 
Important examples include localization of objects in wireless sen-
sor networks [1] and the Internet of Things [2]; multiple source 

reconstruction from electroencephalograms [3]; estimation of power spec-
tral density for speech enhancement [4]; or inference in genomic signal 
processing [5]. Within the Bayesian signal processing framework, these 
problems are addressed by constructing posterior probability distributions 
of the unknowns. The posteriors combine optimally all of the information 
about the unknowns in the observations with the information that is pres-
ent in their prior probability distributions. Given the posterior, one often 
wants to make inference about the unknowns, e.g., if we are estimating 
parameters, finding the values that maximize their posterior or the values 
that minimize some cost function given the uncertainty of the parameters. 
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Unfortunately, obtaining closed-form solutions to these types 
of problems is infeasible in most practical applications, and 
therefore, developing approximate inference techniques is of 
utmost interest.

A methodology that comes to the rescue for solving most 
difficult problems of inference is based on random drawing 
of samples. It was first applied systematically by the Italian 
physicist Enrico Fermi when he studied neutron diffusion [6]. 
However, no publication is available from him on this topic. 
Later, the methodology came to be known as Monte Carlo
(MC) sampling.

The MC methods we know today were created by Stani-
slaw Ulam, John von Neumann, and others [7]. Their efforts 
coincided with the development of the first general computer 
and resulted in the Metropolis algorithm [8]. The next major 
advancement of MC methods came with a generalization of 
the Metropolis algorithm proposed by Hastings in 1970 [9]. 
All of these methods represent a family of simulation-based 
algorithms that aim at generating samples from a target 
probability distribution (often a posterior 
distribution in a Bayesian setting). The 
algorithms are based on constructing a 
Markov chain that has the desired dis-
tribution as its equilibrium distribution, 
which is why they are referred to as Mar-
kov chain MC (MCMC) algorithms [10]
(a review of the history of MCMC sampling can be found 
in [7]). The most prominent MCMC algorithms remain the 
Metropolis–Hastings (MH) and Gibbs sampling algorithms 
[10]. Since the 1990s, MCMC-based methods have seen tre-
mendous growth and success.

Overview of importance sampling
An important alternative to MCMC sampling is the class of 
importance sampling (IS) methods. The IS methods are ele-
gant, theoretically sound, simple to understand, and widely 
applicable [7]. Assume that the aim is to approximate a 
given target probability distribution. The basic IS mechanism 
consists of 1) drawing samples from simple proposal densi-
ties, 2) weighting the samples by accounting for the mis-
match between the target and the proposal densities, and 
3) performing the desired inference using the weighted sam-
ples. IS was first used in statistical physics for inference of 
rare events and, in particular, for estimating the probability 
of nuclear particles that penetrate shields [11]. Later, IS was 
also used as a variance reduction technique based on simu-
lating from a proposal density instead of the target 
density  [12]. The interest in IS techniques was running in 
parallel to the emergence of Bayesian computational meth-
ods. The interest was not only driven by their simplicity but 
also by their ability to estimate normalizing constants of the 
target distribution, a feature not shared by MCMC methods 
that turns out to be useful in many practical problems (e.g., 
model selection).

The performance of IS methods directly depends on the 
choice of the proposal densities [7]. When the method is 

applied naively, only few of the IS weights take relevant val-
ues, while the rest are negligible. This phenomenon is widely 
known in the IS literature as weight degeneracy [7]. If the goal 
is to estimate the mean of the samples of a target distribu-
tion, then the proposals must be adapted to parts of the space 
where the posterior probability is large, while if the focus is 
on a problem related to system reliability, then the probability 
of rare events is better approximated by placing the proposals 
in the tails of the posterior. Locating the regions from which 
samples should be drawn may not be easy, which suggests 
that the main challenge in implementing IS methods lies in 
finding good proposal densities. However, designing these 
proposals usually cannot be done a priori, and thus, adaptive 
procedures must be constructed and applied iteratively. The 
objective is that with passing iterations the quality of the sam-
ples improves, and the inference from them becomes more 
accurate. This leads us to the concept of adaptive IS (AIS). 
AIS methods are endowed with the nice feature of being able 
to learn from previously sampled values of the unknowns and, 

consequently, to become more accurate. It 
is important to note that the AIS algorithms 
must remain simple, i.e., both the drawing 
of samples and the computation of their 
weights should be easily managed.

In this article, we first go over the basics 
of IS and then proceed with explaining the 

learning process that takes place in AIS and with presenting 
several state-of-the-art methods. We discuss AIS estimators 
and their convergence properties and then show numerical 
results on signal processing examples. The article also provides 
an outlook of the research in AIS. For a clearer presentation, 
in Table 1 we display the notation used throughout the article.

Background (with examples)

Problem statement
Let us consider a generic inference problem in which a d -x
dimensional vector of unknown static real parameters, 

,x RX dx! 3  has a probability density function (pdf) 
given by

( )
( )

,x
x

Z
r

r
=u (1)

where ( )xr  is a nonnormalized nonnegative target function, 
and ( )x xZ d

X
r= #  is a finite normalizing constant that may 

be unknown. The goal is to compute some particular moment 
of x, which can be defined as

( ) ( ) ,x x xI f d
X

r= u# (2)

where (·)f  can be any function of x that is integrable with 
respect to ( ).xru

The previous mathematical formulation can be used to 
represent different problems, including the estimation of rare 
events [12] or Bayesian inference [7]. For instance, when esti-
mating rare events, Z  is perfectly known and the moment of 

The MC methods we know 
today were created by 
Stanislaw Ulam, John von 
Neumann, and others.
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interest can be ( ) ,xf I ( )xg 0= 2  where ( )xg  is a given func-
tion and I  is the indicator function that takes the value 1 if 

( )xg 02  and 0 otherwise. In this case, ( )xru  is completely 
characterized, and the challenge is in computing the integral 
given by (2). In Bayesian inference, ( )xru  often represents the 
posterior distribution that is linked to some observed data, 

,y Rdy!  and is expressed as

( ) ( )
( )

( ) ( )
( ) ( ),x y

y x x
y x xx yp

Z
p

p
0

0
,

,?r = =u (3)

where ( )x yp  is the posterior pdf, ( )y x,  is the likelihood 
function, ( )xp0  is the prior pdf, and ( )yZ  is the model evi-
dence or partition function. For some specific statistical 
models, e.g., when ( )xp0  is a conjugate prior of ( )y x,  [13], 

( ) ( ) ( )y y x x xZ p d0
X
,= #  can readily be obtained. In gener-

al, however, computing Z  can be a very difficult problem. 
For this reason, we define the nonnormalized target function

( ) ( ) ( ).x y x xp0,r = (4)

From here on and without loss of generality, we focus on the 
generic case, where ( )yZ  is unknown. To simplify the notation, 
we drop the dependence of Z on y and write ( ).yZ Z/  In the 
rest of the article, we refer to Z  as a normalizing constant. This 
term is more general than model evidence or marginal like-
lihood, which are often used in Bayesian theory. Finally, we 
concentrate on real parameters and observations for the sake 
of clarity in the exposition. However, all of the AIS methods 
presented and the considerations performed throughout the 
article are directly applicable to multidimensional-complex 
target densities.

MC methods: motivation and basics
Obtaining closed-form solutions of the described problem 
is infeasible in most practical applications, and therefore, 
the next best thing is to develop approximate inference 
techniques with good accuracy. Let us assume that it is pos-
sible to draw K  independent samples, { } ,x( )k

k
K

1=  from the 
target distribution ( ).xru  The integral I  can then be approxi-
mated by

( ), where ~ ( ).x x xI
K

f1 ( ) ( )K

k

K
k k

1

r=
=

ur / (5)

With the drawn samples, we can approximate the target 
probability distribution corresponding to the density ( )xru  as

( ) ( ),x x x
K
1 ( )K

k

K
k

1

r d= -
=

u / (6)

where ( )x x( )kd -  is the Dirac delta function centered at .x( )k

With this approximation, we can estimate I  in (2) by

( ) ( )

( ) ( ) ( ) ( ) ,

x x x

x x x x x x x

I f d

f d
K

f d1 ( )K

k

K
k

1 X

X

X
.

r

r d

=

= -
=

u

u /

#

# # (7)

which yields (5).
The estimator IKr  is consistent with ,K because it converg-

es almost surely to I  by the strong law of large numbers [7]. 
Moreover, it can be easily shown that the estimator is unbiased, 
i.e., [ ] ,E I IK =ru r  and, assuming that ( )xf  is real and square 
integrable, its variance is given by [7]

Var ( )
Var ( )

.
X

I
K

fK =r
r

u
ur ^ h

(8)

Table 1. A summary of notation.

Notation Description 

dx Dimension of the unknown parameter vector 

x Rdx! Unknown realization of a parameter vector 

dy Dimension of the observed data vector 

y Rdy! Observed data vector 

i Iteration variable 

J Total number of iterations 

N Number of proposal distributions in an iteration 

K Number of generated samples per proposal in 
an iteration 

ru Target pdf 

Kru Approximated target pdf with K  samples and weights 

, Likelihood function 

p0 Prior distribution 

Z Normalizing constant 

I Kr Natural estimator computed from K  samples generated 
from the target 

I Kt Nonnormalized estimator computed from K  samples 

I Ku Self-normalized estimator computed from K  samples 

x ,
( )
n j
k kth sample of the nth proposal at iteration j

w ,
( )
n j
k IS weight associated with x ,

( )
n j
k

w ,
( )
n j
k
r Normalized IS weight associated with x ,

( )
n j
k

f Test function/moment of the target 

q ,n j nth proposal function in the jth iteration 

,n ji Parameters defining the proposal ;q ,n j  e.g., 
C[ ], , ,n j n j n ji n=  for a Gaussian

,n jn Location parameter (usually mean) of the proposal q ,n j

C ,n j Scale parameter (usually covariance) of the 
proposal q ,n j

,n jt Weight in the mixture of the nth proposal at iteration j

d Gradient 

Hx Hessian evaluated at x

jm Gradient step at iteration j

[·]Eru Expected value with respect to the pdf ru
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This methodology is known as the MC method [7], and it was 
first described in [14].

As previously pointed out, very often, ( )xru  does not have a 
known closed form, and it is not possible to draw samples from 
it. Moreover, in some other settings, it might not be convenient 
to generate samples from the target distribution even if it is 
possible. This is the case of rare-event estimation, where it is 
not efficient to simulate samples from ( )xru  because the esti-
mation of I  would depend on a very low number of effective 
samples [15].

IS: motivation and basics
The IS methodology was first used in statistical physics for 
rare-event inference. More specifically, it was applied to esti-
mate the probability of nuclear particles that penetrate 
shields  [11]. Later, IS was also used as a variance reduction 
technique based on simulating from a proposal density instead 
of the target one, reducing the computational effort to com-
pute rare events from the target distribution [12]. The interest 
in IS techniques has run in parallel to the growth of the theory 
of Bayesian inference. The reason for this is that often it is not 
possible to generate samples from the posterior distribution 
because it can only be evaluated up to a normalizing constant.

Let us consider K  independent samples, { } ,x( )k
k
K

1=  drawn 
from a single proposal pdf, ( ),xq  with heavier tails than the 
target, ( ).xr  Each sample has an associated importance weight 
given by

( )
( )

, , , ,
x
x

w
q

k K1( )
( )

( )
k

k

k

f
r

= = (9)

where the weights represent the significance of the samples in 
the approximation of the target by the considered proposal. 
Using the samples and weights, the integral in (2) can be 
approximated by a self-normalized estimator as

( ),xI
KZ

w f1 ( ) ( )K k

k

K
k

1

=
=

u
t / (10)

where /KZ w1 ( )k
k
K

1R= =
t ^ h  is an unbiased estimator of 
( )x xZ d

X
r= #  [7]. It is not difficult to see that now we 

approximate the target distribution by

( ) ( ),x x xw( ) ( )K k

k

K
k

1

r d= -
=

u r/ (11)

where the sw( )kr  are normalized weights of the samples 
obtained by

.w
w

w( )

( )

( )
k

i

i

K

k

1

=

=

r

/
(12)

If the normalizing constant is known, then it is possible to 
use the nonnormalized estimator

( ).xI
KZ

w f1 ( ) ( )K k

k

K
k

1

=
=

t / (13)

Note that IKu  is only asymptotically unbiased, whereas IKt

is unbiased. Both IKu  and IKt  are consistent estimators of ,I and 
their variance is directly related to the discrepancy between 

( ) ( )x xfru  and ( )xq  [7]. However, when several different 
moments of the target must be estimated or the function f  is 
unknown a priori, a common strategy in IS is to decrease the 
mismatch between the proposal ( )xq  and the target ( )xru  [16]. 
This is equivalent to minimizing the variance of the weights 
and, consequently, the variance of the estimator .Zt

Multiple IS: motivation and basics
The target density can only be evaluated pointwise, and 
therefore it cannot be easily characterized in many cases. 
This entails that finding a single good proposal pdf, ( ),xq
is not always possible. A robust alternative consists of 
using a set of proposal pdfs, { ( )} .xqn n

N
1=  The resulting 

method is referred to as multiple IS (MIS), and it was 
greatly advanced during the 1990s in statistics and com-
puter graphics simulation [12], [17], [18]. MIS constitutes 
the basis of most of the state-of-the-art AIS algorithms 
[19]–[24].

A general MIS framework has recently been proposed 
in which different sampling and weighting schemes can be 
combined [25]. Here, we briefly review the most common 
sampling and two common weighting schemes. Suppose that 
we draw one sample from each proposal pdf, i.e.,

( ), , ..., ,x xq n N1n n+ = (14)

where, because ,K 1=  we drop the superscript .( )k  The most 
common weighting strategies in the literature are
1) standard MIS (s-MIS) [19]:

( )
( )

, , , .
x
x

w
q

n N1n
n n

n
f

r
= = (15)

2) deterministic mixture (DM) MIS (DM-MIS) [18]:

( )
( )

( )

( )
, , , ,

x
x

x

x
w

N
q

n N
1

1n
n

n

i
i

N

n

n

1

f
}

r r
= = =

=

/
(16)

where ( )x}  represents the mixture pdf composed of all of the 
proposal pdfs evaluated at x.

From the weighted set { , } ,x wn n n
N

1=  generated by either the 
s-MIS or the DM-MIS methods described previously, we can 
compute a self-normalized estimator INu  and a nonnormalized 
estimator INt  in the same way as in (10) and (13), respectively. 
The self-normalized INu  is consistent and asymptotically unbi-
ased, whereas the nonnormalized INt  is both consistent and 
unbiased. The DM approach is superior with respect to that of 
s-MIS in terms of variance of the estimator ,INt  as proved in 
[25]. Although both alternatives perform the same number of 
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target evaluations, the DM estimator is computationally more 
expensive with respect to the number of proposal evaluations. 
In particular, s-MIS and DM require N and N2 evaluations, 
respectively. Therefore, in scenarios where 
the number of proposals N  is large, the 

NO 2^ h in the number of proposal evalua-
tions can be prohibitive. Alternative effi-
cient solutions have recently been devised to 
mitigate this excess of computational load 
[26], [27].

Figure 1 illustrates the processes of sam-
pling and weighting based on the different 
methods explained in this section. More 
specifically, Figure 1(a) displays the generated samples and 
associated weights when sampling from the target distribution 
is possible. We observe that all of the weights are equal in this 
case. For both Figure 1(b) and (c), the generation of samples is 
performed using a single proposal pdf. However, the proposal 
pdfs, plotted with dashed lines, are differently located, and 
therefore one can appreciate how the second choice is more 
appropriate by observing the variability of the weight values. 
Note that the scale of the vertical axes is different to show the 

large weights in Figure 1(b). Figure 1(d) and 1(e) use the con-
cept of MIS, i.e., there we use two proposal pdfs. The weights 
in Figure 1(d) are calculated using the standard formulation 

of weight update from (15), while in Fig-
ure 1(e), they are computed according to 
(16). It is clear that a smaller variance of the 
weights is achieved with the DM approach.

Finally, the validity of the possible dif-
ferent weighting schemes for MIS is justi-
fied in [25] by using the concept of a proper 
set of weighted samples. More precisely, the 
suitability of a particular MIS scheme is 
guaranteed if the nonnormalized estimator 

INt  and the normalizing constant estimator Zt  are unbiased and 
consistent, which also implies that the self-normalized estima-
tor INu  is consistent.

Adaptive importance sampling

The basics of AIS
The AIS methodology is based on an iterative process for 
gradual evolution of the single or multiple proposal densities 
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FIGURE 1. The approximations of the target pdf, x( )r , by different discrete probability distributions (displayed by thin bars with weights corresponding 
to heights of the bars). The target pdfs are shown by solid lines, while the proposal pdfs are plotted with dashed lines. (a) The MC sampling directly from 
the target, the ideal situation: an approximation with equally weighted samples, as they are drawn directly from the target. (b) IS, single-proposal pdf, 
and (c) IS, single-proposal pdf [with a better location than that in (b)]. (b) and (c) are approximations with IS and a single proposal to show the effect of 
the location: A better proposal placement leads to more uniform weights. (d) MIS with standard weights, and (e) MIS with DM weights. (d) and (e) are 
approximations with MIS and two proposals to show the effect of the choice of the weighting scheme: The DM approach leads to more uniform weights 
than the standard approach.

All of the AIS methods 
presented and the 
considerations performed 
are directly applicable to 
multidimensional-complex
target densities.
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to accurately approximate the target pdf. The procedure 
consists of three basic steps: generation of samples from a 
proposal or set of proposals (sampling), calculation of the 
importance of each of the samples (weighting), and updating 
(adapting) the parameters that define the proposal(s) to obtain 
the new proposal(s) for the next iteration. Figure 2 shows a 
simple flow diagram of the steps of AIS with only one propos-
al pdf. The diagram also shows the possible data dependencies 
among the basic steps.

In the general case, the algorithm is initialized with 
a set of N  proposals { ( )} ,xq ,n n n

N
1 1i =  each one parame-

terized by a vector .,n 1i  After drawing a set of samples, 
, , , , , ,x n N k K1 1,

( )
n
k
1 f f= =  (recall that K  is the number 

of samples generated by a proposal), and weighting them, one 
obtains a discrete probability distribution that approximates 
the target distribution, { , }, , , , , , .x w n N k K1 1,

( )
,

( )
n
k

n
k

1 1 f f= =

Then, the parameters of the thn proposal are updated from ,n 1i

to .,n 2i  This process is repeated, i.e., sampling, weighting, and 
moving from ,n ji  to ,,n j 1i +  until an iteration stoppage criterion 
is met (e.g., a maximum number of iterations, ,J  is reached). 
Table 2 outlines the main steps of the general algorithm.

Figure 3 shows the evolution in the approximation of a 
target pdf, ( ),xru  which in this case is a mixture of two 
Gaussian pdfs. In this example just one Gaussian pro-
posal N 1=^ h is used, ( ),xq1  with initial vector parameter 

[ ] [ ],4 3,1 1 1 1
2i n v= = -  where 1n and 1

2v  denote the mean 
and the variance, respectively. Figure 3 displays three itera-
tions of the AIS algorithm, where the initial parameter vector 

,1 1i  is updated in the next proposal so that it can produce 
samples and weights that yield a better approximation of the 
target distribution. Note that the final scale and location of 

the proposal is much more adequate than the starting pro-
posal in that it effectively covers both modes of the target.

To approximate the integral I  in (2), there exist different 
possibilities for combining all of the KNJ weighted samples, 

, ,x w,
( )

,
( )

n j
k

n j
k" ,  generated by the AIS method [28]. A common (and 

straightforward) choice is to assign to each sample a normal-
ized weight ,w ,

( )
n j
kr  which considers all of the weights, i.e.,

.w
w

w
,

( )

,
( )

,
( )

n j
k

i l
r

r

K

i

N

l

J

n j
k

111

=

===

r

///
(17)

FIGURE 2. A generic flow diagram of the AIS methodology, showing the three steps that must be performed iteratively by any AIS algorithm (sampling, 
weighting, and adaptation) and the data flow among these steps.
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Table 2. The generic AIS algorithm.

Initialization 

Choose , , ,K N J { },n n
N

1 1i =

For , , :j J1f=

1) Sampling 

Draw K  samples from each of the N  proposal pdfs, 

x{ ( )} , , , , , , , .q k K n N1 1, , ,
( )

n j n j n
N

n j
k

1 f fi = ==

2) Weighting 

Calculate the weights, ,w ,
( )
n j
k  for each of the generated KN  samples. 

3) Adaptation 

Update the proposal parameters { } { } ., ,n j n
N

n j n
N

1 1 1"i i= + =

Outputs 

Return the KNJ pairs x{ , }w,
( )

,
( )

n j
k

n j
k  for all , , , , ,k K n1 1f f= =

, , , .N j J1f=
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Hence, the self-normalized AIS estimator is I j
JKNJ

1R= =
u

( ).xw f,
( )

,
( )

n
N

k
K

n j
k

n j
k

1 1R R= = r

Modern AIS methods
AIS methods got their turn in the spotlight of MC computa-
tions after the publication of the population MC (PMC) 
sampling method by Cappé et al. in 2004 [19], notwithstanding 
the existence of several AIS schemes at that time (see [28]
for a review). The PMC methodology offered a framework to 
adapt a population of proposals that was simple, flexible, and 
free from the convergence and ergodicity issues of adaptive 
MCMC techniques. The original PMC algorithm used a 
multinomial resampling stage (note that any of the better 
alternative resampling strategies developed for particle fil-
ters can also be used [29]) and was unstable due to the use 
of the s-MIS weighting strategy of (15). However, the pro-
posed approach raised a considerable interest within the 
computational statistics community, and improved PMC 
algorithms shortly followed, like the D-kernel PMC [30],
[31] or the mixture PMC (M-PMC) [20]. Furthermore, sev-
eral authors have recently shown that the performance of 
PMC can be improved even more through the use of a non-
linear transformation of the weights [32] or the combination 
of the DM weighting scheme of (16) and sophisticated resa-
mpling schemes [24].

On the other hand, encouraged by the renewed interest in 
AIS methods spurred by the PMC approach, several authors 

have proposed AIS algorithms that do not fall within the PMC 
framework. For instance, the idea of incremental IS mixtures 
[originally proposed in (33)] was taken up again by Cornuet 
et al. in the adaptive MIS (AMIS) method [21]. AMIS uses 
a single proposal per iteration, but applies the DM weighting 
scheme of (16) using a mixture composed of the present and 
all past proposal pdfs. Much more robust and stable estimators 
are thus obtained, but at the expense of a substantial increase in 
the computational cost. An alternative to AMIS is the recently 
proposed adaptive population IS (APIS) algorithm [22]. APIS 
is also based on the DM weighting scheme of (16), but it uses a 
mixture with a fixed number of proposals per iteration. In this 
way, APIS inherits the robustness and stability of AMIS but 
with the benefit of allowing a user-controllable computational 
cost that does not increase as the algorithm is iterated. More-
over, gradient information can be incorporated to the APIS 
algorithm to improve the performance in high-dimensional 
state spaces [34].

Finally, note that the combination of MCMC and AIS tech-
niques has also been considered in several works. For instance, 
MCMC steps can be used to accelerate the adaptation of the 
AIS technique [22], or the MCMC outputs can be used to build 
a proposal distribution for AIS estimation [35]. Sequential MC 
samplers have also been suggested as AIS schemes in static 
scenarios [36].

Implementation and classification of AIS algorithms

Implementation of AIS algorithms
Many important AIS algorithms have been proposed in the lit-
erature in the last two decades. In this section, we describe in 
detail some of the most popular AIS algorithms.
■ Standard PMC [19]: In this algorithm, N  proposals are 

adapted via resampling, which is a well-known mechanism 
in MC methodologies that allows us to select the most 
promising samples and to eliminate those with low weights 
to avoid particle degeneracy [29]. At each iteration, exactly 
one sample is drawn from each proposal and weighted 
with the standard IS weights calculated by (15). Then, N
multinomial resampling steps (with replacement) are per-
formed within the population of the N  drawn samples (one 
sample is generated per proposal, i.e., K 1= ). The surviv-
ing set of particles constitutes the set of location parame-
ters for the next population of proposals.

■ M-PMC [20]: For this method, the proposal used to gener-
ate K  samples at each iteration is a mixture of N  kernels, 
where the mixture is adapted to decrease the Kullback–
Leibler (KL) divergence between the mixture and the 
target. In its simplest version, the algorithm adapts the 
location, scale, and weight of each kernel in the mixture.

■ Nonlinear PMC (N-PMC) [32]: In this algorithm, the 
weights are computed in two steps. First, standard impor-
tance weights w( )

j
k  are obtained. Then, a nonlinear func-

tion is applied to calculate a set of transformed weights 
.w( )

j
k{  The goal of this transformation is to reduce the vari-

ance of the weights and avoid, or at least mitigate, the 

FIGURE 3. A proposal adaptation through AIS. The initial proposal ( )q x1

(too narrow and poorly placed) is iteratively moved toward a better loca-
tion at some intermediate location between the two modes of the target 
pdf and widened to properly cover the effective support of the target.
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weight degeneracy problem. While the standard weights 
can be used for estimation, the nonlinearly transformed 
weights are crucially used for the adaptation step. The 
latter can be carried out in different ways, with [32] advo-
cating for a simple Gaussian proposal where both the 
mean vector and the covariance matrix are adapted through 
the iterations.

■ Layered AIS (LAIS) [23]: The adaptive process of the 
LAIS algorithm is independent of the samples drawn at 
each iteration. In particular, the algorithm can be seen as a 
two-layer procedure in which the location parameters of 
the proposals are adapted through one or several MCMC 
steps with the target as the stationary distribution. In its 
basic version, a single MCMC step is independently per-
formed at each location parameter.

■ DM-PMC [24]: This algorithm meets the simplicity of 
the standard PMC of [19] with a very high performance. 
DM-PMC calculates the weights using (16) instead of 
(15), which provides two important advantages, specifi-
cally, the variance of the estimators is decreased (see 
[25]) and the resampling step with the DM weights pro-
motes the replication of proposals in relevant parts of the 
target that are underrepresented by the set of proposals 

(i.e., the exploration is coordinated). DM-PMC generates 
K  samples per each of the N  proposals (instead of one, 
as in [19]). At each iteration, the population of KN
samples must be reduced to N  via either global or local 
resampling (LR).

■ AMIS [21]: In this algorithm, just one proposal is used 
and adapted over the iterations. The adaptive procedure 
consists of estimating the moments of the target with the 
available set of K  weighted samples and fitting the 
moments of the proposal. Its key feature is the reweight-
ing of all of the past samples with a temporal mixture 
weight where the whole sequence of proposals is used in 
the denominator.

■ Gradient APIS (GAPIS) [34]: Similar to the LAIS algo-
rithm, GAPIS adapts N  proposals by a process that is 
independent of the samples. In its basic version, the loca-
tion parameters of the proposals are adapted via a gradient 
ascent of the target and the scale parameter by using the 
Hessian of the target. An advanced implementation is pro-
posed that adds a repulsive interaction among proposals to 
promote a cooperative exploration of the target.
In Tables 3 and 4, six out of the seven previous algorithms 

are outlined by means of pseudocodes. Note that we follow 

Table 3. The pseudocodes of PMC, DM-PMC, and LAIS.

PMC DM-PMC LAIS 

Initialization

, ,J N K 1=
C{ } { , }, ,n n

N
n n n

N
1 1 1 1/i n= =

, , ,J N K
C{ } { , }, ,n n

N
n n n

N
1 1 1 1/i n= =

, , ,J N K
C{ } { , }, ,n n

N
n n n

N
1 1 1 1/i n= =

For , , :j J1 f=

1) Sampling 

x x C~ ( , )q, , ,n j n j n j nn

, ,n N1 f=

x x C~ ( , )q,
( )

, ,n j
k

n j n j nn

, ,n N1 f=

, ,k K1 f=

x x C~ ( , )q,
( )

, ,n j
k

n j n j nn

, ,n N1 f=

, ,k K1 f=

2) Weighting 

x
x
( )

( )
w q,

, ,

,
n j

n j n j

n jr
=

, ,n N1 f=
x

x

( )

( )
w

N q1
,

( )

, ,
( )

,
( )

n j
k

i j
i

N

n j
k

n j
k

1

r
=

=

/
, ,n N1 f=

, ,k K1 f=

x

x

( )

( )
w

N q1
,

( )

, ,
( )

,
( )

n j
k

i j
i

N

n j
k

n j
k

1

r
=

=

/
, ,n N1 f=

, ,k K1 f=

3) Adaptation 

Multinomial resampling with replacement over 

x{ , }w
w

w
, ,

,

,
n j n j

i j
i

N
n j

n
N

1

1=

=

=r

/

to update { } .,n j n
N

1 1n + =

Multinomial resampling with replacement over 

x{ , }w
w

w
,

( )
,

( )

,
( )

,
( )

,
,

n j
k

n j
k

j j
m

m

K

j

N
n j
k

n k
N K

11

1 1=

==

= =r

//

to update { } .,n j n
N

1 1n + =

One (or more) MCMC steps from ,n jn  to ,n j 1n + ,
with ru  as a stationary distribution, for 

, ..., .n N1=

Outputs 

x{ , }w, ,n j n j

, ,n N1 f=

, ,j J1 f=

x{ , }w,
( )

,
( )

n j
k

n j
k

, ,n N1 f=

, ,k K1 f=

, ,j J1 f=

x{ , }w,
( )

,
( )

n j
k

n j
k

, ,n N1 f=

, ,k K1 f=

, ,j J1 f=
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the structure sampling, weighting, and adaptation described in 
Figure 2 and Table 2. We have skipped the N-PMC scheme 
in these tables for the sake of clarity. We simply point out that, 
in this algorithm, the standard weights w ,

( )
n j
k  are transformed 

using a nonlinearity ,U  e.g., , .w k w,
( )

,
( )

n j
k

n j
l

l
K

1U= =
{ ` j" ,  These 

transformed weights are then fed to the adaptation stage. 
In  [32], the nonlinearity (·, ·)U  is either a 
tempering or a simple truncation of the larg-
est weights, while the adaptation is carried 
out as in the AMIS method of Table 4.

Classification of relevant AIS algorithms
Table 5 serves as a summary and compares 
the main features of different AIS imple-
mentations. The features include the num-
ber of proposals, the weighting procedure, 
the updating strategy of the parameters, and 
the updated parameters. Note that most of the algorithms use 
more than one proposal. However, due to the adaptive proce-
dure, even with ,N 1= more than one proposal is used. This 
is exploited in AMIS and in some implementations of LAIS, 
where the temporal mixture of proposals is used to reweight 
the samples via DM IS weights. Note that the different adap-

tive mechanisms can be classified into a mechanism based on 
1) resampling, 2) moment matching, and 3) independent adap-
tive processes. Moreover, the moment matching can include 
all of the past weighted samples (AMIS) or just those of the 
current iteration (APIS). Figure 4 shows three possible depen-
dence charts related to generated samples and the adaptation 

of the proposal parameters. Note also that, 
although all of the proposal parameters can 
be adapted, in the basic implementation of 
most algorithms, just the location parame-
ters are adapted.

Table 6 provides a comparison of the 
computational complexity of the different 
algorithms. We display the number of target 
and proposal evaluations and also the same 
quantities per drawn sample. We observe 
that in AMIS, the number of proposal 

evaluations is increased with the number of iterations, while 
in the algorithms with DM weights, this problem appears 
when we increase the number of proposals. In the latter case, 
the strategies proposed in [26] and [27] can be employed to 
reduce the number of proposal evaluations. Although this is 
not displayed in Table 6, the GAPIS algorithm also requires 

Table 4. The pseudocodes of AMIS, GAPIS, and M-PMC.

AMIS GAPIS M-PMC 

Initialization 

, , ,J K N 1= C{ , }1 1 1/i n , , ,J N K C{ } { , }, ,n n
N

n n n
N

1 1 1 1/i n= = , , ,J N K C{ } { , , }, , , ,n n
N

n n n n
N

1 1 1 1 1 1/i nt= =

For , , :j J1 f=

1) Sampling 

x x C~ ( , )q( )
j
k

j j jn

, ,k K1 f=

x x C~ ( , )q,
( )

, ,n j
k

n j n j nn

, ,n N1 f=

, , .k K1 f=

x x C~ ( , ),q( )
, , , ,j

k
i j

i

N

i j i j i j
1

nt
=

/

, ,k K1 f= .

2) Weighting 

x

x

( )

( )
w

j q1
( )

( )

( )

j
k

i
i

j

j
k

j
k

1

r
=

=

/
, ,k K1 f=

x

x

( )

( )
w

N q1
,

( )

, ,
( )

,
( )

n j
k

i j
i

N

n j
k

n j
k

1

r
=

=

/
, ,n N1 f=
, ,k K1 f=

x

x

( )

( )
w

q

( )

, ,
( )

( )

j
k

i j
i

N

i j j
k

j
k

1
t

r
=

=

/
, ...,k K1=

3) Adaptation 

Update j 1n +  and C j 1+  with the empirical 
mean and covariance using all of the weighted 
samples.

Use a suitable jm  to update 
( )log, , ,n j n j j n j1 dn n nm r= ++ ^ h and the 

Hessian matrix of x( ( ))log r-  to update 
C H,n j 1

1
,n j= n+
-^ h .

Update C{ , , }, , ,n j n j n j n
N

1 1 1 1nt + + + =  by minimiz-
ing the KL distance between the proposal and the 
target approximation.

Outputs 

x{ , }w( ) ( )
j
k

j
k

, ,k K1 f=

, ,j J1 f=

x{ , }w,
( )

,
( )

n j
k

n j
k

, ,n N1 f=

, ,k K1 f=

, ,j J1 f=

x{ , }w( ) ( )
j
k

j
k

, ,k K1 f=

, ,j J1 f=

The interest in IS 
techniques was not only 
driven by their simplicity 
but also by their ability 
to estimate normalizing 
constants of the target 
distribution.
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NJ radient and Hessian evaluations in total, i.e., one per pro-
posal at each iteration.

A brief summary and comparison 
of AIS algorithms
In this section, we provide intuition behind the relevant AIS 
algorithms presented previously. The standard PMC [19]
opened the door for the fast growth of the AIS methodology. 
While the simplicity is its main advantage, the use of the stan-
dard IS weights of (15) has two adverse effects: 1) the vari-
ance of the estimators is increased, and 2) each importance 
weight measures the difference between the target and a spe-
cific proposal (regardless of where the other N 1- proposals 
are placed). The latter effect precludes a stable and coordinat-
ed adaptation of the whole mixture of proposals and provokes 
a path degeneracy due to the resampling step.

The M-PMC [20] addresses the weak points of the standard 
PMC by applying a robust Rao-Blackwellization step in the 
adaptation of the proposals. The goal in M-PMC is to iteratively 
decrease the KL divergence between the target and the mixture of 
proposals (for the first time, they are seen as a mixture instead of 
a collection of proposals). M-PMC is more robust and allows for 
the adaptation of the covariance of each proposal and its weight 
in the mixture. The disadvantage is the extra computational cost 
and the potential instability in the adaptation of the covariance 
(it can tend to a delta) and in the mixture weights (the mixture 
can end up being formed by just one proposal).

The DM-PMC addresses the open challenges of the stan-
dard PMC in a different way. The use of DM IS weights, 
followed by the resampling step, implicitly aims at iteratively 
reducing the mismatch between the target and the mixture of 
proposals [see (16)]. In addition, DM-PMC allows to draw 
K 12 samples per proposal per iteration, which improves 
the local exploration in the region of each proposal and then 

Table 5. A comparison of various AIS algorithms according to different features.

Algorithm # Proposals Weighting Adaptation Strategy Parameters Adapted

Standard PMC N > 1 Standard Resampling Location 

M-PMC N > 1 Spatial mixture Resampling Location 

N-PMC Either Nonlinear Moment estimation Location/scale 

LAIS N > 1 Generic mixture MCMC Location 

DM-PMC N > 1 Spatial mixture Resampling Location 

AMIS N = 1 Temporal mixture Moment estimation Location/scale 

GAPIS N > 1 Spatial mixture Gradient process Location/scale 

APIS N > 1 Spatial mixture Moment estimation Location 

FIGURE 4. A graphical description of three possible dependencies between the adaptation of the proposal parameters ,n ti  and the samples. Note that 
x( )q q, , ,n t n t n t/ i . (a) The proposal parameters are adapted using the last set of drawn samples (standard PMC, DM-PMC, N-PMC, M-PMC, APIS). 

(b) The proposal parameters are adapted using all drawn samples up to the latest iteration (AMIS). (c) The proposal parameters are adapted using an 
independent process from the samples (LAIS, GAPIS).

...

...

qn,1 qn,j qn,j+1

θn,j

xn,1 xn,j xn,j+1

θn,j+1θn,1

...

...

qn,1 qn,j
qn,j+1

θn,j

xn,1 xn,j xn,j+1

θn,j+1θn,1

...

...

qn,1 qn,j qn,j+1

θn,j

xn,1 xn,j xn,j+1

θn,j+1θn,1

(a) (b) (c)

Table 6. A comparison of various AIS algorithms according to 
the computational complexity.

Algorithm 

Number 
of Target 
Evaluations 

Number of 
Proposal 
Evaluations 

Number 
of Target 
Evaluations/
Sample 

Number of 
Proposal 
Evaluations/
Sample

Standard 
PMC

NJ NJ 1 1

N-PMC NJ NJ 1 1

M-PMC KJ KNJ 1 N

LAIS ( )K N J1+ KN J2 /N1 1+ N

DM-PMC KNJ KN J2 1 N

AMIS KJ KJ2 1 J

GAPIS KNJ KN J2 1 N

APIS KNJ KN J2 1 N
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increases the stability of the algorithm. Two variants of the 
algorithm, global resampling (GR)-PMC and LR-PMC, 
allow for different resampling steps to transition from NK
samples in iteration j  to N  proposals in iteration .j 1+ The 
advantage of DM-PMC and its variants is the simplicity in 
the implementation and the high performance. The disad-
vantage is that only the location parameters of the proposals 
are adapted.

In general, all of the PMC-based algorithms use the 
set of weighted samples to adapt the proposals. While 
this recycling is efficient, the interdependence between 
the samples and the next generation of proposals hinders 
the theoretical analysis of the algorithms.

The LAIS algorithm disconnects the sampling and the 
adaptive procedures by establishing a two-layer scheme [see 
Figure 4(c)]. In its simplest version, the adaptive layer of LAIS is 
driven by MH chains, enjoying some of the advantages of the 
MCMC methods, e.g., their good behavior in high dimension. 
The LAIS scheme is simple and shows good performance, but 
again, it does not adapt the covariance of the proposals.

The GAPIS algorithm also decouples the adaptation and 
sampling procedures, adding the information of the gradient 
and Hessian of the target in the adaptation of the proposals. 
This scheme performs well in challenging problems, even in 
high dimensions, and is able to adapt the location and scale 
parameters of the proposals. Its main disadvantage is the 
complexity associated with the computation of the gradient and 
the Hessian.

The AMIS algorithm is also simple because the proposal 
adaptation is carried out via moment matching. The algorithm 
has shown good performance in a variety of problems. Fur-
thermore, it is robust because the IS weights are permanently 
recomputed via Rao-Blackwellization by using the DM idea 
with the mixture of temporal proposals. The main disadvantage 
is precisely this recomputation of all of the weights at every iter-
ation, which precludes its use when the needed number of iter-
ations J  is high. The DM-PMC, LAIS, and GAPIS methods 
are particularly well suited to multimodal target distributions, 
which are often hard for conventional algorithms (e.g., nonadap-
tive importance samplers or classical MCMC schemes).

Finally, note that the nonlinear transformation of the 
importance weights featured by the N-PMC method (to reduce 
the weight variance) can readily be applied to other schemes 
(DM-PMC, AMIS, etc.). This is especially useful at the first 
stages of the adaptation, when the proposal(s) can still be poor-
ly aligned with the target density, and the use of transformed 
weights can often prevent severe sample impoverishment. 
Once the proposal is roughly adapted, the nonlinear transfor-
mation can be dropped and conventional weights can be used 
to reduce the computational cost.

Discussion of AIS methods

Convergence of IS estimators
The convergence of IS schemes is often assessed in terms of 
the approximation of integrals of test functions. Specifically, 

if X is a random vector of interest, taking values on Rdx

and with pdf ( ),xru  then we study the approximation of 
the integral

( ) ( ) ,x x xI f f d
X

r= u^ h # (18)

where :f R Rdx "  is a real test function, assumed integrable 
with respect to the density ( )xru  (now we make the test func-
tion f  explicit in the notation of the integral). Note that I f^ h
is the expected value of the real random variable ( ),Xf
which can be alternatively denoted by ( ) ,XE fru 6 @  and the 
integrability assumption simply states that this expectation 
exists, i.e., ( ) .XE f 31ru 6 @

A standard IS scheme with a proposal function ( )xq  pro-
duces a set of random weighted samples { , } ,x w( ) ( )k k

k
N

1=  where 
( )x xq( )k +  and / ,x xw q( ) ( ) ( )k k kr= ^ ^h h  that we use to approxi-

mate the integral I f^ h as

( ).xI f
w

w f1
( )

( ) ( )K

i

i

K
k

k

K
k

1

1

=

=

=

u ^ h

/
/ (19)

Note that I fKu ^ h is a random variable itself. Intuitively, we 
expect that the error I f I f- u^ ^h h should vanish, in some prop-
er probabilistic sense, when .K " 3  This is, indeed, a conse-
quence of the strong law of large numbers [7]. Assuming that 

( )xq 02  whenever ( ) ,x 02r  it can be proved that [37]

almost surely (a.s.),lim I f I f
K

K =
"3
u ^ ^h h (20)

which implies that I fKu ^ h is a consistent estimator of .I f^ h
Under additional, yet mild, assumptions on the weight and test 
functions, e.g.,

[ ( )] and ( ) ( ) ,X X XE w E f w23 31 1r ru u 6 @ (21)

a central limit theorem (CLT) also holds for the IS estimator 
[37]. [Note that here we use the notation ( )Xw  to remind the 
reader that the weights are functions of the random vector X
and therefore are random variables themselves.] In particular,

, ,K I f I f f0NK d 2v- =u ^^ ^ ^ ^ hh hh h (22)

where d
=  denotes convergence of the limit in distribution and 

the limit variance depends on the test function, namely, 
( ) ( ) ( ) .X X Xf E f E f w2 2?v -r ru u^ ^h h66 @ @

Equation (22) is one of various results that show how IS 
estimators converge with the optimal MC rate ,/ K1O^ h

i.e., the errors are asymptotically of the same order as with 
the standard MC estimator constructed with K  independent 
identically distributed samples from the target pdf ( ).xru
The same optimal rate is obtained for the convergence of 
the Lp norms of the errors I f I fK -u ^ ^h h if we assume that 
both the test function f  and the weight function w  are 
bounded, specifically,
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( ) and

( )
( )
( )

,

x

x
x
x

sup

sup sup

f f

w w
q

x

x x

R

R R

d

d d

x

x x

3

3

1

1
r

=

= =

3

3

!

! !

(23)

where Z p  indicates the Lp  norm of the random variable Z
with a pdf ,g z^ h  i.e., ( ) .Z Z g z dz

/p

p
p 1

= `
^
j

h#  Whenever 
(23) holds, it can be proved that [38]

,I f I f
K

c fK
p #- 3u^ ^h h (24)

for any p 1$  and some constant c 31  independent of .K
The inequality in (24) is easily extended, using a standard 
argument based on the Markov inequality and the Borel–
Cantelli lemma [39], to yield lim I f I fK

K ="3u ^ ^h h a.s.
A more sophisticated analysis allows us to obtain an upper 

bound for the random error (not just for its Lp  norm) of the 
form [38]

,I f I f
K
UK

2
1#- e
e
-

u^ ^h h (25)

where , /0 1 2!e ^ ^ hh is an arbitrarily small constant and Ue  is 
an almost surely finite random variable independent of .K  The 
inequality (25) holds for every value of ,K  hence it is stronger 
than the classical CLT of (22). As (22), it displays the optimal 
MC error rate ,/ K1O^ h  because 02e  can be chosen as 
close to zero as desired.

Convergence of AIS estimators
The results summarized above hold for general importance 
samplers. In an AIS framework, however, it is of specific 
interest to study the convergence of the estimators as the 
proposals are adapted. This issue is tackled in the classical 
article [40], where the estimators that result from aggregating 
weighted samples produced through several consecutive itera-
tions are analyzed. Assuming that an AIS algorithm is run 
through J  iterations, producing K  samples per iteration for a 
total of JK  samples overall (here we work with one proposal 
function per iteration), we construct the aggregated estimator 
of I f^ h as

( )

.

x

fI
w

f w

( )

( ) ( )

J K

j
k

k

K

j

J

k

K

j

J

j
k

j
k

11

11
=#

==

==u ^ h

//

//
(26)

In the setup of [40], the proposal functions ( )xq j  are select-
ed from a parametric family ( ; ),xq i  where [ , , ]m1 fi i i= <

.Rm!  The conditions to be satisfied by ( ; )xq i  are fairly 
general: ( ; )xq i  is a continuous function of ,i  the weight 
function ( ) / ( ; )x xw q ir= ^ h is uniformly bounded (over the 
space of x and i), and ( ; )xq 02i  whenever ( ) .0x 2r  In 
addition, it is assumed that there exists an optimal choice of the 
proposal function, of the form ( ; ),xq oi  where [ ( )]xEoi p= ru

for some (possibly unknown) integrable function : .R Rd mx "p

The latter is a regularity assumption: it implies that, if the 
weights are proper and ,K " 3  it is possible to approximate 
the target proposal ( ; )xq oi  as tightly as we wish. Under these 
assumptions, in [40] it is proved that

a.s., and

, ,

lim

lim

I f I f

JK I f I f f0N

J K

J K

J K

J K d 2v

=

- =

"

"

#

#

#

#

3

3

u

u^ ^ ^

^ ^

^ ^h hh

h h

hh (27)

where the limit variance f2v ^ h is finite, and it depends on 
the test function and the normalization constant of .ru
Convergence of the first limit in (27) guarantees consistency, 
while the second expression is a CLT that shows that the 
asymptotic optimal error rate /JK1O^ h can be achieved with-
out discarding any samples. Consistency of the aggregate esti-
mator fIJ K#u ^ h can be proved in a rather straightforward 
manner for most AIS schemes as long as the importance 
weights are proper at each iteration and the weight function 
remains bounded, even if an optimal or desired proposal 

( ; )xq oi  does not exist (or simply changes from one iteration 
to the next).

AIS and high-dimensional target pdfs
The error bounds of (24) and (25) or the variances in the 
CLTs (22) and (27) depend on the dimension dx  of the target 
random vector X, often in an intricate manner. Few analytical 
results on the effect of the dimension are available in the 
literature. In simplified scenarios, and through numerical 
studies, it has been shown that often the number of samples 
K  has to be increased exponentially with dx  to attain a pre-
scribed performance [41]. However, it has not been proved 
that this is necessarily the case, and some recent theoretical 
results actually suggest otherwise. In [42], the stability 
of  the  effective sample size (ESS), constructed as 

,ESS w w( ) ( )
k
K

k
K

j
K

j
k

j
k

1
2

1
2

R R= = =^ ^h h  of a sequential MC sam-
pler as the dimension increases, ,dx " 3  is analyzed. The 
ESS, related to the variance of the weights, is commonly used 
to assess the numerical stability of the adaptive algorithms 
and detect the degeneracy phenomenon. In this AIS scheme, 
the target pdf ( )xru  is approximated through a sequence of 
bridge densities ( ), ( ), , ( ), , ( ),x x x xj J0 1 f fr r r r  where 

( )x0r  is sufficiently easy to approximate via IS and 
( ) ( ).x xJr r= u  The intuition is that we can start approximat-

ing 0r  and, assuming ( )xj 1r -  and ( )xjr  are similar enough, 
we can then move parsimoniously through the sequence of 
bridge pdfs until we obtain an approximation of 

( ) ( ).x xJr r=u  In this setup, the proposal functions ( )xq j  are 
devised as Markov kernels that jump from ( )xj 1r -  to ( ).xjr

In the specific scheme analyzed in [42], the bridge pdfs are 
constructed by tempering, i.e., selecting a sequence of posi-
tive real numbers 0 1J0 1 g1 1 1 1e e e =  and then set-
ting ( ) ( ).x xj

jr r= eu

Under the strongly simplifying assumption of X being a 
vector of independent variables, i.e., ( ) ( ),x x

i

d
i i1

x
r r=

=
u u%

but still assuming that the sample vector x( )
j
k  is drawn jointly 
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(and not independently, entrywise) from the proposal ( ),xq j

it is proved in [42] that lim CESSd j
K

x ="3  a.s., where C  is 
a positive constant, even if the number of samples K  is held 
constant. Moreover, this can be achieved when the number 
of bridge pdfs is ( ).J dO x=  These results indicate that this 
particular AIS method remains numerically stable (i.e., the 
weights do not degenerate) as the dimension dx  becomes 
arbitrarily large; however, they are mainly of theoretical 
(rather than practical) interest because of the strong assump-
tions involved. Nevertheless, they suggest that AIS schemes 
may beat the curse of dimensionality in some scenarios if 
properly designed.

A comparison of the convergence properties 
of IS and MCMC methods
MCMC [43] and AIS methods are often competing techniques 
to tackle the same class of inference problems, hence a brief 
comparison of their theoretical properties is relevant. 
MCMC  schemes generate a chain of correlated samples 

, , , ,x x x( ) ( ) ( )k1 2 f  using a suitable Markov kernel ( , )x xK ( ) ( )k k1-

to draw x( )k  conditional on .x( )k 1-  Different algorithms, e.g., the 
Gibbs sampler or the MH method [43], yield different kernels. 
In any case, ,K $ $^ h is designed so as to guarantee, under mild 
assumptions, that lim pk k r="3 u  a.s., where pk denotes the 
pdf of the thk element of the chain, which generates ,x( )k

i.e., the generated sequence , , , ,x k 1 2( )k f=  has ru  as a station-
ary pdf [7], [43], [44]. There are no known rates for the conver-
gence of pk  toward .ru  However, it has been found that this 

rate can be very low in some scenarios. Moreover, it has to be 
taken into account that estimators constructed from an 
MCMC run of length K have the form

( ),xI
K k

f1 ( )
MCMC
K

k k

K
k

0 10

=
- = +

u / (28)

where the first k0  samples are discarded to allow for the conver-
gence of .pk  While ,f fE I IMCMC

K .u ^ ^h h6 @  assuming ,pk . ru

the random variates ( )f x( )k  are correlated and, therefore, the 
analysis of Var( )IMCMC

Ku  is difficult. Again, it can be shown that 
f fI IMCMC

K "u ^ ^h h a.s., but no error rates are available.
These double asymptotics inherent to MCMC [we need 

the chain to burn-in so that ,pk " ru  then we need K " 3
for ]f fI IMCMC

K "u ^ ^h h  often make these algorithms slower 
and computationally less efficient than AIS schemes [32],
[38]. Moreover, in problems where the normalizing constant 

( )x xZ d
1

r=
-

` j#  is of interest (e.g., for model validation or 
model selection), AIS is a natural solution, as it readily yields 
unbiased estimates / , , ..., ,KZ w j J1 1( )

k
K

j
K k

1R= ==
t ^ h  while 

MCMC is often harder to apply [45]. There have been many 
recent attempts to devise algorithms that combine MCMC 
and AIS principles to take advantage of the strengths of both 
approaches [35], [46].

A pictorial comparison between IS and MCMC approach-
es is provided in Figure 5. In an MH-type sampler, a new 
state in the chain is proposed, and it is accepted or rejected 
with a suitable probability .a  The number of repetitions of 
the same current state x( )k  plays the role of a weight in the 
estimator .fIMCMC

Ku ^ h  However, unlike in IS, given a sample 
,x( )k  the weighting procedure is not provided by a determin-

istic function [e.g., by ( ) / ( )x xqr ] but instead is a result of 
a stochastic process defined by the acceptance MCMC tests 
performed at each iteration.

Parallelization
IS methods are easily parallelizable, as the samples x( )k  are 
independent and, therefore, can be generated concurrently. In 
comparison, competing MCMC methods are much harder to 
parallelize, because the samples in a Markov chain are inher-
ently sequential. With the availability of state-of-the-art multi-
core computers and graphics processing units (GPUs), this 
may be a key factor in favor of IS schemes. See [47] for a 
comparison of various MC schemes running on GPU systems.

In the specific case of AIS schemes, it is relatively straight-
forward to identify two stages in all of the presented algorithms. 
The first stage, which includes sampling and weighting, is a 
readily parallelizable task. This is the same as in standard IS, 
where each sample can (ideally) be generated and processed 
independently. The second stage, however, involves adaptation 
and, for some schemes, resampling. In this stage, it is neces-
sary to process together all of the samples and weights, e.g., to 
calculate the parameters of the new proposals in schemes like 
AMIS or N-PMC, or even to run MCMC steps in the LAIS 
method. The adaptation step can be expected to be nonpar-
allelizable, or parallelizable to a lesser extent, on standard 
computing devices.

FIGURE 5. A graphical representation of IS and MCMC procedures to 
provide an estimator ( )I fKu  of I(f ). More specifically, we have considered 
the MH type of MCMC algorithms, where a novel possible state xl  is 
drawn from q(x), and it is accepted, thus setting x x( )k = l  with a suitable 
probability a . Otherwise, the next state of the chain is set equal to the 
previous one, i.e., x x( ) ( )k k 1= -  with probability .1 a-  (a) The impor-
tance sampler and (b) the MH-type sampler.
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x(K ) x(1) x(2)x(3)

x(k ) ~ q (x)

I K (f ) = ∑ wk f (x
(k ))

K

k = 1

~

(a)

Acceptance Test

Generation

x

k

1 2 3 K

...

...

α

1 − α

x(k−1)

x(K )x(0) x(1)

x(2) x(3)

Estimation

x′ ~ q (x)

x′

I K (f ) = 
K

k = k0+1

~ ∑ f (x(k ))1
K – k0

(b)
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Applications and challenges
While the range of applications of AIS algorithms is broad, it 
is worth discussing some particular fields where this method-
ology has either been applied with special success (compared 
to state-of-the-art techniques) or appears as a promising tool 
to tackle hard and long-standing problems.

The problems of detection and estima-
tion in wireless sensor networks have been 
of great interest to the signal processing 
community for more than a decade. They 
involve scenarios where data related to a 
particular signal of interest are collected at 
various different sites of a network. Often, 
these observations can only be shared under 
tight constraints (due to scarce commu-
nication bandwidth, limited power, etc.), 
and estimation has to be performed with partial data or in a 
distributed fashion. One example of this class of problems, 
the localization of an object using signal-strength measure-
ments, is presented in the “Localization Problem in a Wire-
less Sensor Network” section. A general challenge in this field 
is the design of schemes for the distributed implementation 
of AIS schemes with a minimal communication among the 
nodes of the network. Ideas based on the exchange of sum-
mary statistics have been explored, especially in the context 
of sequential IS (see, e.g., [48]), but efficient schemes (accurate 
yet affordable in terms of both communication and computa-
tion) are still needed.

The fitting of Gaussian processes (GPs) for nonlinear 
regression problems is another example, which is explored in 
the section “Learning Hyperparameters for GP Regression 
Models.” GPs have found a plethora of applications in problems 
where one needs to approximate smooth functions for which a 
parametric model is not available at all, and the complete func-
tion has to be learned from a discrete collection of data points 
[49]. While GPs are powerful models, their performance can 
be very sensitive to the fitting of a number of hyperparameters. 
The example in the aforementioned section shows that AIS can 
efficiently tackle this problem.

AIS has also shown advantages compared to state-of-the-
art methods in performing inference for stochastic kinetic 
models (SKMs) [32]. SKMs are used in biochemistry or 
ecology to model complex interactions among populations 
of different species [50]. In ecology, SKMs yield a general-
ization of classical predator–prey models. In biochemistry, 
an SKM represents a system with n  types of molecules (spe-
cies) and k  types of reactions. In both cases, it is of interest 
to track and predict the species populations, which evolve as 
a multidimensional continuous-time jump process, and esti-
mate the rates that govern the dynamics. It has been shown 
[32] that AIS schemes (in this case, the N-PMC algorithm) 
can attain the same performance as state-of-the-art particle 
MCMC methods [51] with a fraction of the computational 
cost for modest SKMs. The accurate fitting of complex, 
high-dimensional SKMs is an open problem with outstand-
ing real-world applications.

AIS techniques also enable consistent parameter estima-
tion in a-stable distributions with very heavy tails [38]. -a
stable distributions are often denoted as ( , , , ),S a b c d  where 
0 21 #a  determines the weight of the tails (the smaller the 
value of ,a the heavier the tails), b  is a skewness parameter, 

and 02c  and d  determine the scale and 
location. Except for particular cases, the 
associated pdfs can only be approximated 
numerically. Fast, classical methods for 
parameter estimation are known to work 
only for .0 5$a  (i.e., with moderate tails). 
The results in [38], including an example 
with real data, show that AIS methods can 
overcome this limitation and open the door 
to address problems formerly intractable.

Finally, a challenging arena for the 
application of AIS methods includes a number of problems 
where very large-scale models are used and need to be fit-
ted from (often scarce) data. This includes many large-scale 
systems used in geophysics, e.g., in oceanography [52], cli-
mate modeling [53] or cosmology [54]. In all of these cases, 
algorithms that attain a good tradeoff between computational 
complexity and accuracy of the resulting estimators are very 
much needed, and advanced AIS holds potential to be success-
fully applied.

Numerical examples

Localization problem in a wireless sensor network
We consider the problem of positioning a target in a wireless 
sensor network using range measurements [55]. We assume that 
the measurements of the sensors are contaminated by additive 
white Gaussian noise with different unknown powers. This situ-
ation is common in many practical scenarios where, even if the 
sensors are of the same manufacturer and model, the noise level 
can be different due to various factors. They include signal 
propagation conditions, manufacturing imperfections, and envi-
ronmental conditions (e.g., humidity or temperature). 
Moreover, these conditions can change over time. Hence, in 
practice the central node of the network has to reestimate the 
noise powers (in addition to the target’s position and possibly 
other parameters of the model) whenever a new block of obser-
vations is acquired.

More specifically, we denote the unknown target’s posi-
tion with the random vector [ , ]1 2K KK = <  and a specific 
realization of it as .m  Let there be M sensors at locations 

, , ,, .h m M1 2m g=  The model for the observations is

, , , ;

, , , ,

hlogy v m M

i N

20 1

1 2

, ,i m m i m

o

f

f

m= - + =

=

^ h

(29)

where ·  denotes the L2  norm, y ,i m  is the thi  observation of 
the thM  sensor, No  is the number of observations of each of 
the sensors, and the v ,i m s are independent Gaussian random 
variables with pdfs ( ; , ), , , .v m M0 1N ,i m m

2 fc =  We denote 
the vector of standard deviations as [ , , ].M1 fc c c=  We adopt 

The DM-PMC, LAIS, and 
GAPIS methods are 
particularly well suited 
to multimodal target 
distributions, which 
are often hard for 
conventional algorithms.
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a uniform prior ( )U Rm  for the position [ , ] ,1 2K K <  over a pre-
defined support, and a uniform prior for ,jc  also over a preset 
range, .Rc  Thus, the posterior pdf is

, , , , , ,

,

Y y

exp log

p p

y
2
1

2
1 20 h

I IR R

,

M i
i

m
m

M

mm

M

i

N

m
i m m

1 2 1
1

2

1

2
11

2
2

o

\

#

f,

m

r m c m m c c m c

rc c
= - - -

m c

= =

==

u^ ^

^

^ ^

^ ^

c ^

h h h h

h h

h m= G
% %

%%
(30)

where No  is the number of observations, y ,i m  is the thi  obser-
vation of the thm  sensor, and ( )I Sc  is an indicator function 
that takes a value equal to one if ,c S!  and is equal to 
zero otherwise. Thus, in this problem [ , ] ,x m c= < <<  and 

.d M 2x = +

Our goal is to compute the minimum mean square error 
(MMSE) estimate, which corresponds to the expected value 
of the posterior , , , , ,y y yM1 2 fm cru^ h  where the sym are vec-
tors whose elements are the measurements of the thm  sensor. 
Because the MMSE estimate cannot be computed analytically, 
we applied several AIS methods to approximate it via MC 
quadrature. In particular, we worked with the standard PMC 
method [19], two different DM-PMC techniques [24], AMIS 
[21], and LAIS [23].

In our experiment, we had M 6= sensors, and the loca-
tions of the sensors were at [ , ] ,h 3 81 = - < [ , ] ,h 8 102 = <

[ , ] , [ , ] , [ , ] ,h h h4 6 8 1 10 03 4 5= - - = - =< < <  and h6 =

[ , ] .0 10 <  In all of the cases, we employed Gaussian pro-
posal densities, ( , ) ( , )x C x Cq N, , , , ,n j n j n j n j n jn n=  with 

~ ,1 4U,n
d

1
xn ^ h6 @  for , , .n N1 f=  The target was located at 

[ . , . ] ,2 5 2 51 2m m m= = = <  and the vector of standard deviations 
was , , , . , , . .1 2 1 0 5 3 0 21 2 3 4 5 6c c c c c c c= = = = = = =6 @
We generated N 20o = observations for each sensor according 

to the model given by (29). The uniform prior ( )U Rm  over the 
position [ , ]1 2m m <  had a support ,[ ]30 30R 2#= -m  and the 
uniform prior of the sic was ([ . , ]).0 01 20U  Thus, the over-
all prior of c  was ( )U Rc  with .[ . , ]0 01 20R M=c  Then, we 
obtained the measurement vectors , , ,y yM1 f  where .y Ri

No!

Note that, regarding the dimension of the observations, we 
have .d N M 120y o= =

For the PMC, the DM-PMCs and LAIS we set 
C C C I,n j n

2v= = =  with .1v = In AMIS, we have 
N 1= and ,C C I,n j j j

2v= =  and we set { , }.1 21 !v  In 
the adaptation layer of LAIS, to obtain { } ,,n j n

N
1n =  from 

the previous population { } ,,n j n
N

1 1n - =  we employ parallel 
MH chains with a Gaussian random-walk proposal pdf, 

( | , ) ( | ,I I)N, , , ,n n j n j n j n j1
2

1
2n n n n{ v v=- -  with .1v =

Moreover, we also test the application of N  independent 
parallel MH algorithms with the same Gaussian random-walk 
proposal pdf, ( | , ),I, ,n n t n j 1

2n n{ v-  employed in the adaptation 
of LAIS.

We fix the total number of evaluations of the posterior 
density to ,E 104=  because this is usually the most costly 
step in MC algorithms. Let us recall that J  denotes the total 
number of iterations and K  the number of samples drawn 
from each proposal at each iteration. Moreover, we denote 
as S  the total number of samples employed in the final IS 
estimator. In LAIS, the total number of evaluations of the 
target pdf is ( ),E NJ K 1= +  whereas S NJK=  (i.e., E S2
due to the use of the Markov adaptation process). For the 
rest of the methods, we have E S NKJ= =  (note that N 1=
in AMIS, while K 1= in standard PMC and MH). Sev-
eral combinations of , ,N J and K  are tested for the fixed 
E 104=  evaluations.

We computed the mean square error (MSE) of the dif-
ferent estimators obtained with respect to the ground truth, 

[ , ] .x m c= < <<  The results, averaged over 500 independent 
runs, are provided in Tables 7–12 (one table per technique) 
with the best and worst MSE values highlighted in boldface. 
In this particular experiment, with a unimodal posterior pdf 
and a good initialization ~ ([ , ] ),1 5U,n

d
1

xn  the PMC tech-
niques and the AMIS method provide the smallest MSE 
values. The standard PMC method seems to perform bet-
ter if one uses a larger value of N  and a smaller number of 
iterations .J In fact, the use of a small number of proposal 
pdfs can lead to catastrophic results in this case. The DM-
PMC techniques substantially mitigate this problem, with 

Table 7. The results of standard PMC [19] (localization example).

MSE 25.12 3.96 1.35 1.08 0.72 0.61 0.70

N 5 10 50 100 500 1,000 2,000

J 2000 1,000 200 100 20 10 5

E S NJ 104= =

Range MMSE = 0.61 ___________ Maximum MSE = 25.12

Table 8. The results of GR-DM-PMC [24] (localization example).

MSE 0.96 0.89 0.75 0.84 0.85 1.47 0.81 0.76 0.79 0.84 0.80 0.81

N 5 5 5 10 10 10 50 50 100 100 500 1,000

J 50 100 10 10 5 200 5 10 5 10 5 5

K 40 20 200 100 200 5 40 20 20 10 4 2

E S NTM 104= =

Range MMSE = 0.75 ___________ Maximum MSE = 1.47
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GR-DM-PMC showing a more robust behavior with respect 
to the parameter choice than LR-DM-PMC. AMIS provides 
very good results, although it shows some sensitivity with 
respect to the choice of the initial scale parameter, .1v  Note 
that LAIS provides slightly worse results than AMIS but also 
shows less sensitivity with respect to the parameter choice 
and outperforms the performance of N  independent paral-
lel MH chains. Finally, Figure 6 shows the evolution of the 
estimators of AMIS ,J K300 200= =^ h and standard PMC 

,,N J00 1001 0= =^ h as functions of the number of iterations, 
,j  in one specific run.

Learning hyperparameters for GP regression models
GPs are a modern machine-learning approach to solving 
regression problems [56]. Given a covariance kernel func-
tion, learning its hyperparameters is the key to attain accu-
rate performance. In this section, we test the different AIS 
schemes for estimating the hyperparameters of a GP regres-
sion model.

Let us assume that we have a set of observed data pairs, 
{ , }zyi i i

P
1=  with y Ri !  and ,z Ri

L!  and let us denote the 
corresponding P 1#  output vector as [ , , ]y y yP1 f= <

and the L P# input matrix as [ , , ].Z z zL1 f=  We address 
the problem of inferring the unknown function f  that links 
the variables y  and .z  Specifically, the assumed model is 

( ) ,zy f e= +  where ~ ( ; , )e N e 0 2v  and ( )zf  is a realization 
of a GP, ( ) ~ ( ( ), ( , ))z z z rf GP n l  with , , ( ) ,z r z 0RL! n =

and the kernel function has the form

( , )
( )

.z r exp
z r

2

L

2

2

1

l
a

= -
-, ,

,=

e o/ (31)

[We point out that (·)f  in this section has nothing to do with 
the test function used previously in the article.] Given these 
assumptions, the vector ( ), , ( )f z zf f P1 f= <6 @  is distributed 
as | , , ; , ,f Z f 0 Kp Na l =^ ^h h  where 0 is a P 1#  null vector, 
and [ ] : ( , )K z zij i jl=  for all , , ,i j P1 f=  is a P P# matrix. 
Therefore, ,d 2x = and the vector containing the hyperparam-
eters of the model is [ , ] ,x x x R1 2

2!a v= = =  where a is 
the hyperparameter of the kernel function in (31), and v  is the 
standard deviation of the observation noise. In this experiment, 
we focus on the marginal posterior density of the hyperparam-
eters [56], ( | , , ) | , , ( ),x y Z y x Z xp p?r l lu ^ h  which can be 
evaluated analytically, but we cannot compute integrals involv-
ing it. Considering a uniform prior ( )xp  over [ . , ] ,0 01 20 2  and 
because | , , ; , ,y x Z y 0 K Ip N 2l v= +^ ^h h  we have

( | , , )

( ) ,

x y Z

y K I y K I

log

log det
2
1

2
12 1 2

r l

v v=- + - +< - ^ h

6
6

@
@ (32)

Table 9. The results of LR-DM-PMC [24] (localization example).

MSE 1.14 1.52 0.77 0.77 0.79 2.91 1.01 1.24 1.26 1.44 1.32 1.49

N 5 5 5 10 10 10 50 50 100 100 500 1,000

J 50 100 10 10 5 200 5 10 5 10 5 5

K 40 20 200 100 200 5 40 20 20 10 4 2

E S NTM 104= =

Range MMSE = 0.77 ___________ Maximum MSE = 2.91

Table 10. The results of AMIS [21] (localization example).

MSE ( )10v = 0.80 0.72 0.75 0.76 0.88 1.29

MSE ( )20v = 1.53 1.48 1.42 1.29 1.48 1.71

N 1

J 200 100 50 20 10 5

K 50 100 200 500 1,000 2,000

E S TM 104= =

Range MMSE = 0.72 ___________ Maximum MSE = 1.71

Table 11. The results of LAIS [23] (localization example).

MSE 1.91 1.52 1.14 1.11 1.10 1.06 1.29 1.25 1.26 1.30 1.41 

N 1 2 5 5 10 10 100 100 100 200 103

J 5 10· 3 500 250 500 250 500 10 25 50 25 5

K 1 9 7 3 3 1 9 3 1 1 1

S 5 10· 3 9 10· 3 8,750 7,500 7,500 5 10· 3 9 10· 3 7,500 5 10· 3 5 10· 3 5 10· 3

E ( )S NT NT M 1 104+ = + =

Range MMSE = 1.06 ___________ Maximum MSE = 1.91
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where K depends on a  [56]. Because the moments of this 
marginal posterior cannot be computed analytically, we use 
again MC integration with different AIS methods to approxi-
mate the mmse estimator, [ , ],x a v=t t t  which corresponds to 
the expected value of X with respect to ( | , , ).x y Zr lu

For this experiment, we generated P 200= pairs of 
data, { , } ,zy j j j

P
1=  according to the previous GP model with 

,3a = ,10v = ,L 1= and ~ ([ , ]).z 0 10Uj  Fixing the gen-

erated data, we then computed the true value of the MMSE, 
[ , ] [ . , . ],3 5200 9 2811x .a v=t t t  using an exhaustive and costly 

grid search approximation, to compare the different AIS tech-
niques. The corresponding posterior pdf is given in Figure 7(a).

We compared the standard PMC method [19], the LR-
DM-PMC technique [24], the AMIS [21], and the LAIS [23]
algorithms. Again, for all of them we considered Gaussian 
proposal densities, ( , ) ( , )x C x Cq N, , , , ,n j n j n j n j n jn n=  with 

~ [ , ]1 4U,n 1
2n ^ h for , , .n N1 f=  Note that, unlike in the 

previous experiment, the true value of x does not belong to 
the initialization region [ , ] .1 4 2  For PMC, LR-DM-PMC, and 
LAIS we set C C C I,n j n

2v= = =  with .2v = For AMIS, 
we had N 1= and C C I,n j j j

2v= = , and we set .21v =

In the adaptation layer of LAIS, to obtain { },n j n
N

1n =  from 
the previous population { },n j n

N
1 1n - = , we employed paral-

lel MH chains with a Gaussian random-walk proposal pdf, 
, ,I IN, , , ,n n j n j n j n j1

2
1

2n n n n{ v v=- -^ ^h h with .2v =  Once 
more, we fixed the total number of evaluations of the posterior 
pdf to ,E 104=  and we tested the algorithms considering dif-
ferent combinations of the parameters.

The results, in terms of MSE in the estimation of x, are given 
in Tables 13–16. They were averaged over 500 independent 
runs. In this numerical experiment, LAIS and LR-DM-PMC 
provided smaller MSEs because they discover and explore 
faster the tail of the posterior distribution with respect to the 
other techniques. The adaptation of the location parameters 
produced in one specific run by LAIS ( N 5= and T 100= ) is 
shown in Figure 7(b).

Concluding remarks and outlook
In signal processing, an important task is making inference 
from data about model parameters or models in general. From 
a Bayesian point of view, ideally, this inference is made from 
posterior distributions of the unknowns. For complex models, 
it is very difficult to find these posteriors. In such cases, one 
resorts to approximations in the sense that one generates sam-
ples that are drawn from the posterior distributions. A tool that 
helps practitioners to get such samples is MCMC sampling. 
As has already been pointed out, the MCMC algorithms and 
the growth of computing power have invigorated the Bayesian 
methodology in the last 25 years to the point that today we use 
it to solve most intricate problems.

In this article, we have argued that practitioners of signal 
processing should be aware of another option for solving infer-
ence problems by way of drawing samples from distributions. 
It is based on a methodology known as AIS. AIS methods have 
the subtle ability to learn the pdfs that produce better samples 
for constructing posteriors and that eventually allow for a more 
accurate inference. The learning is accomplished in iterations 
where the samples from previous iterations serve to find better 
proposal pdfs.

AIS is often simpler to implement than MCMC sampling. 
Besides simplicity, AIS has other advantages over MCMC 
sampling, including that it does not produce correlated 
samples, there is no such thing as burn-in period, and AIS is 
easier for parallelization. We also have a better understanding 

Table 12. The results of independent MH parallel chains 
(localization example).

MSE 1.42 1.31 1.44 2.32 2.73 3.21 3.18 3.15

N 1 5 10 50 100 500 1,000 2,000

J 104 2 10· 3 103 200 100 20 10 5

E S NT 104= =

MSE 
range

MMSE = 1.31 ___________ Maximum MSE = 3.21 

FIGURE 6. The evolution of (a) the estimators of AMIS ( ,T 300=
M 200= ) and (b) standard PMC ( , ,N 1 000= T 100= ) as functions 
of the number of iterations, ,j  in one specific run. The true values of 
the parameters are .x 2 51 =  (green), .x 2 52 =  (blue), x 13 =  (yellow), 
x 24 =  (cyan), x 15 =  (magenta), .x 0 56 =  (red), x 37 =  (black), and 

.x 0 28 =  (violet).
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of the rates of convergence of AIS methods than those of 
MCMC sampling. A pitfall of IS methods is the possibility 
of using proposal pdfs with thinner tails than those of the tar-
get distribution, which can easily ruin any estimate from the 
generated data and the computed weights.

The most important open problem of AIS, as we have 
already alluded, is the development of AIS methods that 
can work accurately in high-dimensional 
spaces. As the dimension of x increases, 
the complexity of finding good proposal 
pdfs explodes (curse of dimensionality). 
One approach for resolving this problem is 
to work with compartmentalized spaces of 
the unknowns and accept that we will not 
have approximations of the full joint poste-
rior but instead a number of marginalized posteriors.

Another way of addressing high dimensionality is by par-
ticle flows. This approach has been of interest in particle fil-
tering, where samples drawn from the prior distribution are 
migrated to the posterior distribution of the unknowns by solv-
ing partial differential equations [57]. Even though the prob-
lems we solve with AIS are different from those addressed by 

particle filtering, there is enough common ground between the 
two methodologies to investigate the application of particle 
flows to AIS. How can the underlying principles of particle 
flows be exploited in AIS?

In recent years, stochastic optimization methods have 
seen a resurgence. One reason for this is that there are many 
problems that can be formulated as optimization problems, in 
which the minimized objective function is a sum of many loss 
functions. IS is one of a number of MC sampling-based meth-
ods for stochastic optimization. It can improve the convergence 
rate of the optimization and reduce the stochastic variance of 
the result [58]. The use of AIS for optimization raises various 
challenging questions, including convergence to optimal solu-
tions and optimal values.

A specific application of stochastic optimization is in sto-
chastic variational Bayesian methods. These methods can be 
applied to complex probabilistic models and large data sets 
with a vast range of applications in machine learning. Recent-
ly, a synthesis between variational inference and MCMC 

sampling for variational approximation has 
been proposed [59]. It was claimed that a 
fast posterior approximation through the 
maximization of an explicit objective was 
accomplished. Furthermore, the proposed 
method offered tradeoffs between com-
putation and accuracy. Clearly, AIS is a 
natural candidate to be applied in the same 

setting with the possibility of performing even better than 
MCMC sampling.

Finally, in the years to come, we expect that AIS methods 
will find increased use within the signal processing com-
munity. Much of the research in this area will be driven by 
novel applications and by models with expanded complexity. 
There will be new applications that may even include use of 

FIGURE 7. (a) The posterior density x y Z( , , ) .r l  (b) The evolution of the 
location parameters ,n tn  in one specific run of LAIS with N  = 5 and T  = 100 
(jointly with the contour plot of the posterior pdf). The starting points are 
shown with x  marks, whereas the final locations are depicted with circles.
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Table 13. The results of standard PMC [19] (GP example).

MSE 0.44 0.87 1.01 0.88 0.86 0.95 1.15

N 5 50 100 200 500 1,000 2,000

T 2,000 200 100 50 20 10 5

E S NT 104= =

Range MMSE = 0.44 ___________ Maximum MSE = 1.15

Table 14. The results of LR-DM-PMC [24] (GP example).

MSE 0.41 0.39 0.16 0.09 0.04 0.23 0.07 0.46

N 5 5 5 50 50 100 100 1,000

T 10 20 40 10 20 10 20 5

M 200 100 50 20 10 10 5 2

E S NTM 104= =

Range MMSE = 0.04 ___________ Maximum MSE = 0.46

In the years to come, we 
expect that AIS methods 
will find increased 
use within the signal 
processing community. 
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AIS in deep learning for computing the weights of the hid-
den layers. The addressed problems will not only require esti-
mating unknown quantities but also finding the best models 
from a set of predefined models or finding the best model in 
nonparametric Bayesian settings where the number of models 
is not set a priori.
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An experimental survey

T
his article reviews recent computer vision techniques used in the assessment 
of image aesthetic quality. Image aesthetic assessment aims at computation-
ally distinguishing high-quality from low-quality photos based on photo-
graphic rules, typically in the form of binary classification or quality scoring. 

A variety of approaches has been proposed in the literature to try to solve this 
challenging problem. In this article, we summarize these approaches based on 
visual feature types (hand-crafted features and deep features) and evaluation crite-
ria (data set characteristics and evaluation metrics). The main contributions and 
novelties of the reviewed approaches are highlighted and discussed. In addition, 
following the emergence of deep-learning techniques, we systematically evaluate 
recent deep-learning settings that are useful for developing a robust deep model 
for aesthetic scoring. 

Experiments are conducted using simple yet solid baselines that are com-
petitive with the current state of the art. Moreover, we discuss the possibility 
of manipulating the aesthetics of images through computational approaches. 
We hope that this  article might serve as a comprehensive reference for future 
research on the study of image aesthetic assessment.

Aesthetic Assessment Through Computer Vision 
The aesthetic quality of an image is judged by commonly established photo-
graphic rules, which can be affected by numerous factors, including the differ-
ent uses of lighting [1], contrast [2], and image composition [3] [see Figure 1(a)]. 
These human judgments, given in an aesthetic evaluation setting, are the result 
of human aesthetic experience, i.e., the interaction between emotional–valua-
tion, sensory–motor, and meaning–knowledge neural systems, as demonstrated 
in a systematic neuroscience study by Chatterjee et al. [4]. From the beginning 
of psychological aesthetics studies by Fechner [5] to modern neuroaesthetics, 
researchers have argued that there is a certain connection between human aes-
thetic experience and the sensation caused by visual stimuli, regardless of 
source, culture, and experience [6], which is supported by activations in specific 
regions of the visual cortex [7]–[10]. For example, humans’ general reward cir-
cuitry produces pleasure when they look at beautiful objects [11], and the subse-
quent aesthetic judgment consists of the appraisal of the valence of such 

Image Aesthetic 
Assessment
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perceived objects [8]–[10], [12]. These activations in the visual cortex can be attributed to the processing of 
various early, intermediate, and late visual features of the stimuli, including orientation, shape, color group-
ing, and categorization [13]–[16]. Artists intentionally incorporate such features to facilitate desired percep-
tual and emotional effects in viewers, forming a set of guidelines as they create artworks to induce desired 
responses in the nervous systems of perceivers [16], [17]. And modern photographers, to make their work 
appealing to as large an audience as possible, now also resort to certain well-established photographic rules 
[18], [19] when they capture images.

As the volume of visual data available online grows at an exponential rate, the capability of automati-
cally distinguishing high-quality images from low-quality ones is in increasing demand in real-world 
image searching and retrieving applications. When a person enters a particular keyword in an image search 
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engine, it is expected that the system will return profes-
sional photographs instead of random snapshots. For exam-
ple, when a user enters the words “mountain scenery,” the 
person will expect to see colorful, pleasing mountain views 
or well-captured mountain peaks instead of gray or blurry 
mountain snapshots.

The design of these intelligent systems can potentially be 
facilitated by insights from neuroscience studies, which show 
that human aesthetic experience is a kind of information pro-
cessing that includes five stages: perception, implicit memory 
integration, explicit classification of content and style, cognitive 
mastering, and evaluation, which together ultimately produce 
aesthetic judgment and aesthetic emotion [12], [13]. However, 
it is nontrivial to computationally model this process. Chal-
lenges in the task of judging the quality of an image include 1) 
computationally modeling the intertwined photographic rules, 
2) knowing the aesthetic differences in images from different 
image genres (e.g., close-shot object, profile, scenery, and night 
scenes), 3) knowing the type of techniques used in photo cap-
turing (e.g., high-dynamic range, black and white, and depth of 
field), and 4) obtaining a large amount of human-annotated data 
for robust testing.

To address these challenges, computer vision researchers 
typically cast this problem as a classification or regression 
problem. Early studies started with distinguishing typi-
cal snapshots from professional photographs by trying to 
model the well-established photographic rules using low-
level features [20]–[22]. These systems typically involve a 
training set and a testing set consisting of both high-quality 
and low-quality images. The system robustness is judged 

by the model performance on the testing set using a speci-
fied metric, such as accuracy. These rule-based approaches 
are intuitive, as they try to explicitly model the criteria 
that humans use in evaluating the aesthetic quality of an 
image. However, more recent studies [23]–[26] have shown 
that using a data-driven approach is more effective, as the 
amount of training data available grows from a couple of 
hundred images to millions. Besides, transfer learning from 
source tasks with sufficient amounts of data to a target task 
with relatively fewer training data is also proven feasible, 
with many successful attempts showing promising results 
through deep-learning methods [27] with network fine-
tuning, where image aesthetics are implicitly learned in a 
data-driven manner.

As summarized in Figure 1(b), the majority of the afore-
mentioned computer vision approaches for image aesthetic 
assessment can be categorized based on image representations 
(e.g., handcrafted features and learned features) and classifi-
ers/regressors training (e.g., support vector machine [SVM] 
and neural network learning approaches). To the best of our 
knowledge, no up-to-date survey covers the state-of-the-art 
methodologies involved in image aesthetic assessment. The 
last review was published in 2011 by Joshi et al. [28], and no 
deep learning-based methods were covered. Some reviews on 
image-quality assessment have been published [29], [30]. In 
those efforts, image-quality metrics regarding the differences 
between a noise-tempered sample and the original high-qual-
ity image were proposed, including but not limited to mean 
squared error, structural similarity index (SSIM) [31], and 
visual information fidelity (VIF) [32]. Nevertheless, their main 

FIGURE 1. (a) Some high-quality images following well-established photographic rules (top row: color harmony; middle row: single salient object and low 
depth of field; bottom row: black-and-white portraits with decent lighting contrast). (b) A typical flow of image aesthetic assessment systems. 
SVM: support vector machine; SVR: support vector regressor.
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focus was on distinguishing noisy images from clean ones in 
terms of a different quality measure rather than artistic/photo-
graphic aesthetics.

In this article, we contribute a thorough overview of the 
field of image aesthetic assessment. Meanwhile, we also 
cover the basics of deep-learning methodologies. Specifi-
cally, as different data sets exist and evaluation criteria vary 
in the image aesthetics literature, we do not aim to directly 
compare the system performance of all of the reviewed works; 
instead, we point out in the survey their main contributions 
and novelties in model designs, and give potential insights for 
future directions in this field of study. In addition, following 
the recent emergence of deep-learning techniques and the 
effectiveness of the data-driven approach in learning better 
image representation, we systematically evaluate different 
techniques that could facilitate the learning of a robust deep 
classifier for aesthetic scoring. Our study covers topics such as 
data preparation, fine-tuning strategies, and multicolumn deep 
architectures, which we believe to be useful for researchers 
working in this domain. 

In particular, we summarize useful insights on how to alle-
viate the potential problem of data distribution bias in a binary 
classification setting and show the effectiveness of rejecting 
false-positive predictions using our proposed convolutional 
neural network (CNN) baselines, as revealed by the balanced 
accuracy metric. We also review the most commonly used 
publicly available image aesthetic assessment data sets for 
this problem and draw connections between image aesthetic 
assessment and image aesthetic manipulation, including image 
enhancement, computational photography, and automatic 
image cropping.

Background

The deep neural network
The deep neural network belongs to the family of deep-learn-
ing methods that are tasked to learn feature representation in a 
data-driven approach. While shallow models (e.g., SVM and 
boosting) showed success in earlier studies concerning relative-
ly smaller amounts of data, they require highly engineered fea-
ture designs in solving machine-learning problems. Common 
architectures in deep neural networks consist of a stack of 
parameterized individual modules that we call layers, such as 
the convolution layer and the fully connected layer. The archi-
tecture design of stacking layers on top of layers is inspired by 
the hierarchy in the human visual cortex ventral pathway, offer-
ing different levels of abstraction for the learned representation 
in each layer. Information propagation among layers in feed-
forward deep neural networks typically follows a sequential 
pattern. A forward operation (·)F  is defined respectively in 
each layer to propagate the input x it receives and produces an 
output y to the next layer. For example, the forward operation 
in a fully connected layer with learnable weights W can be 
written as

( ) · .Wx xy F w xij i= = =/ (1)

This is typically followed by a nonlinear function, such 
as sigmoid

( )exp
z

y1
1=

+ -
(2)

or the rectified linear unit ( , ),maxz y0=  which acts as the 
activation function and produces the net activation output .z

To learn the weights W in a data-driven manner, we need 
to have the feedback information that reports the current 
performance of the network. Essentially, we are trying to tune 
the knobs W to achieve a learning objective. For example, 
given an objective t  for the input ,x we want to minimize the 
squared error between the net output z  and t  by defining a loss 
function :L

.L z t
2
1 2= - (3)

To propagate this feedback information to the weights, 
we define the backward operation for each layer using gradi-
ent backpropagation [33]. We hope to get the direction WD
to update the weights W to better suit the training objective 
(i.e., to minimize L ): ,W W W! hD-  where h  is the learn-
ing rate. In our example, WD  can be easily derived based on 
the chain rule:

( ) ·
( ( ) )

( )
· .

W W

W

x
exp

exp

L

z
L

y
z y

z t
y

y
1 2

2
2

2
2
2
2
2
2

D =

=

= -
- +

-
(4)

In practice, researchers resort to batch stochastic gradient 
descent or more advanced learning procedures that compute 
more stable gradients, as averaged from a batch of training 
examples {( , ) | }x xt Xi i i !  to train deeper and deeper neu-
ral networks with continually increasing numbers of layers. 
We refer readers to [27] for an in-depth overview of additional 
deep-learning methodologies.

Image-quality metrics
Image-quality metrics are defined in an attempt to quantita-
tively measure the objective quality of an image. This is typ-
ically used in image restoration applications (superresolution 
[34], deblurring [35], and deartifacting [36]), where we have 
a default high-quality reference image for comparison. 
However, these quality metrics are not designed to measure 
the subjective nature of human-perceived aesthetic quality 
(see examples in Figure 2). Directly applying these objec-
tive quality metrics to our domain of image aesthetic 
assessment may produce misleading results, as can be seen 
from the measured values in Figure 2(b). Interest in devel-
oping more robust metrics has increased in the research 
community, as a means to assess the more subjective quali-
ty of image aesthetics. 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


84 IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

A typical pipeline
Most existing image-quality assessment methods take a super-
vised learning approach. A typical pipeline assumes a set of 
training data , ,x y [ , ]i i i N1!" ,  from which a function : ( )f g X Y"
is learned, where ( )xg i  denotes the feature representation of 
image .xi  The label yi  is either {0, 1} for binary classification 
(when f  is a classifier) or a continuous score range for regres-
sion (when f  is a regressor). Following this formulation, a 
pipeline can be broken into two main components, as shown 
in Figure 1(b), i.e., a feature extraction component and a deci-
sion component.

Feature extraction
The first component of an image aesthetics assessment sys-
tem aims at extracting robust feature representations 
describing the aesthetic aspect of an image. Such features 
are assumed to model the photographic/artistic aspect of 
images to distinguish images of different qualities. Nu -
merous efforts have been made to design features that are 

robust enough for the intertwined aesthetic rules. The major-
ity of feature types can be classified into handcrafted fea-
tures and deep features. Conventional approaches [20], [21],
[37]–[49] typically adopt handcrafted features to computa-
tionally model the photographic rules (e.g., lighting and 
contrast), global image layout (the rule of thirds), and typi-
cal objects (e.g., human profiles, animals, and plants) in 
images. In more recent work, generic deep features [50], [51]
and learned deep features [23]–[25], [52]–[59] exhibit stron-
ger representation power for this task.

Decision phase
The second component of an image aesthetics assessment sys-
tem provides the ability to perform classification or regression 
for the given aesthetic task. The naïve Bayes classifier, SVM, 
boosting, and deep classifier are typically used for binary clas-
sification of high-quality and low-quality images, whereas 
regressors like support vector regressors (SVRs) are used in 
ranking or scoring images based on their aesthetic quality.

Reference
 PSNR/SSIM/VIF

Gaussian Blur, σ = 1
26.19/0.86/0.48

Gaussian Blur, σ = 2
22.71/0.72/0.22

Reference
 PSNR/SSIM/VIF

High-Quality Image
7.69/–0.13/0.04

Low-Quality Image
8.50/0.12/0.03

(a)

(b)

FIGURE 2. Quality measurements by peak signal-to-noise ratio (PSNR), SSIM [31], and VIF [32] (a higher measurement is better, typically made against a 
referencing ground-truth high-quality image). Although these are good indicators for measuring the quality of images in image restoration applications, 
such as the images in (a), they do not reflect human-perceived aesthetic values, as shown by the measurements for the building images in (b). 
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Data sets
The assessment of image aesthetic quality assumes a standard 
training set and testing set containing both high-quality and 
low-quality image examples, as previously mentioned. Judg-
ing the ground-truth aesthetic quality of a given image is, 
however, a subjective task. As such, it is inherently challeng-
ing to obtain a large amount of such annotated data. Most of 
the earlier papers [21], [38], [39] on image aesthetic assess-
ment collect a small amount of private image data. These data 
sets typically contain from a few hundred to a few thousand 
images, with binary labels or aesthetic scoring for each image. 
Yet such data sets where the model performance is evaluated 
are not publicly available. Much research effort has later been 
made to contribute publicly available image aesthetic data sets 
of larger scale for more standardized evaluation of model per-
formance. In the following, we introduce those data sets that 
are most frequently used in performance benchmarking for 
image aesthetic assessment.

The Photo.net data set and the DPChallenge data set are 
introduced in [28] and [60], respectively. These two data sets 
can be considered the earliest attempts to construct large-scale 
image databases for image aesthetic assessment. The Photo.net 
data set contains 20,278 images, with at least ten score ratings 
per image. The ratings range from zero to seven, with seven 
assigned to the most aesthetically pleasing photos. Typically, 
images uploaded to Photo.net are rated as somewhat pleasing, 
with the peak of the global mean score skewing to the right 
in the distribution [28]. The more challenging DPChallenge 
data set contains diverse ratings. The DPChallenge data set 
contains 16,509 images in total, and was later replaced by the 
Aesthetic Visual Analysis (AVA) data set, where a significantly 
larger number of images derived from DPChallenge.com are 
collected and annotated.

The Chinese University of Hong Kong-PhotoQuality 
(CUHK-PQ) data set is introduced in [45] and [61]. It contains 
17,690 images collected from DPChallenge.com and amateur 
photographers. All of the images are given binary aesthetic 
labels and grouped into seven scene categories, i.e., animals, 

plants, static, architecture, landscape, humans, and night. The 
standard training and testing set from this data set are ran-
dom partitions of a 50–50 split or a fivefold cross-validation 
partition, where the overall ratio of the total number of posi-
tive examples and that of the negative examples is around : .13
Sample images are shown in Figure 3.

The AVA data set [49] contains ~ ,250 000 images in total. 
These images are obtained from DPChallenge.com and la -
beled by aesthetic scores. Specifically, each image receives 

~78 549 votes of scores ranging from one to ten. The aver-
age score of an image is commonly taken to be its ground-
truth label. As such, it contains more challenging examples, as 
images that lie within the center score range could be aestheti-
cally ambiguous [Figure 4(a)]. For the task of binary aesthetic 
quality classification, images with an average score higher 
than a threshold of 5 v+  are treated as positive examples, and 
images with an average score lower than 5 v-  are treated as 
negative ones. Additionally, the AVA data set contains 14 style 
attributes and more than 60 category attributes for a subset of 
images. There are two typical training and testing splits from 
this data set, i.e., 1) a large-scale standardized partition with 
~ ,230 000 training images and ~ ,20 000 testing images using 
a hard threshold of ,0v = and 2) an easier partition modeling 
that of CUHK-PQ by taking those images whose score rank-
ing is at the top 10% and the bottom 10%, resulting in ~ ,25 000
images for training and ~ ,25 000 images for testing. The ratio 
of the total number of positive examples to that of the negative 
examples is around : .12 5

Apart from these two standard benchmarks, more recent 
research also introduces new data sets that take into consider-
ation the data-balancing issue. The Image Aesthetic Data Set 
(IAD) introduced in [55] contains 1.5 million images derived 
from DPChallenge and Photo.net. Similar to AVA, images in 
the IAD data set are scored by annotators. Positive examples 
are selected from those images with a mean score larger than 
a threshold. All IAD images are used for model training, and 
the model performance is evaluated on AVA in [55]. The ratio 
of the number of positive examples to that of the negative 

CUHK-PQ Data Set

(a) (b)

~4,500

~13,000

Number of
Positive Images
Number of
Negative Images

FIGURE 3. Some sample images in the CUHK-PQ data set [45]. (a) Distinctive differences can be visually observed between the high-quality (grouped in 
the green-framed box) and low-quality images (grouped in the red-framed box). (b) The number of images in the CUHK-PQ data set. 
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examples is around . : .1 07 1  The Aesthetic and Attributes 
Database (AADB) [25] also contains a balanced distribution 
of professional and consumer photos, with a total of 10,000 
images. Eleven aesthetic attributes and annotators’ IDs are 
provided. A standard partition with 8,500 images for train-
ing, 500 images for validation, and 1,000 images for testing 
is proposed [25].

The trend toward creating data sets of even larger volume 
and higher diversity is essential for boosting the research 
progress in this field of study. To date, the 
AVA data set serves as a canonical bench-
mark for performance evaluation of image 
aesthetic assessment, as it is the first large-
scale data set with detailed annotation. 
Still, the distribution of positive and nega-
tive examples in the data set also plays a 
role in the effectiveness of trained models, 
as false-positive predictions are as harmful 
as having a low recall rate in image retrieval and searching 
applications. In the following, we review major attempts in the 
literature to build systems for the challenging task of image 
aesthetic assessment.

Conventional approaches with handcrafted features
The conventional option for image quality assessment is to 
hand-design good feature extractors, which requires a 

considerable amount of engineering skill and domain exper-
tise. Next we review a variety of approaches that exploit 
hand-engineered features.

Simple image features
Global features are first explored by researchers to model the 
aesthetic aspect of images. The works by Datta et al. [21] and 
Ke et al. [37] are among the first to cast aesthetic understand-
ing of images into a binary classification problem. Datta et 

al. [21] combine low-level and high-level 
features that are typically used for image 
retrieval and train an SVM classifier for 
binary classification of images in terms of 
aesthetic quality. Ke et al. [37] propose 
global edge distribution, color distribution, 
hue count, and low-level contrast and 
brightness indicators to represent an 
image; then they train a naïve Bayes clas-

sifier based on such features. An even earlier attempt by 
Tong et al. [20] adopts boosting to combine global low-
level simple features (blurriness, contrast, colorfulness, 
and saliency) to classify professional photographs and ordi-
nary snapshots. 

All of these pioneering works present the very first attempts 
to computationally model the global aesthetic aspect of imag-
es using handcrafted features. Even in a recent work, Ayd in 

AVA Testing Partition

AVA Training Partition

~4,000

~16,000

~160,000

(a) (b)

Number of
Positive Images
Number of
Negative Images

~ 70,000

FIGURE 4. Some sample images in the AVA data set [49]. (a) Images in the green-framed box are labeled with a mean score of >5. Images in the red-framed 
box are labeled with a mean score of <5. The image groups on the right are ambiguous, with a somewhat neutral scoring around five. (b) The number of 
images in the AVA data set. 

The distribution of positive 
and negative examples in 
the data set also plays a 
role in the effectiveness of 
trained models.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


87IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

et al. [62] construct image aesthetic attributes by sharpness, 
depth, clarity, tone, and colorfulness. An overall aesthetics 
rating score is heuristically computed based on these five 
attributes. Improving upon these global features, later stud-
ies adopt global saliency to estimate aesthetic attention dis-
tribution. Sun et al. [38] make use of a global saliency map 
to estimate visual attention distribution to describe an image, 
and they train a regressor to output the qu -
ality score of an image based on the rate-
of-focused-attention region in the saliency 
map. You et al. [39] derive similar attention 
features based on a global saliency map and 
incorporate a temporal activity feature for 
video quality assessment.

Regional image features [40]–[42] later 
prove to be effective in complementing the 
global features. Luo et al. [40] extract re  -
gional clarity contrast, lighting, simplici-
ty, composition geometry, and color harmony features based 
on the subject region of an image. Wong et al. [63] com-
pute exposure, sharpness, and texture features on salient 
regions and global images, as well as features depicting the 
subject–background relationship of an image. Nishiyama 
et al. [41] extract bags-of-color patterns from local image 
regions with a grid-sampling technique. While [40], [41],
and [63] adopt the SVM classifier, Lo et al. [42] build a sta-
tistical modeling system with coupled spatial relations after 
extracting color and texture features from images, where a 
likelihood evaluation is used for aesthetic quality predic-
tion. These methods focus on modeling image aesthetics 
from local image regions that are potentially most attrac-
tive to humans.

Image composition features
Image composition in a photograph typically relates to the 
presence and position of a salient object. The rule of thirds, 
low depth of field, and opposing colors are the common 
techniques for composing a good image where the salient 
object is made outstanding (see Figure 5). To model such 
aesthetic aspects, Bhattacharya et al. [43], [64] propose com-
positional features using relative foreground position and a 
visual weight ratio to model the relations between fore-
ground objects and the background scene; then an SVR is 
trained. Wu et al. [65] propose the use of Gabor filter 
responses to estimate the position of the main object in 
images, and then extract low-level hue, saturation, value 
(HSV)-color features from global and central image regions. 
These features are fed to a soft-SVM classifier with sigmoi-
dal softening to distinguish images of ambiguous quality. 
Dhar et al. [44] cast high-level features into describable attri-
butes of composition, content, and sky illumination and 
combine low-level features to train an SVM classifier. Lo et 
al. [66] propose the combination of layout composition, edge 
composition features with an HSV color palette, HSV 
counts, and global features (textures, blur, dark channel, and 
contrasts). SVM is used as the classifier.

The representative work by Tang et al. [45] gives a compre-
hensive analysis of the fusion of global features and regional 
features. Specifically, image composition is estimated by 
global hue composition and scene composition, and multiple 
types of regional features extracted from subject areas are pro-
posed, such as dark channel feature, clarity contrast, lighting 
contrast, composition geometry of the subject region, spatial 

complexity and human-based features. An 
SVM classifier is trained on each of the fea-
tures for comparison, and the final model 
performance is substantially enhanced by 
combining all of the proposed features. It is 
shown that regional features can effectively 
complement global features in modeling the 
image aesthetics.

A more recent approach by image com-
position features is proposed by Zhang 
et al. [67], where image descriptors that 

characterize local and global structural aesthetics from mul-
tiple visual channels are designed. The spatial structure of 
the image local regions is modeled using graphlets, and they 
are connected based on atomic region adjacency. To describe 
such atomic regions, visual features from multiple visual 
channels [such as color moment, histogram of oriented gra-
dients (HOG), and saliency histogram] are used. The global 
spatial layout of the photo is also embedded into graphlets 
using a Grassmann manifold. The importance of the two 
kinds of graphlet descriptors is dynamically adjusted, cap-
turing the spatial composition of an image from multiple 
visual channels. The final aesthetic prediction of an image 
is generated by a probabilistic model using the postembed-
ding graphlets.

General-purpose features
Yeh et al. [46] make use of scale-invariant feature transform 
(SIFT) descriptors and propose relative features by matching a 
query photo to photos in a gallery group. General-purpose 
imagery features like bag of visual (BOV) words [68] and 
Fisher vector (FV) [69] are explored in [47]–[49]. Specifically, 
SIFT and color descriptors are used as the local descriptors 
upon which a Gaussian mixture model (GMM) is trained. The 
statistics up to the second order of this GMM distribution are 

(a) (b)

FIGURE 5. (a) An image composition with low depth of field, a single 
salient object, and the rule of thirds [49]. (b) An image of low aesthetic 
quality [45]. 

The rule of thirds, low 
depth of field, and 
opposing colors are the 
common techniques for 
composing a good image 
where the salient object is 
made outstanding.
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then encoded using the BOV words or FV. Spatial pyramid is 
also adopted, and the per-region encoded FVs are concatenat-
ed as the final image representation. These methods ([47]–
[49]) represent an attempt to implicitly model photographic 
rules by encoding them in generic content-based features, 
which is competitive with or even outperforms simple hand-
crafted features.

Task-specific features
Task-specific features is a term that refers to features in image 
aesthetic assessment that are optimized for a specific category 
of photos, which can be efficient when the use-case or task 
scenario is fixed or known beforehand. Explicit information 
(such as human facial characteristics, geometry tag, scene 
information, or intrinsic character component properties) is 
exploited based on the different task nature.

Li et al. [70] propose a regression model that targets only 
consumer photos with faces. Face-related social features (such 
as facial expression features, facial pose features, and relative 
facial position features) and perceptual features (facial distribu-
tion symmetry, facial composition, and pose consistency) are 
specifically designed for measuring the quality of images with 
faces, and it is shown in [70] that for this task they complement 
conventional handcrafted features (brightness contrast, color 
correlation, clarity contrast, and background color simplicity). 
Support vector regression is used to produce aesthetic scores 
for images.

Lienhard et al. [71] study particular facial features for 
evaluating the aesthetic quality of headshot images. To 
design features for face/headshots, the input image is divid-
ed into subregions (the eyes, mouth, global face, and entire 
image regions). Low-level features (sharpness, illumination, 
contrast, dark channel, and hue and saturation in the HSV 
color space) are computed from each region. These pixel-
level features assume the human way  of perceiving a facial 
image and hence can reasonably model the headshot images. 
SVM with Gaussian kernel is used as the classifier.

Su et al. [72] propose bag of aesthetics-preserving features 
for scenic/landscape photographs. Specifically, an image is 
decomposed into n n# spatial grids; then low-level features 
in HSV-color space as well as local binary patterns, HOG, 
and saliency features are extracted from each patch. The final 
feature is generated by a predefined patch-wise operation to 
exploit the landscape composition geometry. AdaBoost is used 
as the classifier. These features aim at modeling only land-
scape images and may be limited in their representation power 
in general image aesthetic assessment.

Yin et al. [73] build a scene-dependent aesthetic model 
by incorporating the geographic location information with 
GIST descriptors and spatial layout of saliency features for 
scene aesthetic classification (such as bridges, mountains, 
and beaches). SVM is used as the classifier. The geographic 
location information is used to link a target scene image 
to relevant photos taken within the same geocontext; then 
these relevant photos are used as the training partition to the 
SVM. The authors’ proposed model requires input images 

with geographic tags and is also limited to scenic photos. 
For scene images without geo-context information, SVM 
trained with images from the same scene category is used.

Sun et al. [74] design a set of low-level features for aesthetic 
evaluation of Chinese calligraphy. They target the handwritten 
Chinese character on a plain white background; hence, conven-
tional color information is not useful in this task. Global shape 
features, extracted based on standard calligraphic rules, are 
introduced to represent a character. In particular, the authors 
consider alignment and stability, distribution of white space, 
stroke gaps, and a set of component layout features while mod-
eling the aesthetics of handwritten characters. A backpropaga-
tion neural network is trained as the regressor to produce an 
aesthetic score for each given input.

Deep-learning approaches
The powerful feature representation learned from a large 
amount of data has shown an ever-improving performance in 
the tasks of recognition, localization, retrieval, and tracking, 
surpassing the capability of conventional handcrafted features 
[75]. Since the work by Krizhevsky et al. [75], where CNNs 
are adopted for image classification, a great degree of interest 
has arisen in learning robust image representations through 
deep-learning approaches. Recent works in the literature of 
image aesthetic assessment using deep-learning approaches 
to learn image representations can be broken down into two 
major schemes: 1) adopting generic deep features learned 
from other tasks and training a new classifier for image aes-
thetic assessment and 2) learning aesthetic deep features and 
training a classifier directly from image aesthetics data. 

Generic deep features
A straightforward approach to employing deep-learning 
aims is to adopt generic deep features learned from other 
tasks and train a new classifier on the aesthetic classifica-
tion task. Dong et al. [50] propose adopting the generic 
features from the penultimate layer output of AlexNet 
[75] with spatial pyramid pooling. Specifically, the 

, ( ) ( ) ,fc SpatialPyramid4 096 7 6 24 576# = - d i m e n s i o n a l 
feature is extracted as the generic representation for imag-
es; then an SVM classifier is trained for binary aesthetic 
classification. Lv et al. [51] also adopt the normalized 
4,096-dimension fc7 output of AlexNet [75] for feature 
representation. They propose to learn the relative ordering 
relationship of images of different aesthetic quality. They 
use SVM rank [76] to train a ranking model for image 
pairs of { , }.I IighQuality owQualityH L

Learned aesthetic deep features

Features learned with single-column CNNs
Peng et al. [52] propose to train CNNs of AlexNet-like archi-
tecture for eight different abstract tasks (emotion classifica-
tion, artist classification, artistic style classification, aesthetic 
classification, fashion style classification, architectural style 
classification, memorability prediction, and interestingness 
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prediction). (Figure 6 illustrates a typical single-column CNN.) 
In particular, the last layer of the CNN for aesthetic classifica-
tion is modified to output two-dimensional softmax probabili-
ties. This CNN is trained from scratch using aesthetic data, 
and the penultimate layer (fc7) output is used as the feature 
representation. To further analyze the effectiveness of the fea-
tures learned from other tasks, Peng et al. analyze different 
pretraining and fine-tuning strategies and evaluate the perfor-
mance of different combinations of the concatenated fc7 fea-
tures from the eight CNNs.

Wang et al. [53] propose a CNN that is modified from 
the AlexNet architecture. Specifically, the conv5  layer of 
AlexNet is replaced by a group of seven convolutional layers 
(with respect to different scene categories), which are stacked 
in a parallel manner with mean pooling before feeding to the 
fully connected layers, i.e., , ,conv convanimal architecture

5
1

5
2- -"

, , , , .conv conv conv conv convhuman landscape night plant static
5
3

5
4

5
5

5
6

5
7- - - - - ,

The fully connected layers fc6 and fc7 are modified to output 
512 feature maps instead of 4,096 for more efficient param-
eter learning. The 1,000-class softmax output is changed to 
two-class softmax (fc8) for binary classification. The advan-
tage of this CNN using such a group of seven parallel con-
volutional layers is to exploit the aesthetic aspects in each of 
the seven scene categories. During pretraining, a set of images 
belonging to one of the scene categories is used for each of 
the ( { , ..., })conv i 1 7i

5 !  layers. Then the weights learned 
through this stage are transferred back to the convi

5 in the 
proposed parallel architecture, with the weights from conv1

to conv4  reused from AlexNet in the fully connected layer 
randomly reinitialized. Subsequently, the CNN is further fine-
tuned end to end. Upon convergence, the network produces a 
strong response in the convi

5  layer feature map when the input 
image is of category { , ..., }i 1 7! . This shows the potential 
in exploiting image category information when learning the 
aesthetic presentation.

Tian et al. [54] train a CNN with four convolution layers 
and two fully connected layers to learn aesthetic features from 
the data. The output size of the two fully connected layers 
is set to 16 instead of 4,096 as in AlexNet. The authors pro-
pose that such a 16-dimension representation is sufficient to 
model only the top 10% and bottom 10% of the aesthetic data, 
which are relatively easy to classify compared to the full data. 
Based on this efficient feature representation learned from the 
CNN, the authors propose a query-dependent aesthetic model 
as the classifier. Specifically, for each query image, a query-
dependent training set is retrieved based on predefined rules 
(visual similarity, image tags association, or a combination 
of both). Subsequently, an SVM is trained on this retrieved 
training set. It shows that the features learned from the aes-
thetic data outperform the generic deep features learned in the 
ImageNet task.

The deep multipatch aggregation (DMA)-net is proposed 
in [24], where information from multiple image patches is 
extracted by a single-column CNN that contains four convolu-
tion layers and three fully connected layers, with the last layer 
outputting a softmax probability. Each randomly sampled 

image patch is fed into this CNN. To combine multiple feature 
outputs from the sampled patches of one input image, a statis-
tical aggregation structure is designed to aggregate the features 
from the orderless sampled image patches by multiple poolings 
(minimum, maximum, median, and averaging). An alternative 
aggregation structure is also designed based on sorting. The final 
feature representation effectively encodes the image based on 
regional image information.

Features learned from multicolumn CNNs 
The Rating Pictorial Aesthetics using Deep Learning (RAPID) 
model by Lu et al. [23], [55] can be considered to be the first 
attempt to train CNNs with aesthetic data. They use an 
AlexNet-like architecture where the last fully connected layer 
is set to output two-dimensional probability for aesthetic bina-
ry classification. Both global image and local image patches 
are considered in their network input design, and the best 
model is obtained by stacking a global-column and a local-col-
umn CNN to form a double-column CNN, where the feature 
representation (the penultimate layers’ fc7 output) from each 
column is concatenated before the fc8 layer (classification 
layer). (Figure 7 shows a typical multicolumn CNN.) Standard 
stochastic gradient descent is used to train the network with 
softmax loss. Moreover, the authors further boost the perfor-
mance of the network by incorporating image style informa-
tion using a style-column or semantic-column CNN. Then the 
style-column CNN is used as the third input column, forming a 
three-column CNN with style/semantic information. Such a 
multicolumn CNN exploits the data from both the global and 
local image aspects.

Mai et al. [26] propose stacking five columns of Visual 
Geometry Group (VGG)-based networks using an adaptive 
spatial pooling layer. The adaptive spatial pooling layer is 

Convolution
Fully Connected

O
ut

pu
t

FIGURE 6. The architecture of a typical single-column CNN [49].
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FIGURE 7. A typical multicolumn CNN (a two-column architecture is 
shown as an example) [49]. 
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designed to allow arbitrary-sized images as input; specifi-
cally, it pools a fixed-length output, given different receptive 
field sizes, after the last convolution layer. By varying the 
kernel size of the adaptive pooling layer, each subnetwork 
effectively encodes multiscale image information. Moreover, 
to potentially exploit the aesthetic aspect of different image 
categories, a scene categorization CNN outputs a scene cate-
gory posterior for each input image. Then a final scene-aware 
aggregation layer processes such aesthetic features (category 
posterior and multiscale VGG features) and outputs the final 
classification label. The design of this multicolumn network 
has the advantage of being able to exploit the multiscale com-
position of an image in each subcolumn by adaptive pool-
ing, yet the multiscale VGG features may contain redundant 
or overlapping information, which could potentially lead to 
network overfitting.

Wang et al. [56] propose a multicolumn CNN model called 
brain-inspired deep networks (BDN) that shares similar 
structures with RAPID. In RAPID, a style attribute predic-
tion CNN is trained to predict 14 style attributes for input 
images. This attribute CNN is treated as one additional CNN 
column, which is then added to the parallel input pathways 
of a global image column and a local patch column. In BDN, 
14 different style CNNs are pretrained, and they are paral-
lel cascaded and used as the input to a final CNN for rating 
distribution prediction, where the aesthetic quality score of 
an image is subsequently inferred. The BDN model can be 
considered as an extended version of RAPID that exploits 
each of the aesthetic attributes using learned CNN features, 
hence enlarging the parameter space and learning capability 
of the overall network.

Zhang et al. [57] propose a two-column CNN for learning 
aesthetic feature representation. The first column CNN1^ h

takes image patches as input, and the second column CNN2^ h

takes a global image as input. Instead of randomly sampling 
image patches, given an input image, a weakly supervised 
learning algorithm is used to project a set of D  textual attri-
butes learned from image tags to highly responsive image 
regions. Such image regions in images are then fed to the 
input of CNN .1  This CNN1  contains four convolution lay-
ers and one fully connected layer fc5^ h at the bottom. Then 
a parallel group of D  output branches , { , , ..., }fc i D1 2i

6 !^ h

modeling each of the D  textual attributes are connected on 
top. The size of the feature maps of each of the fci

6  is of 128 
dimensions. A similar CNN2  takes a globally warped image 
as input, producing one more 128-dimension feature vector 

from fc .6  Hence, the final concatenated feature learned in 
this manner is ( )D128 1# +  dimensional. A probabilistic 
model containing four layers is trained for aesthetic qual-
ity classification.

Kong et al. [25] propose learning aesthetic features 
assisted by the pair-wise ranking of image pairs as well as 
the image attribute and content information. Specifically, a 
Siamese architecture that takes image pairs as input is adopt-
ed, where the two base networks of the Siamese architecture 
adopt the AlexNet configurations (the 1,000-class classifica-
tion layer fc8 from the AlexNet is removed). In the first stage, 
the base network is pretrained by fine-tuning from aesthetic 
data using the Euclidean loss regression layer instead of the 
softmax classification layer. After that, the Siamese network 
ranks the loss for every sampled image pair. Upon conver-
gence, the fine-tuned base network is used as a preliminary 
feature extractor. 

In the second stage, an attribute prediction branch is added 
to the base network to predict image attribute information. 
Then the base network continues to be fine-tuned in a mul-
titask manner by combining the rating regression Euclidean 
loss, attribute classification loss, and ranking loss. 

In the third stage, yet another content classification branch 
is added to the base network to predict a predefined set of cat-
egory labels. Upon convergence, the softmax output of the 
content category prediction is used as a weighting vector for 
weighting the scores produced by each feature branch (the 
aesthetic branch, attribute branch, and content branch). 

In the final stage, the base network and all of the added 
output branches are fine-tuned jointly, with the content clas-
sification branch frozen. Effectively, such aesthetic features are 
learned by considering both the attribute and category content 
information, and the final network produces image scores for 
each given image.

Features learned with multitask CNNs 
Kao et al. [58] propose three category-specific CNN architec-
tures: one for object, one for scene, and one for texture. The 
scene CNN takes a warped global image as input. It has five 
convolution layers and three fully connected layers, with the 
last fully connected layer producing a two-dimensional soft-
max classification. The object CNN takes both the warped 
global image and the detected salient region as input. It is a 
two-column CNN combining global composition and salient 
information. The texture CNN takes 16 randomly cropped 
patches as input. Category information is predicted using a 
three-class SVM classifier before feeding images to a catego-
ry-specific CNN. To alleviate the use of the SVM classifier, 
an alternative architecture with a warped global image as 
input is trained with a multitask approach, where the main 
task is aesthetic classification and the auxiliary task is scene 
category classification. (A typical multitask CNN is illustrat-
ed in Figure 8.) 

Kao et al. [59] propose learning image aesthetics in a mul-
titask manner. Specifically, AlexNet is used as the base net-
work. Then the 1,000-class fc8 layer is replaced by a two-class 

Convolution
Fully Connected

Task 1

Task 2

FIGURE 8. A typical multitask CNN consists of a main task (task 1) and 
multiple auxiliary tasks, only one of which is shown here (task 2) [49]. 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


91IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

aesthetic prediction layer and a 29-class semantic prediction 
layer. The loss balance between the aesthetic prediction task 
and the semantic prediction task is determined empirically. 
Moreover, another branch containing two fully connected layers 
for aesthetic prediction is added to the second convolution 
layer (conv2  of AlexNet). By linking an added gradient flow 
from the aesthetic task directly to the convolutional layers, 
one expects to learn better low-level convolutional features. 
This  strategy shares a similar spirit with the deeply super-
vised net [77].

Evaluation criteria and existing results
Different metrics for performance evaluation of image aes-
thetic assessment models are used across the literature: clas-
sification accuracy [20], [21], [23]–[25], [40], [43], [47], [49],
[50], [52]–[59], [63]–[65], [71], [73] reports the proportion of 
correctly classified results; precision-and-recall (PR) curve 
[37], [40], [41], [44], [66] considers the degree of relevance of 
the retrieved items and the retrieval rate of relevant items, 
which is also widely adopted in image search or retrieval 
applications; Euclidean distance or residual sum-of-squares 
error between the ground-truth score and aesthetic ratings 
[38], [70], [71], [74] and correlation ranking [25], [39], [46]
are used for performance evaluation in score regression 
frameworks; receiver-operating characteristic (ROC) curve 
[42], [48], [66], [71], [72] and area under the curve [45], [61],
[66] concerns the performance of binary classifiers when the 
discrimination threshold is varied; mean average precision 
[23], [24], [51], [55] is the average precision (AP) across mul-
tiple queries, which is usually used to summarize the PR 
curve for the given set of samples. These are among the typi-
cal metrics for evaluating model effectiveness for image aes-
thetic assessment (see Table  1 for a summary). Subjective 
evaluation by conducting human surveys is also seen in [62],

where human evaluators are asked to give subjective aesthet-
ic attribute ratings.

We find that it is not feasible to directly compare all 
methods, as different data sets and evaluation criteria are 
used across the literature. To this end, we try to summarize, 
respectively, the released results reported on the two stan-
dard data sets, namely the CUHK-PQ (Table 2) and AVA 
data sets (Table 3), and to present the results on other data 
sets in Table 4. To date, the AVA data set (standard partition) 
is considered to be the most challenging by the majority of 
the reviewed work.

The overall accuracy metric appears to be the most popular 
metric. It can be written as

Overall accuracy .
P N

TP TN=
+
+ (5)

This metric alone could be biased and far from ideal, as 
a naïve predictor that predicts all examples as positive would 
already reach about ( ) / ( ) %k k k14 0 14 6 70+ + =  classifica-
tion accuracy. To complement such a metric when evaluating 
models on imbalanced testing sets, an alternative balanced 
accuracy metric [78] can be adopted:

Balanced accuracy .
P

TP
N

TN
2
1

2
1= +` `j j (6)

Balanced accuracy equally considers the classification 
performance on different classes [78], [79]. While the over-
all accuracy in (5) offers an intuitive sense of correctness by 
reporting the proportion of correctly classified samples, the 
balanced accuracy in (6) combines the prevalence-indepen-
dent statistics of sensitivity and specificity. A low balanced 
accuracy will be observed if a given classifier tends to predict 
only the dominant class. For the naïve predictor mentioned 
above, the balanced accuracy would give a proper number 

Table 1. An overview of typical evaluation criteria.

Method Formula Remarks 

Overall accuracy P N
TP TN
+
+ Accounting for the proportion of correctly classified samples. 

Balanced accuracy P
TP

N
TN

2
1

2
1+ Averaging precision and true negative prediction for imbalanced distribution. 

PR curve ,p TP FP
TP r TP FN

TP=
+

=
+

Measuring the relationship between precision and recall. 

Euclidean distance ( )Y Yi i
i

2- t/ Measuring the difference between the ground-truth score and aesthetic ratings.
Y: ground-truth score, :Yt  predicted score. 

Correlation ranking 
( , )cov rg rg
rg rg

X Y

X Yv v
Measuring the statistical dependence between the ranking of aesthetic prediction and 
ground truth. rgX, rgY: rank variables, :v  standard deviation, cov: covariance.

ROC curve ,tpr TP FN
TP fpr FP TN

FP=
+

=
+

Measuring model performance change by true positive rate and false positive rate 
when the binary discrimination threshold is varied.

Mean AP ( ( ) ( ))
n

i i1 precision recall
i

n
#D/ The averaged AP values, based on precision and recall. 

precision(i ) is calculated among the first i predictions, :irecallD ^ h  change in recall.

TP: true positive, TN: true negative, P: total positive, N: total negative, FP: false positive, FN: false negative, tpr: true positive rate, fpr: false positive rate.
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indication of . ( / ) . ( / ) %k k k k0 5 14 14 0 5 0 6 50# #+ =  perfor-
mance on AVA.

In this regard, in the following sections where we discuss 
our findings on a proposed strong baseline, we report both 
overall classification accuracy and balanced accuracy to get a 
more reasonable measure of baseline performance.

Experiments on deep-learning settings
It is evident from Table 3 that deep learning-based approaches 
dominate the performance of image aesthetic assessment. 
The  effectiveness of learned deep features in this task has 

motivated us to take a step back to consider how a CNN 
works to understand the aesthetic quality of an image. It is 
worth noting that training a robust deep aesthetic scoring 
model is nontrivial, and often we found that the devil is in the 
details. To this end, we design a set of systematic experiments 
based on a baseline one-column CNN and a two-column 
CNN, and evaluate different settings from minibatch forma-
tion to complex multicolumn architecture. The results are 
reported on the widely used AVA data set.

We observe that by carefully training the CNN architec-
ture, the two-column CNN baseline reaches comparable or 

Table 2. The methods evaluated on the CUHK-PQ data set.

Method Data Set Metric Result Training–Testing Remarks 

Su et al. (2011) [72] CUHK-PQ Overall accuracy 92.06% 1,000 training, 3,000 testing

Marchesotti et al. (2011) [47] CUHK-PQ Overall accuracy 89.90% 50–50 split 

Zhang et al. (2014) [67] CUHK-PQ Overall accuracy 90.31% 50–50 split, 12,000 subset 

Dong et al. (2015) [50] CUHK-PQ Overall accuracy 91.93% 50–50 split 

Tian et al. (2015) [54] CUHK-PQ Overall accuracy 91.94% 50–50 split 

Zhang et al. (2016) [57] CUHK-PQ Overall accuracy 88.79% 50–50 split, 12,000 subset 

Wang et al. (2016) [53] CUHK-PQ Overall accuracy 92.59% 4:1:1 partition 

Lo et al. (2012) [66] CUHK-PQ Area under ROC curve 0.93 50–50 split 

Tang et al. (2013) [45] CUHK-PQ Area under ROC curve 0.9209 50–50 split 

Lv et al. (2016) [51] CUHK-PQ Mean AP 0.879 50–50 split 

Table 3. The methods evaluated on the AVA data set.

Method Data Set Metric Result Training–Testing Remarks

Marchesotti et al. (2013) [48] AVA ROC curve tpr: 0.7, fpr: 0.4 Standard partition 

AVA handcrafted features (2012) [49] AVA Overall accuracy 68.00% Standard partition 

Spatial pyramid pooling (SPP) (2015) [24] AVA Overall accuracy 72.85% Standard partition 

RAPID (full method) (2014) [23] AVA Overall accuracy 74.46% Standard partition 

Peng et al. (2016) [52] AVA Overall accuracy 74.50% Standard partition 

Kao et al. (2016) [58] AVA Overall accuracy 74.51% Standard partition 

RAPID (improved version) (2015) [55] AVA Overall accuracy 75.42% Standard partition 

DMA-net (2015) [24] AVA Overall accuracy 75.41% Standard partition 

Kao et al. (2016) [59] AVA Overall accuracy 76.15% Standard partition 

Wang et al. (2016) [53] AVA Overall accuracy 76.94% Standard partition 

Kong et al. (2016) [25] AVA Overall accuracy 77.33% Standard partition 

BDN (2016) [56] AVA Overall accuracy 78.08% Standard partition 

Zhang et al. (2014) [67] AVA Overall accuracy 83.24% 10% subset, 12.5k*2 

Dong et al. (2015) [50] AVA Overall accuracy 83.52% 10% subset, 19k*2 

Tian et al. (2016) [54] AVA Overall accuracy 80.38% 10% subset, 20k*2 

Wang et al. (2016) [53] AVA Overall accuracy 84.88% 10% subset, 25k*2 

Lv et al. (2016) [51] AVA Mean AP 0.611 10% subset, 20k*2 
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even better performance than state-of-the-art methods, and 
the one-column CNN baseline acquires the strong capability 
to suppress false-positive predictions while having competitive 
classification accuracy. We hope the experimental results will 
facilitate the design of future deep-learning models for image 
aesthetic assessment.

Formulation and the base CNN structure
The supervised CNN learning process involves a set of 
training data ,x y [ , ]i i i N1!" ,  from which a nonlinear mapping 
function :f X Y"  is learned through backpropagation [33]. 
Here, xi  is the input to the CNN and y Ti !  is its corre-
sponding ground-truth label. For the task of binary classifi-
cation, ,y 0 1i ! " ,  is the aesthetic label corresponding to 
image .xi  The convolutional operations in such a CNN can 
be expressed as

( ) ( * ( ) , ), , , ...,w bmaxF X F X k D0 1 2k k k k1 != +- " ,, (7)

where ( )F X X0 =  is the network input and D  is the depth of 
the convolutional layers. The operator * denotes the convolu-
tion operation. The operations in the Dl fully connected layers 
can be formulated in a similar manner. To learn the ( )D D+ l

network weights W using the standard backpropagation with 
stochastic gradient descent, we adopt the cross-entropy classi-
fication loss, which is formulated as

( ) { ( | ; )

( ) ( ( | ; )) ( )}

W W

W W

x

x

log

log

L
n

t p y t

t p y t

1

1 1
ti

n

i i

i i

1

z

=- =

+ - - = +

=

t

t

//
(8)

( | ; )
( )
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w
w

x
x

x
exp

exp
p y t t T

i
i i

t
t i

t
T

T

= =

!l

t / (9)

where { , }t 0 1T! =  is the ground truth. This formula-
tion is in accordance with prior successful model frame-
works, such as AlexNet [75] and VGG-16 [80], which are 
also adopted as the base network in some of our re   -
viewed approaches.

The original last fully connected layer of these two net-
works is for the 1,000-class ImageNet object recognition chal-
lenge. For aesthetic quality classification, a two-class aesthetic 
classification layer to produce a softmax predictor is needed 
[see Figure 9(a)]. Following typical CNN approaches, the input 
size is fixed to ,224 224 3# #  which is cropped from glob-
ally warped 256 256 3# #  images. Standard data augmen-
tation, such as mirroring, is performed. All of the baselines 
are implemented based on the Caffe package [81]. For clar-
ity of presentation in the following sections, we name all of 
our fine-tuned baselines Deep Aesthetic Net (DAN), with the 
corresponding suffix.

Training from scratch versus fine-tuning
Fine-tuning from a trained CNN has been proven in [36] and 
[83] to be an effective initialization approach. The RAPID base 
network [23] uses global image patches and trains a network 
structure from scratch that is similar to AlexNet. For a fair 
comparison of similar-depth networks, we first select AlexNet 
pretrained with the ILSVRC-2012 training set (1.2  million 
images) and fine-tune it with the AVA training partition. As 

Table 4. The methods evaluated on other data sets.

Method Data Set Metric Result 

Tong et al. (2004) [20] 29,540-image private set Overall accuracy 95.10% 

Datta et al. (2006) [21] 3,581-image private set Overall accuracy 75% 

Sun et al. (2009) [38] 600-image private set Euclidean distance 3.5135 

Wong et al. (2009) [63] 3,161-image private set Overall accuracy 79% 

Bhattacharya (2010, 2011) [43], [64] ~650-image private set Overall accuracy 86% 

Li et al. (2010) [70] 500-image private set Residual sum-of-squares error 2.38 

Wu et al. (2010) [65] 10,800-image private set from Flickr Overall accuracy ~83%

Dhar et al. (2011) [44] 16,000-image private set from DPChallenge PR curve –

Nishiyama et al. (2011) [41] 12,000-image private set from DPChallenge Overall accuracy 77.60% 

Lo et al. (2012) [42] 4,000-image private set ROC curve tpr: 0.6, fpr: 0.3 

Yeh et al. (2012) [46] 309-image private set Kendalls Tau-b measure 0.2812 

Aydin et al. (2015) [62] 955-image subset from DPChallenge.com Human survey –

Yin et al. (2012) [73] 13,000-image private set from Flickr Overall accuracy 81% 

Lienhard et al. (2015) [71] Human Face Scores 250-image data set Overall accuracy 86.50% 

Sun et al. (2015) [74] 1,000-image Chinese handwriting Euclidean distance –

Kong et al. (2016) [25] AADB data set Spearman ranking 0.6782 

Zhang et al. (2016) [57] PNE Overall accuracy 86.22% 
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shown in Table 5, fine-tuning from the vanilla AlexNet yields 
better performance than simply training the RAPID base net-
work from scratch. Moreover, the DAN model fine-tuned from 
VGG-16 [see Figure 9(a)] yields the best performance in both 
balanced accuracy and overall accuracy. It is worth pointing 
out that other more recent and deeper models, such as ResNet 
[84], Inception-ResNet [85], and PolyNet [86], could serve as 
pretrained models. Nevertheless, owing to the typically small 
size of aesthetic data sets, precautions need be taken during the 
fine-tuning process. Plausible methods include freezing some 
earlier layers to prevent overfitting [83].

Minibatch formation
Minibatch formation directly affects the gradient direction 
toward which stochastic gradient descent brings down the 
training loss in the learning process. We consider two types of 
minibatch formation and reveal the impact of this difference 
on image aesthetic assessment.

Random sampling
By randomly selecting examples for minibatches [87], [88],
we select from a distribution of the training partition. Since 
the number of positive examples in the AVA training partition 
is almost twice that of the negative examples [Figure 4(b)], 
models trained with such minibatches may bias toward pre-
dicting positives.

Balanced formation
Another approach is to enforce a balanced number of posi-
tives and negatives in each of the minibatches, i.e., for each 
iteration of backpropagation, the gradient is computed from a 
balanced number of positive examples and negative examples.

Table 6 compares the performance of these two strategies. 
We observe that although the model fine-tuned with randomly 
sampled minibatches reaches a higher overall accuracy, its per-
formance is inferior to the one fine-tuned with balanced mini-
batches, as evaluated using balanced accuracy. To keep track 
of both true-positive prediction rates and true-negative predic-
tion rates, balanced accuracy is adopted to measure the model 
robustness on the data imbalance issue. Network fine-tuning in 
the rest of the experiments is performed with balanced mini-
batches, unless otherwise specified.

Triplet pretraining and multitask learning
Apart from directly training using the given training data pairs 

, ,x y [ , ]i i i N1!" ,  one could utilize richer information inherent in 
the data or auxiliary sources to enhance the learning perfor-
mance. We discuss two popular approaches next.

Pretraining using triplets
The triplet loss is inspired by Dimensionality Reduction by 
Learning an Invariant Mapping [89] and large margin nearest 
neighbor [90]. It is widely used in many recent vision studies 
[79], [91]–[93] and aims to bring data of the same class closer 
while moving data of different classes further away. This loss 
is particularly suitable to our task; i.e., the absolute aesthetic 
score of an image is arguably subjective, but the general rela-
tionship that beautiful images are close to each other while the 
opposite images should be apart is obvious. 
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FIGURE 9. (a) The structure of the chosen base network for our systematic study on aesthetic quality classification. (b) The structure of the one-column 
CNN baseline with multitask learning [49]. 

Table 5. Training from scratch versus fine-tuning.

Method Balanced Accuracy Overall Accuracy

RAPID (global) [23] – 67.8 

DAN-1 
(fine-tuned from AlexNet)

68.0 71.3 

DAN-1 
(fine-tuned from VGG-16)

72.8 74.1 

Using a one-column CNN baseline (DAN-1) fine-tuned on AlexNet and VGG-16, 
both of which are pretrained on the ImageNet data set. The authors in [23] have 
not released detailed classification results. 

Table 6. The effects of minibatch formation. 

Minibatch Formation Balanced Accuracy Overall Accuracy

DAN-1 (randomly sampled) 70.39 77.65 

DAN-1 (balanced formation) 72.82 74.06 

Using a one-column CNN baseline (DAN-1) with VGG-16 as the base network.
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To enforce such a relationship in an aesthetic embedding, 
one needs to generate minibatches of triplets for deep feature 
learning, i.e., an anchor ,x a positive instance x ve+  of the same 
class, and a negative instance x ve-  of a different class. Fur-
thermore, we found it useful to constrain each image triplet 
to be selected from the same image category. In addition, we 
observed better performance by introducing triplet loss in the 
pretraining stage and continuing with conventional supervised 
learning on the triplet-pretrained model. Table 7 shows that the 
DAN model pretrained with triplets gives better performance. 

We further visualize some categories in the learned aesthetic 
embedding space in Figure 10. It is interesting to observe that 
the embedding learned with triplet loss demonstrates much 
better aesthetic grouping in comparison to that without the use 
of triplet loss.

Multitask learning with image category prediction
Can aesthetic prediction be facilitated provided that a model 
understand to which category the image belongs? Following 
the work in [94], where auxiliary information is used to 
regularize the learning of the main task, we investigate the 
potential benefits of using image categories as an auxiliary 
label in training the aesthetic quality classifier.

Specifically, given an image labeled with main task label 
,y where y 0= for low-quality images and y 1= for high-

quality ones, we provide an auxiliary label c C!  denoting 
one of the image categories, such as animals, landscape, 
portraits, and so forth. In total, we include 30 image catego-
ries. To learn a classifier for the auxiliary class, a new fully 
connected layer is attached to the fc7 of the vanilla VGG-16 
structure to predict a softmax probability for each category 
class. The modified one-column CNN baseline architec-
ture is shown in Figure 9(b). The loss function in (8) is now 
changed to

Table 7. Triplets pretraining and multitask learning.

Methods 
Balanced 
Accuracy

Overall 
Accuracy

DAN-1 72.82 74.06 

DAN-1 (triplet pretrained) 73.29 75.32

DAN-1 (multitask–aesthetic and category) 73.39 75.36 

DAN-1 (triplet pretrained + multitask) 73.59 74.42 

Using a one-column CNN baseline (DAN-1) with VGG-16 as the base network. 
Balanced minibatch formation is used. 

FIGURE 10. Aesthetic embeddings of AVA images (testing partition) learned by triplet loss, visualized using t-SNE [84]: (a) ordinary supervised learning without 
triplet pretraining and multitask learning, (b) triplet pretrained, and (c) combined triplet pretraining and multitask learning. t-SNE: t-distributed stochastic 
neighbor embedding.
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where { , }t 0 1c !  is the binary label corresponding to each 
auxiliary class c C!  and yaux

ct  is the auxiliary prediction from 
the network. Solving the above loss function, the DAN model 
performance from this multitask learning strategy is observed 
to have surpassed the previous one (Table 7). It is worth 
noting that the category annotation of the 
AVA-training partition is not complete, with 
about 25% of the images not having 
categories labeled. For those training 
instances without categories labeled, the 
auxiliary loss ( )WLaux c  due to missing 
labels is ignored.

Triplet pretraining + multitask learning
Combining triplet pretraining and multi-
task learning, the final one-column CNN 
baseline reaches a balanced accuracy of 
73.59% on the challenging task of aesthetic classification. 
The results for different fine-tuning strategies is summarized 
in Table 7.

Discussion
Note that it is nontrivial to boost the overall accuracy at the 
same time as we try not to overfit the baseline to a certain data 
distribution. Still, compared with other released results in 
Table 8, with careful training, a one-column CNN baseline 
yields a strong capability of rejecting false positives while 
attaining a reasonable overall classification accuracy. We show 
some qualitative classification results as follows.

Figures 11 and 12 show the qualitative results of aesthetic 
classification by the one-column CNN baseline, using DAN-1 
(triplet pretrained + multitask). Note that these examples are 
correctly classified neither by BDN [56] nor by DMA-net 
[24]. False-positive test examples (Figure 13) by the DAN-1 
baseline still show a somewhat high-quality image trend, with 
high color contrast or depth of field, while false-negative test-
ing examples (Figure 14) mostly reflect low image tones. Both 
quantitative and qualitative results suggest the importance of 
minibatch formation and fine-tuning strategies.

Multicolumn deep architecture
State-of-the-art approaches [23], [24], [55], [56] for image aes-
thetic classification typically adopt multicolumn CNNs 
(Figure 7) to enhance the learning capacity of the model. In 
particular, these approaches benefit from learning multiscale 
image information (e.g., global image versus local patches) or 
utilizing image semantic information (e.g., image styles). To 
incorporate insights from previous successful approaches, we 
prepared another two-column CNN baseline (DAN-2) (see 
Figure 15) with a focus on the more apparent approach of 

using local image patches as a parallel input column. Both 
[23] and [24] utilize CNNs trained with local image patches as 
alternative columns in their multibranch network, with perfor-
mance evaluated using overall accuracy. For fair comparison, 
we prepared local image patches of size 224 224 3# #

following [23] and [24], and we fine-tuned one DAN-1 model 
from the vanilla VGG-16 (ImageNet) with such local patches. 
Another branch is the original DAN-1 model, fine-tuned with 
globally warped input by triplet pretraining and multitask 
learning (see the section “Triplet Pretraining and Multitask 
Learning”). We performed separate experiments where mini-

batches of these local image patches were 
taken from either random sampling or the 
balanced formation.

As shown in Table 8, the DAN-1 model 
fine-tuned with local image patches per-
forms less well under the metric of bal-
anced accuracy compared to the original 
DAN-1 model fine-tuned with globally 
warped input in both random minibatch 
learning and balanced minibatch learning. 
We conjecture that local patches contain 

Table 8. A comparison of aesthetic quality classification between 
our proposed baselines and previous state-of-the-art methods 
on the canonical AVA testing partition.

Previous Work 
Balanced 
Accuracy

Overall 
Accuracy

AVA handcrafted features (2012) [49] – 68.00 

SPP (2015) [24] – 72.85 

RAPID (full method) (2014) [23] – 74.46 

Peng et al. (2016) [52] – 74.50 

Kao et al. (2016) [58] – 74.51 

RAPID (improved version) (2015) [55] 61.77 75.42 

DMA-net (2015) [24] 62.80 75.41 

Kao et al. (2016) [59] – 76.15 

Wang et al. (2016) [53] – 76.94 

Kong et al. (2016) [25] – 77.33 

Mai et al. (2016) [26] – 77.40 

BDN (2016) [56] 67.99 78.08 

Proposed Baseline Using Random Minibatches 

DAN-1 (VGG-16, AVA global warped input) 70.39 77.65 

DAN-1 (VGG-16, AVA local patches) 68.70 77.60 

Two-column DAN-2 69.45 78.72 

Proposed Baseline Using Balanced Minibatches

DAN-1 (VGG-16, AVA global warped input) 73.59 74.42 

DAN-1 (VGG-16, AVA local patches) 71.40 75.8 

Two-column DAN-2 73.51 75.96 

The authors of [23]–[26], [49], [52], [53], [55], [58], and [59] have not 
released detailed results.

The absolute aesthetic 
score of an image is 
arguably subjective, but 
the general relationship 
that beautiful images 
are close to each other 
while the opposite images 
should be apart is obvious.
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FIGURE 11. Some positive examples (high-quality images) that are wrongly classified by BDN and DMA-net but correctly classified by the DAN-1 
baseline [49].

FIGURE 12. Some negative examples (low-quality images) that are wrongly classified by BDN and DMA-net but correctly classified by the DAN-1 baseline [49].
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FIGURE 13. Some examples with a negative ground truth that are wrongly classified by the DAN-1 baseline. High color contrast or depth of field is 
observed in these testing cases [49].

FIGURE 14. Some examples with a positive ground truth that are wrongly classified by the DAN-1 baseline. Most of these images are of low image tones [49].
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no global and compositional information as compared to 
globally warped input. Nevertheless, such a drop in accuracy 
is not observed under the overall accuracy metric.

We next evaluated the two-column CNN baseline DAN-2 
using the DAN-1 model fine-tuned with 
local image patches and the one fine-tuned 
with globally warped input. We have two 
variants here, depending on whether we 
employ random or balanced minibatches. 
We observed that DAN-2 trained with ran-
dom minibatches attains the highest overall 
accuracy on the AVA standard testing par-
tition compared to the previous state-of-the-art methods (see 
Table 8). (Some other works [50], [54], [95]–[97] on AVA data 
sets use only a small subset of images for evaluation, which is 
not directly comparable to the canonical state of the art on the 
AVA standard partition; see Table 3). 

Interestingly, we observed the balanced accuracy of the two 
variants of DAN-2 degrades when compared to the respective 
DAN-1 trained on globally warped input. This observation 
raises the question of whether local patches necessarily ben-
efit the performance of image aesthetic assessment. We ana-
lyzed the cropped local patches more carefully and found that 
these patches were inherently ambiguous. Thus, the model 

trained with such inputs could easily become biased toward 
predicting local patch input to be of high quality, which also 
explains the performance differences in the two complemen-
tary evaluation metrics.

Model depth and layer-wise effectiveness
Determining the aesthetics of images from 
different categories takes varying photo-
graphic rules. We understand that it is not 
easy to determine some image genres’ aes-
thetic quality in general. It would be inter-
esting to perform a layer-by-layer analysis 

and track to what degree a deep model has learned image aes-
thetics in its hierarchical structure. We conducted this experi-
ment using the one-column CNN baseline DAN-1 (triplet 
pretrained + multitask). We used layer features generated by 
this baseline model and trained an SVM classifier to perform 
aesthetic classification on the AVA testing images and then 
evaluated the performance of different layer features across 
different image categories.

Features extracted from the convolutional layers of the model 
were aggregated into a convolutional Fisher representation, 
as done in [98]. Specifically, to extract features from the 
dth convolutional layer, note that the output feature maps of 
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FIGURE 15. The structure of the two-column CNN baseline with multitask learning [49].

Can aesthetic prediction 
be facilitated provided 
that a model understand 
to which category the 
image belongs?
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this dth layer are of size ,w h K# #  where w h# is the size 
of each of the K  output maps. Denote Mk as the kth output 
map. Specifically, a point M ,i j

k  in output map Mk  is computed 
from a local patch region L  of the input image I  using the 
forward propagation. By aligning all such points into a vector 

, , ..., , ..., ,v M M M M, , , ,L i j i j i j
k

i j
K1 2= 6 @  we obtained the feature repre-

sentation of the local patch region .L  A dictionary codebook 
was created using GMM from all of the ,vL L Itrain!" ,  and an FV 
representation is subsequently computed using this codebook 
to describe an input image. The obtained convolutional 
Fisher representation is used for training SVM classifiers.

We compared features from layer 
conv3_1 to fc7 of the DAN-1 baseline and 
reported selected results that we find inter-
esting in Figure 16. We obtained the fol-
lowing results:
1) Model depth is important: More abstract 

aesthetic representation can be learned 
in deeper layers. The performance of 
aesthetic assessment can generally be 
benefited from model depth. This obser-
vation aligns with that in general 
object recognition tasks.

2) Different categories demand different model depths: The 
aesthetic classification accuracy on images belonging to 
the black and white category are generally lower than the 
accuracy on images in the landscape category across all of 
the layer features. Sample classification results are shown 
in confusion matrix ordering (see Figure 17). High-quality 
black-and-white images show subtle details that should be 
considered when assessing their aesthetic level, whereas 

high-quality landscape images differentiate from those 
low-quality ones in a more apparent way. Similar observa-
tions are found, e.g., in the humorous and rural categories. 
The observation explains why it could be inherently dif-
ficult for the baseline model to judge whether images 
from some specific categories are aesthetically pleasing or 
not, revealing yet another challenge in the assessment of 
image aesthetics.

From generic aesthetics 
to user-specific taste
Individual users may hold different opinions on the aesthetic 
quality of any single image. One may consider that all of the 
images in Figure 13 are of high quality to some extent, even 
though the average scores by the data set annotators say other-
wise. Coping with individual aesthetic bias is a challenging 
problem. We may follow the idea behind transfer learning [83]
and directly model the aesthetic preference of individual users 
by transferring the learned aesthetic features to fitting personal 
taste. In particular, we consider that the DAN-1 baseline net-
work has already captured a sense of generic aesthetics in the 
aforementioned learning process; so to adapt to personal aes-
thetic preferences, one can include additional data sources for 
positive training samples that are user specific, such as the 
user’s personal photographic album or the collection of photos 
that the user “liked” on social media. As such, our proposed 
baseline can be further fine-tuned with personal-taste data for 
individual users and become a personalized aesthetic classifier.

Image aesthetic manipulation
A task closely related to image aesthetic assessment is image 
aesthetics manipulation, the aim of which is to improve the aes-
thetic quality of an image. A full review of the techniques of 
image aesthetics manipulation in the literature is beyond the 
scope of this article. Still, we make an attempt to connect image 
aesthetic assessment to a broader topic surrounding image aes-

thetics by focusing on one of the major aes-
thetic enhancement operations, i.e.,
automatic image cropping.

Aesthetics-based image cropping
Image cropping improves the aesthetic 
composition of an image by removing 
undesired regions, increasing its aesthetic 
value. A majority of cropping schemes in 
the literature can be divided into three 
main approaches. Attention/saliency-based 

approaches [99]–[101] typically extract the primary subject 
region in the scene of interest according to attention scores or 
saliency maps as the image crops. Aesthetics-based approach-
es [102]–[104] assess the attractiveness of some proposed 
candidate crop windows with low-level image features and 
rules of photographic composition. However, simple hand-
crafted features are not robust for modeling the huge aesthetic 
space. The state-of-the-art method is the change-based 
approach proposed by Yan et al. [105], [106], which aims to 
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FIGURE 16. A layer-by-layer analysis showing the difficulties of 
understanding aesthetics across different categories. From the learned 
feature hierarchy and the classification results, we observe that image 
aesthetics in the landscape and rural categories can be judged reasonably
by the proposed baselines, yet the more ambiguous humorous and 
black-and-white images are inherently difficult for the model to handle 
(see also Figure 17).

DAN-2 trained with random 
minibatches attains the 
highest overall accuracy 
on the AVA standard 
testing partition compared 
to the previous state-of-
the-art methods.
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FIGURE 17. A layer-by-layer analysis of classification results using the best layer features on (a) black-and-white category images and (b) landscape 
category images [49].
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account for what is removed and changed by cropping itself 
and trying to incorporate the influence of the starting compo-
sition of the initial image in the ending composition of the 
cropped image. This approach produces reasonable crop 
windows, but the time cost of producing an 
image crop is prohibitively expensive 
because of the time spent in evaluating 
large numbers of crop candidates.

Automatic thumbnail generation is also 
closely related to automatic image cropping. 
Huang et al. [107] target visual represen-
tativeness and foreground recognizability 
when cropping and resizing an image to generate its thumb-
nail. Chen et al. [108] aim at extracting the most visually 
important region as the image crop. Nevertheless, the aesthet-
ics aspects of cropping are not taken into prime consideration 
in these approaches.

In the next section, we show that high-quality image crops 
can already be produced from the last convolutional layer of 
the aesthetic classification CNN. Optionally, this convolutional 
response can be utilized as the input to a cropping regression 
layer for learning more precise cropping windows from addi-
tional crop data.

Plausible formulations based on deep models
Fine-tuning a CNN model for the task of aesthetic quality 
classification (see the “Experiments on Deep-Learning 
Settings” section) can be considered as a learning process in 
which the fine-tuned model tries to understand the metric of 
image aesthetics. We hypothesize that the same metric is 
applicable to the task of automatic image cropping. We 
discuss two possible variants as follows.

DAN-1 (original) without cropping data 
Without utilizing additional image cropping data, a CNN such 
as the one-column CNN baseline DAN-1 can be tweaked to 

produce image crops with minor modifications, removing the 
fully connected layers. That leaves us with a neural network 
that is fully convolutional where the input can be of arbi-
trary size, as shown in Figure 18(b). The output of the last con-

volutional layer of the modified model is 
14 14 512# #  dimensional, where the 512 
feature maps contain the responses/activa-
tions corresponding to the input. To gener-
ate the final image crop, we take an average 
of the 512 feature maps and resize it to the 
input image size. After that, a binary mask 
is generated by suppressing the feature map 

values below a threshold. The output crop window is produced 
by taking a rectangle convex hull from the largest connected 
region of this binary mask.

DAN-1 (regression) with cropping data
Alternatively, to include additional image cropping data 

, ,x Y [ , ]
crop crop
i i i N1!" ,  where  [ , , , ],width heightY x ycrop

i =  we 
follow insights in [111] and add a window regression layer to 
learn a mapping from the convolutional response [see 
Figure 18(c)]. As such, we can predict a more precise cropping 
window by learning this extended regressor from such crop 
data by a Euclidean loss function:

( ) ,WL
n

Y Y1 crop crop
i i

i

n
2

1

= -
=

t/ (12)

where Y crop
i
t  is the predicted crop window for input image 

.xcrop
i

To learn the regression parameters for this additional layer, 
the image cropping data set by Yan et al. [105] is used for 
further fine-tuning. Images in the data set are labeled with 
ground-truth crops by professional photographers. Follow-
ing the evaluation criteria in [105], a fivefold cross-validation 
approach is adopted for evaluating the model performance on 

4,096 4,096

2

224 × 224

112 × 112

56 × 56

28 × 28

14 × 14

(a)

(b)

Coordinates
{x, y, Width, Height}

(c)

1,024

4

FIGURE 18. (a) The originally proposed one-column CNN baseline. (b) A tweaked CNN made by removing all of the fully connected layers. (c) A modified 
CNN incorporating a crop-regression layer to learn cropping coordinates [49].

High-quality image crops 
can already be produced 
from the last convolutional 
layer of the aesthetic 
classification CNN.
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all images in the data set. Note that there are only a few hundred 
images in each training fold; hence, a direct fine-tuning by sim-
ply warping the few hundred images of input to 224 224 3# #

could be vulnerable to overfitting. To this end, we fix the 
weights in the convolutional layers of the DAN-1 (regres-
sion) network and learn only the weights for the crop window 
regression layers. Also, a systematic augmentation approach 
is adopted as follows. First, the input images are randomly jit-
tered for a few pixels ( ),5#  and mirroring is performed ( ).2#
Second, we warp the images to have their longer side equal to 
224, hence keeping their aspect ratio. We further downscale 
the images using a scale of %, %, %, %C 50 60 80 90! " , ( ).4#
The downscaled images are then padded back to 224 × 224 
from ,top left top right, bottom left, bottom right- - - -" ,

( ).4#  Finally, we have direct input warping regardless of the 
aspect ratio ( ).1#  In this manner, one training instance is 
augmented to ( )5 2 4 4 1 170# # # + =  input instances. We 
fine-tune this modified CNN baseline with a learning rate of 

,e10 3-  and the fine-tuning process converges at around the 
second epoch.

Aesthetics-based image cropping
As shown in Figure 19, we observe that the convolutional 
response of the vanilla VGG-16 (ImageNet) for object recog-
nition typically finds a precise focus of the salient object in 
view, while the one-column CNN baseline, i.e., the DAN-1 
(original) for aesthetic quality classification, outputs an aes-

thetically oriented salient region where both the object in view 
and its object composition are revealed. Compared to the 
cropping performance using the vanilla VGG-16, image crops 
from our DAN-1 (original) baseline already have the capabili-
ty of removing unwanted regions while preserving the 
aesthetically salient part in view (see Figure 19). The modified 
CNN, i.e., the DAN-1 (regression), further incorporates aes-
thetic composition information in its crop window regression 
layer, which serves to refine the crop coordinates for more 
precise crop generation.

Following the evaluation settings in [105] and [106], we 
use the average overlap ratio and average boundary dis-
placement error to quantify the performance of automatic 
image cropping. A higher overlap and a lower displace-
ment between the generated crop and the correspond-
ing ground truth indicate a more precise crop predictor. 
As shown in Table 9, directly using the DAN-1 (original) 
baseline responses to construct image crops already gains 
competitive cropping performance, while fine-tuning the 
DAN-1 (regression) with cropping data further boosts the 
performance and even surpasses the previous state-of-the-
art method [105] on this data set, especially in terms of the 
boundary displacement error. Last but not least, it is worth 
noting that the CNN-based cropping approach takes merely 
~0.2 s for generating an output image crop on a graphics 
processing unit and ~2 s on a central processing unit (com-
pared to ~11 s on CPU in [105]). 

(a) (b) (c) (d) (e) (f) (g)

FIGURE 19. The layer response differences of the last convolutional layer. The images in each row correspond to (a) the input image with ground-truth 
crop, (b) the feature response of the vanilla VGG, (c) the image crops obtained via the feature responses of the vanilla VGG, (d) the feature response 
of the DAN-1 (original) model, (e) the image crops obtained via the DAN-1 (original) model, (f) the four-coordinates window estimated by the DAN-1 
(regression) network, and (g) the cropped image generated by the DAN-1 (regression) [107]. 
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Conclusion and potential directions
Models with competitive performance on image aesthetic 
assessment have been seen in the literature, yet the state of 
research in this field is far from saturated. Challenging issues 
include the ground-truth ambiguity due to neutral image aes-
thetics and how to effectively learn category-specific image 
aesthetics from the limited amount of auxiliary data informa-
tion. Image aesthetic assessment can also benefit from an even 
larger volume of data, with richer annotations, where every 
single image is labeled by more users with diverse back-
grounds. A large and more diverse data set will facilitate the 
learning of future models and potentially allow more 
meaningful statistics to be captured. 

In this work, we systematically review major attempts on 
image aesthetic assessment in the literature and further pro-
pose an alternative baseline to investigate the challenging 
problem of understanding image aesthetics. We also discuss 
an extension of image aesthetic assessment to the application 
of automatic image cropping by adapting the learned aesthetic-
classification CNN for the task of aesthetics-based image crop-
ping. We hope that this survey can serve as a comprehensive 
reference source and inspire future research in understanding 
image aesthetics and fostering many potential applications.
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W
ith recent advances in machine-learning techniques for 
automatic speech analysis (ASA)—the computerized 
extraction of information from speech signals—there is 
a greater need for high-quality, diverse, and very large 

amounts of data. Such data could be game-changing in terms of 
ASA system accuracy and robustness, enabling the extraction 
of feature representations or the learning of model parameters 
immune to confounding factors, such as acoustic variations, 
unrelated to the task at hand. However, many current ASA data 
sets do not meet the desired properties. Instead, they are often 
recorded under less than ideal conditions, with the correspond-
ing labels sparse or unreliable. 

In addressing these issues, this article provides a com-
prehensive overview of state-of-the-art ASA data exploita-
tion techniques that have been developed to take advantage 
of knowledge gained from related but unlabeled or different 
data sources to improve the performance of a particular ASA 

task of interest. We first identify three primary data chal-
lenges: sparse, unreliable, and unmatched data. We then review 
the corresponding approaches. The conditions, advantages, 
and drawbacks of using a range of differing data-mining 
techniques are also discussed. Finally, other data chal-
lenges and potential future research directions in this field 
are presented.

Introduction to automatic speech analysis
ASA has long been regarded as one of the most vital areas in 
achieving natural and friendly human–machine interactions 
[1], [2]. The goal of ASA is to empower machines to automati-
cally discern information of interest from human speech, e.g., 
identifying what is being said (the linguistic content), who is 
saying it (the speaker’s identity), and how they are saying it 
(the paralinguistic content). More formally, typical ASA tasks 
in the literature include, but are not limited to,
■ automatic speech recognition (ASR), which aims to extract 

linguistic content (e.g., words) by recognizing and translat-
ing spoken speech
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■ speaker identification/verification, which targets obtaining 
the speaker’s identity from speech signals

■ computational paralinguistics, which attempts to distill 
nonlinguistic information mainly concerning the speaker’s 
short-term states (e.g., emotions), medium-term states 
(e.g., health condition and attitude), and long-term traits 
(e.g., personality, age, and gender) from spoken speech.
A serious obstacle to the broad application of ASA is the 

lack of sufficiently labeled data in terms of both quantity and 
quality. For example, many available com-
putational paralinguistics corpora contain 
only a few hours of audio data at most [3].
Similarly for ASR, many of the world’s lan-
guages are in a low-resource setting, where 
the electronic speech resources and linguis-
tic expertise are lacking. According to a 
2010 United Nations Educational, Scientif-
ic, and Cultural Organization report [4], approximately 2,500 
languages are in danger of becoming extinct. In this scenario, 
it is exceptionally difficult to obtain a large-scale amount of 
transcribed speech data to perform reliable ASR.

The requirement for large-scale labeled data is not new 
in machine leaning. Prevailing paradigms are often conduct-
ed in a supervised manner, and a substantial increase in the 
amount of available training data usually brings encouraging 
performance improvements [5]. Because of the advancement 
of deep-learning technologies [6], [7], this need for data has 
become more compelling than ever. Deep-learning models 
are often designed with millions of parameters, and, if trained 
with insufficient amounts of data, are vulnerable to being 
trapped in a locally optimized minimum, resulting in overfit-
ting to the training data [6]. When sufficiently trained, how-
ever, deep models reach unprecedented levels of performance. 
For example, Amodei et al. [7] utilized approximately 12,000 
and 9,000 h of speech data to model English and Mandarin 
ASR systems, respectively, by employing deep-learning mod-
els with more than 35 million trainable parameters, achieving 
a performance breakthrough that exceeds the capability of 
even human perception. Sufficient and reliably labeled data, 
when available, provide the opportunity to train robust ASA 
models whose resulting recognition is largely invariant in the 
face of the abundance of acoustic variations naturally present 
in speech data.

Opportunities
Traditionally, tasks such as data collection and annotation have 
been performed by small groups of experts in a laboratory set-
ting. This conventional work paradigm is often tedious, time 
consuming, and costly. However, the ongoing information and 
communication technologies revolution and related technolo-
gies, such as the Internet of Things (IoT) and cloud computing, 
are providing us with opportunities to exploit larger amounts of 
speech data in more effective ways than ever before.

The IoT, as a global infrastructure of the information soci-
ety, is expected to offer advanced services (i.e., data collection) 
by interconnecting a wide variety of contemporary recording 

devices, such as smartphones, wearable devices, and tablets. 
Furthermore, as these devices often have microphones, social 
media apps, and Internet connectivity, they can be considered 
distributed sensors or entryways for speech collection and pro-
cessing. Thus, the advance of Internet technologies and the 
ubiquity of smart devices can drastically reduce the cost and 
time associated with collecting and processing speech data.

Cloud computing, or Internet-based computing, is expected 
to provide an on-demand computing resource. Thus, it gives 

an opportunity to store, access, and analyze 
the volume of speech data generated by the 
distributed devices mentioned previously. 
Cloud computing has been shown not only 
to minimize the costs associated with an 
ever-increasing demand for greater compu-
tational resources but also to reduce the cost 
associated with infrastructure maintenance 

and user access. Motivated by these advantages, most major 
speech technology providers have already shifted their prima-
ry research and application attention from embedded systems 
to cloud computing platforms.

Generalized automatic speech analysis: 
Problem statement and notation
The aforementioned technologies provide great potential to 
generate and process a large amount of speech data. However, 
there are three main challenges—data sparsity, unreliability, 
and nonmatching (Figure 1)—that limit the dissemination of 
these data in research and industry. Before formally defining 
these challenges, we first overview the generalized mathemat-
ical problem statement and notation commonly used in both 
ASA and throughout the remainder of this article.

First, let us define a domain { , ( )}P XD X=  that com-
prises a feature space X  and a marginal probability distri-
bution P(X), where X denotes a set of feature vectors, i.e., 

{ , , } ;xX x Xn1 f !=  while P(X) indicates the distribution 
of X in .X  In the case that each feature vector x  consists of 
d attributes, i.e., { , , },x x x Xd1 f=  is a d-dimensional space. 
The most commonly used feature space X  for ASA is argu-
ably the Mel-frequency cepstral coefficients (MFCCs) that 
are extracted via filtering a speech frame by a bank of nonlin-
ear bandpass filters (Mel filters) whose frequency response 
is based on the cochlea of the human auditory system [8].
Other exemplary feature spaces include the i-vector repre-
sentation often used for speaker identification/verification [9],
and mixed brute force feature representations, such as the 
broadly used ComParE feature set, which contains 6,373 
static features (i.e., statistical functionals including mean 
and variance) of low-level descriptor (LLD) contours (i.e., 
MFCCs) often used in tasks such as recognition of emotion 
from speech [10].

We further define a generic ASA task , ( )fF Y $= " , that 
consists of a label space Y  and a predictive function (·)f  (or 
a conditional distribution ( | )P Y X ). The goal of this task is to 
build an effective and robust predictive function (·)f  that is 
capable of learning transformation rules from the feature space 

A serious obstacle to the 
broad application of ASA 
is the lack of sufficiently 
labeled data in terms of 
both quantity and quality.
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X  to the label space ,Y  i.e., .X Y
( )f $
"  Then, when given a 

test sample, it maps this feature vector x*  into a specific label 
,y*  i.e.,

( ),y f x* *= (1)

where x X* !  and .y Y* !  As an example, when performing 
ASR, y Y* !  denotes a phoneme or a word; (·)f  is then 
trained to predict a phoneme or a word from, e.g., MFCCs. In 
speaker identification/verification, y Y* !  denotes a speaker 
identity; the (·)f  is trained to predict speaker identity, e.g., from 
i-vectors. Similarly, in speech emotion recognition, y Y* !

denotes an emotional state, and (·)f  is trained to recognize the 
emotional state, e.g., from high-dimensional statistical features.

Given a domain D  and a task ,F  we define D to denote a 
speech database. As the majority of available pattern recognition 
approaches are supervised paradigms [the input and expected 
output for (·)f  are provided during training]. A database is normal-
ly given by two parts: the feature vectors { , , }X x x Xn1 f !=

and the corresponding labels { , , } .Y y y Yn1 f !=  However, in 
real life, the labels yi are often only partially provided (or not even 
provided) because of the difficulty of labeling. In this case, we 
denote the labeled data partition as {( , ), , ( , )}L y yx xn n1 1 l lf=

and the unlabeled data partition as { , , },U x xn1 uf=  where 
nl and nu are the total number of labeled and unlabeled in -
stances, respectively. In this sense,

,D L U,= (2)

and .n n nl u= +

Furthermore, we define the domain for the target task to be 
the target domain .T  The data in this domain might be insuf-
ficient for training an effective and robust prediction function 

( ) .f $  For example, when performing ASR on a low-resource 
language, T  could be a language such as Assamese, Bengali, 
Haitian, Lao, Pashto, Tamil, Tagalog, Xitsonga, or Zulu [11]. In 
this case, we define other domains from which data could be 
leveraged for the target task as source domains .S  For exam-
ple, for low-resource ASR, one S  could be a high-resource lan-
guage such as English or Mandarin [11]). According to (2), then

,D L UT TT ,= (3)

and

.D L US SS ,= (4)

In this article, we use the term data interchangeably with 
instance, turn, record, utterance, segment, sample, or exam-
ple. Similarly, the term annotator is interchangeable with 
evaluator, transcriber, labeler, or translator; and the word 
annotation is used to denote any labeling task, i.e., transcrip-
tion for ASR or labeling the emotion or other speaker states 
and traits associated with an utterance.
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FIGURE 1. A taxonomic overview of the three main data challenges associated with ASA and their potential solutions as discussed in this article. Note that 
N(Y ) denotes no or yes, which indicates the possible combination of techniques. TL: transfer learning; AL: active learning; SSL: semisupervised learning; 
CL: cooperative learning; URL: unsupervised representation learning.
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Data challenges
This section offers a detailed overview into the data sparsity, 
data unreliability, and unmatched data challenges. Techniques 
to adequately cope with these challenges will play an essen-
tial role in the development of the next generation of reliable 
ASA systems.

Sparse data challenge
While there is an abundance of raw speech data, the corre-
sponding annotations needed for many ASA tasks are often 
scarce (i.e., ,LT 4!  but ,n Nl %  where 4 denotes the empty 
set and N is a required number), or nonex-
istent (i.e., ).LT 4=  For example, outside 
of speech recognition tasks on a handful of 
widely used languages (e.g., English and 
Mandarin), the labels needed to conduct 
ASR on other languages are particularly 
scarce (see the Intelligence Advanced 
Research Projects Activity [IARPA] Babel 
project [11]). Similarly, most databases 
available for computational paralinguistics 
tasks, such as emotion recognition and per-
sonality analysis, may contain 5 h of labeled data at most [12],
[13], which is insufficient for building highly robust models.

However, thanks to the pervasive sensing opportuni-
ties offered by smart devices and social media, the gather-
ing of speech data has become a somewhat easier task. For 
example, it is reported that some 500 h of video content is 
being uploaded to the video-sharing website YouTube every 
minute [14]. Nonetheless, labeling these data demands huge 
amounts of expert manual labor, which is regarded as being 
prohibitively expensive and time consuming. Taking speech 
transcription as an example, it can take up to approximate-
ly 6 h to accurately transcribe 1 h of speech at an average 
price of US$150/h [15], [16]. While a few Internet giants 
(e.g., Amazon, Google, and Microsoft) have the capability of 
obtaining many thousands of annotated speech data for 
ASA tasks, such as speech recognition, these labeled data 
are, however, rarely made freely available to interested 
research groups.

If DT  does not contain any labeled data, i.e., ,LT 4=  a 
naïve solution is manual annotation. An efficient way to do this 
is using a crowdsourcing platform, which is an Internet-based 
system that utilizes a large group of individuals to perform a 
common service. Alternatively, spoken-term detection/discov-
ery can be considered as a means of detecting predefined pat-
terns in the data or discovering unknown patterns there.

If DT  contains some labeled data, i.e., ,LT 4!  it is then 
necessary to assess whether or not the available labeled data 
are sufficient in terms of quantity and diversity to develop a 
robust model. If the data are found to be insufficient, data aug-
mentation approaches, which seek to enrich the number and 
variety of existing labeled speech data, might be an appropri-
ate option. A further option is the use of speech synthesis to 
automatically generate data with predefined labels. If a large 
scale of unlabeled data are available, i.e., ,UT 4!  alterna-

tive solutions could include unsupervised representation 
learning (URL), semisupervised learning (SSL), active learn-
ing (AL), and cooperative learning (CL). These techniques 
are becoming prominent paradigms to efficiently leverage 
massive unlabeled data via a small amount of labeled seed 
data [17].

Unreliable data challenge
This is the scenario in which the total amount of speech 
data is large, but the data reliability is low. Data sets col-
lected in real-life settings, and even many collected in con-

trolled laboratory settings, are susceptible 
to a range of problems, such as distortion 
by environmental noises, recording devic-
es, or interfering speakers [18]. Besides, 
the associated annotations may be unreli-
able because of mistakes or high uncer-
tainty among multiple annotators [18].
Furthermore, in many cases, the distribu-
tion of collected speech data can be high-
ly unbalanced over the classes of interest. 
All these factors can give rise to noisy 

and unreliable data, leading to nontrivial difficulties when 
training models [18], [19].

Additionally, the reliability of the labeled data should 
be evaluated in terms of properties such as acoustic qual-
ity, annotation certainty, and data balance degree. Poor 
data quality has frequently shown its detrimental effect on 
system performance. In this scenario, data selection should 
be considered for eliminating the noisy, unrelated, and 
unreliably labeled data or data balancing for balancing the 
data distribution.

Unmatched data challenge
This is the situation where data from a target domain T  are 
not sufficient or reliable enough to train a robust model for 
a task of interest. However, as previously discussed, there 
are often data from a source domain S  that are easy to 
obtain and somehow related to the target data. This moti-
vates researchers to explore leveraging source domain data 
to aid the target ASA task. For example, one of the goals of 
the IARPA Babel project is to utilize the available and 
large-scale speech data in, e.g., the English language 
for speech recognition in low-resource languages. Never-
theless, in many real-world applications, the source and tar-
get domains are often highly unmatched in respect to 
acoustic signal conditions, speakers, tasks, or even recording 
devices [20]. These mismatches lead to a marked perfor-
mance degradation of the analysis in such models in real-life 
settings [20], [21].

Mathematically, the source domain can differ from 
the target domain (i.e., )S T!  in terms of 1) modalities, 
i.e., X XS T!  (this case is considered out of the scope of this 
article, which is focused only on speech), 2) marginal prob-
ability distributions, i.e., ( ) ( ),P X P XTS !  3) label spaces, i.e., 

,Y YS T!  and/or 4) conditional probability distributions, i.e., 

Thanks to the pervasive 
sensing opportunities 
offered by smart devices 
and social media, the 
gathering of speech data 
has become a somewhat 
easier task.
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( ) ( ) .P Y X P Y XS T TS !  A more in-depth explanation of these 
discrepancies can be found in [21].

An idealized solution to mitigate these differences is to 
obtain access to all possible variations by acquiring data on 
a massive scale. However, it is either practically impossible to 
anticipate all variations or such data would require exhaustive 
annotation. In such unmatched scenarios, transfer learning 
(TL) [21] is regarded to be a highly promising technique to take 
advantage of the knowledge from the source 
domain for the target domain.

Finally, it is important to note that all 
of the aforementioned techniques for each 
challenge can be performed either individu-
ally or jointly. This is illustrated in Figure 1,
where possible combinations that can occur 
are indicated through the use of the N(Y) 
symbol, which denotes no or yes. For exam-
ple, crowdsourcing can be used no matter 
whether the labeled target data are available 
or not. Likewise, AL can be executed on either unlabeled tar-
get data or unlabeled source data. All of the key techniques 
mentioned in this section are reviewed in detail in the follow-
ing sections.

Contributions of this article
The literature shows a few surveys relevant to the topic of this 
article. Deng et al. [22] offered a comprehensive overview of 
machine-learning paradigms for speech recognition systems. 
Wang et al. [20] provided a TL survey for speech and lan-
guage processing, drawing the conclusion that TL has the 
potential to overcome the data-mismatch challenge. None of 
these surveys, however, perform a complete analysis of the 
sparse, unreliable, and unmatched data challenges or provide 
a comprehensive overview of the corresponding approaches.

Extending from a previous abstract [12], this article is the 
first to offer a thorough and in-depth overview of the most 
prominent and state-of-the-art techniques in this direction, 
including crowdsourcing for efficient data labeling; spoken-
term detection/discovery to facilitate learning when there are 
no labeled data; data augmentation, speech synthesis, URL, 
SSL, AL, and CL to enable learning when only a limited 
amount of labeled resources are available; data selection and 
balancing techniques to facilitate learning from unreliable or 
unbalanced resources; and TL and data agglomeration to learn 
unmatched resources.

Rather than simply enumerating a list of associated papers 
and techniques, the focus of this article is on the analysis of 
the various data conditions and on how to better explore data 
under the different conditions. In doing this, ASA research-
ers and developers, new and established, can profit from 
the approaches introduced and discussed for the aforemen-
tioned applications.

Efficient data labeling: Crowdsourcing
The most straightforward solution to address a shortage of 
labeled data is to organize a group of workers (i.e., annotators) 

to perform the required annotations. By doing this, we create a 
new or additional labeled data set ,Lcs and then ASA models 
can learn from the increased labeled data set .L L Lcs,=l

Manual annotation is, however, costly in terms of time and 
money. Therefore, strategies to reduce these costs are of 
particular importance.

Crowdsourcing is one method to gather the needed data in 
a cost-efficient manner. In crowdsourcing, human intelligence 

tasks (HITs) such as data annotation are dis-
tributed via the Internet to a large number 
of potential workers (annotators). The users 
perform the tasks for usually low compensa-
tion. The assumption behind crowdsourcing 
is that the use of nonexperts is less onerous 
and more rapid than the use of experts. Fur-
thermore, the aggregated opinion of many 
nonexperts has been shown to approach the 
quality of the opinion offered by compara-
tively fewer experts [15], [23], [24].

Popular crowdsourcing platforms include Amazon Mechani-
cal Turk (MTurk), CrowdFlower, and Crowdee. MTurk is 
likely the most popular crowdsourcing platform for ASA-
related tasks. While MTurk provides access to a larger number 
of potential annotators, it is considered relatively expensive 
when compared to other platforms [15]. The CrowdFlower 
platform is steadily increasing its market share. When com-
pared to Mturk, it provides customers with a steady number 
of contributors and has a higher degree of quality control. 
An emerging trend, as implemented by Crowdee, involves 
moving the platform from the web to a mobile platform. 
Participants associated with this platform have the poten-
tial to undertake a task at any time and place.

Another emerging trend for crowdsourcing is the gamifica-
tion of the service, which is used to introduce a sense of fun 
into what are often simple and recurring tasks. This is also 
interesting from an ethical point of view, aiming to improve 
working conditions of crowd workers. The iHEARu-play 
platform, for example, offers annotators a chance to perform 
labeling, or prompted recording tasks, in return for scores and 
prizes, which are computed on the correctness and workload 
of their annotations [25].

Generally, the procedure of crowdsourcing speech resourc-
es can be broken into four stages. The first step is to define the 
project parameters, such as an appropriate platform, quality 
control strategy, budget, and time scale. The second step is to 
prepare the data. The third step is to distribute tasks. This gen-
erally involves splitting the whole task into many small units 
and then assigning each unit to several annotators. The final 
step is to aggregate and evaluate the resources (e.g., speech 
data or annotations).

For speech processing, crowdsourcing has been widely 
employed for a range of tasks, including speech data col-
lection/acquisition, speech annotation, speech perception, 
assessment of speech synthesis, and dialog system evalua-
tion [15], [26]. With particular respect to speech annotation, 
many studies have shown crowdsourcing’s benefit in terms 

Another emerging trend 
for crowdsourcing is 
the gamification of the 
service, which is used to 
introduce a sense of fun 
into what are often simple 
and recurring tasks.
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of both increased transcription quality and decreased costs. 
For example, in [27], the authors proposed a two-stage ap -
proach to transcribe speech via a crowdsourcing platform (i.e., 
microworkers). Specifically, the utterances that were labeled 
with the lowest agreement level among annotators would be 
selected for a second-stage translation. In 
doing this, more than 250,000 utterances 
(156 h) of spoken dialog from real callers 
were translated, being of comparable quan-
tity to the same corpora labeled by experts 
but at considerably less cost. Similar work 
has been presented for the transcription of 
meeting data [24], addressing the business 
name queries from a publicly accessible 
telephone directory service [16], and label-
ing the emotional state of speakers [28]. All of these works 
show that crowdsourcing is a relatively affordable and effi-
cient way to address the task of speech annotation, compared 
with conventional methods.

Despite the advantages, controlling the quality of the labels 
is important to ensure they are as reliable as those given by 
experts. In this regard, quality control measures are required. 
A range of quality control mechanisms have been proposed in 
the literature, which can be grouped into one of the following 
five categories:
1) Worker filter: This mechanism evaluates annotation 

quality through the use of control questions (a question 
with a restricted answer set) and filters out inappropri-
ate annotations.

2) Intraworker: The reliability of an annotator can be evalu-
ated by the consistency of the response to the same ques-
tion asked multiple times. Alternatively, this could be 
established by a self-confidence value chosen by the 
annotator [27].

3) Interworker: Normally, a gold standard is calculated via 
techniques such as majority voting, using responses from a 
multitude of annotators. The quality of an individual anno-
tator can then be evaluated by calculating the response dis-
similarity to the gold standard. This method is, of course, 
susceptible to the risk that the majority results are wrong.

4) Gold-standard comparisons: This is a particular case of the 
interworker mechanism, where the gold standard is pro-
vided by trustworthy experts. This mechanism has been 
shown to be effective in eliminating intentionally mali-
cious annotators, albeit at the cost of expert intervention 
[27], [29].

5) Third-party review: Here, quality control is carried out by a 
third party, e.g., another independent crowdsourcing task 
[30], or by the output of an intelligent system [16], [27].
However, this requires extra quality evaluation or computa-
tional costs.

Learning from no labeled resources
This section discusses paradigms suitable for the extreme oper-
ating scenario where no labeled data are available, i.e., ,L 4=

and .UD = In this scenario, techniques such as spoken-term 

detection and spoken-term discovery, or related methods of 
targeted detection of speech-related information and phenom-
ena of interest and according discovery in the sense of novelty 
detection can be used to identify salient information (i.e., pat-
terns) directly from an unlabeled data set without any manual 

intervention. The premise of these tech-
niques can be thought of as analogous to 
infant language acquisition, i.e., the learn-
ing of linguistic information from the raw 
speech of an unknown language during the 
first few years of an infant’s life. The two 
techniques (i.e., targeted detection and 
novelty discovery) are distinguished by 
whether, e.g., spoken terms have been pre-
viously identified (spoken-term detection) 

or not (spoken-term discovery). Next, we focus on terms; 
however, similar methods can be applied to retrieve speech 
related to other phenomena of interest.

Spoken-term detection
The goal of spoken-term detection is to retrieve a set of occur-
rences from a speech repository for given acoustic queries or 
terms (normally spoken words or phrases). Compared with 
conventional speech recognition approaches, spoken-term 
detection offers the capability to detect corresponding patterns 
from speech in the absence of any text information.

The predominant spoken-term detection methods involve 
template-based acoustic models and typically rely on dynam-
ic time warping (DTW) [31]. Specifically, they search for the 
predefined terms in a lattice. In a no-labeled-resource sce-
nario, DTW has been shown to be an effective way to find 
the matched patterns [31]. Nevertheless, DTW alignment 
requires substantial computational resources to compare seg-
ments [32], [33]. Tackling this runtime-scalability problem 
is an active and ongoing research direction [32], [34]. Key 
approaches proposed in the literature include information 
retrieval-based DTW [35]. This approach first estimates the 
regions of an utterance that are more likely to contain the spo-
ken query and then uses a standard DTW to find the exact 
start and end times of each pattern. This approach was further 
extended in [34] via the introduction of a hierarchical k-means 
clustering, contributing to a substantial speedup when com-
pared with classic DTW.

An alternative approach is to embed the arbitrary-length 
segments into fixed-dimensional spaces [32]. This technique 
greatly reduces the computational load without any perfor-
mance compromise. Following this idea, the novel frame-
work of audio Word2Vec was recently proposed [36]. Audio 
Word2Vec uses a sequence-to-sequence autoencoder [a neural 
network (NN) commonly used as an unsupervised learn-
ing algorithm; for more details, see the “Deep Belief Net-
works and Stacked Autoencoders” section] to represent any 
arbitrary-length audio segment as a fixed-length vector. 
This framework was determined to outperform conventional 
DTW-based approaches at substantially lower computational 
requirements [36].

Crowdsourcing is a 
relatively affordable and 
efficient way to address 
the task of speech 
annotation, compared with 
conventional methods.
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Spoken-term discovery
Spoken-term discovery, also known as spoken-term indexing,
is the task of searching potentially large, untranscribed speech 
collections for recurring words and phrases without using any 
language-specific resources other than the collection itself 
[37]. Specifically, spoken-term discovery 
differs from spoken-term detection in that 
spoken-term discovery systems automati-
cally find an inventory of lexical units 
(words or phrases) without being given any 
user-specific terms. Furthermore, spoken-
term discovery is distinct from conven-
tional ASR systems, where a lexicon is 
always specified.

Typically, spoken-term discovery con-
sists of three steps [13]: 1) pairwise match-
ing, 2) clustering, and 3) parsing. The aim 
of pairwise matching is to identify pairs of segments, taken 
from unique continuous spoken utterances, that have high 
acoustic similarity. Similar to spoken-term detection, the dom-
inant techniques in this step are based on DTW.

The discovered segments are then clustered into classes 
(indices) that correspond to a set of likely words and phrases 
present in the data. Typically, an abstract adjacency graph 
[31] is used to represent the relationship between all of the 
segmented pairs. The nodes of this graph correspond to the 
locations in time of the segments, and its edges correspond to 
the measures of similarity between those time indexes. A pre-
defined threshold is then applied to the edge weights, which 
results in clusters of highly connected nodes. While the edge 
thresholding is regarded as the de facto clustering method 
for spoken-term discovery, there is a range of fast and effi-
cient algorithms for automatic graphic clustering that could 
be applied. For example, the work in [31] utilized the New-
man algorithm, which first removes all edges and then merges 
potential groups together in a greedy fashion by adding edges 
back to the graph.

Finally, the discovered speech segments are used to parse 
the utterances. The identification of the segment (term) 
boundaries is challenging; the alignment segments are often 
overlapping in a particular node, and the ending times of 
their respective time intervals can differ. A straightforward 
solution for this issue is to calculate the average start and 
ending times for all of the alignment segments belonging to 
one node [31].

While considerable advances have been made for fully 
unsupervised speech processing, the majority of studies are 
limited to small-size data sets. Studies have shown that perfor-
mance is dramatically degraded when facing a large data set 
[26] or a large variety of speakers [38]. However, this approach 
is still quite attractive for many low-resource ASA tasks, e.g., 
early language acquisition.

Learning from limited labeled resources
Rather than starting with a completely unlabeled data set, we 
are often in the better situation of having a limited number of 

labeled resources, i.e., some few and expensive labeled 
speech data exist ,L 4!  while ,n Nl %  where N  denotes an 
opportune number of annotations. In this scenario, a range of 
other techniques besides the aforementioned no-labeled-
resource methods can be utilized. These are generally imple-

mented in one of two ways: 1) increasing 
the size and diversity of the existing 
labeled data by means of manually modi-
fying the speech variations (i.e., data aug-
mentation) or artificially generating new 
speech with predefined labels (i.e., speech 
synthesis) or 2) the efficient leveraging of 
information gained from big unlabeled 
data, through a priori knowledge of the 
labeled data. Typical techniques here 
include URL, SSL, AL, and CL. In the fol-
lowing text, each of these techniques is 

discussed in detail, with key contributions from the literature 
summarized in Table 1.

Data augmentation
Data augmentation artificially generates more data by trans-
forming existing speech samples using certain transforma-
tions that preserve the original class labels and speech 
content. By taking this approach, an augmented data set 
Laug is obtained from the original data set L , i.e., 

( ),AUGL Laug =  which is then added to an updated labeled 
data set .L L Laug,=l  The popularity of data augmentation 
is indeed highly relevant to the ongoing development of 
deep learning, the success of which strongly depends on 
having large amounts of training data. Many studies have 
reported that training on data of limited quantity and variety 
leads to a failure of deep-learning systems owing to factors 
such as overfitting [6].

Variations in speech data are strongly influenced by numer-
ous factors, such as the speaker’s age, gender, and cultural back-
ground, and even the content of the background noise. Data 
augmentation techniques, through a series of transformations 
(perturbations), allow us to artificially increase both the quan-
tity and variations present in some training data, consequently 
improving the generalizability of the classifiers trained on 
this data. Conventional data augmentation approaches mainly 
involve artificially adding noise of various types, including 
convolutional noise, and levels to the original training speech 
for training a noise-robust acoustic model in multiple acoustic 
conditions [39].

Recently, research efforts have focused on using more com-
plex perturbation approaches, such as vocal tract length per-
turbation (VTLP) [40], or stochastic feature mapping (SFM) 
[41]. In VTLP, an alternate replica of an utterance is created by 
distorting its spectrum [40]. First, Mel-filter banks are applied 
over the spectrum. Then, the center frequencies ( f ) of all of the 
filter banks are mapped to new frequencies ( )f l  by employing 
a warping procedure:

( ),f f·z a=l (5)

Data augmentation 
artificially generates more 
data by transforming 
existing speech 
samples using certain 
transformations that 
preserve the original class 
labels and speech content.
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Table 1. Selected data-exploitation studies on the limited labeled speech resource. 

Publications Types Approaches Models Applications Databases and Languages 

Weng et al. 2014 [39] DAU Adding noise Recurrent DNN ASR WSJ0 (En) 

Amodei et al. 2015 [7] DAU Adding noise CNN, DNN, CTC ASR WSJ0 (En), Switchboard (En), Fisher 
(En), Baidu (En, Ma), LibrisSpeech (En)

Jaitly and Hinton 2013 [40] DAU VTLP DNN, CNN ASR TIMIT (En) 

Cui et al. 2015 [41] DAU VTLP, SFM DNN, CNN ASR, KWS IARPA Babel program (As, Ha) 

Tüske et al. 2014 [42] DAU VTLP BN-MLP ASR, KWS IARPA Babel program (five lang.) 

Ko et al. 2015 [43] DAU Tempo-/speed based Time Delay NN ASR Switchboard (En), Gale database 
(Ma), LibriSpeech (En), Tedlium (En)

Peddinti et al. 2015 [44] DAU Volume based Time Delay NN ASR Switchboard (En) 

Milde and Biemann 2015 [45] DAU Pitch based CNN Eating condition 
classification 

iHEARu-EAT corpus (En) 

Schuller et al. 2012 [46] SS Waveform-based SVM ER Two synthesized + eight human 
corpora 

Gales et al. 2009 [47] SS Parameter-based SVM, HMM ASR WSJ Corpus (En) 

Dahl et al. 2012 [51] URL DBNs DBNs ASR Business Search Dataset (En) 

Seide et al. 2011 [64] URL DBNs DBNs ASR Switchboard-I (En) 

Deng et al. 2010 [54] URL SAEs and DBNs SAEs and DBNs Speech coding TIMIT (En) 

Mohamed et al. 2012 [65] URL DBNs DBNs ASR TIMIT (En) 

Lei et al. 2014 [66] URL DNNs DNNs Speaker recognition NIST SRE‘12 (En) 

Liu et al. 2014 [67] URL DBNs DBNs Speaker identification NIST 2005 SRE (En) 

Stuhlsatz 2011 [68] URL DNNs DNNs ER Nine emotional corpora 

Sánchez-Gutiérrez et al.
2014 [69] 

URL DBNs DBNs ER Spanish emotional speech 
database (Sp) 

Kim et al. 2013 [70] URL DBNs DBNs Audiovisual ER IEMOCAP (En) 

Hau and Chen 2011 [57] URL Deep CNNs Deep CNNs Speaker/gender 
identification
Phone classification 

TIMIT (En) 

Lee et al. 2009 [58] URL Convolutional DBNs Convolutional 
DBNs 

Speaker/gender 
identification
Phone/music 
classification 

TIMIT (En), music data 

Kemp and Waibel 1999 [71] SSL Self-training GMM–HMM ASR View4You broadcast news database 
(Ge)

Wessel and Ney 2005 [72] SSL Self-training HMM ASR BROADCAST NEWS96/7 corpora 
(En) 

Fazakis et al. 2015 [73] SSL Self-training NB, SVM, LR Speaker identification CHAINS Corpus (En) 

Hsiao et al. 2013 [74] SSL Self-training MLP KWS IARPA Babel Program (Tu, Vi) 

Thomas et al. 2013 [75] SSL Self-training DNN ASR Callhome Corpora (En, Ge, Sp) 

Zhang et al. 2013 [76] SSL Cotraining SVM Emotion/sleeping/
age/gender 
classification 

Six emotional corpora 

Cui et al. 2012 [77] SSL Multiview learning RDT, HMM ASR Broadcast News corpus (En) 

Liu and Kirchhoff 2016 [78] SSL Graph-based 
learning

DNN ASR Switchboard (En), DARPA RM (En) 

Riccardi and Hakkani-Tür 
2005 [79]

AL Uncertainty sampling HMM ASR “How May I Help You?” database (En) 

Varadarajan et al. 2009 [80] AL Uncertainty sampling HMM ASR Directory assistance data (En) 

Fraga-Silva et al. 2015 [81] AL Uncertainty sampling GMM–HMM ASR, KWS IARPA Babel Program (six languages) 

(continued)
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where ,a  the wrapping factor, is randomly chosen from 
[ . , . ]0 9 1 1 . The results presented in [40] indicate that, in 
terms of the phone error rate, deep networks trained on a 
VTLP-augmented version of a small database can outper-
form the deep networks trained on the original data set. 
Based on that work, a deterministic perturbation (i.e., a
changes in the range of warping factors with a fixed 
step) rather than a random perturbation was proposed and 
investigated [42].

SFM, inspired by voice conversion paradigms, seeks to 
utilize the acoustic-feature-space relationship among speak-
ers when augmenting a data set [41]. Specifically, it augments 
training utterances by statistically converting one speaker’s 
speech data to another’s using

,·x x M=l (6)

where M  is a transformation matrix of the feature spaces 
between two speakers. The experimental results given in [41]
show that SFM offers improved performance over VTLP on 
both ASR and keyword spotting (KWS) tasks.

Other data augmentation approaches include tempo-based, 
speed-based, and volume-based perturbations [43]. Tempo-
based perturbation modifies the speech tempo while retaining 
the pitch and the spectral envelope. Speed-based perturbation 
varies the speech speed by resampling, whereas volume-based 
perturbation changes the amplitude of signals.

While data augmentation approaches have frequently been 
effective in ASR tasks [7], [44], this has not proved to be as 
much the case in other ASA tasks, particularly in computational 
paralinguistics [45]. A potential reason for this might be that the 
detection of speaker states and traits (e.g., emotion, age, and gen-
der) is more sensitive to changes in speech variation. Therefore, 
training on inappropriately transformed speech would lead to a 
worse model. Emotion, for example, is known to be related to the 
speech tempo; speech with faster tempo is inclined to be recog-
nized as higher arousal in emotion recognition, so changing the 
associated speech tempo from fast to slow would potentially lead 
to badly labeled training data.

Continued research efforts being undertaken to distin-
guish features that are task specific or task invariant could 
help facilitate the application of data augmentation to other 
speech analysis tasks. In addition, most recent applications of 
data augmentation are performed for deep learning [7]. The 
effectiveness of these techniques on shallow discriminative or 
generative models is yet to be established.

Speech synthesis
Similar to data augmentation, the speech synthesis approach 
aims to synthesize additional labeled data, i.e., ( ),L SS Lsyn =

such that the new labeled data set Ll  is updated by 
.L L Lsyn,=l  Theoretically, speech synthesis can produce an 

infinite amount of labeled data via altering speech content or 
modifying the parameters of a speech synthesizer. However, as 
the parameters of the synthesizers have a limited range, the 
simulated speech data often face the problem of limited varia-
tions. This can consequently result in the overfitting issue when 
training models. Combining the synthesized speech data with 
natural instances has been shown to help minimize this overfit-
ting issue [46]. For emotion recognition in speech, it has been 
shown that systems trained on synthesized speech (the test data 
was natural speech) can deliver competitive performance when 
compared to equivalent systems trained on natural speech [46].
In this article, two synthesizers rendering emotional speech—
Emofilt and Mbrola—were utilized to artificially generate 
speech colored with predefined emotions [46].

Rather than directly synthesizing waveforms, an alternative 
is generating parameterized speech that can be used directly 
for training a discriminative classifier. Gales et al. [47] used 
a hidden Markov model (HMM)-based statistical synthesis to 
generate missing words in a training set, when building word-
based support vector machines (SVMs) for ASR. The results 
presented indicate that this HMM-based synthesis approach 
was able to yield gains over the baseline. Inspired by the suc-
cess of deep learning, an emerging research trend is to use NNs 
rather than HMMs to generate speech samples [48], which may 
also mature in terms of the variation of synthesized speaker 
states and traits.

Table 1. Selected data-exploitation studies on the limited labeled speech resource. 

Publications Types Approaches Models Applications Databases and Languages 

Hamanaka et al. 2010 [82] AL Query by committee GMM–HMM ASR Corpus of Spontaneous Japanese (Ja) 

Zhang and Schuller 2012 [83] AL Meta query SVM ER FAU AEC (Ge) 

Zhang et al. 2015 [84] AL Meta query SVM ER FAU AEC (Ge) 

Riccardi and Hakkani-Tür 
2003 [85] 

CL Confidence score HMM ASR “How May I Help You?” database (En) 

Yu et al. 2010 [86] CL Confidence score HMM ASR Broadcast Conv. and News corpora (Ma) 

Zhang et al. 2015 [17] CL Confidence score SVM ER FAU AEC (Ge), SUSAS (En) 

Yu et al. 2010 [87] CL Global-entropy based HMM ASR Directory assistance data (En) 

BN: Bayes network; CTC: connectionist temporal classification; NB: naive Bayes; LR: logistic regression; RDT: randomized decision making; DAU: data augmentation; SS: speech 
synthesis; ER: emotion recognition; As/Da/En/Fr/Ge/Ha/Ja/Ma/Sp/Tu/Vi/Xi/Zu: Assamese/Danish/English/French/German/Haitian Creole/Japanese/Mandarin/Spanish/
Turkish/Vietnamese/Xitsonga/Zulu. 

(continued )
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Unsupervised representation learning
In contrast to data augmentation and speech synthesis, URL 
techniques attempt to leverage massive unlabeled data, rather 
than sparsely labeled data. URL is closely related to the pre-
training process of deep learning, which aims to learn the 
underlying representations xl embedded in speech signals via 
multiple unsupervised transformations, i.e., ( ),URLx x!l

where .D L Ux ,! =  To train a recognition model for a spe-
cific task, the pretrained model is then updated in a supervised 
manner via a small amount of labeled data. This step is gener-
ally referred to as fine-tuning or discriminative learning.

A typical model structure for URL is 
often composed of multiple processing lay-
ers of NNs for linear and nonlinear trans-
formations (Figure 2). To efficiently train 
such a DNN, Hinton and Salakhutdinov [49]
introduced a greedy layer-wise unsuper-
vised algorithm to initialize multiple-layer 
feedforward NNs. Since then, this training 
algorithm has been frequently shown to have 
a powerful capability to capture representa-
tive features via massive unlabeled data, and 
has obtained tremendous success in a variety of applications, 
particularly in the context of ASA [7], [50], [51]. The remainder 
of this section introduces several of the most important deep 
architectures for URL, including deep belief networks (DBNs), 
stacked autoencoders (SAEs), convolutional NNs (CNNs), and 
recurrent NNs (RNNs).

Deep belief networks and stacked autoencoders
Two of the most established deep-learning architectures are 
DBNs and SAEs. These topologies are formed by stacking 
multiple layers of restricted Boltzmann machines (RBMs) or 

feedforward autoencoders, respectively. The unsupervised pre-
training of these architectures is done one layer at a time.

For SAEs, each layer is trained with an encoder ( )h $  and 
a decoder ( )g $  by minimizing the reconstruction error at its 
input :x

( ( )) .g h x x. (7)

The output of the encoder ( )h x  forms an alternative represen-
tation of the input x  and is fed into the successive layer as 
input. This procedure is repeated layer-by-layer until all pre-

defined layers are initialized. The training 
of the stacked layers in this manner allows 
a deep network to incrementally learn a 
more robust representation when compared 
to training the whole network, in ensemble, 
from a random initialization of weights. For 
further insights into the advantages of pre-
training with autoencoders and RBMs, see 
[52]. This observation is particularly true 
for stacked denoising autoencoders [53],
extensions of SAEs where the initial input 

x  is partially corrupted into another version xu  by means of 
stochastic mapping, i.e., ~ ( | ).qx x xdu u  The robustness of the 
high-level representations formed using this technique is 
improved when compared to the aforementioned SAE [53].

An early attempt at applying deep-learning technologies 
to learn speech representations was proposed by Deng et al. 
[54], where the authors utilized DBNs and deep SAEs to com-
press (represent) speech directly from spectrograms. When 
compared with the traditional compression approach of vector 
quantization, this technique showed a much lower log-spec-
tral distortion over the entire frequency range of wide-band 
speech. Expanding on the work of this article,  DBNs have 
been extensively tested as an acoustic modeling paradigm for 
speech recognition and have shown encouraging performance 
in comparison with the conventional Gaussian mixture model 
(GMM) and HMM-based acoustic models for ASR [51]. For an 
overview of deep URL models for ASR and the corresponding 
performance gains, the reader is referred to both [6] and [50].
Inspired by these achievements, deep URL techniques have 
started to become the dominant approach in almost all areas 
of speech processing.

Convolutional neural network
Another deep architecture currently exciting great interest is 
the CNN [55], [56]. CNNs are a biologically inspired variant 
of the multilayer perception (MLP) originally developed for 
visual perception tasks [55]. Typically, they consist of one or 
more convolutional layers (often with a subsampling layer), 
followed by one or more fully connected layers.

CNNs are normally trained in a supervised manner. How-
ever, unsupervised training approaches are gaining in popular-
ity. Inspired by the unsupervised learning algorithm for DBNs, 
Hau and Chen [57] constructed a deep architecture using 
a CNN trained in an unsupervised manner as an alternative 
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FIGURE 2. An illustration of typical deep URL. Usually, each layer of the 
network is individually trained in an unsupervised manner; this allows the 
network to incrementally learn a more robust representation than the one 
learned by training the network as a whole. 

In contrast to data 
augmentation and speech 
synthesis, URL techniques 
attempt to leverage 
massive unlabeled data, 
rather than sparsely 
labeled data.
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building block to retrieve effective hierarchical speech repre-
sentations. Specifically, the authors utilized an unsupervised 
predictive sparse decomposition algorithm to train the weights 
of the encoder and decoder [57].

Furthermore, a combination structure of CNNs and DBNs 
was proposed in [58], in which the authors constructed convo-
lutional DBNs (CDBNs) with convolutional RBMs (CRBMs) 
as the building blocks. The CRBM is an extension of the 
conventional RBM to a convolutional setting. The weights 
between the hidden units and the visible units are shared 
among all locations in the hidden layers [59]. By leveraging a 
large amount of unlabeled data, the authors demonstrated that 
the learned hierarchical CDBN representations are competi-
tive with conventional features (e.g., MFCCs) when evaluated 
across multiple audio classification tasks.

Long short-term memory recurrent neural networks
Unlike the aforementioned NN architectures, RNNs allow 
cyclical connections, which consequently endow the network 
with the capability of accessing previously processed infor-
mation (i.e., context sensitivity). An advanced version of this 
paradigm, the long short-term memory (LSTM)–RNN [60],
has recently attracted a large amount of attention. An LSTM 
unit contains one input, one output, and one forget gate to 
control the memory cell, which enable it to store and access 
information over a long temporal range. Therefore, the 
LSTM–RNN combination has a powerful capability for 
sequence learning.

In utilizing the advantages associated with LSTM–RNNs, 
Srivastava et al. [61] recently proposed and explored an unsu-
pervised sequence-to-sequence learning paradigm where the 
LSTM–RNNs are constructed as an encoder–decoder. By 
doing this, the system efficiently learns the underlying repre-
sentations of video sequences for future frame prediction or 
sequence reconstruction. This model has been further investi-
gated by Chung et al. [36] for audio segment representations, 
where the authors demonstrated its effectiveness for spoken-
term detection when compared with classic DTW. More 
recently, the gated recurrent unit has emerged as a computa-
tionally simpler alternative to the LSTM unit [62].

Overall, deep unsupervised learning paradigms have seem-
ingly great potential for learning useful representations of 
large-scale unlabeled speech data. Nevertheless, in most cases, 
it is necessary to implement additional supervised training, 
such as fine-tuning, to ameliorate the system for a specific 
application [51], [63]; therefore, a small amount of labeled data 
is often additionally required to produce state-of-the-art per-
formance.

Semisupervised learning
Unlike URL, which aims to distill representative features 
from unlabeled speech, SSL is designed to enhance recogni-
tion models. Given a seed set of labeled data, SSL exploits 
information from a large set of unlabeled data in an efficient 
manner with minimal intervention from human annotators. 
SSL methods are generally distinguished as being conducted 

in either an inductive or transductive manner [88]. The 
primary discrepancy between them lies in whether the distri-
bution information of the unlabeled data is utilized for their 
own prediction.

Inductive approaches require the construction of a classi-
fication model f based on a priori knowledge of labeled data. 
The predictive model f is then used for predicting the unla-
beled data, no matter whether they are presented in an online 
(afterward) or offline (beforehand) manner. Hence, inductive 
approaches are also known as a supervised learning + addi-
tional unlabeled data paradigm. Mathematically, this can be 
expressed as

{( , ), , , } , { , , , } .y l n f f y u n1 1xl l
l

u
u7 7f f= = (8)

Once the automatically predicted annotations have been 
obtained from the unlabeled data set ,Lssl

)  the labeled training 
set is updated, i.e., .L L Lssl,= )l

In contrast, transductive approaches do not need to prebuild 
a classification model f but instead perform predictions direct-
ly on the unlabeled data by exploiting the joint probability dis-
tributions of labeled and unlabeled data sets. In this technique, 
the unlabeled data set should be available beforehand. When 
new samples arrive, the transductive algorithms have to be 
rerun, which consequently increases the computational load. 
Hence, the transductive approaches are also referred to as the 
unsupervised learning + additional labeled data paradigm. 
That is,

{( , ), , , } { , , , } { , , , }.y l n u n y u n1 1 1x xl l
l

u
u

u
u7,f f f= = =

(9)

Note that both the inductive and transductive approaches can 
be jointly deployed, as in  transductive SVMs in which unla-
beled data are also considered when determining the hyper-
plane [89].

The ASA literature is dominated by inductive SSL 
approaches. This is possibly due to inductive approaches 
being more flexible to the availability format of unlabeled 
data (i.e., online or off line). Among the inductive SSL 
approaches proposed, self-training (i.e., self-teaching) is 
arguably the most representative and has been widely and 
efficiently used for ASR [71], [72], emotion recognition 
[90], and speaker identification [73]. (In the context of 
ASR, SSL is often referred to as unsupervised learning or 
unsupervised training.)

A typical self-training paradigm is based on prediction 
uncertainty. That is, those samples { }x i

ul  recognized with high 
confidence C are picked up and combined into a selected sub-
set S, and those { }x j

u  with low confidence remain in the unla-
beled data set U:

( ) ( ) .C Cx x
\

u

S

u

U Sx xu u
$

6 6! !

l
l

(10)

The selected data set S  (together with their pseudolabels) is 
then combined with the initial training set L  to form a new 
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data set ,L L Lssl,= )l^ h  which is sequentially employed to 
refine the previous model and retest the remaining unlabeled 
data. This process is repeated several times to incrementally 
upgrade the initial model.

Self-training is simple and can be easily applied to 
an existing model. However, it is open to the risk of error 
accumulation, which is introduced by the selection of mis-
classified data in early learning iterations. Commonly used 
techniques to mitigate such a detrimental effect include 
1) using an additional development partition to determine the 
stopping point of learning, 2) using generalized expectation 
maximization to assign weights to the automatically labeled 
data based on the prediction confidence [74], and 3) retest-
ing previously selected data for subsequent reevaluations and 
selections, such that the mislabeled data in previous iterations 
are possibly corrected in future iterations with an improved 
model [91].

Another commonly used inductive SSL paradigm in ASA 
is cotraining. Compared with self-training, cotraining attempts 
to exploit the mutual information between two learners (trained 
on different views or feature domains X1  and ).X2  That is, 
each learner uses its own predictions to teach not only itself, 
but also the other learner [92].

Successful cotraining relies on two assumptions: suffi-
ciency and conditional independence [92]. Sufficiency infers 
that each view is sufficient for classification on its own, i.e., 
the two hypotheses :f X Y1 1 7  and :f X Y2 2 7  are good 
enough for recognition. Conditional independence denotes 
that the views are conditionally independent, given the class 
label, i.e., ( ) ( ) ( ) .P y P y P yx x xi i i1 2!  Although these two 
assumptions are restrictive, the work presented in [76] shows 
the capability of cotraining for retrieving emotional infor-
mation in unlabeled data via separating the acoustic feature 
set into two pseudo views (i.e., not completely conditional 
independence) in the speech domain. Similar verification of 
cotraining has also been reported for other computational 
paralinguistics tasks [76]. Additionally, a more general 
framework called multiview learning requires less restric-
tion in terms of conditional independence than cotraining 
and has been successfully applied in speech recognition 
by using several types of acoustic features and randomized 
decision trees [77].

More recently, SSL research in ASA has started to explore 
the advantages of deep-learning techniques [75], [93]. A typi-
cal implementation is ASR for a low-resource language [75],
[93]. First, an initial DNN is trained in an unsupervised manner 
using multilingual data to learn the generalized representa-
tion of speech. Next, this model is fine-tuned as a seed model 
by using limited amounts of monolingual data from the low-
resource language. The seed model is then employed to decode 
the untranscribed utterances, with the predicted hypotheses 
being regarded as the training transcripts for the next itera-
tion. Various discriminative criteria (e.g., maximum mutual 
information or minimum cross entropy) can be adopted to 
obtain the prediction confidence scores for each frame, word, 
or utterance [75], [93]. Similar to traditional self-training and 

cotraining, the data (i.e., frame, word, or utterance) predicted 
with high confidence are assumed to be of high quality and are 
then incorporated to update the initial DNN or GMM–HMM 
acoustic model.

Apart from the inductive approaches, a graph-based trans-
ductive approach can also be integrated into DNN-based 
speech recognition systems at either a late or early stage [78].
For the late-stage integration, a graph is first constructed over 
the labeled and unlabeled data sets, where the node repre-
sents a data instance and the edge indicates the similarity 
between a data instance pair. Then, using a graphic-based 
learning algorithm, a new set of posterior distributions for 
each instance of unlabeled data is produced. After that, the 
posteriors are converted into a graph likelihood and are inte-
grated with the original acoustic scores given by the DNN for 
a subsequent rescoring of the unlabeled data [78]. A major 
drawback of this late integration approach is a substantially 
increased computational cost, as the graph has to be recon-
structed after each learning iteration. To overcome this prob-
lem, an early-stage integration algorithm has been proposed 
[78]. This algorithm employs a graph embedding approach 
in which the data in the graph is transformed into a com-
pact feature vector, which is then used as additional input for 
the DNN.

Active learning
Similar to SSL, AL attempts to improve recognition models 
by exploring unlabeled data. However, unlike SSL, which per-
forms automatic machine (model) annotation, the focus of AL 
approaches is to efficiently select the most informative data S
in the unlabeled collection U for manual annotation. Partly 
because of the growing amounts of data to be handled and the 
popularity of crowdsourcing (see the “Efficient Data Labeling: 
Crowdsourcing” section), AL strategies for ASA are currently 
more important than ever.

One of the central goals of AL is to determine the informa-
tiveness of unlabeled data, a process known as query strategy.
The following sections briefly review the most commonly used 
strategies with relevance to ASA, which include the uncertain-
ty sampling, query by committee, and metaquery strategies.

Uncertainty sampling
This strategy uses confidence measures as a criterion to select 
the most informative data. The basic idea is to use a pretrained 
model (an active learner) to determine the uncertainty of pre-
dictions for a specific ASA task. The instances with the least 
certain predictions are then sent to an oracle (a human) for the 
annotation.

Formally, the selected data can be expressed as

( ),Qargmin ;x x
U

c
x

i=
!

l (11)

where i  indicates the model parameters trained on the labeled 
data set L and Qc  denotes the confidence measure function.

When using a probability model (e.g., Bayesian networks), 
this function is usually estimated using either the posterior 
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probability, the probability margin between the two most likely 
class labels, or the entropy of prediction [94]. In the context of 
speech recognition, word posterior probabilities or the HMM-
state entropy are frequently used as confidence measures [79],
[81]. When using a nonprobability model (e.g., an SVM), simi-
lar measures can be constructed from discriminant functions. 
Considering the SVM as an example, pseudoprobabilistic 
values can be transformed from the output distances from the 
SVM hyperplane (see [17] for more details). The effectiveness 
of this approach has been extensively assessed for emotion rec-
ognition from speech [83].

Despite the reported performance improvement, many stud-
ies have found that uncertainty-based AL is inclined toward 
selecting noise and garbage data (i.e., outliers from the main 
data distribution) for human labeling. This issue occurs even 
more frequently when using AL to annotate data collected in 
the wild, i.e., not under controlled laboratory conditions, where 
environmental noises severely distort the speech, and many 
unexpected words are potentially uttered. Labeling these outli-
ers is usually difficult and time consuming [95]. Furthermore, 
these data often offer little information on the overall system 
performance [17], [95]. A straightforward solution to address 
this outlier problem is to raise the threshold of a confidence 
score. For example, the authors of [17] used a median uncer-
tainty strategy instead of the least certainty one for actively 
selecting spontaneously emotional utterances, which delivered 
a positive performance improvement.

Sampling by uncertainty and density (SUD) is a more 
sophisticated method that was introduced for ASR in [96]. In 
this approach, unlabeled instances that are both near the deci-
sion boundary and very close to other examples are assumed to 
be more important than those that are isolated (i.e., likely to be 
outliers). Hence, SUD considers not only the most informative 
data in terms of uncertainty but also the most representative 
data in terms of density. That is, those data predicted with least 
certainty and distributed in a low-density area are ignored.

A similar idea was proposed in [80], where the global crite-
rion was used in ASR to maximize the expected lattice entro-
py reduction over all nontranscribed data. Specifically, it first 
measures the entropy among the lattices generated by decod-
ing unlabeled utterances. It then estimates the expected entro-
py reduction over the whole data set for each given utterance, 
and selects the utterances that should deliver the highest entro-
py reduction for human labeling. After that, the transcribed 
utterances can be weighted according to the number of similar 
utterances in the whole data set to achieve better performance 
for speech recognition. This algorithm is also analogous to the 
error-rate reduction strategy introduced in [95].

Query by committee
This strategy uses a committee (group) of weak models (learn-
ers), denoted by { , , },k1 fi iH =  to select unlabeled data by 
the principle of maximal disagreement among these models 
[97]. Mathematically, this can be expressed as:

( ; ).argmax Qx x
U

d
x

H=
!

l (12)

The two key problems in committee-based approaches are 1) 
constructing a committee H  that represents competing 
hypotheses and 2) defining a disagreement measurement .Qd

To alleviate the first problem, the models are usually built by 
employing multiple different classifiers (e.g., HMMs, SVMs, 
and RNNs) with the same training data, or by splitting the 
training data or features into partitions for training several dif-
ferent versions of the same type of classifier, or by a combina-
tion thereof. For the second problem, the commonly used 
disagreement measures are vote entropy and Kullback–Leibler 
divergence (see [94] for more details). In speech recognition, 
this strategy has been applied to both acoustic and language 
models, resulting in a significant data annotation reduction 
while achieving the same word accuracy [82].

Meta query strategies
One often deals with imbalance across classes of interest in 
the data. As an example, for emotion recognition, the emo-
tional speech of interest usually appears sparsely within a data 
set, while the less interesting nonemotional speech often 
appears at a much higher frequency. In this scenario, an initial 
coarse model can be used to first decide which data are of 
interest by distinguishing between neutral and emotional 
speech. A subsequent finer model can be then used to recog-
nize different emotions or respective other classes in other 
tasks in the selected emotional speech data. An example of 
such an approach is the sparse-tracking query strategy [83]. It 
tracks only sparse (emotional) instances, via iterative retrain-
ing and labeling, using a novelty detection paradigm.

One issue when analyzing subjective speaker states and 
traits (e.g., emotion and personality) is the requirement of mul-
tiple annotations per sample to obtain a reliable gold standard, 
which linearly increases the annotation workload. Recently, 
dynamic active query strategies have been shown to be suc-
cessful in overcoming this issue [84]. These approaches, e.g., 
sequentially query human annotators to label a specific instance 
up to the achievement of a predefined agreement level (i.e., a 
certain number of votes for a specific class). The general idea 
is to learn and exploit the varying reliability of raters to discern 
whom to best trust and when. The results presented indicate 
that this approach can contribute to a meaningful reduction of 
annotation effort [84].

Cooperative learning
As discussed previously, SSL techniques can perform annota-
tion work from machines with a bare minimum of human 
intervention. However, the performance of SSL is hampered 
by the issue of potential error accumulation [94]. Alternatively, 
AL techniques have the potential to achieve higher accuracy 
with fewer training labels by actively selecting the data it can 
learn the most from. However, AL still requires a considerable 
amount of human intervention.

To take advantage of the best of both approaches, it is plau-
sible to jointly conduct AL and SSL in a unified CL frame-
work [17]. A general CL flowchart is illustrated in Figure 3. CL 
allows the sharing of the labeling effort between human and 
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machine oracles, while being able to mitigate the limitations 
of SSL and AL. This is achieved by successively fusing the 
data subset selected by the AL Lal^ h and the one selected by 
SSL Lssl

)^ h into the original training set in an iterative fashion. 
In this case, the labeled data set Ll is continuously updated by 

.L L L Lal ssl, ,= )l  To minimize the effects 
relating to error accumulation, AL is often 
conducted before SSL.

Early studies of CL mainly focused on 
text classification. McCallum and Nigam 
were the first to investigate the idea of 
integrating the query by committee-based 
AL and the expectation maximization-
based SSL for text classification [98].
Later, motivated by the success of cotrain-
ing (see the “Semisupervised Learning” 
section), a similar idea of jointly using multiple views was 
taken into account, contributing to the new CL algorithm of 
coexpectation-maximization testing [99].

For speech processing, the first CL efforts were undertaken 
by Riccardi and Hakkani-Tür [85] for ASR. This approach 
assigned confidence scores to transcribed utterances based on 
the lattice output, from which the utterances were determined 
to be manually or automatically labeled. A similar idea was 
also investigated by Yu et al. [86] for speech recognition. In this 
approach, the data recognized with high confidence are trans-
lated automatically by machine, while the ones recognized at a 
low confidence are selected and translated manually. Similar to 
the uncertainty-based AL, this uncertainty-based CL is as well 
inclined to choose noise and garbage utterances that typically 
have low confidence scores.

Motivated by the success of the global entropy reduction 
maximization criterion [80] for AL (see the “Active Learning” 
section), Yu et al. [87] extended the work of [80] by integrat-
ing this approach with SSL. The results presented indicate that 
this technique achieves a notable performance increase when 

compared to the uncertainty-based CL 
approaches for speech recognition. Besides, 
Zhang et al. [17] recently combined SSL 
with a median uncertainty-based AL for 
emotion recognition, which efficiently helps 
to avoid choosing garbage data as well. Fur-
thermore, in the same article, multiview CL 
(i.e., where two views are used for both AL 
and SSL) was exemplified and demonstrat-
ed to achieve better performance than the 
single-view CL [17].

Experimental results obtained in the aforementioned stud-
ies indicate that, when compared to SSL and AL, CL is indeed 
a productive, highly efficient way to exploit unlabeled speech 
data to enhance the performance of preexisting models while 
minimizing human work. Moreover, its potential is expected 
to be further evoked when implemented with a crowdsourcing 
platform (see the “Efficient Data Labeling: Crowdsourcing” 
section and/or, incorporated with deep-learning techniques, 
the “Unsupervised Representation Learning” section).

Learning from unreliable or unbalanced resources
In contrast to both the no- and limited-resource techniques, 
which address the speech data quantity challenge, this section 
focuses on the methods that aim to tackle the speech data qual-
ity challenge. In particular, it covers techniques designed to 
operate in the presence of unreliable or unbalanced resources.

Data selection
Data quantity and diversity are both vitally important proper-
ties when building a robust ASA system. However, they can 
introduce a range of confounding factors. For example, 
speech utterances that are severely distorted by noise might 
be present in a prototypical data set. Owing in part to a lack 
of annotators’ concentration, these data are often improperly 
labeled or even mislabeled. This gives rise to the necessity of 
data selection to discard such garbage data, as accurate 
decisions made by a pattern recognition engine are largely 
related to high-quality training data.

The goal of data selection is to select a smaller data source 
S that is most representative (i.e., most informative) of the 
entire data L, i.e., ( )S DS L=  and ,S L3  thus omitting any 
superfluous or garbage data. The concept of data selection 
discussed in this section differs from that for AL or SSL, 
which is carried out on unlabeled data (see the “Semisuper-
vised Learning” and “Active Learning” sections). It also dif-
fers from feature selection methods (e.g., filter or wrapper 
selection), which select the most informative features for a 
particular ASA task. Instead, the data selection techniques 
reviewed are designed to select labeled samples or instances 
that will serve as learning units.

Labeled
Set L

Train

Unlabeled
Set U

Classify

AL SSL

Selected
Subset Sa

Human
Labeling

Machine
Labeling

+

+

Repeated

Selected
Subset Ss

Final
Model

Model f

FIGURE 3. A general overview of a CL framework that aims to take advan-
tage of both AL and SSL. 

CL is indeed a productive, 
highly efficient way to 
exploit unlabeled speech 
data to enhance the 
performance of preexisting 
models while minimizing 
human work.
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Within the ASA literature, Wu et al. [100] selected the 
samples that had a uniform distribution across speech units 
(i.e., words and phonemes) by the principle of maximum 
entropy for ASR. The experimental results presented indi-
cate that a system trained on a 150-h selection of data could 
achieve competitive results with a system 
trained on the full 840-h data set.

When performing subjective ASA rec-
ognition tasks (e.g., emotion recognition), 
a learning and testing target has to be gen-
erated usually by fusing the labels of mul-
tiple annotators to reduce subjectivity. In 
addressing the unreliable label problem, 
Erdem et al. [101] performed the RANSAC 
data selection algorithm to remove poten-
tially mislabeled instances when training 
a model, and obtained better emotion rec-
ognition performance. This algorithm operates in an iterative 
fashion. First, it uses a small subset of the data to determine the 
initial model parameters. Then, the unused data instances are 
tested against this model, and those that fit the model within a 
predefined tolerance, denoted as ,e  are considered to be a part 
of the consensus set. When the size reaches a predefined limit, 
the model parameters are updated using all of the consensus 
data and initial data. This procedure is repeated several times. 
More recently, Zhang et al. [102] reported that annotation 
reliability can be assessed using the human-agreement level 
among multiple annotators. Data with a low human-agreement 
level are considered to be mislabeled data and are removed 
from the data set.

Data balancing
When collecting data for a specific ASA task, such as model-
ing speaker states (e.g., affection or intoxication) or character-
istics (e.g., likeability), one often faces issues relating to class 
scarcity. While interesting speech samples are required, the 
majority of the ubiquitous speech data are essentially neutral. 
This can result in highly imbalanced class distributions and 
recognition systems that perform poorly when attempting to 
recognize the target classes [103].

Numerous studies in the context of machine learn-
ing have tackled this issue by data balancing [103], with the 
purpose of balancing the data distribution over classes, i.e., 

...L L L Ln1 2bl , ,=  where , , ...,L L Ln1 2  denote labeled data 
from n different classes that contain approximately the same 
amount of data. Among the methods proposed, data sampling is 
seen as a simple and efficient method. Data sampling is the pro-
cess of either repeating preexisting data, regenerating new data 
to modify the imbalanced data distribution, or randomly remov-
ing part of the data to produce a data set with a more balanced 
class distribution.

One common method is random sampling, either by 
oversampling (i.e., upsampling) or by undersampling (i.e., 
downsampling). The former approach essentially involves 
randomly selecting a subset of instances Lminl  in the minor-
ity class Lmin  and adding them back into the original 

training set L, .L L Lmin,= l  In contrast, the latter technique 
involves the random selection of a subset of instances Lmajl

in the majority class Lmaj  and removing them from the orig-
inal training set L, .\L L Lmaj= l  However, this process may 
result in a loss of important information pertaining to the 

majority class.
Another frequently used and effective 

method for data sampling is SMOTE [104].
The underlying idea is the creation of a new 
set of artificial examples belonging to the 
minority class. Data sampling has been wide-
ly used for computational paralinguistics 
with notable effects [17], [105]. Even in ASR 
systems, balancing the sample distributions 
among all phonemes has been shown to out-
perform the baseline by a large margin [106].

Learning from unmatched resources
Conventional machine-learning approaches operate under the 
assumption that instances from both the source and the target 
domains are independent and identically distributed. However, 
in real-world scenarios, this is very rarely the case; one will 
inevitably encounter the problem of distribution mismatch 
(also known as the data set bias) or covariate shift between 
the data in the target and source domains ( . ., ).i e S T!  Such 
discrepancies often give rise to a substantial downgrade in the 
performance of affected speech analysis systems. TL is a 
potential solution to bridging the mismatch gap.

The objective of TL is to improve the predictive function 
in the target domain T  using the knowledge from a different 
but related source domain S  (Figure 4). A wide range of TL 
approaches have been proposed in the machine-learning and 
data-mining literature. TL has also been applied to many ASA 
tasks, including low-resource language ASR, speaker adapta-
tion, and emotion recognition.

TL approaches can be mostly grouped into one of three 
categories according to the properties of the knowledge 
transferred: instance-, feature-, and model-based TL. These 
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FIGURE 4. An illustration of TL: knowledge learned in the source domain 
is used to aid analysis in the target domain. This transfer can take place at 
either the instance, feature, or model level. 

TL approaches can be 
mostly grouped into one of 
three categories according 
to the properties of the 
knowledge transferred: 
instance-, feature-, and 
model-based TL.
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approaches as well as data agglomeration are elaborated 
upon in the following. These sections are intended to be a 
succinct overview of these techniques for ASA. For a more 
general survey of TL, see [20] and [21]. A selection of typical 
TL studies for ASA are listed in Table 2.

Instance-based TL 
Instance-based TL assumes that certain 
subsets of the data in the source domain 
can be used for learning in the target do -
main by means of reweighting. Instance-
based TL essentially assigns more weight 
to those source domain data that are similar 
in terms of distribution to the target data, 
and less weight to those that poorly reflect 
the distribution of the target data. The technique of weighting 
the input data based on the target data is known as impor-
tance weighting for covariate shift or sample selection bias. 
With the aim of minimizing the expected classification error, 
the estimation of the importance weights b  is achieved as a 
ratio calculation problem:

( )
( )
( )

,
P
P

x x
x

T

S
b = (13)

where ( )P xS  and ( )P xT  are the probability densities of the 
source and target domain data, respectively [107].

The most straightforward approach to calculating this den-
sity ratio is to directly estimate the target and source densities 
separately. However, this approach tends to perform poorly 
because of the inherent difficulty of density estimation, par-
ticularly in high-dimensional cases. In this regard, instance-

based TL techniques, which estimate the 
importance ratio without estimating the 
densities, have been proposed. For example, 
Huang et al. [108] proposed a kernel-based 
method known as kernel mean match-
ing (KMM). It reweights the instances by 
matching the means between the source 
domain data and the target domain data 
in a reproducing-kernel Hilbert space. The 
downside of KMM is that its performance 

is highly dependent on the choice of hyperparameters (model 
selection), which need to be heuristically tuned.

To overcome this issue, Sugiyama et al. [109] introduced the 
Kullback–Leibler importance estimation procedure (KLIEP) 
algorithm. KLIEP estimates the importance ratio by mini-
mizing the Kullback–Leibler divergence between the original 
target data density and its corresponding estimation. Owing to 
the convex property of the involved optimization problem, the 
KLIEP algorithm can obtain unique global solutions. In addi-
tion, the tuning parameters can be objectively optimized, based 
on a variant of cross validation. While KLIEP is seemingly 

Instance-based TL 
assumes that certain 
subsets of the data in the 
source domain can be 
used for learning in the 
target domain by means 
of reweighting.

Table 2. Selected TL studies on the unmatched speech resource. 

Publications Types Approaches Models Applications Databases and Languages 

Hassan et al. 2013 [111] Instance KMM, KLIEP, uLSIF SVM ER FAU AEC (Ge) 

Doulaty et al. 2015 [113] Instance Submodular data 
selection

DNN ASR Data collected in six settings 

Narayanan and Wang 
2013 [115] 

Feature Denoising DNN ASR Aurora-4 

Deng et al. 2013 [116] Feature SAE SVM ER Six emotional corpora 

Kocscor and Tóth 2004
[117]

Feature KPCA, KLDA GMM, ANN, etc. Vowels/phoneme 
classification 

Hungarian (Hu), TIMIT (En) 

Jafari and Plumbley 
2011 [118] 

Feature Sparse coding / Speech representation/
denoising

Freesound 

Dahl et al. 2012 [51] Feature DNN, signal task DNN–HMM ASR Bing mobile voice (En) 

Amodei et al. 2015 [7] Feature CNN, signal task CTC–RNN ASR English (En) and Mandarin (Ma) 

Heigold et al. 2013 [119] Feature SHL–DNN, multitask Softmax layer Multi-/cross lingual 
ASR

Data in various languages 

Huang et al. 2013 [120] Feature SHL–DNN, multitask Softmax layer Multi-/cross lingual 
ASR

English (En) and Mandarin (Ma) 

Miao et al. 2015 [121] Feature SAT–DNN, i-vector DNN ASR TEDLIUM (En) 

Deng et al. 2014 [122] Feature SHL–DNN SVM ER Three emotional corpora 

Giri et al. 2015 [123] Feature SHL–DNN DNN Robust ASR REVERB Challenge corpus (En)

Leggetter and Woodland
1995 [124] 

Model MLLR GMM–HMM ASR ARPA RM (En) 

Deng et al. 2014 [112] Model DAE, multitask SVM ER Three emotional corpora 

En/Ge/Hu/Ma: English/German/Hungarian/Mandarin; ER: emotion recognition; ulSIF: unconstrined least-squares importance fiting; KLDA: kernal linear discriminant analysis; 
SHL: shared hidden layer; SAT: speaker adaptation training; DAE: denoising autoencoder; KPCA: kernel principal components analysis.
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more advantageous than KMM, it is actually less computation-
ally efficient because of the high linearity of the objective func-
tions to be optimized.

This issue was addressed by Kanamori et al. [110] by means 
of least-squares importance fitting (LSIF). The LSIF algorithm 
formulates the direct importance estimation problem as a least-
square function fitting problem: casting the optimization prob-
lem as a convex quadratic program that can be efficiently solved 
using a standard quadratic program solver. This algorithm was 
further extended to be unconstrained LSIF (uLSIF), which 
greatly improved the computational efficiency [110]. For emo-
tion recognition, the approaches of KMM, 
KLIEP, and uLSIF have shown great suc-
cess in alleviating the discrepancy between 
different speech resources [111], [112].

An alternative to the aforementioned ap -
proaches is binary reweighting. It selects the 
data from the source domain based on the 
data distribution to reduce the discrepancy 
between the source domain and the target 
domain. This strategy is related to the data 
selection strategy used for AL (see the “Active 
Learning” section), which can be viewed as a 
specific data selection case in a source-data unlabeled setting. It 
is also related to the data selection strategy discussed in the “Data 
Selection” section, which attempts to improve the quality of the 
data only in the target domain.

A prominent binary reweighting approach is based on 
using submodular functions to simulate the acoustic similarity 
between the target and source domain data [113], [114]. The 
process identifies a subset Ll of the complete source data set 

,LS  so that any subsequent subset Lm added to this selected sub-
set will not increase the value of the submodular function f, i.e., 

{ ( ) ( ),  , }.argmaxL f L L f L L L L L Lwhere, =1 3 3=l l m l l m l

In doing this, only the positive transfer is exploited across 
domains. In ASA, submodular function-based data selection 
has been extensively evaluated for multidomain speech recog-
nition and has shown superior performance [113], [114].

Feature-based transfer learning
The goal of feature-based TL approaches is to find a transforma-
tion function (·)U  that can be used to convert the source feature 
space and/or target feature space into an approximately matched 
distribution space while preserving the important properties of 
the original data. Mathematically, this can be expressed as

( ( )) ( ( )),P X P XT S ST .U U (14)

or

( ( )) ( ( )) .P Y X P Y XT T S S ST .U U (15)

In achieving this, two possible strategies exist: asymmetric 
and symmetric strategies. The asymmetric strategy keeps 
either the source or target feature space unchanged, and maps 
the other one onto it (i.e., :T ST "U  or :S TS "U ). By 

contrast, the symmetric strategy transforms both source and 
target feature spaces into a new latent one (i.e., :T ZT "U
and :S ZS "U ), in which they share the same distribution 
and knowledge relationship.

In achieving this, two possible strategies exist: asymmetric 
and symmetric strategies. The process of denoising distorted 
(noisy) speech can make the feature space (target) of noisy 
speech closer to that of clean speech (source). In doing this, the 
cleaned speech can be evaluated by preexisting acoustic mod-
els, which are often trained on the clean speech. An emerg-
ing research trend in the speech enhancement community is 

to use DNNs (e.g., deep LSTM–RNNs) to 
map noisy speech into its clean counterpart 
or ratio mask on a frame-by-frame basis. 
Preliminary results have proved that this 
method is quite effective, particularly for 
alleviating nonstationary noise [115]. For 
more details of speech denoising technolo-
gies, see [125].

Apart from speech denoising, a more 
general TL method to reduce the database 
bias was proposed in [116] and is based on 
an SAE—an autoencoder with sparsity 

enforced in the hidden layer (see the “Unsupervised Represen-
tation Learning” section). This method is a fully supervised 
approach. First, using the target data, class-specific SAEs are 
trained, and then treated as the transforming models ( (·)U ). 
The source data are then fed into SAEs corresponding to its 
class, and thus a new source representation is constructed. In 
doing this, the distribution of the new source feature space 
is expected to be inclined to the target one. Finally, the new 
source data are used to train a standard classifier.

As for the symmetric strategy, early studies were mainly 
conducted using principal component analysis (PCA), linear 
discriminant analysis (LDA), and sparse coding. The goal of 
these approaches is to learn a low-dimensional latent feature 
space or a shared space. The resulting feature space can serve 
as a bridge for transferring meaningful knowledge from the 
source domain to the target domain [20]. PCA is typically 
used to project the data along the direction of maximal vari-
ance in an unsupervised way. LDA, or Fisher’s LDA (FDA), on 
the other hand, is used to project the data onto a line that can 
maximize the distance between the means of the two classes 
(in a binary classification case) while minimizing the variance 
within each class.

Both PCA and LDA are linear transformations that 
limit their applicability to most real-world data. In this 
regard, kernel functions (e.g., Gaussian, Cauchy, and poly-
nomial kernels) can be used in conjunction with PCA and 
FDA, resulting in kernal PCA (KPCA) and kernel FDA 
(KFDA) paradigms that transform data in a nonlinear 
manner. Owing to their simplicity and effectiveness, KPCA 
and KFDA have been widely used in the speech process-
ing community [117]. Similarly, kernel canonical corre-
lation analysis has been applied to cross lingual emotion 
recognition [126].

A prominent binary 
reweighting approach 
is based on using 
submodular functions 
to simulate the acoustic 
similarity between 
the target and source 
domain data.
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Sparse coding, also termed dictionary learning, attempts to 
find succinct representations (i.e., atoms or elements of the dic-
tionary) of the input data such that the input data can be repre-
sented as a linear combination of these sparse representations 
[127]. Compared to the aforementioned feature transforma-
tion methods, sparse coding has been demonstrated to be able 
to produce a more robust signal representation in speech recon-
struction and denoising tasks [118].

Conventional feature transformation approaches are typi-
cally executed at a shallow level. Recently, deep-learning 
approaches for feature-based TL have begun 
to attract a lot of of research attention. 
Deep learning is regarded as a natural TL 
paradigm; it provides a powerful capability 
of learning high-level abstracts or repre-
sentations that are more robust against the 
variation of conventional speech features 
(i.e., log Mel-filter banks and MFCCs) over 
different domains [50] (see the “Unsuper-
vised Representation Learning” section). These represen-
tative features can then be used as normal features to train 
conventional discriminative or generative models, such as 
NNs, HMMs, and SVMs. Thanks to the invariant property 
of these representations, they can potentially deliver remark-
able performance improvements for almost all ASA tasks [7],
[50], [51], [58].

In addition to the basic representation learning approaches 
mentioned previously, more advanced topologies have begun 
to emerge, which explicitly involve several related tasks in a 
multitask learning paradigm. Multitask learning is the process 
of learning multiple tasks at the same time to learn a shared 
representation among different tasks. Mathematically, when 
training the model with multiple tasks, we aim to minimize 
the objective function as follows:

,( ) ( , ; )L y
2

xJ ki ki k
ik

K

0
1

0
2i i

m
i= +

=

// (16)

where K is the number of tasks, (·)L  denotes the loss func-
tion, and 0i  stands for the general model parameters.

When performing deep multitask learning for multilin-
gual or cross lingual speech recognition, it is typical to share 
the hidden layers across all languages [119], [120]. If learned 
appropriately, the hidden layers serve as increasingly com-
plex feature transformations, sharing common hidden fac-
tors across the acoustic data from different languages. The 
final softmax layers, however, are not shared. Instead, each 
language has its own softmax layer to estimate the poste-
rior probabilities specific to that language, using the most 
abstract representation from the topmost hidden layer. The 
strong result gained using this topology [119], [120] indicates 
its potential; it opens up the possibility for quickly building 
a high-performance recognition system for a new language 
using an existing multilingual DNN.

Many other deep multitask learning derivatives have been 
investigated to overcome the feature variation problems caused 

by factors such as different speaker characteristics, noisy envi-
ronments, and poor recording channels. For example, Deng et 
al. [122] treated different corpora as different tasks for emo-
tion recognition; Giris et al. [123] regarded noise type as an 
auxiliary task for speech recognition; and Seltzer and Droppo 
[128] treated phone label, phone text, and state context as dif-
ferent tasks when performing phoneme recognition. Recently, 
a universum autoencoder was proposed [129]. This technique 
uses a small amount of labeled data from the target domain and 
unlabeled data from a source domain to jointly minimize the 

reconstruction error and the universum lean-
ing loss. Motivated by these achievements 
of learning representations among multiple 
related tasks, researchers have started to 
investigate the learning of robust represen-
tations over multiple modalities (e.g., audio 
and video) [130]. This topic, however, is 
beyond the scope of this overview.

Model-based transfer learning
Model-based TL, also known as parameter-based TL, aims to 
learn a new model from an existing model that has been well 
trained on rich source data. Unlike feature-based TL 
approaches, which usually transform the feature spaces, 
model-based TL approaches modify the pretrained model 
parameters ( )i  to account for the differences that may exist 
between the domains. This can be formulated as

( , ; ) ( , ; )P X Y P X YS S T T TS "i i (17)

for a generative model or

; ;P Y X P Y XS S T T TS "i i^ ^h h (18)

for a discriminative model.
Early-stage model-based TL approaches in the speech com-

munity included maximum a posteriori (MAP) estimation and 
maximum likelihood linear regression (MLLR), which are 
designed for generative models (e.g., GMM–HMM). These 
techniques have been applied successively to speaker adap-
tation [131], where the speech from each specific speaker is 
supposed to be in a different domain with the initial training 
data. They have also been shown to be useful in computational 
paralinguistics tasks, such as depression detection [132].

Specifically, MAP uses the speaker-independent models 
(i.e., universal background models) as a prior probability 
distribution over the model parameters, and then performs 
maximum likelihood estimates by considering the model 
parameters obtained on the speaker-dependent data. Alter-
natively, MLLR calculates a set of linear regression trans-
formations to shift both the means and the covariances in 
an initial Gaussian mixture HMM system so that each state 
in the system is more likely to have generated the speaker 
data the model is being adapted to [131]. Compared with 
MAP, MLLR requires fewer adaptive data. Aside from 
speaker adaptation, these methods have been applied to 

Researchers have started 
to investigate the learning 
of robust representations 
over multiple modalities 
(e.g., audio and video).
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other acoustic variation adoption scenarios, such as noise 
adaptation [125].

Due largely to the recent advancements in deep learning, 
discriminative model-based TL has recent-
ly become an active research topic. In deep 
learning, the simplest way to adjust the pre-
trained model parameters when adapting to 
a specific task is through fine-tuning. As 
discussed in the “Unsupervised Represen-
tation Learning” section, pretraining is a 
down–up unsupervised algorithm, which 
can be considered as a model initialization 
process that attempts to produce a model 
that has a global optimization attribute. By contrast, fine-
tuning is an up–down supervised algorithm to optimize all of 
the NN weights jointly with the labeled target data. This pro-
cedure is usually performed using backpropagation of error 
derivatives [63].

Another paradigm to adapt the model to the target data, the 
adaptive denoising autoencoder, is highly related to multitask 
learning [112], [133]. This paradigm is usually undertaken in 
two steps. In the first step, a source model is trained on the 
source data. In the second step, the trained model parameters 
are used as prior information to regularize the adaptation pro-
cess of the model on the target data, so as to minimize the 
objective function as follows:

n

,( ) ( , ; )L y
2

xJ
i

i i
1

2
T T T Si i

m
i bi= + -

=

T

/ (19)

where nT  is the number of labeled target data, (·)L  denotes 
the loss function on the target data, Si  represents the well-
trained model on the source data (source model), Ti  denotes 
the expected new model on the target data (target model), and 
b is the adaptation coefficient. Since the discrepancy between 
the source and target models is explicitly considered as a penal-
ty term in the objective function, this approach is also known as 
regularized adaptation [133]. In emotion recognition applica-
tions, this approach has started to show promising results [112].
Note that such model-based multitask learning paradigms dif-
fer from the feature-based approaches covered in the “Learning 
from Unmatched Resources” section, where the model is 
trained in only one step by calculating the joint loss of all of the 
tasks in the objective function [see (16)].

Data agglomeration
In contrast to the more sophisticated TL approaches discussed, 
a simpler solution to utilize multiple sources of data is data 
agglomeration [134]. In this approach, one or more source 
databases are directly concatenated with the target database to 
form a large-size data pool .P L L LS ST k1, , ,f=  This 
approach is suitable only when the various data sources are for 
similar tasks and share a common feature set.

To help ease any potential database biases, it is desirable 
to apply 1) normalization techniques such that the scattered 
feature spaces can be unified into a shared one and 2) task 
mapping to retain label consistency. The three normalization 

methods frequently applied in the literature are centering, min–
max normalization, and standardization. Applied not only to 
each corpus separately (i.e., before data agglomeration), these 

methods can be also used after building a 
joint training set from multiple databases. 
Thanks to these normalization approaches, 
data agglomeration has been frequently 
applied to, e.g., emotion recognition [134].
As for task mapping, it is necessary to find 
the relationship between different tasks. For 
example, in emotion recognition, the pro-
totypical emotions (e.g., anger, contempt, 
disgust, fear, interest, joy, sadness, and sur-

prise) can be mapped onto the emotional dimensions of arousal 
and valence [134].

Conclusions and challenges for future work
To continue building on the success of machine-learning 
methods for ASA, there is a need for large amounts of labeled 
data. However, the work of collecting such data is costly and 
time consuming. Clever engineering can go a long way toward 
solving this problem by helping to leverage unlabeled, unreli-
able, or unmatched data. Motivated by this, we systematically 
presented an overview of the very recent and prominent tech-
niques that intend to semiautonomously enrich the data quan-
tity and enhance the data quality.

Crowdsourcing was discussed as an efficient data annota-
tion approach, with the caveat that it requires quality control 
management. The integration of crowdsourcing with AL or CL 
strategies to intelligently and dynamically select data for label-
ing has the potential to further reduce the annotation workload 
and improve overall data quality.

Spoken-term detection and discovery and related means 
of retrieval of speech-related phenomena were discussed in 
relation to addressing the sparse data challenge. While these 
techniques can automatically find patterns in speech utter-
ances without any labeled resource, the associated computa-
tional complexity limits their application to smaller databases. 
Reducing the computing complexity of these techniques is an 
essential direction of future research. Other techniques dis-
cussed on the sparse data challenge were data augmentation 
and speech synthesis. These techniques can artificially gener-
ate labeled speech data in a limited-labeled-resource setting. 
A key concern about their ongoing use is how to guarantee 
that the speech samples generated have a positive effect on 
the analysis being performed. Research into identifying task-
invariant features has been identified as one potential solution 
in this regard.

With its capability to leverage information from large-scale 
unlabeled data, deep URL has delivered breakthrough results 
in a variety of ASA tasks. Future research efforts, particularly 
those focused on network construction strategies, are expected 
to increase the generalizability of the extracted features and 
thus improve on the already impressive capabilities of this par-
adigm. AL, SSL, and CL are other efficient techniques to take 
advantage of unlabeled data. In this regard, we identified the 

In contrast to the 
more sophisticated TL 
approaches discussed, a 
simpler solution to utilize 
multiple sources of data 
is data agglomeration.
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integration of SSL and deep learning as a particularly promis-
ing future research direction.

To handle the unreliable-data challenge, data selection 
and data-balancing techniques were also reviewed. Despite 
the conventionality of the reviewed algorithms, dynamically 
selecting and balancing data is of great importance to the 
machine-learning process. The role and importance of these 
well-practiced techniques in relation to deep learning are still 
being established.

To deal with the unmatched data challenge, TL strategies 
and data agglomeration were discussed. TL in particular, owing 
to its effectiveness, has attracted increasing amounts of research 
attention. However, when improperly used, these techniques 
substantially degraded overall system performance. There-
fore, how to achieve positive transfer while preventing negative 
transfer between appropriately related tasks is an important and 
open research issue.

Although great opportunities are offered by the techniques 
reviewed, many additional risks may be brought to light 
through their practical application. For example, with the 
growing popularity of the use of microphones, the Internet, 
crowdsourcing, and cloud computing, personal speech signals 
easily run the risk of being disclosed to the public domain. 
Furthermore, from such data it is largely possible to extract 
confidential speaker information, such as a speaker’s age, 
gender, or identity. Therefore, how to best protect the security 
and privacy of users has become a major area of concern in 
this field [135].

A potential solution in this regard is a distributed recognition 
system, such as the one proposed for computational paralin-
guistics in [136]. In this system, functionals are applied over the 
LLDs to extract features. These statistical features, rather than 
the LLDs or the raw signals, are transmitted from the client side 
to the server side. The procedure of generating these feature 
vectors is irreversible. Therefore, as the LLDs cannot be recon-
structed, the contents of the original speech signals are pro-
tected. Recently, a decentralized SSL paradigm was proposed 
in [137], in which privacy-preserving matrix completion algo-
rithms are used, so that only learned knowledge is transferred 
between different clients, while the raw data are incommutable. 
However, as these approaches cannot fully guarantee client 
security and privacy or maintain the original performance, con-
tinued research addressing privacy concerns is required.

The techniques discussed in this article are mainly applied 
in an offline manner. However, the realistic application of a 
specific task offers the opportunity to collect truly massive 
amounts of real-world data in an online fashion. For example, 
Google reported that 55% of teenagers and 41% of adults in 
the United States [138] used their voice search more than once 
a day in 2014. Hence, research is needed into techniques to 
dynamically make use of future data to enhance the adaptive-
ness of preexisting models to various speakers, environments, 
and tasks. Such techniques are commonly referred to as online
and incremental learning [139], [140].

Finally, the recent developments in dialog management 
systems, the computerized spoken language understand-

ing and generation of natural and meaningful responses during 
speech-based human–computer interactions, means it is now 
more feasible than ever to explore cues extracted from an entire 
conversation process to aid ASA systems. Such cues could 
indicate the correctness of previously performed analyses and 
as such would be considered a form of reward or punishment 
information. This information could be sequentially exploited 
using reinforcement learning strategies to dynamically update 
the decision mechanism of the predictive model. Deep rein-
forcement learning, in particular, has become an active and 
growing research topic in machine learning [141]. But despite 
being widely applied in related fields, such as dialog manage-
ment, research into reinforcement learning for ASA is currently 
in its infancy. We firmly believe that research into deep rein-
forcement learning has the potential to move ASA technologies 
out of controlled laboratory settings and into diverse, practical 
everyday environments leading to more intelligent (even emo-
tionally and socially intelligent) and adaptive ASA systems.

Despite these risks and challenges, the techniques reviewed 
in this article will play a key role in opening up new research 
opportunities to explore the value of big unlabeled, unreliable, 
and unmatched speech data. It is our strong belief that the 
continued growth in the research and applications discussed 
will facilitate the emergence of novel techniques to fill the gap 
between no-labeled-resource and reliable big data and usher in 
the next generation of ASA technologies.

Acknowledgments
This work was supported by the European Union’s Seventh 
Framework Program through ERC Starting Grant 338164 
(iHEARu), and by the Horizon 2020 Program through 
Research Innovation Action 688835 (DE-ENIGMA).

Authors
Zixing Zhang (zixing.zhang@uni-passau.de) received his 
B.S. degree from the Chinese Agricultural University in 2007, 
his M.S. degree from the Beijing University of Posts and 
Telecommunications, China, in 2010, and his Ph.D. degree 
from the Technische Universität München, Germany, in 2015. 
Currently, he is a postdoctoral researcher at the University of 
Passau, Germany. His research interests lie mainly in deep, 
semisupervised, active, and multitask learning; in the 
applications of human state and trait analysis from speech; 
and in robust automatic speech recognition. He is a Member 
of the IEEE.

Nicholas Cummins (nicholas.cummins@uni-passau.de) 
received his B.Eng. degree (first-class honors) in electrical 
engineering from the University of New South Wales 
(UNSW), Sydney, Australia and his Ph.D. degree in electri-
cal engineering from UNSW in February 2016. His Ph.D. 
dissertation investigated whether the voice can be used as an 
objective marker in the diagnosis and monitoring of clinical 
depression. He is currently a postdoctoral researcher at the 
Chair of Complex and Intelligent Systems, University of 
Passau, Germany. His research interests include affective 
and behavioral computing. He is a Member of the IEEE.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

___________________

______________________

mailto:zixing.zhang@uni-passau.de
mailto:nicholas.cummins@uni-passau.de
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


127IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

Björn Schuller (schuller@ieee.org) received his diploma, 
doctoral degree, and habilitation degree in electrical engineering 
and information technology from the Technische Universität 
München, Germany in 1999, 2006, and 2012, respectively. He is 
a reader in machine learning in the Department of Computing at 
Imperial College, London, United Kingdom, and a full profes-
sor and head of the Chair of Complex and Intelligent Systems, 
University of Passau, Germany, where he previously headed the 
Chair of Sensor Systems. He is a Senior Member of the IEEE.

References
[1] D. O’Shaughnessy, Speech Communications: Human and Machine, 2nd ed.
Piscataway, NJ: IEEE Press, 2000.

[2] F. Weng, P. Angkititrakul, E. E. Shriberg, L. Heck, S. Peters, and J. H. L.
Hansen, “Conversational in-vehicle dialog systems: The past, present, and future,” 
IEEE Signal Process. Mag., vol. 33, no. 6, pp. 49–60, Nov. 2016.

[3] B. W. Schuller, “The computational paralinguistics challenge,” IEEE Signal 
Process. Mag., vol. 29, no. 4, pp. 97–101, July 2012.

[4] C. Moseley, Atlas of the World’s Languages in Danger, 3rd ed. Paris: Unesco 
Publishing, 2010.

[5] A. Halevy, P. Norvig, and F. Pereira, “The unreasonable effectiveness of data,” 
IEEE Intell. Syst., vol. 24, no. 2, pp. 8–12, Mar. 2009.

[6] L. Deng and D. Yu, “Deep learning: Methods and applications,” Foundations 
and Trends in Signal Process., vol. 7, no. 3–4, pp. 197–387, June 2014.

[7] D. Amodei, R. Anubhai, E. Battenberg, C. Case, J. Casper, B. Catanzaro, J.
Chen, M. Chrzanowski, et al. “Deep speech 2: End-to-end speech recognition in 
english and mandarin,” in Proc. Int. Conf. Machine Learning (ICML), New York,
2016, pp. 173–182.

[8] L. R. Rabiner and B.-H. Juang, Fundamentals of Speech Recognition.
Englewood Cliffs, NJ: Prentice Hall, 1993.

[9] N. Dehak, P. J. Kenny, R. Dehak, P. Dumouchel, and P. Ouellet, “Front-end fac-
tor analysis for speaker verification,” IEEE/ACM Trans. Audio, Speech, Language 
Process., vol. 19, no. 4, pp. 788–798, May 2011.

[10] F. Eyben, F. Weninger, F. Gross, and B. Schuller, “Recent developments in 
openSMILE, the Munich open-source multimedia feature extractor,” in Proc. 21st 
ACM Int. Conf. Multimedia, Barcelona, Spain, 2013, pp. 835–838.

[11] M. Harper. IARPA Babel program. Intelligence advanced research projects 
activity, Office of the Director of National Intelligence, Washington, D.C. [Online]. 
Available: https://www.iarpa.gov/index.php/research-programs/babel

[12] B. W. Schuller, “Speech analysis in the big data era,” in Text, Speech, and 
Dialogue (Lecture Notes in Computer Science, vol. 9302), P. Král and 
V. Matoušek, Eds. Berlin: Springer-Verlag, 2015, pp. 3–11.

[13] M. Versteegh, R. Thiollière, T. Schatz, X.-N. Cao, X. Anguera, A. Jansen, and 
E. Dupoux, “The zero resource speech challenge 2015,” in Proc. INTERSPEECH,
Dresden, Germany, 2015, pp. 3169–3173.

[14] M. R. Robertson. (2015, Nov. 13). 500 hours of video uploaded to YouTube 
every minute. Tubular Insights. [Online]. Available: http://www.reelseo.com/
hours-minute-uploaded-youtube

[15] M. Eskénazi, G.-A. Levow, H. Meng, G. Parent, and D. Suendermann,
Crowdsourcing for Speech Processing: Applications to Data Collection, 
Transcription and Assessment. Hoboken, NJ: Wiley, 2013.

[16] J. D. Williams, I. D. Melamed, T. Alonso, B. Hollister, and J. Wilpon, “Crowd-
sourcing for difficult transcription of speech,” in Proc. IEEE Workshop on Automatic 
Speech Recognition and Understanding (ASRU), Waikoloa, HI, 2011, pp. 535–540.

[17] Z. Zhang, E. Coutinho, J. Deng, and B. Schuller, “Cooperative learning and its 
application to emotion recognition from speech,” IEEE Trans. Audio, Speech, 
Language Process., vol. 23, no. 1, pp. 115–126, Jan. 2015.

[18] Z. Zhang, Semi-Autonomous Data Enrichment and Optimisation for 
Intelligent Speech Analysis. Munich, Germany: Verlag Dr. Hut, 2015.

[19] A. Nagórski, L. Boves, and H. J. Steeneken, “Optimal selection of speech data 
for automatic speech recognition systems,” in Proc. INTERSPEECH, Denver, CO,
2002, pp. 2473–2476.

[20] D. Wang and T. F. Zheng, “Transfer learning for speech and language process-
ing,” in Proc. Asia-Pacific Signal and Information Processing Assoc. Annu. 
Summit and Conf. (APSIPA), Hong Kong, China, 2015, pp. 1225–1237.

[21] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans. Knowl. 
Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[22] L. Deng and X. Li, “Machine learning paradigms for speech recognition: An 
overview,” IEEE Trans. Audio, Speech, Language Process., vol. 21, no. 5, pp. 
1060–1089, May 2013.

[23] R. Snow, B. O’Connor, D. Jurafsky, and A. Y. Ng, “Cheap and fast—But is it 
good? Evaluating non-expert annotations for natural language tasks,” in Proc. 
Conf. Empirical Methods Natural Language Processing (EMNLP), Honolulu, HI,
2008, pp. 254–263.

[24] S. Novotney and C. Callison-Burch, “Cheap, fast and good enough: Automatic 
speech recognition with non-expert transcription,” in Proc. Human Language 
Technologies: 2010 Annu. Conf. North American Chapter Assoc. Computational 
Linguistics, Los Angeles, 2010, pp. 207–215.

[25] S. Hantke, T. Appel, F. Eyben, and B. Schuller, “iHEARu-PLAY: Introducing 
a game for crowdsourced data collection for affective computing,” in Proc. Int. 
Conf. Affective Computing and Intelligent Interaction (ACII), Xi’an, China, 2015,
pp. 891–897.

[26] A. Jansen, E. Dupoux, S. Goldwater, M. Johnson, S. Khudanpur, K. Church,
N. Feldman, et al. “A summary of the 2012 JHU CLSP workshop on zero resource 
speech technologies and models of early language acquisition,” in Proc. IEEE Int. 
Conf. Acoustics, Speech and Signal Processing (ICASSP), Vancouver, Canada,
2013, pp. 8111–8115.

[27] G. Parent and M. Eskenazi, “Toward better crowdsourced transcription: 
Transcription of a year of the Let’s Go Bus Information System data,” in Proc. 
IEEE Spoken Language Technology Workshop (SLT), Berkeley, CA, 2010,
pp. 312–317.

[28] A. Tarasov, S. J. Delany, and C. Cullen, “Using crowdsourcing for labelling 
emotional speech assets,” in Proc. W3C workshop on Emotion Markup Language 
(EmotionML), Paris, 2010, pp. 1–5.

[29] J. Ledlie, B. Odero, E. Minkov, I. Kiss, and J. Polifroni, “Crowd translator: On 
building localized speech recognizers through micropayments,” ACM SIGOPS 
Operating Syst. Rev., vol. 43, no. 4, pp. 84–89, Jan. 2010.

[30] C-Y. Lee and J. R. Glass, “A transcription task for crowdsourcing with auto-
matic quality control,” in Proc. INTERSPEECH, Florence, Italy, 2011, pp. 3041–
3044.

[31] A. S. Park and J. R. Glass, “Unsupervised pattern discovery in speech,” IEEE 
Trans. Audio, Speech, Language Process., vol. 16, no. 1, pp. 186–197, Jan. 2008.

[32] K. Levin, K. Henry, A. Jansen, and K. Livescu, “Fixed-dimensional acoustic 
embeddings of variable-length segments in low-resource settings,” in Proc. IEEE 
Workshop Automatic Speech Recognition and Understanding (ASRU), Olomouc, 
Czech Republic, 2013, pp. 410–415.

[33] H. Wang, T. Lee, C. C. Leung, B. Ma, and H. Li, “Using parallel tokenizers 
with DTW matrix combination for low-resource spoken term detection,” in Proc. 
IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Vancouver, 
Canada, 2013, pp. 8545–8549.

[34] G. Mantena and X. Anguera, “Speed improvements to information retrieval-
based dynamic time warping using hierarchical k-means clustering,” in Proc. 
IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Vancouver, 
Canada, 2013, pp. 8515–8519.

[35] X. Anguera, “Method and system for improved pattern matching,” EP Patent 
EP12 382 508, 2012.

[36] Y. Chung, C. Wu, C. Shen, H. Lee, and L. Lee, “Audio Word2Vec: Unsupervised 
learning of audio segment representations using sequence-to-sequence autoencoder,” 
in Proc. INTERSPEECH, San Francisco, CA, 2016, pp. 765–769.

[37] H. Kamper, A. Jansen, and S. Goldwater, “Unsupervised word segmentation 
and lexicon discovery using acoustic word embeddings,” IEEE/ACM Trans. Audio, 
Speech, Language Process., vol. 24, no. 4, pp. 669–679, Apr. 2016.

[38] Y. Zhang and J. R. Glass, “Towards multi-speaker unsupervised speech pat-
tern discovery,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing 
(ICASSP), Dallas, TX, 2010, pp. 4366–4369.

[39] C. Weng, D. Yu, S. Watanabe, and B.-H. F. Juang, “Recurrent deep neural net-
works for robust speech recognition,” in Proc. IEEE Int. Conf. Acoustics, Speech 
and Signal Processing (ICASSP), Florence, Italy, 2014, pp. 5532–5536.

[40] N. Jaitly and G. E. Hinton, “Vocal tract length perturbation (VTLP) improves 
speech recognition,” in Proc. ICML Workshop on Deep Learning for Audio, Speech 
and Language, Atlanta, GA, 2013.

[41] X. Cui, V. Goel, and B. Kingsbury, “Data augmentation for deep neural net-
work acoustic modeling,” IEEE/ACM Trans. Audio, Speech Language Process.,
vol. 23, no. 9, pp. 1469–1477, Sept. 2015.

[42] Z. Tüske, P. Golik, D. Nolden, R. Schlüter, and H. Ney, “Data augmentation, 
feature combination, and multilingual neural networks to improve ASR and KWS 
performance for low-resource languages,” in Proc. INTERSPEECH, Singapore,
2014, pp. 1420–1424.

[43] T. Ko, V. Peddinti, D. Povey, and S. Khudanpur, “Audio augmentation for speech 
recognition,” in Proc. INTERSPEECH, Dresden, Germany, 2015, pp. 3586–3589.

[44] V. Peddinti, D. Povey, and S. Khudanpur, “A time delay neural network archi-
tecture for efficient modeling of long temporal contexts,” in Proc. INTERSPEECH,
Dresden, Germany, 2015, pp. 3214–3218.

[45] B. Milde and C. Biemann, “Using representation learning and out-of-domain 
data for a paralinguistic speech task,” in Proc. INTERSPEECH, Dresden, Germany,
2015, pp. 904–908.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_______________

___________________________

___________

mailto:schuller@ieee.org
http://www.reelseo.com/hours-minute-uploaded-youtube
https://www.iarpa.gov/index.php/research-programs/babel
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


128 IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

[46] B. Schuller, Z. Zhang, F. Weninger, and F. Burkhardt, “Synthesized speech for 
model training in cross-corpus recognition of human emotion,” Int. J. Speech 
Technol., vol. 15, no. 3, pp. 313–323, June 2012.

[47] M. J. F. Gales, A. Ragni, H. AlDamarki, and C. Gautier, “Support vector 
machines for noise robust ASR,” in Proc. IEEE Workshop on Automatic Speech 
Recognition Understanding (ASRU), Merano, Italy, 2009, pp. 205–210.

[48] Z. Ling, S. Kang, H. Zen, A. Senior, M. Schuster, X. Qian, H. Meng, and L.
Deng, “Deep learning for acoustic modeling in parametric speech generation: A sys-
tematic review of existing techniques and future trends,” IEEE Signal Process. 
Mag., vol. 32, no. 3, pp. 35–52, May 2015.

[49] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for deep 
belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554, Jan. 2006.

[50] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A-r. Mohamed, N. Jaitly, A. Senior, V.
Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep neural networks 
for acoustic modeling in speech recognition: The shared views of four research 
groups,” IEEE Signal Process. Mag., vol. 29, no. 6, pp. 82–97, Nov. 2012.

[51] G. E. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-trained 
deep neural networks for large-vocabulary speech recognition,” IEEE Trans. Audio, 
Speech, Language Process., vol. 20, no. 1, pp. 30–42, Jan. 2012.

[52] D. Erhan, Y. Bengio, A. Courville, P.-A. Manzagol, P. Vincent, and S. Bengio,
“Why does unsupervised pre-training help deep learning?” J. Mach. Learning Res.,
vol. 11, pp. 625–660, Mar. 2010.

[53] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting and 
composing robust features with denoising autoencoders,” in Proc. Int. Conf. 
Machine Learning (ICML), Helsinki, Finland, 2008, pp. 1096–1103.

[54] L. Deng, M. L. Seltzer, D. Yu, A. Acero, A-r. Mohamed, and G. E. Hinton,
“Binary coding of speech spectrograms using a deep auto-encoder,” in Proc. 
INTERSPEECH, Makuhari, Japan, 2010, pp. 1692–1695.

[55] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard,
and L. D. Jackel, “Backpropagation applied to handwritten ZIP code recognition,” 
Neural Computation, vol. 1, no. 4, pp. 541–551, 1989.

[56] O. Abdel-Hamid, A-r. Mohamed, H. Jiang, L. Deng, G. Penn, and D. Yu,
“Convolutional neural networks for speech recognition,” IEEE/ACM Trans. Audio, 
Speech, Language Process., vol. 22, no. 10, pp. 1533–1545, Oct. 2014.

[57] D. Hau and K. Chen, “Exploring hierarchical speech representations with a 
deep convolutional neural network,” in Proc. 11th U.K. Workshop on 
Computational Intelligence (UKCI), Manchester, U.K., 2011, pp. 37–42.

[58] H. Lee, P. Pham, Y. Largman, and A. Y. Ng, “Unsupervised feature learning 
for audio classification using convolutional deep belief networks,” in Proc. 
Advances Neural Information Processing Systems (NIPS), Vancouver, Canada,
2009, pp. 1096–1104.

[59] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief 
networks for scalable unsupervised learning of hierarchical representations,” in 
Proc. Int. Conf. Machine Learning (ICML), New York, 2009, pp. 609–616.

[60] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural 
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[61] N. Srivastava, E. Mansimov, and R. Salakhutdinov, “Unsupervised learning of 
video representations using LSTMs,” in Proc. Int. Conf. Machine Learning 
(ICML), Lille, France, 2015, pp. 843–852.

[62] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the properties 
of neural machine translation: Encoder-decoder approaches,” in Proc. Workshop 
Syntax, Semantics and Structure Statistical Translation (SSST), Doha, Qatar,
2014, pp. 103–111.

[63] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data 
with neural networks,” Science, vol. 313, no. 5786, pp. 504–507, July 2006.

[64] F. Seide, G. Li, and D. Yu, “Conversational speech transcription using context-
dependent deep neural networks,” in Proc. INTERSPEECH, Florence, Italy, 2011,
pp. 437–440.

[65] A-r. Mohamed, G. E. Dahl, and G. Hinton, “Acoustic modeling using deep 
belief networks,” IEEE Trans. Audio, Speech, Language Process., vol. 20, no. 1,
pp. 14–22, Jan. 2012.

[66] Y. Lei, N. Scheffer, L. Ferrer, and M. McLaren, “A novel scheme for speaker recog-
nition using a phonetically-aware deep neural network,” in Proc. IEEE Int. Conf. 
Acoustics, Speech and Signal Processing (ICASSP), Florence, Italy, 2014, pp. 1695–1699.

[67] Y. Liu, T. Fu, Y. Fan, Y. Qian, and K. Yu, “Speaker verification with deep fea-
tures,” in Proc. Int. Joint Conf. Neural Networks (IJCNN), Beijing, 2014, pp. 747–753.

[68] A. Stuhlsatz, C. Meyer, F. Eyben, T. ZieIke, G. Meier, and B. Schuller, “Deep 
neural networks for acoustic emotion recognition: Raising the benchmarks,” in 
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP), Prague, 
Czech Republic, 2011, pp. 5688–5691.

[69] M. E. Sánchez-Gutiérrez, E. M. Albornoz, F. Martinez-Licona, H. L. Rufiner,
and J. Goddard, “Deep learning for emotional speech recognition,” in Pattern 
Recognition, J. F. Martínez-Trinidad, J. A. Carrasco-Ochoa, J. A. Olvera-Lopez, J.
Salas-Rodríguez, and C. Y. Suen, Eds. MCPR 2014. Lecture Notes in Computer 
Science, vol. 8495. Berlin: Springer-Verlag, 2014, pp. 311–320.

[70] Y. Kim, H. Lee, and E. M. Provost, “Deep learning for robust feature genera-
tion in audiovisual emotion recognition,” in Proc. IEEE Int. Conf. Acoustics, 
Speech and Signal Processing (ICASSP), Brisbane, Australia, 2013, pp. 3687–3691.

[71] T. Kemp and A. Waibel, “Unsupervised training of a speech recognizer: Recent 
experiments,” in Proc. Eurospeech, Budapest, Hungary, 1999, pp. 2725–2728.

[72] F. Wessel and H. Ney, “Unsupervised training of acoustic models for large 
vocabulary continuous speech recognition,” IEEE Trans. Speech Audio Process.,
vol. 13, no. 1, pp. 23–31, Jan. 2005.

[73] N. Fazakis, S. Karlos, S. Kotsiantis, and K. Sgarbas, “Speaker identification 
using semi-supervised learning,” in Proc. 17th Int. Conf. Speech and Computer 
(SPECOM), Athens, Greece, 2015, pp. 389–396.

[74] R.-C. Hsiao, T. Ng, F. Grézl, D. Karakos, S. Tsakalidis, L. Nguyen, and R.
Schwartz, “Discriminative semi-supervised training for keyword search in low 
resource languages,” in Proc. IEEE Workshop on Automatic Speech Recognition 
and Understanding (ASRU), Olomouc, Czech Republic, 2013, pp. 440–445.

[75] S. Thomas, M. L. Seltzer, K. Church, and H. Hermansky, “Deep neural net-
work features and semi-supervised training for low resource speech recognition,” 
in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP),
Vancouver, Canada, 2013, pp. 6704–6708.

[76] Z. Zhang, J. Deng, and B. Schuller, “Co-training succeeds in computational 
paralinguistics,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing 
(ICASSP), Vancouver, Canada, 2013, pp. 8505–8509.

[77] X. Cui, J. Huang, and J.-T. Chien, “Multi-view and multi-objective semi-super-
vised learning for HMM-based automatic speech recognition,” IEEE Trans. Audio, 
Speech, Language Process., vol. 20, no. 7, pp. 1923–1935, Sept. 2012.

[78] Y. Liu and K. Kirchhoff, “Graph-based semisupervised learning for acoustic 
modeling in automatic speech recognition,” IEEE/ACM Trans. Audio, Speech, 
Language Process., vol. 24, no. 11, pp. 1946–1956, Nov. 2016.

[79] G. Riccardi and D. Hakkani-Tür, “Active learning: Theory and applications to 
automatic speech recognition,” IEEE Trans. Speech Audio Process., vol. 13, no. 4,
pp. 504–511, July 2005.

[80] B. Varadarajan, D.Yu, L. Deng, and A. Acero, “Maximizing global entropy reduc-
tion for active learning in speech recognition,” in Proc. IEEE Int. Conf. Acoustics, 
Speech and Signal Processing (ICASSP), Taibei, China, 2009, pp. 4721–4724.

[81] T. Fraga-Silva, J.-L. Gauvain, L. Lamel, A. Laurent, V.-B. Le, and A.
Messaoudi, “Active learning based data selection for limited resource STT and 
KWS,” in Proc. INTERSPEECH, Dresden, Germany, 2015, pp. 47–53.

[82] Y. Hamanaka, K. Shinoda, S. Furui, T. Emori, and T. Koshinaka, “Speech 
modeling based on committee-based active learning,” in Proc. IEEE Int. Conf. 
Acoustics, Speech and Signal Processing (ICASSP), Dallas, 2010, pp. 4350–4353.

[83] Z. Zhang and B. Schuller, “Active learning by sparse instance tracking and 
classifier confidence in acoustic emotion recognition,” in Proc. INTERSPEECH,
Portland, OR, 2012, pp. 362–365.

[84] Y. Zhang, E. Coutinho, Z. Zhang, M. Adam, and B. Schuller, “On rater reliabil-
ity and agreement based dynamic active learning,” in Proc. 6th Biannu. Conf. 
Affective Computing and Intelligent Interaction (ACII), Xi’an, China, 2015, pp. 
70–76.

[85] G. Riccardi and D. Z. Hakkani-Tür, “Active and unsupervised learning for 
automatic speech recognition,” in Proc. INTERSPEECH, Geneva, Switzerland,
2003, pp. 1825–1828.

[86] K. Yu, M. Gales, L. Wang, and P. C. Woodland, “Unsupervised training and 
directed manual transcription for LVCSR,” Speech Commun., vol. 52, no. 7, pp. 
652–663, Aug. 2010.

[87] D. Yu, B. Varadarajan, L. Deng, and A. Acero, “Active learning and semi-
supervised learning for speech recognition: A unified framework using the global 
entropy reduction maximization criterion,” Comput. Speech & Language, vol. 24,
no. 3, pp. 433–444, July 2010.

[88] X. Zhu, “Semi-supervised learning literature survey,” Department of Computer 
Sciences, University of Wisconsin, Madison, Tech. Rep. TR 1530, 2006.

[89] V. Vapnik, The Nature of Statistical Learning Theory, 2nd ed. New York:
Springer-Verlag, 2000.

[90] Z. Zhang, F. Weninger, M. Wöllmer, and B. Schuller, “Unsupervised learning 
in cross-corpus acoustic emotion recognition,” in Proc. IEEE Workshop Automatic 
Speech Recognition and Understanding (ASRU), Waikoloa, HI, 2011, pp. 523–528.

[91] Z. Zhang, F. Ringeval, B. Dong, E. Coutinho, E. Marchi, and B. Schuller,
“Enhanced semi-supervised learning for multimodal emotion recognition,” in 
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP),
Shanghai, China, 2016, pp. 5185–5189.

[92] A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-
training,” in Proc. 11th Annu. Conf. Computational Learning Theory (COLT),
Madison, WI, 1998, pp. 92–100.

[93] H. Xu, H. Su, C. Ni, X. Xiao, H. Huang, E. S. Chng, and H. Li, “Semi-
supervised and cross-lingual knowledge transfer learnings for DNN hybrid acous-
tic models under low-resource conditions,” in Proc. INTERSPEECH, San 
Francisco, 2016, pp. 1315–1319.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


129IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

[94] B. Settles, “Active learning literature survey,” Department of Computer 
Sciences, University of Wisconsin, Madison, Tech. Rep. TR 1648, 2009.

[95] N. Roy and A. McCallum, “Toward optimal active learning through Monte 
Carlo estimation of error reduction,” in Proc. 18th Int. Conf. Machine Learning 
(ICML), Williamstown, MA, 2001, pp. 441–448.

[96] J. Zhu, H. Wang, B. K. Tsou, and M. Ma, “Active learning with sampling by 
uncertainty and density for data annotations,” IEEE Trans. Audio, Speech, 
Language Process., vol. 18, no. 6, pp. 1323– 1331, Aug. 2010.

[97] Y. Freund, H. S. Seung, E. Shamir, and N. Tishby, “Selective sampling using 
the query by committee algorithm,” Mach. Learning, vol. 28, no. 2-3, pp. 133–168,
Aug. 1997.

[98] A. McCallum and K. Nigam, “Employing EM in pool-based active learning 
for text classification,” in Proc. Int. Conf. Machine Learning (ICML), Madison, 
WI, 1998, pp. 359–367.

[99] I. Muslea, S. Minton, and C. Knoblock, “Active + semi-supervised learning = 
robust multi-view learning,” in Proc. Int. Conf. Machine Learning (ICML),
Sydney, Australia, 2002, pp. 435–442.

[100] Y. Wu, R. Zhang, and A. Rudnicky, “Data selection for speech recognition,” 
in Proc. IEEE Workshop Automatic Speech Recognition Understanding (ASRU),
Kyoto, Japan, 2007, pp. 562–565.

[101] C. E. Erdem, E. Bozkurt, E. Erzin, and A. T. Erdem, “RANSAC-based train-
ing data selection for emotion recognition from spontaneous speech,” in Proc. 3rd 
Int. Workshop on Affective Interaction in Natural Environments (AFFINE). New 
York, 2010, pp. 9–14.

[102] Z. Zhang, F. Eyben, J. Deng, and B. Schuller, “An agreement and sparseness-
based learning instance selection and its application to subjective speech phenom-
ena,” in Proc. 5th Int. Workshop Emotion Social Signals, Sentiment & Linked 
Open Data (satellite of LREC 2014), Reykjavik, Iceland, 2014, pp. 21–26.

[103] H. He and E. A. Garcia, “Learning from imbalanced data,” IEEE Trans. 
Knowl. Data Eng., vol. 21, no. 9, pp. 1263–1284, Sept. 2009.

[104] N. Chawla, K. Bowyer, L. Hall, and W. Kegelmeyer, “SMOTE: Synthetic minor-
ity over-sampling technique,” J. Artificial Intell. Res., vol. 16, pp. 321–357, June 2002.

[105] B. Schuller, S. Steidl, and A. Batliner, “The INTERSPEECH 2009 emotion 
challenge,” in Proc. INTERSPEECH, Brighton, U.K., 2009, pp. 312–315.

[106] A. I. García-Moral, R. Solera-Ureña, C. Peláez-Moreno, and F. Díaz-de 
María, “Data balancing for efficient training of hybrid ANN/HMM automatic 
speech recognition systems,” IEEE Trans. Audio, Speech, Language Process., vol. 
19, no. 3, pp. 468–481, Mar. 2011.

[107] H. Shimodaira, “Improving predictive inference under covariate shift by 
weighting the log-likelihood function,” J. Statistical Planning and Inference, vol. 
90, no. 2, pp. 227–244, Oct. 2000.

[108] J. Huang, A. Gretton, K. M. Borgwardt, B. Schölkopf, and A. J. Smola,
“Correcting sample selection bias by unlabeled data,” in Proc. Advances Neural 
Information Processing Systems (NIPS), Vancouver, Canada, 2006, pp. 601–608.

[109] M. Sugiyama, S. Nakajima, H. Kashima, P. V. Buenau, and M. Kawanabe,
“Direct importance estimation with model selection and its application to covari-
ate shift adaptation,” in Proc. Advances in Neural Information Processing Systems 
(NIPS), Vancouver, Canada, 2007, pp. 1433–1440.

[110] T. Kanamori, S. Hido, and M. Sugiyama, “A least-squares approach to direct 
importance estimation,” J. Mach. Learning Res., vol. 10, pp. 1391–1445, July 2009.

[111] A. Hassan, R. Damper, and M. Niranjan, “On acoustic emotion recognition: 
Compensating for covariate shift,” IEEE Trans. Audio, Speech, Language Process.,
vol. 21, no. 7, pp. 1458–1468, July 2013.

[112] J. Deng, Z. Zhang, F. Eyben, and B. Schuller, “Autoencoder-based unsuper-
vised domain adaptation for speech emotion recognition,” IEEE Signal Process. 
Lett., vol. 21, no. 9, pp. 1068–1072, Sept. 2014.

[113] M. Doulaty, O. Saz, and T. Hain, “Data-selective transfer learning for multi-
domain speech recognition,” in Proc. INTERSPEECH, Dresden, Germany, 2015,
pp. 2897–2901.

[114] K. Wei, Y. Liu, K. Kirchhoff, C. Bartels, and J. Bilmes, “Submodular subset 
selection for large-scale speech training data,” in Proc. IEEE Int. Conf. Acoustics, 
Speech and Signal Processing (ICASSP), Florence, Italy, 2014, pp. 3311–3315.

[115] A. Narayanan and D. Wang, “Ideal ratio mask estimation using deep neural 
networks for robust speech recognition,” in Proc. IEEE Int. Conf. Acoustics, Speech 
and Signal Processing (ICASSP), Vancouver, Canada, 2013, pp. 7092–7096.

[116] J. Deng, Z. Zhang, E. Marchi, and B. Schuller, “Sparse autoencoder-based 
feature transfer learning for speech emotion recognition,” in Proc. Int. Conf. 
Affective Computing and Intelligent Interaction (ACII), Geneva, Switzerland, 2013,
pp. 511–516.

[117] A. Kocsor and L. Tóth, “Kernel-based feature extraction with a speech tech-
nology application,” IEEE Trans. Signal Process., vol. 52, no. 8, pp. 2250–2263,
Aug. 2004.

[118] M. G. Jafari and M. D. Plumbley, “Fast dictionary learning for sparse repre-
sentations of speech signals,” IEEE J. Sel. Topics Signal Process., vol. 5, no. 5, pp. 
1025–1031, Sept. 2011.

[119] G. Heigold, V. Vanhoucke, A. Senior, P. Nguyen, M. Ranzato, M. Devin, and 
J. Dean, “Multilingual acoustic models using distributed deep neural networks,” in 
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP),
Vancouver, Canada, 2013, pp. 8619–8623.

[120] J. T. Huang, J. Li, D. Yu, L. Deng, and Y. Gong, “Cross-language knowledge 
transfer using multilingual deep neural network with shared hidden layers,” in 
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP),
Vancouver, Canada, 2013, pp. 7304–7308.

[121] Y. Miao, H. Zhang, and F. Metze, “Speaker adaptive training of deep neural 
network acoustic models using i-vectors,” IEEE/ACM Trans. Audio, Speech, 
Language Process., vol. 23, no. 11, pp. 1938–1949, Nov. 2015.

[122] J. Deng, R. Xia, Z. Zhang, Y. Liu, and B. Schuller, “Introducing shared-hid-
den-layer autoencoders for transfer learning and their application in acoustic emo-
tion recognition,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal 
Processing (ICASSP), Florence, Italy, 2014, pp. 4818–4822.

[123] R. Giri, M. L. Seltzer, J. Droppo, and D. Yu, “Improving speech recognition 
in reverberation using a room-aware deep neural network and multi-task learning,” 
in Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP),
Brisbane, Australia, 2015, pp. 5014–5018.

[124] C. J. Leggetter and P. C. Woodland, “Maximum likelihood linear regression 
for speaker adaptation of continuous density hidden Markov models,” Comput. 
Speech & Language, vol. 9, no. 2, pp. 171–185, Apr. 1995.

[125] J. Li, L. Deng, Y. Gong, and R. Haeb-Umbach, “An overview of noise-robust 
automatic speech recognition,” IEEE/ACM Trans. Audio, Speech, Language 
Process., vol. 22, no. 4, pp. 745–777, Apr. 2014.

[126] H. Sagha, J. Deng, M. Gavryukova, J. Han, and B. Schuller, “Cross lingual 
speech emotion recognition using canonical correlation analysis on principal com-
ponent subspace,” in Proc. IEEE Int. Conf. Acoustics, Speech and Signal 
Processing (ICASSP), Shanghai, China, 2016, pp. 5800–5804.

[127] B. A. Olshausen and D. J. Field, “Emergence of simple-cell receptive field 
properties by learning a sparse code for natural images,” Nature, vol. 381, no. 6583,
pp. 607–609, June 1996.

[128] M. L. Seltzer and J. Droppo, “Multi-task learning in deep neural networks 
for improved phoneme recognition,” in Proc. IEEE Int. Conf. Acoustics, Speech 
and Signal Processing (ICASSP), Vancouver, Canada, 2013, pp. 6965–6969.

[129] J. Deng, X. Xu, Z. Zhang, S. Frühholz, and B. Schuller, “Universum autoen-
coder-based domain adaptation for speech emotion recognition,” IEEE Signal 
Process. Lett., vol. 24, no. 4, pp. 500–504, Apr. 2017.

[130] J. Ngiam, A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng, “Multimodal 
deep learning,” in Proc. Int. Conf. Machine Learning (ICML), Bellevue, WA, 2011,
pp. 689–696.

[131] P. C. Woodland, “Speaker adaptation for continuous density HMMs: A 
review,” in Proc. ISCA Tutorial and Research Workshop (ITRW) on Adaptation 
Methods for Speech Recognition, Sophia Antipolis, France, 2001, pp. 11–19.

[132] N. Cummins, V. Sethu, J. Epps, S. Schnieder, and J. Krajewski, “Analysis of 
acoustic space variability in speech affected by depression,” Speech Commun., vol. 
75, pp. 27–49, Dec. 2015.

[133] X. Li and J. Bilmes, “Regularized adaptation of discriminative classifiers,” in 
Proc. IEEE Int. Conf. Acoustics, Speech and Signal Processing (ICASSP),
Toulouse, France, 2006, pp. I–237–I–240.

[134] B. Schuller, B. Vlasenko, F. Eyben, M. Wöllmer, A. Stuhlsatz, A.
Wendemuth, and G. Rigoll, “Cross-corpus acoustic emotion recognition: Variances 
and strategies,” IEEE Trans. Affective Comput., vol. 1, no. 2, pp. 119–131, July 2010.

[135] S. Y. Kung, “Compressive privacy: From information/estimation theory to 
machine learning,” IEEE Signal Process. Mag., vol. 34, no. 1, pp. 94–112, Jan. 2017.

[136] Z. Zhang, E. Coutinho, J. Deng, and B. Schuller, “Distributing recognition in 
computational paralinguistics,” IEEE Trans. Affective Comput., vol. 5, no. 4, pp. 
406–417, Oct. 2014.

[137] R. Fierimonte, S. Scardapane, A. Uncini, and M. Panella, “Fully decentral-
ized semi-supervised learning via privacy-preserving matrix completion,” IEEE 
Trans. Neural Netw. Learn. Syst., vol. PP, no. 99, pp. 1–13, 2016.

[138] S. Huffman. (2014, Oct. 14). OMG! Mobile voice survey reveals teens love to 
talk. [Online]. Available: https://googleblog.blogspot.de/2014/10/omg-mobile-
voice-survey-reveals-teens.html

[139] C. Huang, R. Liang, Q. Wang, J. Xi, C. Zha, and L. Zhao, “Practical speech 
emotion recognition based on online learning: From acted data to elicited data,” Math. 
Problems in Eng., vol. 2013, pp. 9, June 2013.

[140] W. Ainsworth and S. Pratt, “Feedback strategies for error correction in 
speech recognition systems,” Int. J. Man-Mach. Stud., vol. 36, no. 6, pp. 833–842,
June 1992.

[141] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare,
A. Graves, M. Riedmiller, et al. “Human-level control through deep reinforcement 
learning,” Nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

SP

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

_______________
__________________________

https://googleblog.blogspot.de/2014/10/omg-mobile-voice-survey-reveals-teens.html
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


130 IEEE SIGNAL PROCESSING MAGAZINE | July 2017 | 1053-5888/17©2017IEEE

Digital Object Identifier 10.1109/MSP.2017.2699039
Date of publication: 11 July 2017

V
ehicle technologies have advanced sig-
nificantly over the past 20 years, espe-
cially with respect to novel in-vehicle 
systems for route navigation, informa-

tion access, infotainment, and connected 
vehicle advancements for vehicle-to-vehicle 
(V2V) and vehicle-to-infrastructure (V2I) 
connectivity and communications. While 
there is great interest in migrating to fully 
automated, self-driving vehicles, factors such 
as technology performance, cost barriers, 
public safety, insurance issues, legal implica-
tions, and government regulations suggest it 
is more likely that the first step in the pro-
gression will be multifunctional vehicles. 
Today, embedded controllers as well as a 
variety of sensors and high-performance 
computing in present-day cars allow for a 
smooth transition from complete human 
control toward semisupervised or assisted 
control, then to fully automated vehicles. 
Next-generation vehicles will need to be 
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more active in assessing driver awareness, vehicle capabilities, 
and traffic and environmental settings, plus how these factors 
come together to determine a collaborative safe and effective 
driver–vehicle engagement for vehicle operation. This article 
reviews a range of issues pertaining to driver modeling for the 
detection and assessment of distraction. Examples from the 
UTDrive project are used whenever possible, along with a 
comparison to existing research programs. The areas ad -
dressed include 1) understanding driver behavior and distrac-
tion, 2) maneuver recognition and distraction analysis, 3) 
glance behavior and visual tracking, and 4) mobile platform 
advancements for in-vehicle data collection and human–
machine interface. This article highlights challenges in achiev-
ing effective modeling, detection, and assessment of driver 
distraction using both UTDrive instrumented vehicle data and 
naturalistic driving data.

The need for driver 
modeling research
Over the past few years, 
there has been a significant 
effort in establishing smart 
cars that have the capability 
to achieve self/autonomous 
driving for their passengers 
or the passive operator. While 
great strides in autonomous 
driving will continue, great-
er research and understand-
ing is needed regarding 
driver modeling as we tran-
sition from full-driver control 
to various levels of assis-
tive-through-fully automat-
ed vehicles. The ability for 
smart cars to seamlessly move 
back and forth between com -
pletely automated, semiau-
tomated, semiassistive, and 
unassisted cars remains a 
major challenge. In this arti-
cle, we consider an overview 
of the recent advancements 
in driver modeling to as -
sess driver status, including 
the detection and assessment 
of driver distraction when 
the vehicle is operated in 
a  user-controlled scenario. 
The recent large-scale data 
collection undertaken by the 
United States Transportation 
Research Board—Strategic 
Highway Research Pro -
gram [1], [91] will provide 
an enormous (+2 Petabytes) 
data set of naturalistic data. 

The ability for researchers to mine this corpus to develop bet-
ter models of driver status will offer new insights into next-
generation smart vehicles, which have the capability of 
migrating between being completely user controlled to 
fully autonomous.

An extensive amount of research and development is current-
ly being conducted by many laboratories in the United States, 
Japan, Germany, Sweden, South Korea, and other countries; it is 
therefore not possible to provide exhaustive coverage of all sig-
nificant advancements. Instead, the goal here is to provide a rep-
resentative look at the topic of driver modeling, focusing on how 
advancing technologies impact driver distraction. This includes a 
range of signal processing technologies related to controller area 
network (CAN) bus analysis, image/video processing, speech/
audio for human–machine interaction, and other advancements 
leading to current and future intelligent assistance in the vehicle. 
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A recent IEEE Signal Processing Magazine special issue, 
“Smart Vehicle Technologies: Signal Processing on the Move” 
[2], considered a range of topics for smart vehicles advance-
ments that included driver behavior modeling using on-road 
driving data [3], driver status monitoring systems [4], smart 
driver monitoring [5], conversational in-vehicle dialog systems 
[6], active noise control in cars [7], and coordinated autono-
mous vehicles [8]. In this article, we provide several comple-
mentary highlights to these excellent overview articles. Several 
experiments/data sets have collected infor-
mation on driver behavior analysis [9]–[11].
For the sake of illustration, the UTDrive 
naturalistic driving data set [12] has been 
conducted by the Center for Robust Speech 
Systems (CRSS)-UTDrive since 2006, with 
the interest of understanding driver behavior 
and distraction from multichannel sensor data 
(see Figure 1) [13]. Here, we focus on current 
advancements, past efforts, and directions 
for future research. Examples stemming 
from the UTDrive project are highlighted 
as examples, as well as efforts from the Virginia Tech Trans-
portation Institute, the University of Michigan Transportation 
Research Institute, the University of California, San Diego, 
plus studies conducted in Europe, Japan, and South Korea [14].

Understanding driver behavior 
and driving distraction
Driver activities performed within the vehicle can be broadly 
classified into primary tasks that are essential for operating and 
directing the course of a vehicle in a given environment and sec-
ondary tasks that are not essential or related to the primary task 
of driving. Secondary tasks divert drivers’ primary attention 
of  driving and degrade their driving performance. The 

deterioration is directly attributed to the driver (distraction, 
inattention), the vehicle (condition, familiarity), or the sur-
rounding environment (traffic, weather). Both driver distraction 
and driver inattention are frequently occurring events in a car.

Driver inattention is defined as insufficient or no atten-
tion given to activities critical for safe driving. Inattention can 
either be a voluntary or involuntary diversion of attention by 
the driver [15]. Driver distraction has been formally defined 
as “[a]nything that delays the recognition of information nec-

essary to safely maintain the lateral and 
longitudinal control of the vehicle (primary 
driving task) due to some event, activity, 
object or person, within or outside the vehi-
cle (agent) that compels or tends to induce 
the driver’s shifting attention away from the 
fundamental driving task (mechanism) by 
compromising the driver’s auditory, bio-
mechanical, cognitive or visual faculties or 
combinations thereof (type)” [16]. Without 
these formal definitions, cross-study com-
parisons cannot be made and statistics can 

vary drastically, leading to incorrect observations [15], [16].
It is important to note that driver distractions are generally 
caused by a competing trigger activity that may lead to driver 
inattention, which in turn degrades driving performance. Alter-
natively, other forms of driver inattention might not necessarily 
be due to a trigger or competing activity, making inattention 
difficult to detect and even harder to control. By identifying 
some of the causes of driver distraction, it is possible to isolate 
scenarios when the cause of distraction can be controlled.

Most secondary tasks are not distracting and do not require 
the complete attention of the driver. However, while execut-
ing a complex task such as driving, most the driver’s atten-
tion is toward a safe drive, and performing a secondary task 
means sharing limited available human cognitive resources. 
Some important characteristics related to secondary tasks that 
distract the driver include the duration of the activity, the fre-
quency of the activity, the attention required to execute the 
activity (attention demand), the ease of returning to the prima-
ry task of driving, the location and time at which the activity is 
executed, and the individual driver’s comfort in executing the 
task and in performing multiple tasks. Since visual modality 
has been well studied, it has been established that diversion of 
the driver’s visual focus away from the task of driving for more 
than 1.5 s distracts the driver [17].

The driver follows road rules and maintains his or her lane 
as well as an acceptable gap between the car and surround-
ing vehicles, all while achieving good reaction time to changes 
such as traffic signs and taillights [18]. From the vehicle con-
trol side, the driver’s primary physical contacts are the steering 
wheel, the gas and brake pedals, the seat, and the ego vehicle 
(i.e., the targeted, controlling vehicle itself) speed as reference. 
Any secondary task that distracts the driver has a direct influ-
ence on body movements that manifest in control of the vehi-
cle. Hence, a change in driving performance can be evaluated 
by analyzing these signals. Each driver has a comfortable way 

The ability for smart 
cars to seamlessly move 
back and forth between 
completely automated, 
semiautomated, 
semiassistive, and 
unassisted cars remains 
a major challenge.
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FIGURE 1. The UTDrive experiment test bed: synchronized multichannel 
measurements. GPS: global positioning system. OBD: on-board diagnostic.
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in which he or she interacts with the vehicle, and analyzing 
these signals can help build a driver behavior and character-
istic model.

Maneuver recognition and distraction analysis
The ability to continuously evaluate driving performance will 
be necessary in next-generation smart vehicles, to develop 
advanced driver-specific active/passive safety systems. One 
typical approach is to identify careless and 
risky driving events through analyzing 
abrupt variations in vehicle dynamics infor-
mation. These variations are best captured 
when evaluated against similar driving pat-
terns or maneuvers. This has been predomi-
nantly adopted in current-day active safety 
systems [19]–[21]. These event detection 
systems provide an insight into the current 
driving conditions of the driver. In addition, 
every driver has his or her own unique style 
of driving. Along with weather and traffic, 
the driver’s driving experience, vehicle handling ability, and 
mental and physical state all influence the way a maneuver is 
executed. Figure 2 depicts a system in which the driver is 
identified based on his or her driving characteristics; the driv-
er’s maneuvers are recognized, variations in them are identi-
fied, and the driving is thus classified. The driver identification 
subsystem reduces the variability for individual drivers, which 
can be achieved from face/speech recognition and other 
inputs. Next, the driving performance is evaluated by identify-
ing maneuvers and detecting their variations against regular 
(normal execution) patterns. Finally, every driving instance 
(i.e., in terms of processing frames) is classified into neutral 
(normal driving) or distracted driving. This section is focused 
on the maneuver recognition, variation detection, and driving 
classification subsystems for the distraction analysis.

With the pending availability of a massive free-style natu-
ralistic driving data corpus (i.e., Strategic Highway Research 
Program 2 and New Energy and Industrial Technology Devel-
opment [22], [23]), the development of automatic tools to orga-
nize, prune, and cluster drivercentric-based events for driver 
modeling is a growing research topic. 
Rather than using simulated or fixed 
test track data, it is important to analyze 
on-road, real-traffic naturalistic driving 
data for all possible driving variations 
in different maneuvers.

Human transcription of these mas-
sive corpora is not only a tedious task, 
but also subjective and prone to errors. 
These human transcription errors can 
potentially hinder the development of 
algorithms for advanced safety systems 
and lead to performance degradations. 
Therefore, an automatic, effective, and 
computationally efficient tool is needed 
to help mitigate human transcription 

errors and make valuable data from large naturalistic driving 
corpora more accessible. To prevent these errors from propagat-
ing, an automatic maneuver activity detection (MAD) tool (that 
also detects boundaries) using filter-bank analysis of vehicle 
dynamic signals is proposed. Using a minimal set of generic 
vehicle dynamic sensor information, such a MAD tool can 
match human transcription to an accuracy of up to 99% [24],
[25]. Making this tool freely available will offer researchers 

opportunities to better explore naturalistic 
driving data.

Maneuver recognition
Driving maneuvers, influenced by the driv-
er’s choice and traffic/road conditions, are 
important in understanding variations in 
driving performance and to help rebuild the 
intended route. Maneuvers are the basic 
units in building up a driving session. 
While processing massive quantities of 
naturalistic driving data, it is critical to ana-

lyze at a micro level. Understanding how these maneuvers are 
performed can provide information on how the driver controls 
the vehicle and how driving performance varies over time, 
which is essential in driver assistance and safety systems.

Similar to speech, where phonemes form words, it has been 
established [26], [27] that the smallest meaningful units of a 
driving pattern are termed drivemes. Drivemes form maneu-
vers, and maneuver sequences form a navigation route. This 
flow is depicted in Figure 3. Therefore, tracking the variation 
of these drivemes can improve the efficiency of active safety 
systems not only in providing safety to the driver, but also in 
predicting drivers’ actions.

The definition of driving maneuvers may be considerably 
wide, depending on the underlying application [28]. Sev-
eral existing studies have employed maneuver recognition 
for vehicle trajectory prediction [29], intersection assistance 
[30], and lane-change intent recognition on the highway [31].
Based on recent advancements, a study [32] that considered 
driving maneuvers primarily classified into eight catego-
ries—straight, stop, left turn, right turn, left-lane change, 
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Driving
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Driver
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Context, and
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Distraction
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Pruning the Search Space

FIGURE 2. How the driver-dependent, maneuver-based distraction detection system identifies and 
evaluates each driving session.

The ability to continuously 
evaluate driving 
performance will be 
necessary in next-
generation smart vehicles, 
to develop advanced 
driver-specific active/
passive safety systems.
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right-lane change, left road curve, and right road curve—
showed promise.

The method of recognition in the literature employed various 
statistical modeling and machine-learning classification algo-
rithms, such as Bayesian models [33], finite-state machines 
and fuzzy logic [34], hidden Markov models (HMMs) [35],
and decision trees [36]. HMMs have proven to be benefi-
cial in predicting driver actions within the 
first 2 s of an action sequence [37]. In our 
previous study, a similar HMM frame-
work was employed in both a top-down as 
well as bottom-up approach to find the 
best integrated architecture for modeling 
driving behavior and recognizing maneu-
vers and routes [38]. Important features 
include steering wheel angle, speed, and 
brake signals from vehicle CAN bus data, 
or acceleration and gyroscope readings 
from a smart portable device [25], [39].
Recognition and prediction of lane-change maneuvers have 
been proposed together, suggesting a double-layered HMM 
framework in the consideration of both maneuver execution 
and route information [40]. Thus far, the accuracy of obtained 
maneuver recognition ranges between 70–90% and offers 

opportunities for low-cost, low-level maneuver recognition 
for long-term modeling of driver behavior.

Distraction analysis
Distraction, in general, affects the attention span of a person; 
within the vehicular space, it manifests in the driver’s vehicu-
lar controls. Traditionally, distraction has been assessed from 

the driver’s perspective in terms of either 
stress, eye movements, or cognitive work-
load [41]. Physiological measurements 
such as heart rate variability and skin con-
ductance (e.g., electroencephalogram, 
electromyogram) have proven to be useful 
in detecting the stress levels in drivers
[42]. Studies have also considered body 
movement sensors to detect drivers’ pat-
terns for assessment of driver distrac-
tions [43]. Though high accuracy has been 
achieved from a research perspective, 

these vision and body sensors are intrusive and unsuitable for 
naturalistic driving scenarios. Using such sensors can poten-
tially serve as a baseline when compared with nonintrusive 
sensors for performance.

Since driver actions and intentions manifest into vehicle 
movement, vehicle dynamic signals such as steering wheel 
movements, gas and brake pedal pressure, and vehicle speed 
could potentially contain hidden or embedded information on 
the current status of the driver. Using vehicle dynamic signals, 
driving is classified based on the maneuver execution char-
acteristics of a particular driver. The classification could be a 
binary classification (neutral versus distracted) [46] or a trend 
in the variations (safe, moderate, or risky) [32].

The assessment of driving distraction underlies two hypoth-
eses. First, good, safe, or convenient driving behavior should 
be reflected by stable, steady vehicular dynamic performance. 
Second, the actions of an experienced driver should meet the 
characteristics of good driving behavior most of the time, 
with bad driving occurring as a limited number of events 
[44]. Based on these hypotheses, the good driving events 
should be clustered in the vehicle dynamical feature space, 
whereas bad driving events will become more random anom-
alies or outliers.

Figure 4 depicts a typical feature space for an imaginary 
maneuver type, X. The green squares, which are clustered 
together around the centroid of class X, represent the normal 
execution trend for this maneuver. The deviations from the 
normal execution pattern are reflected in the feature space 
of this maneuver as yellow or red squares. These abnormal 
instances of the maneuver are still recognized as type X by the 
classifier, but the intraclass separation suggests that they can 
be marked as outliers. Euclidean distance, cosine distance, and 
Mahalanobis distance have been used to detect outliers. Iden-
tifying such outliers helps in the evaluation of driving pattern 
variations and driving performance [45]. Figure 5 illustrates 
the gradient of event variations (classified as safe, moderate, 
and risky) along the driving route.

Speech
Recognition

Sentences

Phrases

Words

Phonemes Drivemes

Maneuvers

Segments

Routes

Route
Recognition

(a) (b)

FIGURE 3. A comparison of the structural flow of building blocks between 
(a) speech recognition and (b) route recognition.

Feature Space for Maneuver X

Driving Behavior

Outlier

Normal (Safe)

Moderate

Risky

FIGURE 4. An example of the feature space for maneuver X showing 
variations in driving performance quantified as normal, moderate, and 
risky maneuver actions.

Rather than using 
simulated or fixed test 
track data, it is important 
to analyze on-road, real-
traffic naturalistic driving 
data for all possible 
driving variations in 
different maneuvers.
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Due to the highly dynamic nature of driving and the sur-
rounding environment, drivers generally do not stay in one state 
for long and often toggle between models/states. A microanal-
ysis of individual driving patterns is performed by segment-
ing the drive into small frames (a few seconds or a few meters 
traveled), which can be scaled to a macro level for preventing 
or correcting any unsafe activities. Such a microanalysis has 
provided an insight into how secondary tasks are executed and 
potentially influence drivers. Most secondary 
tasks can be grouped into three sequential 
events [46]. In the anticipation/preparatory 
phase, during the start of a task, most drivers 
are distracted. This is justified as they divert 
more attention toward the task, assess the 
surroundings, and get ready to perform the 
task. The second event is the task execution 
phase, during which the drivers fall into a 
comfort zone of multitasking. Finally, in the 
third task, the recovery or postcompletion 
phase, drivers generally reassess their surroundings after sec-
ondary task completion. The duration of each of these phases 
is based on the individual driver’s comfort and confidence level 
[47]; the effect of multitasking is variable on different drivers. 
As the automotive industry further advances in developing 
advanced driver-assistance systems (ADASs), such drivercen-
tric adaptive systems will help in personalizing the vehicle by 
triggering the ADAS only when drivers are impacted or when 
they show tendencies of such impact.

The National Highway Traffic Safety Administration (NHTSA)
released visual driver distraction guidelines [17] for in-vehicle 

electronic devices, categorizing the main sources of distraction 
into three categories: visual, cognitive, and manual. It will not 
be long before the automotive industry and infotainment sys-
tems shift away from visual interaction with the driver and move 
toward audio/speech-based interactions with the driver. There-
fore, it is of great interest to understand the actual influence 
of in-vehicle speech on the driver. There has been some pre-
liminary work done in this area to understand the influence 

of in-vehicular speech and audio on driv-
ing [48]. While some in-vehicle conversa-
tions might aid driving, categories such as 
involved, competitive, and argumentative 
speech can adversely influence the driver 
and cause driver distraction.

Tracking glance behavior 
and visual attention
An important aspect in monitoring driver 
distraction is to evaluate the visual attention 

of the driver. There are three main areas that can benefit from 
tracking the drivers’ visual attention: assessing the primary 
driving task, detecting secondary tasks, and supporting 
advanced user–computer interfaces.

The role of visual attention
Understanding where the visual focus lies is a key step to 
determine driver performance during the primary driving task 
[49]–[51]. A driver should scan the route environment before 
conducting a driving maneuver. This action includes checking 
the mirrors, looking at the vehicles in front of the driver, and 
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FIGURE 5. (a) and (b) This chart shows maneuver variations along two different driving routes. The routes were selected around the University of Texas at 
Dallas campus, with a mixture of residential and business areas. (a) and (b) The green, yellow, and red colors indicate driving safety levels along the two 
routes.

Due to the highly dynamic 
nature of driving and the 
surrounding environment, 
drivers generally do not 
stay in one state for long 
and often toggle between 
models/states.
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identifying pedestrian actions. Primary driving tasks such as 
visual scanning, turning, and switching lanes all require mir-
ror-checking actions [52]–[54]. Failing to accomplish these 
tasks decreases the drivers’ situational awareness, increasing 
the chances of accidents [55], [56]. An increase in visual 
demand due to secondary tasks affects the control of the vehi-
cle, the detection of critical traffic events, and the detection of 
hazard events [57]. As a result, studies have used features 
describing eye-off-the-road, head pose, gaze range, and eyelid 
movements to detect distractions [58]–[65]. Objective mea-
sures capturing the duration and frequency of glance behav-
iors can provide important information to provide warnings to 
distracted drivers.

Visual attention signals temporal deviations from the pri-
mary driving task to complete secondary tasks such as ad -
justing the radio, operating a cell phone, or looking at other 
passengers. All of these secondary tasks induce visual, cog-
nitive, auditory, and manual distractions. A perceptual evalu-
ation has been conducted to assess the perceived level of 
cognitive and visual distractions in 10-s videos of drivers who 
are engaged in different secondary tasks [65], [66], in which 
the advantages and limitation of using perceptual evaluations 
to assess driver distractions is discussed. Figure 6 shows that 
many common secondary tasks induce a high level of visual 
distractions. For example, operating a cell phone, the radio, 
or a navigation system increases the perceived level of visu-
al distractions [67]. When a driver fails to glance at traffic, 
it can also signal cognitive distractions; the driver is looking 
but not seeing because he or she is daydreaming or thinking 
about something else [68], [69]. These types of distractions are 
very difficult to detect with noninvasive sensors [70]. Tracking 

glance behaviors provides an important tool to address this 
problem. For all of these reasons, a robust ADAS should be 
able to detect mirror-checking actions and glance behaviors to 
prevent hazard situations [71].

The automobile industry is developing new advanced 
interfaces that do not induce manual or visual distractions. 
These interfaces are generally implemented using automatic 
speech-recognition systems. ADASs need to provide essen-
tial information to the driver in an effective manner. With 
more information available to the driver, it is also important 
that the information is presented without causing significant 
distractions. By tracking the visual attention of the driver and 
environment, the ADAS can clarify ambiguities by provid-
ing a situated dialog system (e.g., commands such as “What 
is the address of this building?” while glancing toward a spe-
cific building). In an example of such a system [72], the visual 
saliency of the scene and crowdsourced statistics on how peo-
ple describe objects were used as prior information to improve 
the identification of points of interest (POIs). While the visual 
saliency of the scene did not depend on driver glance behav-
iors, we expect improved performance by modeling the visual 
attention of the drivers [73], [78].

Tracking visual attention
Tracking eye movement can be an accurate measurement to 
identify the exact location of the gaze of the driver. However, 
robustly measuring gaze in a driving environment is challeng-
ing due to changes in illuminations in the vehicle and changes 
in the head poses of the drivers. As a result, most of the stud-
ies have approximated gaze with head poses. Zhang et al. [74]
argued that even though eye gaze is a better indicator, head 
pose alone can provide good cues about driver intentions. 
However, there are differences between head pose and the 
driver’s gaze that need to be considered [75]–[78]. The driver 
moves his or her head and eyes to glance at a target object, 
where the eye–head relationship depends on factors such as 
the underlying driving task, the type of road, and the driver.

Studies have investigated the relation between head motion 
and gaze on naturalistic recordings [78]. We placed multiple 
markers on the windshield, side windows, speedometer panel, 
radio, and gear. The recordings protocol is repeated while 
driving and when the car was parked. We proposed regression 
models where the dependent variables were the position and 
rotation of the head, and the independent variables were the 
three-dimensional positions of the POIs. While driving, the 
R2 of the model was about 0.73 for the horizontal direction, 
but lower than 0.20 for other directions. Motivated by these 
results, the analysis is extended to incorporate a probabilistic 
model relying on Gaussian process regression [79]. Instead of 
deriving the exact location of the POI, the framework creates 
a salient visual map describing the driver’s visual attention, 
which is mapped into the route scene (see Figure 7). The 95% 
confidence region of the models included about 89% of the 
POIs. This approach provides a suitable tool for situated dia-
log systems and safety systems that are aware of the driver 
glance behavior.
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FIGURE 6. An overview of the visual–cognitive space proposed to study 
driver distraction. Perceptual evaluations are used to determine the 
perceived level of distractions. Each secondary task affects the driver’s 
concentration differently.
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An alternative approach to monitoring visual attention 
is to directly recognize primary or secondary driving tasks 
that require visual demand. An example of a primary driv-
ing task is the detection of mirror-checking actions. We pre-
sented an accurate random undersampling boost classifier to 
recognize mirror-checking actions [71]. The classifier was 
trained with multimodal features automatically extracted 
from the driver and road cameras and from the CAN bus 
signal using naturalistic recording on the UTDrive platform. 
The task was to recognize each time the driver looked at a 
given mirror. Figure 8(a) shows an example of a participant 
looking at the rear mirror. The F-score of the classifier was 
91.4%, which is very high given that mirror-checking actions 
are infrequent events, making this classification problem 
highly unbalanced. Figure 8(b) shows the performance for 
different routes, under both normal conditions (during which 
the driver is not engaged in secondary tasks) and task condi-
tions (during which the driver is engaged in secondary tasks). 
The classifier showed consistent performance across both 
normal and task conditions. An example of a secondary task 
is the detection of activities not related to the driving task 
requiring visual activities. We trained binary classifiers using 
a support vector machine, which detect particular secondary 
activities [60]. For tasks such as looking at pictures (which 
simulates the task of looking at billboards, sign boards, and 
shops) and operating a radio and a GPS, the accuracy was 

about 80%. The perceptual evaluation showed that these 
tasks induce high visual demand.

Portable platform advancements
With the rapid growth of smartphone capabilities, including 
entertainment and management of daily activities, individuals 
are increasingly using smartphones while driving. However, 
operating a vehicle is a complicated and skilled task requiring 
multimodal (especially visual) attention and focus. While driv-
ers can multitask comfortably, using a smartphone may 
become a distraction and contribute to increased risk. 
Alternatively, the proper use of smart devices could be a 
source of reduced driving distraction while executing second-
ary tasks. One feasible approach to achieve this is to interact 
with these platforms using speech-based interfaces, reducing 
the visual and cognitive load [6]. Studies have also shown that 
drivers can achieve better and safer driving performance while 
using speech interactive systems to operate in-vehicle systems 
compared to hand-operated interfaces [80].

A more advanced reason for introducing the smartphone is 
its potential ability to be integrated with intelligent telematics 
services. Smartphone-based on-board sensing in the vehicle 
can capture various sources of information, including traffic 
(other vehicle and pedestrian movements), vehicle (diagnos-
tics), environment (road and weather), and driver behavior in -
formation [81]. It would be beneficial to connect this platform 

(a)

(b)

FIGURE 7. This visual saliency map was created with the probabilistic 
model and shows (a) the estimation of confidence regions for different 
distances from the car and (b) an aggregation of the results projected on 
the road camera. The saliency map characterizes driver visual attention. 
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FIGURE 8. The detection of mirror checking using multimodal features: 
(a) a participant looking at the rear mirror and (b) the F-score of the 
classifier for both normal and task conditions [71].
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with intelligent transportation systems or V2V or V2I commu-
nication, share the information, and realize a wider Internet of 
Vehicles. However, the challenges of smartphone platform use 
in the vehicle come from the deployment difficulty, measure-
ment accuracy, and system reliability.

In this section, we first discuss the deployment of smart-
phones as an in-vehicle data collection platform, utilizing its 
hardware resources. Additionally, we explore the implemen-
tation of the voice-based human–machine interface, and its 
capabilities in applications for vehicle/driver telematics.

In-vehicle data collection platform: 
Mobile-UTDrive app
Smartphones contain a variety of useful 
sensors, including cameras, microphones, 
inertial measurement units (IMU), and 
GPS. These multichannel signals make the 
smartphone a potentially leveraged plat-
form for in-vehicle data sensing and moni-
toring, and can be employed for driving 
distraction analysis. The use of smart por-
table devices in vehicles creates the possi-
bility to record useful data and helps 
develop a better understanding of driving 
behavior. This option allows a wider range of naturalistic 
driving study opportunities for drivers operating their own 
vehicles [82]–[84].

The UTDrive mobile app (Mobile-UTDrive) has been 
developed with the goal of improving driver/passenger safe-
ty while simultaneously maintaining the ability to establish 
monitoring techniques that can be used on mobile devices in 
various vehicles [85]. Mobile-UTDrive has been primarily 
used and developed as a multimodal data acquisition platform 
that collects driver, vehicle, and environmental information 
describing the comprehensive driving scenario. The modali-
ties captured by Mobile-UTDrive are audio, video, GPS, and 
IMU sensor signals. The app runs on any Android-based smart 
portable device and uses the front and rear cameras to record 
naturalistic driving video as well as in-vehicle audio. The IMU 

and GPS within the device provide accurate estimates of vehi-
cle dynamics. Mobile-UTDrive has been further developed to 
take advantage of capabilities such as speech recognition and 
on-screen map navigation. Figure 9 displays a screenshot of the 
Mobile-UTDrive app running on a tablet. Using this approach 
has resulted in studies to detect maneuvers and design driv-
ing safety systems that combine in-vehicle speech and video 
analysis with driving performance evaluation [86], [87]. Freely 
distributing this platform will offer researchers the opportunity 
to customize their data collection scenarios while maintaining 
current goals for naturalistic driving data advancements.

In previous studies, it has been shown 
how vehicle dynamic signals can potentially 
replace the information extracted from a 
CAN bus and thereby extend the use of 
maneuver recognition and monitoring algo-
rithms to any vehicle that uses the app [32],
[45]. However, the orientation and relative 
movement of the smartphone inside the vehi-
cle yields the main challenge for platform 
deployment. A recent study [88] proposed a 
solution of converting the smartphone-refer-
enced IMU readings into vehicle-referenced 
accelerations, which allows free positioning 

of smartphones for the in-vehicle dynamics sensing. In this 
proposed framework, the raw smartphone IMU readings are 
first processed through a geometry coordinate transformation 
to rotate/reorient the smartphone-referenced accelerations into 
a vehicle-referenced coordinate system. Next, a regression 
model is established to map the relationship between IMU 
and GPS data, and therefore provide an adaptive filtering pro-
cess to decouple the smartphone’s relative movement in the 
vehicle. This serves as a preprocess module and therefore pro-
vides the basis for further applications using the smartphone 
data (see Figure 10).

Voice-based human–machine interaction
The smartphone in the vehicle provides easy access to speech 
recording and processing, and offers potential integration with 

(a) (b)

FIGURE 9. The mobile-UTDrive app display showing (a) the original and (b) the updated version [85].

Freely distributing 
this platform will 
offer researchers the 
opportunity to customize 
their data collection 
scenarios while 
maintaining current goals 
for naturalistic driving 
data advancements.
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the infotainment system, which becomes a good platform for 
the development of a voice-based human–machine interface. 
Drivers would not necessarily be required to perform tasks such 
as setting map navigation, changing the radio station, adjusting 
volume, adjusting the air-conditioning, and controlling the win-
dows via hands-on operation, but could employ voice com-
mands instead. The typical manual-entry or tactile-based 
engagement primarily uses various combinations of keypads, 
keyboards, point-and-click techniques, touch-screen displays, 
or other interface mechanisms. These traditional interfaces, 
which often require the driver to take his or her eyes off the 
road, tend to be cumbersome in environments where the speed 
of interactions and dangers of distraction pose significant 
issues, and therefore fall short in providing simple and intuitive 
operation. In contrast, voice-based interaction would keep the 
driver’s eyes focused on the road and his or her hands on the 
wheel. Results have shown that hands-on operation could 
potentially be a greater cause of major irregularities in driving 
performance, despite the latency and 
recognition error imposed by the speech 
recognition system [45], [87]. The devel-
opment of speech recognition compati-
bility and natural language understanding 
for dialog interaction in the car offers 
avenues for lowering driver distraction. 
Therefore, natural voice-based engage-
ments between driver and vehicle offer 
the potential to meet an ever-growing 
demand for creating a comfortable, safe, 
and convenient driving experience.

Among the voice-based human–
vehicle interfaces, the navigation dia-
logue system is the one with the highest 
demand in recent years. Navigation 
dialogs may happen in some situations 
while a user may be driving, on-the-
go, or in other environments where 
having a hands-free interface provides 
critical advantages. The desired intel-
ligent navigation system is about more 
than searching locations on the map; 
it would have the capability of acting 
as an assistant, talk with humans in a 
natural manner, and guide and drive for 
the human when needed. Therefore, it 
should have the ability to speak natu-
rally and understand natural spoken 
language. For example, when a driver 
is trying to find a destination, he or she 
may either speak out a POI, specify the 
exact address, or spell the name and 
number of a street. The navigation sys-
tem should automatically understand 
what was said without having to ask the 
driver to choose the style of his or her 
spoken language. Furthermore, in the 

next generation of autonomous driving vehicles, it is expected 
that the vehicle will automatically drive for the human. Passen-
gers may inquire about the trip or change the previously select-
ed route through the dialog system, and the vehicle should be 
able to understand how it is associated with navigation tasks 
and provide the necessary responses.

Recent studies [89], [90] consider natural language process-
ing (NLP) for the navigation-oriented human–vehicle dialog. 
The NLP framework is based on a recurrent neural network 
and long short-term memory architecture, and contains sen-
tence-level sentiment analysis and word/phrase-level context 
extraction. As shown in Figure 11, the sentiment analysis iden-
tifies whether a sentence is navigation related. If the sentence 
is navigation related, the next stage is to extract useful context 
by recognizing the word/phrase labels. The extracted informa-
tion will be ready to submit for response or path planning. The 
accuracy of NLP was 70–98%, depending on the accuracy of 
the speech recognition results.

Smartphone
Data

Preprocessing

IMU GPS
1) Noise Reduction
2) Coordinate

Transformation
3) Axis Alignment

Driving Assessment

1) Context Identification
2) Outlier Detection
3) Grade and Score

Hands-Off Interaction

1) Experiment Protocol
2) Performance
    Evaluation

FIGURE 10. The smartphone data processing modules.
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FIGURE 11. An example of the processing for NLP tasks. For the sentiment analysis of two sentences, 
(a) is not navigation related, while (b) is navigation related. Therefore, (b) is further processed with 
context extraction, and useful information (such as POI and search area) is labeled.
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Discussion and conclusions
Vehicle technologies have advanced significantly in terms of 
improved transportation, comfort, and safety, and will contin-
ue to evolve as we move forward into the next generation of 
transportation systems and infrastructure. From this article, as 
well as the broad coverage from recent articles in the 
November 2016 issue of IEEE Signal Processing Magazine, it 
is clear that new technologies are migrating into novel in-
vehicle systems for route navigation, information access, info-
tainment, and connected vehicle advancements for V2V and 
V2I connectivity and communications. Vehicle driving auton-
omy is also evolving, and further research advancements are 
needed to better understand the interplay between the driver, 
the vehicle, and the route/environment. With the motivation of 
contributing to improved intelligent driver–vehicle systems 
that incorporate human-specific characteristics, the CRSS-
UTDrive Lab has focused their research on naturalistic driving 
studies, with the interest of understanding driver behavior and 
distraction from multichannel sensor data. Any secondary 
driver task activity in the vehicle can be a source of driving 
distraction and therefore impact driving performance. Re -
garding this, one typical approach is to first extract the driving 
context in terms of microlevel components (e.g., maneuvers), 
and then evaluate risky events and variations against similar 
driving patterns in the vehicle dynamics domain. An alterna-
tive approach is to directly monitor drivers’ physical or glance 
behavior and assess their cognitive and visual attention. 
Previous studies have shown precise results in the detection of 
driving distraction, driving performance analysis, and visual 
attention tracking. To take advantage of the fast-growing 
smartphone applications market and integrate telematics ser-
vices, recent activities have resulted in a mobile platform that 
contributes to in-vehicle naturalistic driving studies and voice-
based human–machine interfaces. These studies, if combined, 
would be able to provide a comprehensive understanding of the 
driver’s state and driving performance, establish a comfortable 
driving experience with a humancentric assistant in the vehi-
cle, and contribute intelligent transportation information shar-
ing via V2V/V2I connectivity. 

While there is great interest in migrating to fully automat-
ed, self-driving vehicles, next-generation vehicles will need 
to be more active in assessing driver awareness, vehicle capa-
bilities, traffic/environmental settings, and how these factors 
come together to determine a collaborative, safe, and effective 
driver–vehicle engagement for vehicle operation. Greater inter-
disciplinary research that addresses multifunctional vehicles 
to support smooth transitions from complete human control 
toward semisupervised/assisted control and even fully auto-
mated scenarios are needed. In the end, while signal processing 
technical advancements can enhance vehicles and the comfort, 
enjoyment, and capabilities of drivers, to be successful these 
efforts must first do no harm and ensure improved safety.
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SP COMPETITIONS

1053-5888/17©2017IEEE

Embedded Systems Feel the Beat in New Orleans
Highlights from the IEEE Signal Processing Cup 2017 Student Competition

F oot-tapping and moving to music is 
such a natural human activity, one 
may assume that feeling the beat in 

music is a simple task. Feeling the beat 
and then producing it, e.g., by foot tap-
ping, is an intrinsically real-time process. 
As listeners, we do not wait for the beat 
to occur before tapping our foot; instead, 
we make predictions about when the next 
beat in the music will occur and continu-
ally revise our sense of the beat based on 
the accuracy of our predictions. Like-
wise, performing musicians have shared 
sense of beat, which is what allows them 
to play in time together. 

This type of high-level music listen-
ing and understanding sits at the heart of 
the challenge set for this year’s IEEE 
Signal Processing Cup (SP Cup) compe-
tition, the final stage of which concluded 
at the 2017 IEEE International Confer-
ence on Acoustics, Speech, and Signal 
Processing (ICASSP), hosted in New 
Orleans, America’s jazz heartland, on 
5 March. The participating undergraduate 
cohort had to devise and construct a cre-
ative, embedded application demonstrat-
ing a real-time response to the beat of the 
music. Depending on the genre, compo-
sition, and rhythmic complexity of a 
musical piece, real-time beat tracking 
poses considerable challenges, which are 
equally present for human listeners, espe-
cially those without formal musical train-
ing. Throughout the SP Cup, the teams 

confronted these challenges from both 
the human and computational perspec-
tives via the choice of training and testing 
material, the human annotation of beat 
locations, the implementation and evalu-
ation of their beat-tracking algorithms, 
and the response to the beat in their cre-
ative applications.

Beat tracking in music signals
The task of beat tracking of music sig-
nals has been an active area of music 
signal processing research for more than 
25 years. While many of the earliest 
computational approaches sought to 
emulate the human process of tapping 
the beat in real time by making predic-
tions of future beats [1], [2], a marked 
shift occurred in the early-to-mid 2000s 
toward offline approaches that could 
observe the entire musical input prior to 
determining beat locations. 

The standard pipeline for offline beat 
tracking involves the explicit identifica-
tion of note onset locations (or an “onset 
strength function,” which emphasizes 
their location) that are subsequently 
passed to a tempo-estimation stage used 
to estimate the latent beat periodicity in 
the input signal, followed by the recov-
ery of the phase (or alignment) of the 
beats to the music. Common techniques 
used to extract the beat from music sig-
nals include multiagent systems, dy-
namic programming, hidden Markov 
models, and a mixture of experts sys -
tems. Current state-of-the-art methods 
employ deep neural network architec-

tures to learn the relationship between 
labeled beat annotations in training data 
sets and feature representations extracted 
from musical audio signals, thus leverag-
ing both advanced signal processing and 
machine learning.

The growth of offline approaches 
arose in part by the significant increase 
in the use of beat tracking for so-called 
beat-synchronous analysis as an interme-
diate processing step within other music 
signal analysis tasks, such as structural 
segmentation, chord detection, and 
music transcription. With the shift 
toward making multiple passes across 
input signals, the focus on real-time 
analysis was reduced.  Furthermore, with 
a greater emphasis on the accuracy of 
beat tracking over computational effi-
ciency, offline approaches also provid-
ed the opportunity for tracking the beat 
in music with expressive timing (i.e., 
changes in tempo) something that was 
considered impossible for real-time sys-
tems bound by the need to make predic-
tions of future beats in the music [3].

An emerging topic related to the 
domain of music signal processing is cre-
ative music information retrieval, which 
seeks to open new possibilities for music 
creation, interaction and manipulation. 
This is facilitated by the robust analysis 
and interpretation of music signals [4].
For applications that  target live interac-
tion between users and/or musicians and 
technology, there is a compelling need to 
perform music signal analysis in real 
time. One specific motivation for the SP 

Digital Object Identifier 10.1109/MSP.2017.2698075
Date of publication: 11 July 2017

Craig T. Jin, Matthew E.P. Davies, and Patrizio Campisi

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


144 IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

Cup was, therefore, to reimagine re -
search into beat tracking with an explicit 
link to real-time creative applications. 
From a technical perspective, real-time 
beat tracking, unlike offline approaches, 
must extract an onset strength function, 
estimate tempo and predict future beats 
based only on a continuously evolving 
observation of the input signal, and thus 
it sits firmly at the more challenging end 
of the spectrum. This real-time require-
ment also imposes strict computational 
limitations, a difficulty that is only 
increased by constraining the use of 
hardware in the SP Cup to embedded 
devices with limited computational 
resources. The final aspect of the 
competition—developing a creative 
application that reacts to the (predicted) 
beat of the music—provides an open-
ended activity for the teams, but one that 
must be also performed in real time on 
the embedded device. An overview of 

the process of real-time beat tracking 
is shown in Figure 1.

The SP Cup is an undergraduate com-
petition organized by the IEEE Signal 
Processing Society (SPS) in which 
undergraduate students work in teams to 
tackle a real-life signal processing prob-
lem. Launched in 2014, the SP Cup com-
petition has been held annually, and 2017 
is the fourth edition. 

To join, undergraduate students are 
required to form a team. Each team is 
composed of one faculty member to 
advise the team members, up to one 
graduate student to assist the supervisor 
in mentoring the team, and three to ten 
undergraduate students. Three top 
teams are selected from the initial 
round of competition and provided trav-
el grants to participate in the final com-
petition at 2017 ICASSP. The final 
results are described in “Winners of the 
SP Cup 2017.”

Tasks in the SP Cup 2017
The SP Cup challenge covered the many 
and multidisciplinary aspects of beat 
tracking, with the aim of giving students 
training in several areas such as music 
understanding and beat annotation, strat-
egies for selecting content for training 
and competition, signal processing, com-
putational optimizations for real-time 
performance, hardware implementations, 
and creative application design and 
development. With such a wide range of 
tasks and challenges to address, the SP 
Cup 2017 was seen as the most challeng-
ing edition so far. All of the resources 
related to the competition can be found 
at http://sydney.edu.au/engineering/
electrical/carlab/beatracking.htm.

The open competition stage
The SP Cup started with an open compe-
tition stage from June 2016 to January 
2017, consisting of two parts. The 
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FIGURE 1. An overview of real-time beat tracking. (a) An input audio signal for which the first 5 s have been acquired by a microphone. (b) A spectrogram 
representation of the input audio signal used to generate the onset strength function. (c) The onset strength function with overlaid beat estimates shown 
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objective for part one was to submit three 
30-s musical excerpts with human-anno-
tated beat times. The judging criteria was 
the quality of the beat annotations. For the 
first part, participants were provided with 
a database of 50 musical excerpts span-
ning a range of styles and difficulties. The 
database was split into two halves. One 
half was open, meaning that for these 
musical excerpts, human-annotated beat 
times were provided. The other half was 
closed so that the annotated beat times for 
these musical excerpts remained hidden. 
The purpose of the database was to assist 
with the development and testing of real-
time beat-tracking algorithms. The task 
for the first part consisted of an exercise 
in crowdsourced beat annotation. Each 
participating team was required to pro-
vide human-annotated beat times for 
three musical excerpts of their own 
choosing. They also nominated one of the 
three musical excerpts as a challenge 
piece so that the beat annotations would 
remain hidden from the other participat-
ing teams. 

To assist participants with the evalu-
ation of their beat-tracking algorithms 
and give a reference for how beat-track-
ing accuracy would be calculated, a 
MATLAB evaluation script was provid-
ed. The evaluation method, extended 
from [5], gives an accuracy score based 
on a comparison of estimated beat 
times with annotated ground truth. It 
calculates the proportion of continuous-
ly correct beat estimates occurring with 
a perceptually specified tolerance win-
dow around the ground truth annota-
tions. To mirror the ambiguity in human 
perception of the beat in music, estimat-
ed beats at perceptually related metrical 
levels to the ground truth annotations 
(e.g., twice or half the tempo of the 
ground truth for music in 4/4 time) 
were also considered correct.

The first part of the open competition 
was devised to serve multiple purposes. 
From the perspective of the teams wish-
ing to participate, the annotation of three 
musical excerpts provided a relatively 
low barrier for entry, while also offering 
teams the chance to actively shape the 
SP Cup through their personal choice of 
musical content. For the organizers, the 
use of team submitted content led to the 

creation of a totally new annotated data 
set for beat tracking (free from sampling 
bias) and, furthermore, one that could 
reflect the cultural diversity of the teams 
who participated.

For the second part of the open com-
petition, participants had to develop and 
implement their beat-tracking algorithm 
on an embedded device (the choice was 
left open, but most used the Raspberry 
Pi for beat tracking and an Arduino for 
control of the output) so that it achieved 
real-time performance. The objectives 
for part two were the following:
1) real-time embedded software with 

instructions on how to run it
2) beat-time output for the real-time 

embedded device for the database 
and participant submitted musical 
excerpts

3) a video demonstrating real-time 
operation

4) a report in the form of an IEEE con-
ference paper. 

The judging criteria were a perfor-
mance score for the real-time embed-
ded algorithm and a creative application 
score. Participants then had to design 
and construct a creative application for 
their real-time beat-tracking device. In 
addition to submitting the beat-tracking 
output of their systems across all of the 
available musical material as well as 
providing source code with installation 
instructions, participants also had to 
submit a report in the form of an IEEE 
conference paper and post a video 
online demonstrating the creative appli-
cation and real-time operation. This 
year’s SP Cup is unique in that the 
competition included real-time con-
straints as well as a creative application.

The teams were evaluated on three 
main components submitted across 
both parts of the open competition. In 
the first part, a team of experts active in 
beat-tracking research assessed the sub-
jective quality of the annotations and 
made corrections where necessary so as 
to ensure their validity as ground truth. 
In the second part, the submitted beat 
times provided by each team on the 
musical material without released anno-
tations were evaluated using the pub-
licly available MATLAB script. In 
addit ion,  the creativity of the 

demonstrated applications were 
assessed, again by a group of experts. 
Since each team submitted the beat-
tracking software for their real-time 
embedded device as part of the submis-
sion for the open competition, the real-
time operation and its beat-tracking 
output could be verified. The final score 
for each team was weighted across 
these three components with the follow-
ing proportions: one-sixth for the anno-
tations, one-half for the real-time 
beat-tracking accuracy, and one-third 
for the creative application. A break-
down of the scores as well as a written 
assessment by the organizing commit-
tee was provided to all teams that par-
ticipated in the second part of the open 
competition.

Final competition
After the judging committee evaluated 
the submissions from the open competi-
tion, three finalist teams were chosen to 
advance to the final competition. Prior to 
attending the final event at ICASSP, each 
team was required to submit additional 
annotated challenge excerpts to be used 
for on-site evaluation. However, in con-
trast to earlier stages in this year’s com-
petition, neither the audio nor the 
annotations were made available to the 
other teams. 

The final SP Cup event was held at 
ICASSP in New Orleans, Louisiana, 
on  5 March. For the first time since 
the inception of the SP Cup, a live 
demo session was included in the final 
event. The event started by testing the 
accuracy of the real-time beat-tracking 
embedded devices in real-world condi-
tions with the audio of the newly sub-
mitted challenge pieces captured by 
microphones (Figure 2). The finalist 
teams were then allowed time to set up 
their live demos. Each team then pre-
sented its beat-tracking algorithm, its 
implementation, and the design and 
development of the creative applica-
tion. This was followed by a live dem-
onstration of the creative application 
and a question and answer session. 
The final judging committee convened 
and selected the first-, second-, and 
third-prize winners as well as present-
ed honorable mentions.
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FIGURE S1. First place team: Beats on the Barbie.

FIGURE S2. Solenoid-based actuators for Team Beats on the Barbie.

FIGURE S3. The automated drums for Team Madmom and Team Beats 
on the Barbie. Both teams implement drum signals for the bass drum, 
the snare drum, and the hi-hat.

Winners of the SP Cup 2017 

Grand Prize: Team Beats on the Barbie 
University of New South Wales
Undergraduate students: Angus Keatinge, Max Fisher, 
Jeremy Bell, and James Wagner
Supervisor: Vidhyasaharan Sethu
Video: https://www.youtube.com/watch?v=
VkoGZnVEsfw
Technical Approach: Team Beats on the Barbie (Figure S1)
adapted and optimized an existing real-time beat-track-
ing algorithm [6] for Rasberry Pi. They controlled 
their creative application, a robotic drumming system 
(see Figures S2 and S3), using an Arduino Mega. 
The robotic drummer can play back a drum part 
encoded as an Arduino sketch, and during the final 
competition it accompanied team members Jeremy 
Bell and James Wagner in a performance of John 
Lennon’s “Imagine.” Due to the use of high-powered 
solenoid drivers and fast triggers, the system was 
able to play drum fills and was loud enough to 
require no additional amplification.

Second Prize: Team Madmom
Johannes Kepler University, Austria, and Télécom 
ParisTech, France
Undergraduate students: Amaury Durand (Télécom 
ParisTech), Sebastian Pöll (Johannes Kepler University), 
and Raminta Balsyte (Johannes Kepler University)
Supervisor: Sebastian Böck 
Graduate Mentor: Florian Krebs
Video: https://www.youtube.com/watch?v=
Losv4GqsGYU
Technical Approach: Team Madmom (Figure S4) adapt-
ed a real-time beat-tracking system from the existing 
offline approach in the Madmom Python library [7] and 
used a recurrent neural network. To allow real-time 
operation, the bidirectional neural network was re -
placed with a unidirectional network. They controlled 
their creative application, a robotic drumming system 
(see Figures S5 and S3), using a Raspberry Pi. Instead 
of a preprogrammed drum pattern, the system inferred 
what to play based on the analysis of the rhythmic 

FIGURE S4. Second place team: Team Madmom.
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FIGURE S6. The third place team: Team PulseBox. FIGURE S7. The rhythmic LED cube for Team Pulsebox.

structure of the input and was able to react to changes in 
a time signature. Team Madmom intends to make its sys-
tem freely available and open source at https://gitlab
.cp.jku. at/ROBOD.

Third Prize: Team PulseBox
University of Maryland, United States
Undergraduate students: William Heimsoth, 
Creed Gallagher, and Josh Preuss
Supervisor: William Hawkins
Video: https://www.youtube.com/watch?v=
KPwFnY6bJNI
Technical Approach: Team Pulsebox (Figure S6) devel-
oped all aspects of their system entirely from scratch. 

Their beat-tracking algorithm made use of a novel comb-
snapping technique to maintain high temporal accuracy 
of the predicted beats and used machine learning to opti-
mize multiple relevant parameters including those 
related to tempo adjustment, windows, and the choice of 
frequency bands. Their creative system, the PulseBox, 
(shown in Figure S7) was a light-emitting diode (LED) 
cube containing 245 LEDs arranged in a 7x7 grid on 
each of the five visible faces of the cube. The LEDs were 
individually configurable with 24-bit color and were pro-
grammed to react to the beat of the music with rotating 
shapes and patterns.
In addition to the three overall winning teams (Fig-

ure S8), the SP Cup 2017 judging committee made the fol-
lowing honorable mentions. Videos for these and other 
submissions can be found at http://sydney.edu.au/engi-
neering/electrical/carlab/beatracking.htm.

Honorable Mention for Excellent Video Production and an 
Entertaining Concept

.

Honorable Mention for Excellent Video Production and 
Accurate Ground Truth Annotation

Honorable Mention for Excellence in Ground Truth 
Annotation and Beat-Tracking Performance

FIGURE S5. The drum actuators for Team Madmom.
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Highlights of technical approaches
For the real-time beat-tracking aspect of 
the SP Cup, many teams implemented 
methods inspired by or directly adapted 
existing approaches for beat tracking. 
Even in the cases where a reference 
implementation was publicly available, 
these required a very significant over-
haul to make the algorithms real-time 
compatible and sufficiently optimized 
to run on the embedded devices.

From an algorithmic perspective, the 
great majority of submitted algorithms 
followed the standard approach for beat 
tracking by 
■ generating one or more onset strength 

signals (often across subbands) 
derived from time-frequency repre-
sentations of the streaming input 
audio signal

■ performing periodicity analysis on 
the onset strength signal(s) by means 
of autocorrelation or comb filtering

■ estimating the phase of the beats by 
cross-correlation or dynamic pro-
gramming, and then using phase as 
the reference point from which to 
predict future beat locations. 

Many teams also included some higher-
level modeling to provide a smooth out-
put without rapid switching between 
metrical levels (i.e., tempo doubling or 
halving). Depending on the computa-
tional resources of the chosen embedded 
device (some of which were extremely 
low power), the beat-tracking approach 
had to be highly optimized, e.g., purely 
based on time-domain analysis. The 
most computationally expensive and 
ambitious approaches attempted to run 
state- of-the-art deep neural network 
architectures for beat prediction.

The technical approaches were 
invariably biased by the initial project 
description, which mentioned blinking 
LEDs and the Raspberry Pi and Arduino. 

So, for example, the Raspberry Pi was 
the embedded platform used for beat 
tracking by the majority of teams (four-
teen teams). A variety of other interest-
ing embedded platforms were used by a 
single team: ARM mbed, NAO robot, 
STM32F4Discovery, and UDOO Quad. 
Many teams coupled the beat tracker 
with an Arduino to assist with the cre-
ative output. With regard to the program-
ming language used for the embedded 
application, it was evenly distributed 
between C/C++ and Python. A wide 
variety of creative applications were 
demonstrated. Applications demonstrat-
ed by multiple teams were: LED dis-
plays (seven teams); screen displays 
(four teams); and automated drumming 
(two teams). The unique creative appli-
cations were a moving head, a dancing 
robot, a band of skeletons, a metronome 
follower, a vibration device for the hear-
ing-impaired, and an encryption device.

(a)

(d) (e)

(b) (c)

FIGURE S8. A behind-
the-scenes look at 
the SP Cup 2017 
teams that received 
honorable mentions: 
(a) Team Sharif, Uni-
versity of Technology, 
Iran; (b) and (c) Team 
NTHU-EECS, Taiwan, 
with their metronome 
mechanism; (d) and 
(e) Team Impulse, 
Bangladesh, and their 
band of skeletons.

Winners of the SP Cup 2017 (continued)
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SP Cup 2017 Statistics
In total, the teams from 20 different 
countries participated in SP Cup 2017. 
At the registration stage of the competi-
tion, 40 teams were involved with a total 
of 279 participants. For the first part of 
the open competition, 33 teams across 
18 countries with more than 250 partici-
pants submitted musical excerpts (thus 
adding 99 new examples to the initial 
data set of 50 provided by the organiz-
ers). In the second part, which presented 
a significant increase in difficulty and 
submission requirements, 21 teams par-
ticipated with 147 members spread 
across 14 countries. The countries with 
the most registrations were India with 
eight and the United States with seven.

As in previous years, the SP Cup 
was run as an online class on the Piazza 
platform, which, in addition to allowing 
continuous interaction with teams, also 
hosted the test material supporting doc-
umentation. In total, 115 students regis-
tered for the course, with approximately 
220 contributions and 2,500 views of 
the posts. An archive of the class is 
available at https://piazza.com/ieee_sps/
other/sp1701/home.

Since its inception, the SP Cup has 
received generous support from Math-
Works, Inc., the maker of the popu-
lar MATLAB and Simulink platforms. 
MathWorks also provided funding 
support to the SP Cup and contributed 
their expertise. Each student team that 
registered for the SP Cup was pro-
vided complimentary software access to 
MATLAB and related toolboxes. After 
discussion with the SP Cup organizers, 
MathWorks provided skeleton code for 
real-time audio using a Raspberry Pi, 
which is available at http://au.mathworks.
com/matlabcentral/fileexchange/59825-
real-time-beat-tracking-templates-
for-ieee-signal-processing-cup-2017. The 
IEEE SPS welcomes continued engage-
ment and support from industry in future 
SP Cup competitions. Interested support-
ers may contact Dr. Patrizio Campisi, 
director for student services, at patrizio.
campisi@uniroma3.it.

Participants’ feedback
Throughout the open competition there 
was a great deal of interaction, not only 

through questions for the instructors 
posted to Piazza but also among the dif-
ferent student teams who often engaged 
in discussion over the provided respons-
es. Indeed, these interactions were criti-
cal in expanding the flexibility of the 
evaluation script to correctly process 
music in non-4/4 meters. As organizers, 
we were delighted to see this collabora-
tive spirit continue right through to the 
preparation for ICASSP and the final 
session itself. Next, we provide an over-
view of some feedback and perspectives 
received from the three winning teams.

Team Beats on the Barbie
■ “The project itself was extremely 

challenging. I worked on the software 
implementation of the algorithm, and 
to do this meant implementing the 
hardware interface on an embedded 
system. For me, the most challenging 
part of the SP Cup was setting up 
many different projects and libraries 
that often had never been tested on an 
embedded system to work in real 
time and simultaneously. This required 
running parts of the algorithm in dif-
ferent threads, modifying audio driv-
ers, and writing low-level sound 
architecture code. Having these com-
ponents running at the same time, and 
interacting with the hardware, was an 
amazing feeling.”

—Jeremy Bell, undergraduate

■ “I learned a lot about DSP while 
working on the SP Cup, and since I 
am undertaking more DSP courses 
this semester, I feel more confident 
in my ability to understand more 
complicated concepts. I think my 
future career will almost certainly 
involve signal processing, so I will 
take the skills I have learned in 
DSP beyond university as well.”

—Jeremy Bell, undergraduate 

■ “I learned a lot about DSP algorithm 
design in general. I am also more 
confident in my understanding of 
sound architectures in Linux. I think 
I also learned a lot about teamwork, 
and what it takes to get things done 
under extreme time constraints.”

—Jeremy Bell, undergraduate

■ “ICASSP was my first conference as 
an undergraduate, and I found it 
incredible. The amount of state-of-
the-art technology and innovative 
creations was overwhelming, and it 
was almost impossible to keep up 
with in lectures. I was also surprised 
by the number of social events that 
occurred at the conference. It was 
great to be able to interact with so 
many talented and like-minded peo-
ple on such a casual and friendly 
basis throughout the conference.”

—Jeremy Bell, undergraduate

FIGURE 2. A Real-time beat-tracking assessment for the final competition: music was played from 
the Bluetooth loudspeaker and recorded by three microphones, one for each team.
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■ “We have already received several 
offers for other events at which we 
will be demonstrating the system. To 
do this will require some refinement 
of the interface and additional work on 
the software to make it more robust. 
Upon the graduation of our team, we 
will also be creating a handover docu-
ment, so that future students can con-
tinue working on the system.”

—Team Beats on the Barbie

Team Madmom
■ “I am interested in all topics making 

the link between music and mathe-
matics, machine learning. I was 
working on incorporating online 
and real-time processing in the 
Madmom library when Sebastian 
told me that this work would be 
really useful for the SP Cup.” 

—Amaury Durand, undergraduate

■ “[Attending ICASSP was] really 
rewarding, it was my first time at a 
conference and, even though it was 
difficult for me to understand the 
talks I went to, I found it really 
interesting to meet the people who 
work on the topics that interest me.”

—Amaury Durand, undergraduate

■ “[Participating in the SP Cup] was a 
perfect match. I just finished my 
Ph.D. in (mostly) offline beat and 
downbeat tracking, so it was very 
exciting for us to see how we can trans-
form our system to work online and 
on an embedded device. Of course, 
it was more work than expected, 
but definitely a very exciting and re -
warding experience!”  

—Florian Krebs, graduate mentor

■ “The organization of everything was 
great, and I think there is no way to 
make this better. It was really great 
that you could organize a drum set, 
although this was not planned 
beforehand and not easy in a city 
that you don’t know.”

—Florian Krebs, graduate mentor

■ “It was very challenging given the 
limited processing power of the 

embedded device and extremely 
rewarding that it worked.” 

—Sebastian Böck, supervisor.

Team Pulsebox
■ “When I first heard of the topic for 

the 2017 SP Cup, I was very excit-
ed. As someone with a strong in -
terest in both music theory and 
programming, I knew I had to get 
involved.” 

—Creed Gallagher, undergraduate

■ “One thing I learned a lot about was 
how to write truly speed-optimized 
code (Python with heavy use of 
NumPy).  We had to push our 
Raspberry Pi to its limits. We also 
learned some lessons about the 
importance of effective communica-
tion and time management. We had 
to exercise a lot of discipline to com-
plete such a big project on schedule.”

—Creed Gallagher, undergraduate

■ “The signal processing challenge 
of beat tracking is incredibly 
complex! With so many types of 
songs and genres of music, there 
is no hard and fast rule as to what 
gives the best results. We ended 
up trying many approaches, many 
of which did not give as good 
results as we hoped. As a result, 
when we finally had something 
we felt performed well, it was in-
credibly satisfying.” 

—Team Pulsebox

■ “My senior project involves contin-
ual development of the PulseBox. I 
want to eventually create a 3-D 
holographic display that tracks both 
the beat and ‘mood’ of a song. 
Sebastian’s team convinced us that 
the future of musical analysis lies in 
the use of neural networks, which is 
the avenue I will be exploring.”

—Creed Gallagher, undergraduate

■ “As an undergraduate, attending 
ICASSP was an amazing and hum-
bling experience. I enjoyed listening 
in on the presentations which gave me 
a window into the cutting edge of SP 

research. Plus, everyone was friendly 
and New Orleans was a fun venue.”

—Creed Gallagher, undergraduate

Forthcoming project competitions 
for undergraduates
The fifth edition of the SP Cup will be 
held at ICASSP 2018. The theme of the 
2018 competition will be announced in 
September. Teams who are interested in 
the SP Cup competition may visit this 
link: https://signalprocessingsociety.org/
get-involved/signal-processing-cup.

In addition to the SP Cup, the IEEE 
SPS recently announced the first edi-
tion of the Video and Image Processing 
Cup. The final competition will be held 
at the IEEE IEEE International Confer-
ence on Image Processing, in Beijing, 
China, 17–20 September. The theme of 
this competition is “Challenging Road 
Sign Detection.” For details, visit: 
https://signalprocessingsociety.org/get-
involved/video-image-processing-cup.
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A Raspberry Pi-Based Platform for Signal Processing Education

O ne of the most important application 
areas of signal processing (SP) is, 
without a doubt, the software-defined 

radio (SDR) field [1]–[3]. Although their 
introduction dates back to the 1980s, 
SDRs are now becoming the dominant 
technology in radio communications, 
thanks to the dramatic development of 
SP-optimized programmable hardware, 
such as field-programmable gate arrays 
(FPGAs) and digital signal proces-
sors (DSPs). Today, the computational 
throughput of these devices is such that 
sophisticated SP tasks can be efficiently 
handled, so that both the baseband and 
intermediate frequency (IF) sections of 
current communication systems are usu-
ally implemented, according to the SDR 
paradigm, by the FPGA’s reconfigurable 
circuitry (e.g., [4]–[6]), or by the software 
running on DSPs.

Introduction
The design of SDRs requires a broad 
expertise, which spans from high-level 
system architectures to SP techniques and 
programming languages, in addition to 
hardware-specific aspects [e.g., available 
memory, input/output (I/O) ports, timing 
issues, computational throughput]. This 
outspread know-how should be primarily 
acquired by communication-systems 
engineers during university courses, 
where the foundations of their expertise 
are laid. In our experience, however, pro-
viding students with a solid SDR back-
ground is a challenging goal, because of 
its twofold (theoretical and practical) 
nature. In fact, effective SDR teaching 

cannot disjoin theoretical fundamentals 
from practical laboratory experiments 
with real devices and instruments [7], [8].
Indeed, the connection between SDR 
theory and practice is so tight that it is 
desirable that both aspects are addressed 
within the same course, which would also 
allow the establishment of an active learn-
ing environment, with increased student 
involvement, motivation, and interest in 
the topics presented [9], [10].

Unfortunately, although laboratory 
facilities are usually available within 
engineering schools, practical SDR ex -
periments are seldom proposed within 
courses, for two main reasons:
■ the cost of the hardware (DSP and 

FPGA development kits), which can 
hardly be replicated in many working 
stations and, above all, left in the 
hands of inexperienced users

■ the complexity and time requirements 
of such experiments, which should con-
sist of several teaching phases concern-
ing communication-system design, 
digital signal processing, DSP and 
FPGA programming, hardware-specif-
ic aspects, and system implementation 
on real hardware and measurements. 
The latter issue is, in particular, very 

critical: usually, telecommunications 
and SP teachers are not interested in the 
specific syntax of the code used to imple-
ment a given subsystem (e.g., an IF modu-
lator) or a given algorithm (e.g., a discrete 
Fourier transform), nor do they have the 
time for it within the limited duration of 
their courses. 

In realtity, SP and telecommunica-
tions instructors focus on design meth-
odologies, SP algorithms, as well as 
the analysis of signals in the time and 

frequency domains. On the other hand, 
they cannot assume that FPGA/DSP 
programming skills have been acquired 
by students during previous courses, as 
telecommunications/SP courses usu-
ally do not require such a background 
as a mandatory prerequisite. In many 
cases, therefore, practical SDR activi-
ties are either not provided to students 
or, at best, carried out using almost 
ready-made SDR implementations, thus 
weakening the beneficial “learning-
by-doing” effect that is the primary 
goal of such activities, which gives the 
impression of incomplete teaching. 
The latter was, in particular, the case 
at the Engineering School of the Uni-
versity of Bologna, Italy, where SDR 
laboratory activities (that followed SP 
theoretical lectures) required students to 
write the missing parts of almost com-
plete C-codes implementing SP algo-
rithms on Texas Instruments’ DSPs. 
The code skeleton provided to students 
was already complete in those parts 
concerning hardware dependent aspects 
(such as memory addresses, I/O man-
agement) that were not of interest from 
the SP teaching perspective.

Both of the aforementioned issues 
may be overcome, however, by the re -
cent introduction in the mass market of 
general-purpose programmable devices 
with two fundamental characteristics:
■ a limited cost (few-dozen dollars)
■ the possibility to make the devices 

work with software automatically 
generated starting from the functional 
model (i.e., the block scheme) of the 
system to be implemented.
The Raspberry Pi board [11] is, per-

haps, the most relevant example of such 
Digital Object Identifier 10.1109/MSP.2017.2693500
Date of publication: 11 July 2017
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devices: it is a popular, low-cost, single-
board computer developed by the Rasp-
berry Pi Foundation; its intention is to 
promote the teaching of basic computer 
science. It is largely used as a server in 
home networks or as a media center, and 
it is also adopted in many academic 
courses [12], mainly to teach comput -
ing and networking. What is particu-
larly relevant for the SP educational 
purpose addressed in this article is  that 
MathWorks provides a support package, 
which is an add-on software component 
for the use of third-party hardware, spe-
cifically addressing the connection 
between the Raspberry Pi and Simulink/
MATLAB [13]. This so-called marriage 
allows the realization of a powerful, yet 
simple, SP educational platform that 
we have used for a couple of years to 
teach the basics of SDRs at the Univer-
sity of Bologna.

Simulink allows the graphical mod-
eling and the simulation of the system to 
be implemented and then translates the 
model into software, which is finally 
downloaded on the device, thanks to 
the automatic code generation carried 
out by the support package. This allows 
students to design and implement on 
real hardware—even complex SP algo-
rithms and SDRs—with no program-
ming skills, thus saving the time usually 
required to become familiar with the 

programming language, investigate 
hardware low-level aspects (e.g., mem-
ory or registers addresses), develop the 
software, and debug.

Main contribution
In this article, we show an unconven-
tional and innovative usage of Raspberry 
Pi boards for teaching purposes: de -
prived of usual I/O peripherals, such as a 
monitor, keyboard, and mouse, and 
equipped with the cables and connec-
tors depicted in Figure 1, Raspberry Pi 
boards can be used as low-cost DSPs for 
the implementation of SP algorithms 
and, more generally, SDR-based com-
munication systems [14].

Using this device jointly with Si -
mulink, we realized a platform for the 
development of practical SDR activities 
provided to students: students facing 
the experimental activities, equipped 
with the Raspberry Pi as well as one 
personal computer (PC) hosting Simu-
link and the basic instrumentation of a 
telecommunication laboratory (signal 
generator, oscilloscope, and spectrum 
analyzer), experience the full process of 
an SP/SDR project, from the design and 
the  simulation to the hardware imple-
mentation and the subsequent measure-
ments with real instruments. All of this 
was done with no need to learn any pro-
gramming language.

All of the material needed to imple-
ment the Raspberry Pi-based platform 
described in this article is freely available 
at www.simulinkdefinedradio.com [15].
The website provides
■ a comprehensive document with the 

description of the platform setup, the 
hardware and software configurations,  
and the detailed description (system 
model, configuration, possible mea-
surements) of the experimental activi-
ties developed so far

■ the ready-to-use Simulink models of 
all systems that are the subjects of the 
experimental activities.

The hardware
Our SDR platform is based on the Rasp-
berry Pi 2 Model B, the second-genera-
tion Raspberry Pi model shown in 
Figure 1; nevertheless, the SDR experi-
ments we developed also can be carried 
out with the more recent Raspberry Pi 3 
model. The Raspberry Pi 2 Model B is a 
credit-card-sized, single-board computer 
equipped with a quad-core Broadcom 
BCM2836 ARM v7 processor running at 
900 MHz. Despite its low cost, at 
approximately US$40, it features 1 giga-
byte of random-access memory (RAM), 
a 40-pin general-purpose I/O connector, 
four universal serial bus (USB) ports, a 
four-pole stereo output and composite 
video port, an HDMI port, a camera seri-
al interfac connector, a display serial 
interface connector, a micro-secure digi-
tal (SD) card slot, and an Ethernet socket. 
It gained the attention of hobbyists and 
practitioners, especially for file server 
and media server applications. Today, 
there are plenty of existing projects, read-
ily available on the Internet, which work 
on first-, second-, and third-generation 
Raspberry Pis.

In this article, we show an unconven-
tional usage of this device, which is oper-
ated as a low-cost DSP for SP and SDR 
teaching. To achieve this goal, both an 
analog input and an analog output are 
required. Since the Raspberry Pi does not 
have natively an analog input, we used an 
external USB sound card with the 33051D 
chip set, like the one shown in Figure 1,
that supplies a microphone input and an 
additional (with respect to the Raspberry 
Pi’s) audio output.

Raspberry Pi2 USB Audio Card

RCA-BNC Connector

Oscilloscope

Waveform Generator

RCA-BNC Connector

USB to
Ethernet LAN

3.5-mm Jack
Audio-2 RCA

LAN Cable

USB Cable

FIGURE 1. A block scheme of the workstation. 
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This cheap device (aproximately 
US$20), connected to the Raspberry Pi’s 
USB port, plays a double role: analog-to-
digital converter (ADC) for input signals 
and digital-to-analog converter (DAC) for 
output signals.

Remark 1
As the sound card is conceived for audio 
signals, its sampling frequency is limited 
to 48,000 samples/s (with a resolution of 
16 bits/sample). It follows that the band 
of signals that can be handled by our plat-
form must be within the interval [0, 24]
kHz. Apparently this is a severe limita-
tion, as the carrier frequency of bandpass 
signals that we can manage must be in the 
order of 15~20 kHz and the bandwidth in 
the order of few kilohertz. However, the 
signal bandwidth is not a relevant issue 
for teaching purposes. In the case of 
digital transmissions, for instance, the 
bandwidth constraint simply entails that 
the bit rate must be kept properly low, but 
no modification of the system architec-
ture is required. By way of example, the 
experimental activities we developed 
include the generation of digitally modu-
lated signals with a bit rate up to 4.8 kilo-
bits/second.

Furthermore, according to our experi-
ence, even when more sophisticated (and 
more expensive) platforms (e.g., Texas 
Instruments’ C6748) are adopted for 
experimental activities within universi-
ty courses, their audio ports are still usu-
ally adopted as analog I/O interfaces, with 
the same bandwidth limitation.

The software
Simulink, developed by MathWorks, is a 
graphical extension to MATLAB for the 
modeling and simulation of linear and 
nonlinear dynamic systems. In Simulink, 
systems are drawn on screen by means of 
simple drag-and-drop operations of ele-
mentary blocks, which are interconnected 
each other to realize the final block dia-
gram. An example of such a diagram, 
denoted model in this article, is given in 
Figure 2, which shows the implementa-
tion of an orthogonal frequency-division 
multiplexing (OFDM) transmitter. Start-
ing from the bit sequence at the output of 
the Bernoulli binary generator block 
(leftmost block), all steps of the OFDM 

B
it 

G
en

er
at

io
n 

an
d

B
as

eb
an

d 
2-

P
A

M
 M

od
ul

at
io

n

B
em

ou
lli

B
in

ar
y

B
em

ou
lli

B
in

ar
y 

G
en

er
at

or
B

as
eb

an
d

M
-P

A
M

C
om

pl
ex

 to
R

ea
l-I

m
ag

1

2-
P

A
M

R
e(

u)

O
F

D
M S
el

ec
t

R
ow

s

M
ul

tip
or

t
S

el
ec

to
r

S
el

ec
t

R
ow

s

C
yc

lic
 P

re
fix

U
ps

am
pl

in
g

U
ps

am
pl

e
1

U
ps

am
pl

e
2

D
ig

ita
l

F
ilt

er

C
os

in
e 

W
av

e 
1

C
om

pl
ex

 to
R

ea
l-I

m
ag

 2

B
B

 to
 IF

A
G

C
-A

ut
om

at
ic

G
ai

n 
C

on
tr

ol

A
dd

P
ro

du
ct

 1

P
ro

du
ct

 2

x x

R
e

Im

D
S

P

C
os

in
e 

W
av

e 
2

D
S

P

D
ig

ita
l

F
ilt

er

FD
A

To
ol

F
D

A
T

oo
l

2
M

ul
tip

or
t

S
el

ec
to

r

M
at

rix
C

on
ca

te
na

te
 1

M
at

rix
C

on
ca

te
na

te
 2

P
ad

P
ad

C
on

st
an

t

0

1
1

IF
FT

IF
F

T
Fr

am
e

C
on

ve
rs

io
n

T
o

F
ra

m
e

10

–K

G
ai

n

C
on

ve
rt

D
at

a 
T

yp
e

C
on

ve
rs

io
n

M
at

rix
C

on
ca

te
na

te
A

LS
A

 A
ud

io
P

la
yb

ac
k

R
as

pb
er

ry
 P

i O
ut

pu
t

D
iv

id
e

M
ax

M
ax

++

2

R
as

pb
er

ry
 P

i

÷x

↑
↑

FI
GU

RE
 2

. T
he

 S
im

ul
in

k 
m

od
el

 o
f t

he
 O

FD
M

 tr
an

sm
itt

er
. A

GC
: a

ut
om

at
ic

 g
ai

n 
co

nt
ro

l. 
BB

: b
as

eb
an

d.
 

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


154 IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

modulation are performed, which gener-
ate the output signal at the Raspberry Pi’s 
audio port (represented by the block with 
the loudspeaker icon).

The elementary blocks are collected 
in a comprehensive library of toolboxes, 
that includes also virtual I/O devices 
such as function generators and oscillo-
scopes. The behavior of each elementa-
ry block is easily controlled by opening 
the corresponding configuration win-
dow and properly setting its parameters.

Once the model has been completed, 
its functioning can be checked starting 
the Simulink simulation, which benefits 
from the possibility of visualizing signals’ 
characteristics (shape, spectrum, constel-
lation, etc.) in each section of interest by 
means of the virtual I/O devices. Thanks 
to the free Raspberry Pi support package
provided by MathWorks, Simulink is then 
capable of translating the designed model 
into low-level code, which is finally down-
loaded on the board and executed. The 
Raspberry Pi can now work as a stand-
alone (it may be even unplugged from the 
PC), and can be connected to real instru-
ments, thus allowing the system testing on 
real hardware with real signals.

From the perspective of the SP teach-
ing methodology, this possibility is, with-
out a doubt, a revolution. In fact, it permits 
the hardware implementation of complex 
systems by simply drawing and configur-
ing the corresponding block diagram with 
Simulink, thus allowing
■ an immediate visual correspondence 

with the functional block diagrams 
sketched on the blackboard during 
theoretical lectures

■ the possibility to observe and measure 
the actual signals generated/received/
processed by the system implemented

■ removing the need to teach DSP/
FPGA programming languages, 
focusing the attention on SP and sys-
temistic aspects

■ the realization cost of an SDR labora-
tory to be reduced.
Indeed, the automatic code genera-

tion functionality provided by Simulink 
supports several programmable devices 
specifically designed for SDR imple-
mentations, hence, much more perform-
ing than the Raspberry Pi. However, 
even putting aside the higher costs, such 

devices (e.g., Xilinx FPGAs and Texas 
Instruments’ DSPs) usually require the 
installation of additional (with respect 
to MATLAB/Simulink) software (e.g., 
System Generator for Xilinx or Code 
Composer Studio for Texas Instruments), 
which also entails possible license issues. 
In addition, working with such additional 
software usually requires administra-
tor privileges on the PC, which are not 
granted to students in a university labora-
tory. To work around this, for example, in 
our previous experience at the University 
of Bologna, we were forced to install vir-
tual machines on laboratory computers to 
avoid permission problems, which made 
the whole setup much more complicated 
than the one described in this article. This 
installation meant we did not require addi-
tional software (other than MATLAB/
Simulink), which dramatically eases the 
workstation setup and usage.

The resulting SDR platform
Next, we will describe some didactic 
experiments concerning the  Simulink 
modeling and the subsequent hardware 
implementation of telecommunication 
systems and digital SP algorithms. Apart 
from the Raspberry Pi board, such activi-
ties require a PC hosting MATLAB and 
Simulink, as well as instruments for the 
generation and analysis of signals in the 
frequency and time domains. The equip-
ment includes also cables and adapters 
suitable for interconnecting the Raspberry 
Pi to both the PC and the instruments. 
The whole setup is detailed next.

The software setup
First, the platform requires a PC equipped 
with MATLAB and Simulink. In particu-
lar, the Simulink models of the imple-
mented systems have been realized with 
MATLAB R2015a equipped with the fol-
lowing libraries:
■ Signal Processing Toolbox
■ DSP System Toolbox
■ Communications System Toolbox
■ Raspberry Pi Support Package.

The three toolboxes, which require 
a valid MATLAB license, provide the 
elementary blocks to generate, process, 
and visualize signals in the time and fre-
quency domains. They comprise all of 
the algorithms needed to compose the 

physical layer model of a communication 
system, with particular reference to data 
generation, channel coding, modulation, 
filtering, demodulation, and carrier- and 
symbol-timing synchronization, also 
including the tools to design and ana-
lyze finite impulse response and infinite 
impulse response filters, even in the mul-
tirate, multistage, or adaptive cases. They 
also provide virtual instruments to visu-
alize constellations, eye diagrams, and 
power spectra, and obtain performance 
metrics such as bit error rate and error 
vector magnitude.

The support package, instead, can be 
downloaded at no charge and provides 
Simulink with an additional toolbox, 
which includes Raspberry Pi’s specific 
blocks, such as those needed to drive its 
digital I/O and read and write data from 
them. Moreover, it updates the Raspber-
ry Pi’s operating system, which resides 
on a conventional micro-SD memory 
card, adding those features needed to 
establish a connection between the board 
and Simulink.

The hardware setup
The hardware setup is shown in Figure 1.
It consists of one PC hosting Simulink, 
connected to the Raspberry Pi’s Ethernet 
port by means of a USB-Ethernet adapter 
(or directly to an Ethernet port if there is 
one available). The Raspberry Pi’s analog 
output, provided by the external USB 
sound card, is fed to an oscilloscope and/
or a spectrum analyzer for signal analysis. 
Some experiments also require a function 
generator, whose task is to provide the 
Raspberry Pi with an external signal 
(such as the carrier when implementing a 
modulator). In such a case, the sound 
card’s input port is used as well.

Observe that, although the Raspberry 
Pi is natively equipped with an integrat-
ed audio output (headphone output), it is 
surely preferable to use the analog out-
put provided by the external sound card. 
The integrated DAC is, in fact, a low cost 
component with poor quality: although 
the distortion introduced on the output 
signal is almost inappreciable to a human 
ear, it appears well evident if the signal 
is observed with an oscilloscope (more 
details about this effect can be found in 
the documentation available in [15]). This 
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unexpected issue is solved using the addi-
tional good quality audio output provided 
by the external sound card.

The USB cable connecting the PC to 
the Raspberry Pi (Figure 1) is needed only 
to provide the latter with the required 5V 
dc power. Although a dedicated power 
supply (like those used for cell phones) 
could be used for the same purpose, we 
observed that this solution can cause 
some problems due to the disturbances 
on the output signal generated by the 
ac/dc converter. The occurrence and 
entity of this phenomenon depends on 
the quality of the converter. Powering 
the Raspberry Pi by means of the PC’s 
USB port is the easiest way to bypass 
such an issue.

The full list of the SDR platform’s 
components is reported in Table 1. The 
total cost of the hardware (excluding the 
PC) is approximately US$100.

Laboratory equipment
The experimental activities realized by 
means of the SDR platform discussed 
here result in the realization of systems 
able, in general, to generate and pro-
cess signals.

The modeling stage, carried out 
using Simulink, and the consequent 
implementation on the Raspberry Pi 
are thus followed by a signal measure-
ment phase, aimed at verifying through 
experimental observations the correct 
functioning of the designed system and 
the related theoretical concepts.

The equipment required for the mea-
surement campaign is typically available 
in every didactic laboratory for electron-
ics and telecommunications, with par-
ticular reference to an oscilloscope, a 
spectrum analyzer, and a signal genera-
tor. The signal generator, in particular, 
is mostly used as a sine wave generator, 
to provide the carrier needed by some 
of the implemented transmitters or the 
input signal for digital filtering systems.

The signals that will be generated/
processed by our systems are within the 
[0 24] kHz band, owing to the charac-
teristics of the external sound card intro-
duced in the section “The Hardware.” For 
the generation or analysis of such signals 
there is no need for sophisticated instru-
ments; the basic instruments typically 

available in a didactic laboratory, gener-
ally solid but not highly performing, are 
suitable for the experimental activities 
described next.

Nonetheless, even basic oscilloscopes 
and spectrum analyzers are costly devices 
for students or hobbyists. Therefore, the 
experiments presented here apparent-
ly cannot be performed “at home,” where 
laboratory instruments are usually not 
available. Indeed, this is not true. Recent-
ly, low-cost, multipurpose instruments 
have been conceived for low-frequency 
applications. In this regard, the Digilent 
Analog Discovery device [16] is worth 
special attention. When connected to the 
PC through the USB port, this device is 
able to generate and acquire signals. With 
a moderate price, in the order of US$270, 
this tool can operate as signal genera-
tor, oscilloscope, spectrum analyzer, 
network analyzer, logic analyzer, digital 
signal generator, and power supply. The 
user interface of each single instrument, 
displayed on the PC’s monitor, shows 
the same knobs, sliders, and buttons of 
the full hardware instrument, allowing 
the user to perform the measurement 
activity as if he or she were in a labora-
tory. Of course, the bandwidth that can 
be handled by the Digilent Analog Dis-
covery, in the order of tenth of megahertz, 
cannot be compared with that of more 
sophisticated and expensive instruments, 
however, it is more than adequate for the 
didactic experiments carried out with our 

SDR platform. In this case, therefore, the 
signal generator, the oscilloscope, and the 
spectrum analyzer can be conveniently 
replaced by this multifunction tool.

Developed SDR experiments
Several SP and SDR experiments have 
been developed at the University of Bolo-
gna using the previously described plat-
form. In particular, the following systems 
have been already implemented and are 
proposed since a couple of years to stu-
dents enrolled in the master’s degree in 
telecommunications engineering:
■ signal generation
■ digital filtering
■ adaptive noise canceler
■ two-level pulse amplitude modulation  

(2-PAM) and 4-PAM baseband trans-
mitters and receivers

■ two-level amplitude shift keying 
(2-ASK) and 4-ASK transmitters and 
receivers

■ frequency-shift keying transmitter
■ quadrature phase-shift keying trans-

mitter and receiver
■ OFDM transmitter (64 and 256 sub-

carriers).
The corresponding Simulink models and 
the related documentation, conceived as 
material to be provided to students, are 
available for free download in [15].

According to our lecture organization, 
each experiment consists of a theoretical 
introduction on the system to be imple-
mented, which provides the fundamentals 

Table 1. The SDR platform components.

Material and quantity Usage 

Number 1 PC hosting Simulink It is used for system design and automatic code generation. 

Number 1 Raspberry Pi 2 (or 3) It is used as a DSP. 

Number 1 External sound card It provides analog input and output ports. 

Number 1 Micro-SD memory 
card 

It contains the Raspberry Pi operating system. 

Number 1 USB-micro USB cable It is used to connect the Raspberry Pi to the PC’s USB port for 
the power supply. 

Number 1 USB to LAN adapter It allows the connection to the Raspberry Pi to the PC using the 
USB port. 

Number 1 Ethernet cable It is used to connect the Raspberry Pi to the PC. 

Number 2 3.5-mm-RCA jack 
cables

They are used to connect the sound card, equipped with 3.5-mm 
female jacks, to the instruments.

Number 2 RCA-BNC adapter They are used to adapt the 3.5-mm-RCA connectors to the Bayonet 
Neill–Concelman (BNC) connectors of the instruments. 
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on its architecture, functioning, and 
performance, followed by the labora-
tory experiment. During the activities, stu-
dents, assisted by tutors, are requested to 
develop the system model with Simulink, 
execute the corresponding (automatically 
generated) code on the Raspberry Pi, and 
carry out frequency-domain and time-
domain analysis of the output signal with 
a spectrum analyzer and an oscilloscope. 
Developing the system model, designed 
from the outset with the hardware imple-
mentation objective, students get familiar 
with fundamental SP operations, such as 
digital filtering and multirate processing. 
They also face a number of issues arising 
from hardware constraints, such as the 
finite precision representation of num-
bers and the DAC/ADC dynamic ranges 
(thus facing possible quantization noise 
and nonlinear distortion due to satura-
tion). They can even change the system 
parameters run time and observe the cor-
responding effect on the output signal.

Eventually, students get a complete pic-
ture of the system investigated, merging in 
an overall view the different perspectives 
provided by its high-level architecture, the 
constituent SP algorithms, the hardware 
characteristics, and the signals’ measure-
ments outcomes—all this with low-cost 
hardware that can be replicated in many 
working stations, with no need to learn 
any programming language.

Due to space constraints, only a couple 
of experimental activities are described 

next, which concern the implementation 
of a baseband 2-PAM transmitter and a 
passband OFDM transmitter. The inter-
ested reader is referred to the material 
provided in [15] for more information.

Examples of experimental activities
The experimental activities introduced in 
the section “Developed SDR Experi-
ments” are proposed to students follow-
ing an increasing complexity order. They 
start from the implementation of a simple 
signal generator, which produces at the 
Raspberry Pi’s output a sinusoid with 
controllable frequency and amplitude, 
and conclude their laboratory activities 
with the design and experimental charac-
terization of an OFDM transmitter with 
64 subcarriers. In between, they imple-
ment the most typical baseband and 
passband digital transmitters and receiv-
ers, getting familiar with the basics of 
communication systems and the related 
SP techniques.

Example 1 (2-PAM transmitter)
Figure 3(a) shows, for instance, the whole 
platform (PC with Simulink and Raspber-
ry Pi with external USB sound card) and 
an example of time-domain analysis in 
the case of a baseband 2-PAM transmitter 
with raised cosine pulse shaping. The sys-
tem model, which is visible on the screen 
of the PC, is separated into three parts. In 
the first part, random bits are generated, 
converted into symbols of the ,1 1+ -" ,

alphabet, and passed through a shaping 
filter that generates a sampled raised 
cosine baseband signal. The following 
two parts convert the samples sequence 
into the analogue output signal and are 
common with most of the other transmit-
ters. More specifically, in the second part 
the amplitude of the discrete-time signal 
is adjusted to fully exploit the DAC 
dynamic range whereas in the last part it 
is passed to the sound card’s DAC, which 
generates the analog output. The model, 
translated by Simulink into the corre-
sponding code and executed on the Rasp-
berry Pi, generates the 2-PAM signal 
displayed by the oscilloscope.

Apart from putting into practice their 
knowledge on communication systems’ 
design and SP techniques, students can 
observe in real time the impact of sys-
tem’s parameters (such as the bit rate) 
or signal’s properties (such as the pulse 
shape) on the classic plots that character-
ize a digital signal, such as the eye dia-
gram or the power spectrum.

Example 2 (OFDM transmitter)
In the last (and most complex) experi-
ment, students are required to imple-
ment an OFDM transmitter with 64 
subcarriers, whose model is shown in 
Figure 2. In this case, the block diagram 
has been divided in seven parts, with the 
last two being the same as those used in 
the previous example. In the first part, 
starting from the bits produced by the 

(a) (b)

FIGURE 3. Examples of experimental activities: (a) 2-PAM baseband transmitter and (b) OFDM signal spectrum measured with a spectrum analyzer.
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Bernoulli binary generator block at a 
data rate of 1.8 kilobits/s, the baseband 
M-PAM block generates the modula-
tion symbols out of a ,1 1+ -" , alpha-
bet, which modulate the 48 subcarriers 
used for pilot signals and data. Then, in 
the second part, the matrix concate-
nate1 block provides null data (the con-
stant 0) to the central subcarrier, which 
corresponds to the dc subcarrier, and 
to the lateral subcarriers (fueled by 
the zero padding), which correspond 
to the virtual subcarriers. The 64 mo -
dulation symbols are thus arranged as 
required by the following inverse fast 
Fourier transform (IFFT) block. The 
baseband complex signal generated by 
the IFFT block, collected into frames, is 
then added of the cyclic prefix in the 
third part of the block scheme, upsam-
pled by a two-stage interpolator in the 
fourth part, and upconverted to the IF 
band centered at 15 kHz in the fifth part. 
Proper amplification (sixth part) and 
digital-to-analog conversion (seventh 
part) complete the model.

This experiment, which implements 
a scaled version of an actual Wi-Fi 
transmitter (with lower carrier frequency 
and data rate), summarizes some issues 
already faced by students in previous 
experiments, such as multirate processing 
(see the upsampling macro-block in Fig-
ure 2) and signal dynamic range adjust-
ment (see the automatic gain control
needed to fit the DAC’s dynamic range 
in Figure 2), with new issues, which are 
OFDM specific, such as data multiplex-
ing, IFFT-based modulation, and cyclic 
prefix generation. 

Connecting the platform’s output to 
the spectrum analyzer, the signal spec-
trum appears as shown in Figure 3(b): 
the expected bandwidth of approxi-
mately 2 kHz and the dc subcarrier cen-
tered at 15 kHz clearly can be observed.

Challenges and lessons learned
All experiments find their conclusion in a 
verification phase, in which students take 
measurements with the oscilloscope or 
the spectrum analyzer and check the 
matching between what they observe and 
their expectation.

From the instructor’s perspective, this 
step turned out to be more delicate than 

expected. On the one hand, in many 
cases students were not acquainted with 
the instruments and their settings. This 
required the introduction of a short tutorial 
on the basics of electronic measurements. 
On the other hand, this aspect also proved 
to be an excellent learning opportunity, as 
students were encouraged to explain their 
unexpected observations, which further 
enforced the connection between theory 
and practice.

Another lesson learned concerns 
the activity organization: individual 
work could be very fruitful, as each 
student is fully engaged in the experi-
ments. However, this entails a signifi-
cant effort on the instructor’s side, who 
could be in the position to handle several 
simultaneous requests for assistance. 
In this case, the availability of skilled
tutors is surely advisable. Teamwork 
can be an effective method to relieve such 
issue, as in many cases students might 
overcome possible difficulties through 
cooperative thinking and decision mak-
ing, engaging with each other in thought-
ful learning. Moreover, teamwork is the 
norm in almost any work environment, 
hence, it should be encouraged, when 
possible, also at the university level. 
Nonetheless, there is the risk that some 
students are less involved in the experi-
ment than the other team components, 
which could reduce the effectiveness of 
the laboratory activity. It is the instruc-
tors’ and tutors’ responsibility to ensure 
that all students are actively committed.

Conclusions
After a couple of years of hands-on labo-
ratory activities with the previously intro-
duced SDR platform, some conclusions 
can be drawn, both from the perspectives 
of the teachers and the students. From 
our point of view, the immediate practical 
application of the theoretical knowledge 
acquired during classical lectures signifi-
cantly accelerated the students’ learn-
ing curve. In a handful of hours they 
pass from the passive learning of the 
teacher-centered lecture to the firsthand 
design and measurement of a real system, 
which broaden and strengthen their 
knowledge. Of course, this acceleration is 
a direct consequence of the automatic 
code generation capability provided by 

Simulink jointly with the simplicity (and 
affordability) of the platform setup.

As far as the students’ experience is 
concerned, we encountered a very posi-
tive attitude. Working with real devices 
gives them new motivation, so that they 
generally approach the experimental 
activities with fresh enthusiasm. The low 
cost of the Raspberry Pi appealed to them 
and also encouraged some students to buy 
his or her own device to further develop 
SP experiments, which can be taken as 
encouragement to carry on our effort on 
the proposed platform.

Given the positive feedback, we 
are, in the near future, also considering 
including in our platform RF transmit-
ters and receivers, which require the 
adoption of additional hardware for the 
RF part, such as the HackRF One [17]
transmitter/receiver and the RTL-SDR 
receiver [18].
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Waheed U. Bajwa

On “Flipping” a Large Signal Processing Class

Modern academy traces its roots back 
to the medieval universities estab-
lished between the 12th and the 

14th centuries [1]. Much has changed in 
the world of academia during the millen-
nium that separates a modern university 
from a medieval one. 

Among these changes, there are two 
that arguably stand out the most. First, 
university education is no longer con-
sidered the exclusive purview of a select 

few; rather, it has become a basic hu  -
man right for all. Second, technology 
has become an integral component of 
university education, be it the delivery 
of information through multimedia pre-
sentations, the use of e-mail for stu-
dent–teacher interactions, the reliance 
on course management systems for sub-
mission and grading of assignments, or 
the adoption of e-books as class texts. 
But there is one thing in academia that 
has remained largely unchanged since 
the advent of medieval university: the 
mode of instruction.

Lecturing—in which an instructor 
imparts knowledge to students by 
standing in front of them and reciting 
relevant information that is recorded by 
the attendees—was the only mode of 
instruction in medieval universities [1].
Lecturing remains the dominant mode 
of instruction in modern academy. This 
is despite the fact that research on learn-
ing indicates lecturing is not the most 
effective means of helping students 
master the course material [2]–[5]. The 
reason for the survival of lectures in 
modern academy is simple: among all 
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the modes of instruction available to 
today’s instructors, lecturing remains 
the quickest and cheapest means of 
educating large numbers of students. 

The purpose of this article is to argue, 
however, that a carefully “flipped” class-
room can be used to replace a tradition-
al lecture-based classroom with minimal 
time, cost, and infrastructure overhead—
even for large classes with hundreds of 
students. The findings reported in this 
article are mostly based on my seminal 
15-week flipped offering of a junior-
level signal processing class. The final 
enrollment in the class was 133 students 
in the Department of Electrical and Com-
puter Engineering at Rutgers, The State 
University of New Jersey, in the Spring 
2016 semester.

The case against the lecture format
Tens of millions of students graduate 
from universities around the world in 
which instructions are centered around 
lectures. This is proof enough that lectur-
ing works. Recent research, however, 
makes it abundantly clear that lecturing 
does not result in the best learning out-
comes for all students [2]–[5]. This is 
perhaps more true in science, technolo-
gy, engineering, and mathematics dis-
ciplines than in other disciplines. In 
particular, the following limitations of 
the lecture format in engineering educa-
tion started me on my quest to seek more 
effective, but low-overhead, alternatives 
to lecturing.

The fallacy of academic equivalence
Engineering instructors all over the 
world will have no hesitation accepting 
that “no two students are alike academi-
cally.” This truism holds regardless of 
whether one is an instructor at a more- 
or a less-selective university and whether 
one teaches a mandatory introductory 
course or an advanced elective class. 
The initial academic variation among 
newly admitted students can be primari-
ly attributed to their diverse educational, 
geographic, and socioeconomic back-
grounds. Afterward, the unavoidable 
pyramid structure of engineering curric-
ulum begins to amplify this initial vari-
ation. However, the lecture format 
ignores the academic variation among 

students and, instead, makes the falla-
cious assumption that all students 
enrolled in a class have required mas-
tery of prerequisite concepts. The un -
fortunate outcome of this “fallacy of 
academic equivalence” is that two stu-
dents, one of whom secured an “A” and 
one of whom managed a “D” in the pre-
requisite course—receive identical in  -
structions in the classroom.

The fallacy of behavioral equivalence
The lecture format is primarily a pas-
sive mode of instruction [13], with 
active in  teractions between the instruc-
tor and the students mainly taking place 
in two scenarios: 1) the instructor 
probes and/or prompts the students to 
gauge their un  derstanding of the pre-
sented material, and 2) the students 
ask clarifying questions by interrupting 
the instructor. An instructor who relies 
on the lecture format for achieving the 
learning objectives of the class effec-
tively makes an implicit assumption 
that students are capable of utilizing the 
aforementioned avenues for turning a 
passive lecture into an active one. Unfor-
tunately, this is another fallacious 
assumption; just like academically, no 
two students are behaviorally alike! 
Indeed, for every student in a class-
room who is apt at interacting with the 
instructor during a lecture, there are 
tens of students in the same classroom 
who either hesitate to engage in or 
outright dislike such interactions. 
While there are myriad explanations 
for this, ranging from social shyness 
and the fear of appearing clueless to 
one’s peers to the inability to quickly 
articulate one’s challenges with the 
presented material [13]–[16], the end 
result of the “fallacy of behavioral 
equivalence” is that the instructor can 
seldom, if ever, take real-time remedial 
actions to correct students’ under-
standing of the course material.

The fallacy of learning equivalence
Much of the learning in engineering 
classes takes place through problem 
solving. In most—if not all—engineer-
ing classes, however, the lecture format 
leaves little time for in-class problem 
solving. Engineering instructors try to 

overcome this limitation of the lecture 
format by assigning homework and 
practice problems to students. In doing 
so, the instructors make an implicit 
assumption that all students are equally 
capable of learning through out-of-class 
problem solving.

But this too is a fallacious assump-
tion. Consider, for example, what hap-
pens when a student gets stuck on an 
assigned problem due to conceptual 
challenges. The common thinking is 
that such students would reach out to 
the teaching staff (instructor, teaching 
assistants, etc.) for help. This, however, 
does not happen for a great majority of 
students due to reasons that range from 
their inability to approach the teaching 
staff during the assigned hours to the 
inefficacy of e-mail as a medium for 
discussing mathematical concepts [17], 
[18]. (Engineering instructors, for exam-
ple, can often be heard complaining 
about students’ lack of participation in 
office hours discussions.) The unfortu-
nate consequence of this “fallacy of 
learning equivalence,” especially in 
large classes, is that students’ learning 
be  gins to go out of lockstep with each 
passing lecture.

Contemporary alternatives 
to the lecture format
The limitations of the lecture format, 
especially in the case of engineering edu -
cation, are well known to the academic 
community. Several alternatives have 
been proposed and experimented with 
in recent years to overcome these lim-
itations. Three modes of instruction 
that particularly stand out among 
these alternatives are 1) project-based 
learning, 2) a (massive open) online 
course, and 3) flipped classroom.
While each one of these alternatives 
has its own sets of pros and cons, I 
decided to experiment with the flip -
ped classroom based on the follow-
ing observations.
■ Project-based learning helps stu-

dents gain a deeper understanding of 
the course material by presenting 
them with a real-world problem and 
guiding them toward a possible solu-
tion in a structured manner [19]–
[22]. It is perhaps one of the most 
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engaging modes of instruction and 
research has shown it to be highly 
effective in overcoming limitations 
of the lecture format [22]. Project-
based learning, however, has its own 
set of challenges when it comes to its 
adoption for engineering education. It 
is not straightforward to design a 
project-based learning curriculum for 
the majority of core engineering 
courses. Further, project-based learn-
ing requires specialized active learn-
ing classrooms (see Figure 1), which 
are typically in short supply on most 
university campuses. Finally, the 
human resource overhead (in terms of 
man-hours and student–faculty ratio) 
associated with project-based learning 
deters cash-strapped academic depart-
ments with large student enrollment 
from fully embracing it as a scalable 
alternative to traditional lecturing.

■ Online courses, in general, and mas-
sive open online courses (MOOCs), 
in particular, are often put forth as 
scalable alternatives to the lecture 
format [23], [24]. The single biggest 
advantage of online courses is that 
video archiving of instructor’s pre-
sentations enables students to digest 
new material at their own pace by 
pausing, rewinding, and fast-forward-
ing parts of videos. Strictly speaking, 

however, online courses (MOOCs or 
otherwise) are pedagogically near-
identical twins of lecture-based 
courses. Similar to the lecture format, 
they revolve around the passive trans-
fer of knowledge from the instructor 
to students and implicitly assume the 
behavioral and learning equivalence 
of students. In fact, if anything, the 
lack of face-to-face interactions with 
the instructor only make it more chal-
lenging for some students to achieve 
the learning objectives of online cours-
es. And the astronomical drop-out 
rates of MOOCs [25], [26] seem to 
confirm this impression that online 
courses are pedagogically challeng-
ing for all but the most resolute 
of students.

■ Flipped classrooms (see “Anatomy of 
a Flipped Classroom”), popularized in 
K–12 education by the advent of Khan 
Academy [27], appear to strike some-
what of a balance between the high-
overhead of project-based learning 
and the overly passive nature of online 
courses in engineering education. 
Similar to online courses, a flipped 
classroom makes use of video-based 
instructions that allow students the 
flexibility of revisiting key concepts at 
later stages in the course. Similar to 
project-based learning, a flipped class-

room uses class time for activities that 
not only help students recognize defi-
ciencies in their understanding of 
course material but also enable the 
instructor to take real-time remedial 
steps that can address these deficien-
cies. It is no surprise then that flipped 
classrooms have been adopted by a 
number of engineering instructors 
in recent years [28]–[33]. Notwith -
standing these adoptions, the conven-
tional wisdom among engineering 
instructors has been that a flipped 
classroom—similar to project-based 
learning—is not scalable to core 
engineering courses that enroll hun-
dreds of students. There are two main 
reasons for this perception. First, it is 
a common belief that flipped offer-
ings also require active learning 
classrooms. Second, positive learning 
outcomes in flipped classrooms are 
often linked to low student–faculty 
ratios. The fact that flipped class -
rooms in engineering education 
have mostly been adopted for small 
(sometimes elective) classes seems to 
strengthen this perception. Among 
the documented flipped classrooms 
in electrical engineering, [29], [30], 
and [31] had 30, 115, and 40 stu-
dents, respectively. 

Flipping digital signal processing 
at Rutgers University

Background and motivation
ECE 346: Digital Signal Processing is a 
required course at Rutgers for students 
majoring in electrical engineering. It is 
offered every year in the spring semester, 
with an average final enrollment of more 
than 100 students in the last five years. 
Traditionally, more than two-thirds of the 
students enrolling in this course are 
juniors who took ECE 345: Linear Sys-
tems and Signals in the immediately pre-
ceding semester, while the rest are 
seniors who did not or could not enroll 
earlier in the signal processing course for 
various personal or academic reasons. I 
have been teaching this course since 
spring 2012, with my first offering very 
much in the mold of traditional lecture 
and chalkboard format. This first offering 
would be considered a success by most 

FIGURE 1. One of the active learning classrooms at Rutgers University; facilities such as this are often 
recommended in education circles for use in project-based learning, flipped learning, etc. (Photo 
courtesy of Rutgers Digital Classroom Services.)
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academic standards; the course quality 
received an average rating of 4.33 (out of 
five) from 56% of the enrolled students, 
and there were more than a handful of 
students who had truly mastered the 
course material by the end of the semes-
ter. Despite its seeming success, this first 
offering also laid bare to me many of the 
limitations of the lecture format, espe-
cially in relation to large core courses. In 

particular, the struggles of students who 
did not conform to the assumptions of 
the lecture format (see the section “The 
Case Against the Lecture Format”) were 
all too palpable during the semester.

I made several tweaks to my first 
offering in the ensuing semesters in an 
attempt to make these offerings more 
equitable to students. These tweaks in -
cluded experimenting with presentation 

slides in lieu of chalkboard text, video 
archiving of class lectures, grade-based
incentives for class participation, and 
different attendance policies. Some of 
these tweaks appeared to be helpful to 
students’ learning (e.g., video archiving), 
while other tweaks seemed to have either 
little effect (e.g., mandatory attendance) 
or negative effect (e.g., presentation 
slides). None of the tweaks seemed to 

In a traditional classroom, the instructor transfers knowl-
edge to the students by delivering weekly lectures during 
assigned class periods. The students are then expected to 
master the covered material outside the classroom by 
working on assigned homework exercises and reaching 
out to the instructor during assigned office hours for any 
clarifications. Traditional classrooms, unfortunately, do 
not work equally well for all students (see the section “The 
Case Against the Lecture Format”). A flipped classroom 
(also referred to as an inverted classroom) literally flips
the traditional learning paradigm on its head (see 
Figure  S1) [6]–[12]. Specifically, the knowledge transfer 

component of the course in a flipped classroom is moved 
outside the class; this typically involves the use of video 
lessons (see the section “Contemporary Alternatives to 
the Lecture Format”). The freed-up time during the 
assigned class periods is then used for carefully designed 
activities and collaborative exercises that help students 
master the course material. This “flipping” not only helps 
the students clarify any confusions in real time, but it also 
enables the instructor to personalize instructions to indi-
vidual students based on their own gaps in understand-
ing (see the section “Flipping Digital Signal Processing at 
Rutgers University”).

Anatomy of a Flipped Classroom

FIGURE S1. A side-by-side comparison of (a) a typical lecture-based classroom and (b) a flipped classroom. Because of the nature of 
these two modes of instruction, lecture-based learning and flipped learning are sometimes also referred to as passive learning and active
learning, respectively. 

Traditional Classroom

Content delivery from the
instructor to the students
takes place in a mostly
passive fashion during
scheduled class periods.

Most of the learning is
expected to take place
outside the classroom,
through both assigned
homework exercises
and instructor office
hours.

Flipped Classroom

Content delivery from the
instructor to the students
takes place outside the
classroom through video
lessons and readings.

Most of the learning is
expected to take place
inside the classroom,
through class activities
and collaborative work.
This also enables the
instructor to remedy
students’ shortcomings
in real time.

(a) (b)

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


162 IEEE SIGNAL PROCESSING MAGAZINE | July 2017 |

directly confront the challenges of aca-
demic, behavioral, and learning varia-
tions among students. It was during this 
time, when I was exploring different 
means of teaching signal processing, 
that an interesting development took 
place. Prof. Van Veen taught flipped 
version of a senior-level elective sig-
nal processing class to 30 students at the 
University of Wisconsin-Madison in 
the fall of 2012 and shared his (highly 
positive) experience in [29]. The term 
flipped clasroom entered in my lexicon 
in 2013 as a result of [29], and I spent 
the next two years discussing with 
other educators (including the author 
of [29]) means by which large core 
engineering courses could possibly be 
flipped using minimal time, cost, and 
infrastructure overhead.

Ingredients of flipping on 
a shoestring
There were three major challenges that 
came to the fore when I carefully exam-
ined the possibility of flipping the man-
datory junior-level signal processing 
class at Rutgers. First, and this is perhaps 
the most daunting aspect of flipping a 
course for any instructor, I needed a 
plan to create engaging video lessons in 
a cost- and time-effective manner. Sec-
ond, and as noted by other instructors 
of flipped classes [29], [30], flipping a 
course for hundreds of students requires 
more than one person to guide students 
during in-class activities.

A general rule of thumb for the stu-
dent–guide ratio in flipped classes is 
20–30 students/guide, which means I 
needed a strategy to involve four to 
five additional guides in my flipped 
classroom without creating a budget-
ing crises for my department. The 
third challenge, often considered one 
of the biggest hurdles to the adoption 
of flipped learning for large engineer-
ing courses, is that the largest active 
learning classroom at Rutgers has a 
capacity of 90 students. Since enroll-
ment in the Digital Signal Process-
ing  course at Rutgers often exceeded 
100 students, I needed a plan that 
would enable students to reap the ben-
efits of a flipped classroom in a lecture 
hall setting. The different ways in 

which I addressed these three chal-
lenges are described next.

Low-overhead video lessons
Short, self-contained video lessons are 
the key to creating a flipped classroom. 
But planning, recording, and producing 
professional-looking videos can over-
whelm even the most committed of 
instructors. Being cognizant of the risks 
of overcommitting, I opted for an 
acceptable compromise between over-
head and quality of the video lessons 
for my flipped offering. This compro-
mise involved: 1) delivering lectures to 
students enrolled in my traditional 
offering of the signal processing class 
in spring 2015 using a pen tablet 
(Wacom Bamboo Tablet) connected to 
a Windows laptop and Microsoft One-
Note, 2) capturing a laptop’s screen 
using a screencasting software (Camta-
sia Studio 8) and recording voice using 
an external mic (Logitech HD Web-
cam), and 3) stitching, slicing, and 
deleting the recorded material using 
Camtasia Studio 8 to produce a set of 
27 videos, each one of which covered a 
single topic and excluded classroom 
interactions and discussions with stu-
dents. These videos, which are further 
divisible into subtopics of durations 
ranging from ten min to 30 min, are 
publicly available on my YouTube 
channel [34]. This piggybacking on 
traditional lecturing allowed me to 
limit the time overhead of these video 
lessons to an average of approxima-
tely 2.5 hours per video. (This figure 
excludes both the lecture prepara-
tion  and the lecture delivery times 
since  I would have spent this much 
time  regardless as part of the spring 
2015 offering.)

The monetary overhead of these 
video lessons was also quite manage-
able, enabling my department to absorb 
the entire cost; in particular, an equiva-
lent system comprising a pen tablet, an 
external mic, and screencasting and 
video editing software can be built 
as  of this writing for approximately 
$US400. This figure excludes the costs 
of a laptop and note-taking software, 
both of which are considered integral 
for today’s educators. 

Low-cost in-class assistants
While having a person assisting every 
20–30 students for in-class activities 
is critical to the success of a flipped 
classroom, most universities cannot 
financially afford such a high ratio of 
students to teaching assistants. The 
junior-level signal processing class at 
Rutgers, for instance, has historically 
been assigned one graduate teaching 
assistant (GTA). To balance the needs 
for financial prudency and in-class 
assistants, I resorted to the use of peer
learning assistants (LAs) for in-class 
activities. Specifically, I—along with 
the help of Rutgers Learning Centers—
recruited five students from my previ-
ous (spring 2015) offering of the signal 
processing class to serve as LAs for in-
class activities. Each one of these LAs 
spent two hours per week preparing for 
in-class activities and three hours per 
week assisting students during class 
times. These LAs were formally co    -
ached at the start of the semester in the 
art of pedagogy by Rutgers Learning 
Centers, and each one of them received 
a total of US$1,500 for the 14 weeks of 
instructions. Thus, for a meager mone-
tary overhead of US$7,500 (split among 
the university and the department), my 
flipped offering resulted in a student–
guide ratio of 22 (five LAs and one 
instructor for 133 enrolled students).

Flipping in a lecture hall
While an instructor should ideally have 
access to an active learning facility for a 
flipped offering [29], [30], the capital 
cost associated with construction of 
such facilities—especially the ones that 
can accommodate hundreds of stu-
dents—means this is not always possi-
ble. I faced this very challenge for my 
flipped offerings at Rutgers. Rather than 
being deterred by this challenge, I 
retooled my flipped offerings for large 
lecture halls. This retooling involved 1) 
reserving a lecture hall for the flipped 
classroom whose capacity was at least 
twice the maximum expected course 
enrollment, 2) dividing the lecture hall 
into contiguous groups of three rows 
each, and 3) prohibiting students from 
sitting in the middle row of each group 
of rows. These empty middle rows 
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enabled the instructor and the LAs to 
freely roam around the lecture hall, be 
able to physically approach all students, 
and assist them during in-class activities 
(see Figure  2). While such a seating 
arrangement cannot be considered a 
replacement for an active learning facili-
ty, in which students themselves can 
also roam around and can utilize 
resources such as computers and writing 
boards (see Figure 1), mid- and end-of-
semester feedback from students (see 
the section “Reflections on the Flipped 
Offering”) suggested that the solution 
was an effective compromise between 
idealism and realism.

Course organization
My seminal flipped offering of the sig-
nal processing class physically met for 
80 min each at 8:40 a.m. on Mondays 
and Thursdays. In addition, enrolled stu-
dents were divided into three recitation 
groups, with each group at  tending one 
80-minute recitation (led by the GTA) 
per week. There were three main catego-
ries of activities within this offering 
that fundamentally differentiated it 
from a traditional offering (see Table 1 
for a bird’s-eye view of these activi-
ties). These categories, referred to as 
home activities, in-class activities, and 
recitation activities in the offering’s 
parlance, accounted for 29% of a  stu-
dent’s final grade. To achieve the learn-
ing objectives of this offering, which 
included a comprehensive understanding 
of sampling theory, discrete-time pro-
cessing of continuous-time signals, dis-
crete Fourier transform, spectral 
analysis, and design of digital filters, I 
organized the three sets of course activi-
ties as follows.

Home activities
The category of home activities com-
prised tasks that students were re -
quired to complete outside the classroom. 
These tasks, the graded portion of which 
accounted for 7% of a student’s final 
grade, were further subdivided into 
three groups. First, the students were 
regularly assigned video lessons, rang-
ing in total duration from 30 to 70 min, 
and textbook reading that had to be 
watched and completed, respectively, 

before each class period. Second, each 
set of assigned video lessons and text-
book reading was associated with an 
online assessment on a course man-
agement system (CMS) that the stu-
dents had to complete by 7 a.m. on the 
day of the res  pective class. These online 
assessments comprised the simplest of 
short-answer, true-false, and multiple-
choice questions and served as one of 
the main motivating factors for the stu-
dents to watch the assigned videos and 
complete the assigned reading. There 
were two other aspects of the online 
assessments that gave students the 
opportunity to remedy some of the 
shortcomings in their understanding of 
the covered material. These involved 
giving ample time to the students to 
complete an online assessment (typi-
cally, an average of 3–5 min per ques-
tion) and allowing students to retake an 
online assessment (with a different set 
of questions) in the case of unsatisfac-
tory performance on the first attempt. 
My flipped offering in spring 2016 had 

a total of 20 online assessments, which 
accounted for 67% of the grade for 
home activities. The final group of 
tasks that constituted home activities 
mostly consisted of paper-and-pencil 
exercises meant to reinforce students’ 
understanding of the course material; 
refer to Figure 3 for a graphical repre-
sentation of home activities in my 
flipped classroom.

In-class activities
I divided each 80-min class period into 
two components. The first component, 
which typically lasted for 10–15 min, 
was used for a brief review of key con-
cepts covered in the assigned video 
lessons. The second component, which 
covered the remaining class time and 
accounted for 15% of a student’s final 
grade, comprised activities that helped 
students reflect on their understand-
ing of the assigned video lessons and 
enabled me to take real-time remedial 
actions in response to widespread con-
fusions. To this end, these activities 
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FIGURE 2. A possible seating arrangement in a lecture hall for students in a large flipped class-
room. This arrangement, which I am using in my spring 2017 flipped offering at Rutgers, prohibits 
students from sitting at the very back of the hall (black crosses) and in three rows (green arrows), 
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were split into two categories: polling 
questions and paper-and-pencil exercis-
es. The polling question part of in-class 
activities involved sequentially display-
ing short conceptual questions to students 
on a presentation slide and recording 
students’ responses in real time using 
an online polling platform [see Fig-
ure 4(a)]. (I used the Poll Everywhere
platform [35] in my class, which allows 
participants to respond using mobile 
devices.) The paper-and-pencil exercis-
es part of in-class activities involved 
sequentially assigning longer problems 
[see Figure 4(b)] to students and col-
lecting students’ work on loose sheets 
of paper. A typical class period con-
sisted of two to five polling questions 
and one to three paper-and-pencil exer-
cises, with each polling question worth 
two points, each exercise worth any-
where between four and 12 points, and 
the students guaranteed 25% of the 
points for attempting an activity. I, along 
with the five LAs, helped the students 
during each ongoing activity by roaming 
around the lecture hall and providing 

Table 1. A summary of the main activities that comprised my flipped offering in spring 2016.

Step 
Number Activity Category Activity Details Grading Details 

1–1 Home activity Viewing of assigned YouTube 
video lessons (~30–70 min per class) 

Ungraded 

1–2 Home activity Completion of assigned textbook reading 
(if applicable) 

Ungraded 

1–3 Home activity Completion of online assessment 
(due by 7 a.m. on the day of each class) 

~5% of the final 
grade

2–1 In-Class activity Review of key concepts by the instructor 
(~10–15 min per class) 

Ungraded 

2–2 In-Class activity Short polling questions 
(approximately two to five questions, with each 
worth two points) 15% of the final 

grade (25% points 
for an attempt) 2–3 In-Class activity Paper-and-pencil problems 

(approximately one to three problems, with 
each worth four to 12 points) 

3–1 Home activity Paper-and-pencil problems 
(approximately one to three problems assigned 
after some classes) 

~2% of the final 
grade

4–1 Recitation activity Problem solving by the GTA 
(~30–35 min and approximately three to 
five problems)

Ungraded 

4–2 Recitation activity Paper-and-pencil problems 
(approximately three to five problems, with 
each worth four to ten points) 

7% of the final 
grade 

FIGURE 3. A graphical representation of the three main groups of tasks comprising home activities in my flipped classroom. The CMS screenshot cor-
responds to the spring 2017 flipped offering.
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cues to struggling students. This looking 
over the shoulder of students and, in the 
case of polling questions, instantaneous 
access to students’ responses [see, e.g., 
Figure 4(a)] gave me real-time insight 
into students’ understanding of the cov-
ered material. This insight, which is one 
of the most important differences 
between a lecture-based offering and a 
flipped classroom, was then used to 
deliver a focused set of clarifying 
instructions to students at the end of 
each activity.

Recitation activities
Each one of the three recitation groups 
in the class attended one weekly 
80-min recitation period led by the 
GTA. The activities in these weekly 
recitations were designed to enhance 
students’ problem-solving skills. To 
this end, each recitation period was 
divided into two components. The first 
component, which typically lasted for 
30–35 min, involved the GTA solving 
three to five problems on a chalkboard 
that reinforced the concepts covered in 
the last two sets of video lessons. The 
second component, which primarily 
distinguished the recitations in the 
flipped offering from those in a tradi-
tional offering, covered the remaining 
recitation period and accounted for 7% 
of a student’s final grade. In this com-
ponent, students were sequentially 
assigned three to five paper-and-pencil 
problems that specifically helped them 
master the mechanics of problem solv-
ing. This should be contrasted with the 
in-class paper-and-pencil exercises 
that focused on students’ basic under-
standing of the course material. The 
students were given anywhere between 
four and ten min to solve each one of 
these problems on loose sheets of 
paper, with each problem worth any-
where between four and ten points. 
Further, the students were guaranteed 
25% of the  points for attempting a 
problem. The GTA, after assigning a 
problem to the students, roamed around 
the recitation room and helped students 
struggling with the problem. In addition, 
the students were encouraged to discuss 
the problems among themselves. Finally, 
the GTA capped off the assigned 

problems by collecting the students’ 
work and having a brief discussion of 
solutions of the problems.

The rest of the f lipped course’s 
structure—apart from the aforemen-
tioned home, in-class, and recitation 
activities—followed a traditional offer-
ing, with the remaining 71% of a student’s 
final grade divided among a prerequisite 
quiz, two in-class exams, a term project, 
and a final exam. There was, however, 
one additional aspect of my flipped offer-
ing that seemed to enhance students’ 
learning experience. In the second 
week of the semester, after the enroll-
ment transients died out, I divided my 
class into teams of three students (with 
at most two teams with four mem-
bers each). The idea was that students 
on the same team would not only sit 
together during each class period and 

collaboratively work on in-class activi-
ties, but they would also work together 
on home activities comprising paper-
and-pencil exercises. The success of 
this idea in terms of its impact on stu-
dents’ learning experience, however, 
depended on the creation of balanced 
teams. I accomplished this goal through 
the use of CATME Team-Maker tool 
[36], [37], which allows an instructor 
to gather various pieces of informa-
tion from students and then assigns 
students to different teams according 
to the criteria and weighting specified 
by the instructor. (The CATME system 
has historically been free for use by the 
academic community. Starting 1 July 
2017, however, there is expected to be a 
nominal license fee per unique student 
in an academic year that will help defray 
the system’s annual maintenance costs.) 

One of the Polling Questions
During In-Class Activities

Consider two continuos-time signals
plotted below, with one being “Blue”

and the other being “Red.”
Which signal would have a larger

bandwidth?

t = 0 t →

2

Real-Time Responses to the
Polling Question (n = 125)

Question #5–5
Poll Locked. Response Not Accepted.

80%

20%

Blue

Red

0 10 20 30 40
(%)

50 60 70

(a)

A health-care devices company makes digital ECG machines
with three leads, each one of which measures one signal.
The sampling part of these machines can be described as:

g1(t )

g2(t )
ga(t ) gaa(t ) g [n ] ga(t )

g3(t )

Antialiasing
Filter C/D D/C

TT

G1( jΩ) = 2 ∀|Ω| ≤ 40π  and 0 o.w., G2( jΩ) = 3 ∀|Ω| ≤ 80π
  and 0 o.w., and G3( jΩ) = 2 ∀|Ω| ≤ 60π and 0 o.w.

T = 1/70 s and assume the absence of an antialiasing filter.

Plot and label the CTFT of the reconstructed signal ga(t )?

(b)

FIGURE 4. Illustrative examples of (a) a short conceptual question and students’ responses to that 
question in my flipped classroom and (b) a longer paper-and-pencil exercise that the students 
solved within the class period.
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In particular, I configured the CATME 
Team-Maker tool such that the final set 
of teams brought together students with 
different levels of academic prepara-
tion, but similar (self-described) com-
mitment levels, schedules, and class 
years; see Figure 5 for a sampling of the 
particular criteria and weighting I used 
for my spring 2017 flipped offering.

Reflections on the 
flipped offering
The discussion in the section “Flipping 
Digital Signal Processing at Rutgers 
University” makes it abundantly clear 
that my flipped offering was sub-
stantially different from a traditional 
lecture-based offering. But did this 
offering result in better learning out-
comes for the students? Unfortunately, 
there are too many variables that affect 
students’ learning abilities and a defini-
tive answer cannot be given for this ques-
tion without having the ability to control 
these variables. Some of these variables 

include students’ academic preparation 
and command of prerequisite material, 
their learning styles, their work habits, 
and their intellectual abilities. Since I 
could not control any of these variables 
in my flipped offering, only anecdotal 
evidence from the perspectives of the 
instructor and the students can be provid-
ed to ascertain the effectiveness of the 
flipped offering.

Instructor’s perspective
There are four data points from my per-
spective that seem to suggest that my 
seminal flipped offering was a success. 
First, the number of students attending 
each scheduled class period (see Figure 6)
as well as the general body language of 
the students seemed to suggest the stu-
dents were, on average, much more en -
gaged in the flipped offering compared to 
my previous four traditional offerings. 
Second, the students’ performance on in-
class activities as well as the depth of their 
in-class queries suggested that the 

students internalized the course material 
better than in my previous offerings. 
Third, the sophistication of students’ 
term projects in the flipped offering, on 
average, exceeded that of the projects in 
my traditional offerings. A possible 
explanation for this im  provement is that 
students enrolled in the flipped class-
room mastered the material better than 
in previous years. Finally, it used to be 
relatively straightforward for me in pre-
vious years to map students’ numerical 
grades to letter grades. But the assign-
ment of letter grades in the flipped offer-
ing became quite a chore for me  due to 
the lack of significant gaps in the dis-
tribution of students’ numerical grades. 
A possible explanation for this phe-
nomenon, which has also been pointed 
out in [29], is that fewer students were 
being left behind in terms of their under-
standing as part of the flipped offering. 
In particular, the most noticeable as -
pects of my flipped offering—in 
comparison to the previous four 

Gender

Race

GPA

Previous Course Grade

Distribute Ignore Don’t
Outnumber

Distribute

Group
Dissimilar

Group
Similar

Ignore

Ignore

Group
Dissimilar

Group
Similar

Ignore

Don’t
Outnumber

No Resp (5)

No Resp (5)

Above 3.66 (15)

4%

46%

21%

9%

8%

7%

2%

4%

16%
55%

22%
0%

0%
4%

13%

27%

34%

18%

0%

4%

75%

17%

2%

Asian (52)

White (24)

Other (10)

Hispanic (9)

Declined (8)

Black (3)

Above 3.66 (18)
2.67–3.66 (62)

1.67–2.66 (25)
0.67–1.66 ()

Below 0.67 (1)
No Resp (5)

No Resp (5)

Below 0.67 (1)

0.67–1.66 (21)

1.67–2.66 (38)

2.67–3.66 (31)

Male (84)
Female (19)

Other/Prefer Not to Answer (3)

FIGURE 5. A partial screenshot of the CATME Team-Maker tool I used to distribute the students in my flipped classroom across different teams. This 
particular configuration of criteria and weighting corresponds to my spring 2017 offering with an enrollment of 111 students.
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years—are the significantly higher per-
centage of “A” grades and the signifi-
cantly lower percentage of “D” grades; 
see Figure 7 for the grade distributions 
of my 2012–2016 offerings.

Students’ perspectives
Students’ perspectives on this seminal 
flipped offering were formally obtain -
ed  in two different manners. First, mid-
way through the semester, I solicited 
anonymous feedback from the students 
on my flipped offering through a com-
prehensive survey of 24 questions. This 
survey, which had questions that ranged 
from numerical ratings (e.g., where a “1” 
meant “strongly disgree” and a “5” 
indicated “strongly agree” for “The tra-
ditional, lecture-based format of engi-
neering education needs to be re   formed”) 
and multiple choice (e.g., “yes,” “no,” 
and “not sure” for “If given an opportu-
nity, would you rather have ECE 346 in 
the traditional, lecture-based format?) 
to open ended (e.g., “What is one thing 
you would change if you were to offer 
ECE 346 as a flipped class?”), was 
completed by 63% of the enrolled stu-
dents (n = 84). Among the survey takers, 
there were 75 students who had no prior 
experience with a flipped classroom. 
Figure 8 summarizes the responses of 
students to five main questions in the 
survey that reflected this cohort’s opin-
ion of engineering education, while Fig-
ure 9 summarizes students’ responses 
to four key questions in the survey 
that can be interpreted as evaluation of 
my flipped offering. It can be seen from 
these two figures that, midway through 
the semester, an overwhelming majority 
of the students preferred the flipped 
classroom over the traditional lecture-
based classroom. Students’ responses to 
the open-ended questions in the survey 
shed some light onto a few of the rea-
sons for this preference. According to 
one student, “I enjoy the overall aspect 
of watching the videos at home and 
then solidifying the information in 
class.” Another student responded, “[It 
has given] me a chance to see what I do 
wrong when working out a problem 
[…] during the class time[,] instead of 
working on homework and waiting a 
month to get it back and not knowing 

why I did what I did.” And yet another 
student stated, “The flipped classroom 
method works better (in my opinion) 
because each student can go at his/her 
own pace.”

While the open-ended respons-
es of a number of students taking the 
midsemester survey validated my initia-
tive, Figures  8 and 9 illustrate that not 
every student agreed with this initiative. 
There were, in particular, 13 students 
who would have preferred to enroll in 
a traditional lecture-based course (cf. 
Question 7 in Figure 9). The respons-
es of these students to Questions 4, 5 
and some of the open-ended survey ques-

tions helped explain their opposition to 
the flipped classroom. Nine of these 
13 students responded with either 
“agree” or “strongly agree” to Ques-
tion 4, while seven of them responded 
with either “agree” or “strongly agree” 
to Question 5. In terms of the open-
ended questions, one of these students 
stated, “I feel that the flipped classroom 
is too much work for the amount of 
credits currently offered.” Another 
student responded, “[…] the flipped 
classroom threw a curveball at me 
and I was slow to adapt. It certainly 
demands a higher time commitment 
[…]” And yet another student stated, 
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FIGURE 6. The percentage of students attending each class period of my spring 2016 offering (aver-
age attendance = 86%). These data correspond to the use of in-class activities grades as proxy for 
students’ attendance, ignore the three class periods used for one review session and two in-class 
exams, and exclude the three students who withdrew from the course after the “drop” deadline.
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FIGURE 7. Grade distributions for my (spring) offerings of the signal processing class from 2012 
to 2016. In terms of significant changes from year to year, presentation slides were used in lieu of 
chalkboard text for the 2013 offering, lecture archiving on YouTube was started from the 2014 offer-
ing, and a fully flipped class was offered in 2016.
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“[I’m] doing very poorly in this course 
as of right now […] For this reason, 
I don’t like it.” These, and somewhat 
similar responses of a few other stu-
dents, suggest that some of the stu-

dents who preferred the lecture-based 
format might have done so for reasons 
other than pedagogical ones.

I obtained the next set of feedback 
on my flipped offering at the end of the 

semester as part of a Rutgers-admin-
istered anonymous course survey that 
helps students evaluate teaching effec-
tiveness of the instructor and quality 
of the course. There were a total of 
98 students (74% of the enrolled stu-
dents) who responded to this survey. 
These students gave the flipped offer-
ing an average quality rating of 4.47, 
which is the highest quality rating I 
had received for my signal processing 
class. Note that I am all too familiar 
with the common refrain in some parts 
of the academy that the course quality 
(and instructor evaluation) ratings are 
inversely proportional to the amount 
of time students have to spend on the 
course. However, my flipped offering 
was nothing but a highly demanding 
class. One student, for example, noted 
in his end-of-semester survey, “The 
work load was extremely high[,] which 
helped with learning the material […].” 
Similarly, another student wrote, “The 
flipped classroom was an interesting 
experience, even though it was more 
work for students.” In general, the 
feedback students provided through the 
end-of-semester survey corroborates 
findings of the mid  semester survey 
and suggests better learning outcomes 
for a majority of the enrolled students. 
According to one student, “The abun-
dance of examples and problems we 
did in class helped me understand the 
material more effectively than doing 
homework problems on my own. De -
spite being a class at [8:40] in the 
morning, I seldom felt tired or unin-
terested during the class.” Similarly, 
another student responded, “The con-
stant cycle of watching the videos, tak-
ing the quiz, reviewing in class, doing 
problems, and going to recitation to 
learn it again and do more problems 
was a fantastic process. It helped solid-
ify every topic and drill it into my head 
[…].” These are just few of the many 
survey responses that suggest students 
found the flipped offering to be both 
demanding and rewarding.

Concluding remarks
A flipped offering is a serious undertak-
ing, both from the perspectives of the 
instructor and the students. In particular, 

Survey Response
Survey

QuestionNumber

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

0 5 10 15 20 25 30 35 40

(%)

The traditional,
lecture-
based format
of engineering
education
needs to
be reformed.

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

0 5 10 15 20 25 30 35 40 45

(%)

A flipped
classroom
can be a good
alternative to
traditional,
lecture-based
format of
engineering
education.

Freshman Year

Sophomore Year

Junior Year

Senior Year

Never

0 10 20 30 40 50 60 70 80

(%)

In engineering
education,
flipped
classes should
only be offered
at the following
levels (select
one or more
options).

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

0 5 10 15 20 25 30

(%)

Flipped
classes in
engineering
education
should only be
offered for
small-sized
(<20–25
students)
courses.

Strongly Disagree

Disagree

Neutral

Agree

Strongly Agree

0 5 10 15 20 25 30 35

(%)

Flipped
classes in
engineering
education
should never
be offered in
lecture halls,
even if it means
reverting back
to traditional,
lecture-based
instruction.

1

2

3

4

5

FIGURE 8. Students’ responses to five questions on a midsemester survey in spring 2016 that 
sought their personal opinions on the state of engineering education .n 84=^ h
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the amount of work and the additional 
resources required for successful offer-
ing of a flipped course can easily over-
whelm the most dedicated of instructors. 
However, my experiences suggest that if 
one gradually transitions into a flipped 
offering and also adapts some as  pects of 
a flipped classroom to the re  source con-
straints of the offering university, then a 
flipped offering can be a truly rewarding 
experience for both the instructor and the 
students. But before that can be done, 
one has to be convinced of one thing: if 
some students are struggling academi-
cally in class, then it need not necessari-
ly be due to their lack of effort. Once 
that realization sets in, only then can 
one go ahead and investigate peda-
gogical techniques that work better for 
those students. 

When instructors try to answer the qu -
estion of what works, they must be cog-
nizant of the fact that the top-performing 
students cannot be used as a yardstick 
for success of a pedagogical style. Indeed, 
there are always going to be students in 
every class who would succeed regardless 
of the pedagogical techniques adopted in 
the class. But an instructor’s duty is to 
reach out to all, and not just the top few, 
students. My seminal flipped offering 
has convinced me that an appropriately 
adapted flipped classroom is one way to 
reach out to more students. After having 
experimented with the flipped class-
room and having seen the outcomes of 
this experiment, I am not planning to 
revert back to the traditional lecture-
based format for my undergraduate sig-
nal processing class. Additionally, I hope 
that this article, along with the experi-
ences of other engineering instructors, 
will be inspiring to people to begin their 
own quest for the elixir of scalable effec-
tive teaching.
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Demystifying Compressive Sensing

T he conventional Nyquist–Shannon 
sampling theorem has been funda-
mental to the acquisition of signals 

for decades, relating a uniform sampling 
rate to the bandwidth of a signal. How-
ever, many signals can be compressed 
after sampling, implying a high level 
of redundancy. The theory of compres-
sive sensing/sampling (CS) presents a 
sampling framework based on the rate 
of information of a signal and not the 
bandwidth, thereby minimizing redun-
dancy during sampling. This means that 
a signal can be recovered from far fewer 
samples than conventionally required.

Relevance
When first exposed to a field, and espe-
cially one which challenges existing para-
digms, it is often useful to start by gaining 
a high-level understanding of the prin-
ciples underlying that field. This article 
employs a new set of analogies, illustra-
tions, and numerical examples to provide 
intuitive explanations for the fundamental 
principles in CS. Armed with a feel for 
why CS makes sense, the interested read-
er may then proceed to more technical 
introductions to the field, such as [1]–[3].

Prerequisites
The body of this article requires knowl-
edge of linear algebra, conventional 
sampling theory, basic probability, and 
basic optimization.

Problem statement

Sparsifying bases
Consider a discrete signal vector 

[ , , , ]x x x x T
N1 2 f=  of N  samples taken 

at the conventional Nyquist rate of twice 
the signal bandwidth. A signal vector in 
a conventional sampling domain can be 
expressed in a different domain/basis 
for analysis or processing. For example, 
time-domain signals may be trans-
formed to the Fourier domain to analyze 
their frequency content.

Consider a set of orthonormal basis 
vectors placed as columns in the trans-
form matrix [ ].N1 2g} } }=W  The 
signal vector x can then be expressed as 
a weighted sum of basis vectors [1]

,x s sn
n

N

n
1

} W= =
=

/ (1)

where the N 1#  vector s contains the 
coefficients of the signal in its new basis, 
found as the projection of x onto each 
of the basis vectors by the dot product 

, xsn nG H}= , or s xTW= . Each coeffi-
cient is represented by its own basis vec-
tor, which is separable from all others.

Sampling at the Nyquist rate guar-
antees perfect recovery of the original 
signal, suggesting that no fewer than 
N  coefficients are required to fully 
describe the signal. However, a signal 
vector can often be expressed in a dif-
ferent basis where many coefficients are 
zero (or close to zero) [2]. The remain-
ing K  nonzero, or significant, coeffi-
cients are sufficient to fully describe the 

signal. When x is expressed in a spar-
sifying basis, it results in a K -sparse
vector s with only K N%  significant 
coefficients. Sparsity in s implies redun-
dancy in x, since N  samples represent a 
signal with effectively only K  degrees 
of freedom. Here, the significant coef-
ficients in the sparsifying basis can be 
seen as the concepts or information being 
conveyed by x.

Figure 1 illustrates a two-dimensional 
(2-D) data point at (2, 1) in the standard 
basis. However, in the sparsifying basis 
shown, the data point is ( . , ),2 2 0  which 
has only one significant coefficient.

Many signals have sparsifying bases, 
a well-known fact in conventional com-
pression, where a signal may be expressed 
in a sparsifying basis so only the largest 
coefficients can be retained [1].

Images are typically sparse in the dis-
crete cosine transform (DCT) or wavelet 
bases [4], audio signals in the modified 
discrete cosine transform basis [5], mag-
netic resonance images in the spatial, 
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x

s1

(x, y) = (2, 1)

(s1, s2) = (2.2, 0)

s2
y

FIGURE 1. An illustration of a 2-D data point 
expressed in standard and sparsifying bases.
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spatial finite differences, or wavelet 
domains [6], and sensor array data in 
direction of arrival [7].

Incoherence and compressive 
sampling
CS exploits redundancy to reduce the 
number of samples that must be taken 
to fully describe a signal. We have seen 
that redundancy can be quantified in 
terms of the number of significant coef-
ficients in a sparsifying basis. CS aims 
to reduce the required number of sam-
ples without any prior knowledge of the 
signal, only the assumption that some 
sparsifying basis exists.

Imagine, as a first approach, that 
you decide to simply neglect some of 
the conventional Nyquist samples at 
random. The problem here is that some 
samples that you neglect may contain 
crucial information. For example, what 
if the signal contains spikes or sharp 
discontinuities? Neglecting samples in 
these areas would lead to significant 
loss of information.

For this approach to work, it would 
be necessary for the information to be 
distributed evenly over all of the conven-
tional samples, so that no one sample 
conveys significantly more information 
than the rest. While the signal should 
be sparse in some other basis, it should 
certainly not be sparse in the domain in 
which it is sampled.

The incoherence between two 
domains expresses the idea that a vector 
which is sparse in one domain will be 
nonsparse in the other and occurs when 

the basis vectors between the domains 
are dissimilar [2]. Consider the time 
and frequency domains, where the time 
domain is represented by the standard 
basis and the frequency domain by the 
Fourier basis. A single-frequency com-
ponent will result in a sine wave with 
most time samples being significant. 
Similarly, a time-domain impulse can 
only be represented by a multitude of 
frequency components. 

The bottom of Figure 2 shows an 
example where W  is the inverse DCT 
matrix. The blue arrow represents a 
matrix multiplication with W  or its 
inverse, depending on the direction. 
With only two significant coefficients 
in s, almost all conventional samples in 
x are significant.

If the bases of x and s are incoherent, 
and if s is sparse, then the information of 
interest (the K  significant coefficients in s)
will be distributed over all N  samples 
in x. Since this information is compara-
tively little (K N% ), neglecting some 
of the samples in x is unlikely to lead to 
a significant loss of information. (See 
“Analogy 1—Listening With Half an 
Ear.”) Also, the choice of which samples 
to neglect becomes almost arbitrary, as 
long as enough are kept [2]. Aliasing is 
not a problem when the samples that are 
kept are not spaced uniformly; therefore, 
samples are typically neglected at ran-
dom [2].

So far we require sparsity in s, and 
nonsparsity in x, which is met when there 
is incoherence between the conventional 
and sparsifying bases. But what hap-

pens if x itself is sparse? Redundancy is 
still present, but neglecting samples at 
random will result in a loss of informa-
tion. The solution is to transform the sig-
nal x to an intermediate domain before 
sampling—a domain in which the signal 
is nonsparse, and that is incoherent with 
the sparsifying domain.

How will we select such an interme-
diate domain? An interesting fact is that 
a random basis is highly likely to be inco-
herent with almost any other basis [2].
This means that without prior knowledge 
of the sparsifying domain, we may trans-
form the signal to a random domain and 
be sure that the incoherence requirement 
will be met. In this way we can design 
universal sampling schemes requiring 
only the assumption that some sparsify-
ing basis exists. No knowledge of the 
sparsifying basis is required during sam-
pling, only during signal reconstruction.

How is CS implemented? The simul-
taneous process of transforming to 
an intermediate domain and neglect-
ing transformed samples may be des -
cribed by the system ,y xU=  where 
y is the M 1#  vector of compressed 
samples (or measurements), and U  is 
the rectangular M N# sensing matrix,
with .M NK < < The rows m m

M
1z =" ,

describe the basis vectors of the inter-
mediate domain, where only M  out of 
N  basis vectors are used. Each mea-
surement is found as the projection of 
x onto the corresponding basis vector 
as .xym mz= Figure 2 illustrates how 
a random U  is used to compress x into 
the measurement vector y.

Each measurement ym is a unique 
weighted combination of all of the 
elements in x, or .y x,n

N
m m n n1

z=
=

/
Notice how this ensures that the infor-
mation in x is distributed over all of the 
measurements in y. The processes of 
weighting and summation are used for 
hardware implementations of the sens-
ing matrix. This is illustrated in Fig-
ure 3(a) for N 4=  and .M 2=

While a form of CS may be imple-
mented in software to compress 
Nyquist-rate signals, the real power of 
CS lies in developing new hardware-
based sub-Nyquist sampling schemes.

Figure 3(b) illustrates a CS applica-
tion, the single-pixel camera, where an 

Compression
M = 16

Θ
Φ

CS Recovery

K = 2Compressed
Measurements

Conventional
Samples

Sparsifying
Domain

Ψ

N = 64

y

x s

/p

FIGURE 2. An example of a CS system with ,N 64= ,M 16= ,K 2=  random Gaussian ,U  and W  the 
inverse DCT matrix. The blue arrows represent matrix multiplications. Amplitudes are not to scale.
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N -pixel image is reconstructed from 
NM < measurements [1], [4]. An image 

is projected onto a digital micromirror 
device (DMD), which is an array of tiny 
mirrors, each representing a pixel. For 
each measurement ym , the micromir-
rors are randomly set to either reflect 
light toward a collecting lens or away 
from it. This is the process of weight-
ing (by zero or one), with the weights 
for each measurement taken from the 
corresponding row in U . The lens then 
collects the rays from the DMD and 
concentrates it onto a single photodi-
ode—the process of summation. After 
the first measurement, new weights 
are programmed into the DMD for the 
next measurement.

Solution

Equivalent systems and design 
requirements
So far we have seen that CS is possible 
when a signal has a sparse represen-
tation in some domain which is inco-
herent with the sampling domain. 
To  understand the problem in more 
detail, it is useful to consider it from a 
slightly different angle. Consider the 
effect of U  and W  not separately, but 
together in the following equivalent for-
mulation of the CS problem:

y x s sU UW H= = = (2)

where H  is the M N#  compressed 
transform matrix. The columns n n

N
1i =" ,

are vectors in an overcomplete basis, 
with more vectors than dimensions. 
Each vector still represents a coefficient 
in s, but the set cannot be orthogonal and 
there will be some similarity between 
the vectors.

The goal is to recover s from .y sH=
Notice that the system is underdeter-
mined since there are fewer equations 
than unknowns. It would generally be 
impossible to determine s uniquely since 
we do not have sufficient information 
about it from y. However, the assumption 
of sparsity in s is the additional infor-
mation we require to obtain a unique 
solution. Out of the infinite number of 
possible solutions, we choose to con-
sider only the sparsest solution, i.e., the 

Three journalists are taking notes at a press conference. 
The first is inexperienced and quite naïve; so afraid of 
missing something important, he frantically writes down 
every word being said. The second journalist is more 
experienced and while also listening attentively to every 
word, he interprets what is said and summarizes the 
facts concisely in his notes. The third journalist is quite 
lazy; not listening attentively at all, he only picks up 
every second or third word being said. The experienced 
journalist sees the lazy one daydreaming and is greatly 
surprised afterward to find their notes almost identical. 
“How did you get all of the facts, when you were clearly 
only listening with half an ear?” he asks. “Did you not 
know,” the lazy one replies, “that the speaker is known 
to waffle, using ten words to convey a single concept? 
I am not likely to miss anything important when I know 

he could not be saying very much, though his words 
may be many.”

The naïve journalist represents conventional Nyquist-
rate sampling, with words analogous to samples. This 
scheme makes no effort to interpret what is being sampled; 
the sampling rate is based purely on the signal bandwidth. 
The experienced journalist represents conventional signal 
compression. Sampling is still done at the Nyquist rate, but 
the system interprets the sampled signal and expresses it 
more concisely for storage or transmission. The lazy, or 
rather, the efficient journalist represents CS. This scheme 
samples well below the Nyquist rate by assuming that the 
unique concepts or information being conveyed is little, 
and that this information is distributed over the many con-
ventional samples so that missing a particular sample is 
unlikely to lead to significant loss of information.

Analogy 1—Listening With Half an Ear 

y1 y2

Summation

Weighting1,1 2,1 1,2 2,2 1,3 2,3 1,4 2,4

Σ Σ

x1 x2 x3 x4

Σ

Projecting Lens

Subject

Photodiode

Collecting Lens

Micromirror
Arrayym

φm

(a) (b)

Φ

FIGURE 3. (a) A general illustration of a sensing matrix implementation , .MN 4 2= =^ h  (b) A single-pixel CS camera (adapted from [1]).
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sparsest vector s that satisfies .y sH=
We are applying a form of Occam’s 
razor: out of all of the possible expla-
nations for the measured data, we assume 
that the simplest (sparsest) one must 
be correct. (See “Analogy 2—Filling in 
the Gaps.”)

Figure 2 shows the relationship 
among , ,U W  and H. The arrow labeled 
CS recovery indicates that, using a CS 
algorithm, we are able to go upstream 
by finding the length- N  vector s from 
the smaller length- M  vector y. Hav-
ing s, we can find the original vector x
through W .

Consider the following example. 
An underdetermined system in the 
form y sH=  is given by (3), shown in 
the box below, where a random Gauss-
ian sensing matrix U  with zero mean 
and variance /N1  and the inverse DCT 
transform matrix W  have been used to 
obtain .H UW=

Assuming for now that we know 
which coefficients in s are signifi-
cant, notice how the system may be 
reduced  to the equivalent overdeter-
mined subsystem

.
 .

.

.
 .

.

.
 .
 .

.

.

0 357
0 612
0 137

0 293
0 088
0 069

0 127
1 048
0 412

1 0
0 5

-

=

-

-

-> > ;H H E
(4)

in the form ,y sH= l l  where the col-
umns in H  corresponding to the nonze-
ro elements in s have been extracted to 
give the submatrix ,Hl  and sl contains 
the nonzero coefficients in s.

Under which conditions can s be recov-
ered from y? Notice first that the columns 
in Hl should be linearly independent, 
since the coefficients in sl will not be sep-
arable if their vectors can be expressed as 
a linear combination of the vectors cor-
responding to the other coefficients. This 
condition would have sufficed if we knew 
the K  locations beforehand. However, 
we do not, and must, in addition, ensure 
that there is only one K -sparse solution 
to choose—a unique solution.

Suppose for the sake of contradiction 
that two distinct K-sparse solutions s
and st  exist, such that ,y s y sH H= = =t t

or ( ) .s s 0H - =t  Then the difference 
vector s sd = - t  is at most 2K-sparse 
[8]. By definition, the equivalent subsys-

tem 0dH =l l  has a nontrivial solution 
if and only if the 2K or less columns in 
Hl are linearly dependent. Conversely, if 
these columns are linearly independent, 

( )s s 0H - =t cannot be satisfied and 
no more than one K-sparse solution can 
exist. To guarantee a unique solution for 
any combination of K or less significant 
coefficients in s, all subsets of 2K columns 
in H must be linearly independent [8].

The restricted isometry property 
(RIP) goes a step further and considers 
whether submatrices with up to 2K col-
umns are nearly linearly dependent, by 
placing bounds on the conditioning 
of these submatrices [9]. This ensures 
robustness in the presence of noise, 
since small perturbations may produce 
large errors when solving a nearly lin-
early dependent system.

Compressed transform matrices H
with independent and identically dis-
tributed (i.i.d.) random entries have 
been shown to meet the RIP criterion 
with high probability. Examples include 
Gaussian matrices with zero mean and 
variance / ,M1  and Bernoulli matrices 
with equiprobable / M1!  entries [2].
For practical implementations, U  may 
be chosen in the same way as H  (replac-
ing M  with N ), and the resulting H
will still be able to meet the criteria for 
arbitrary choice of W [2]. As a result, 
the incoherence requirement between 
U  and W  will also be satisfied.
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Imagine playing a game where a friend chooses a word 
and reveals the letters and their positions one by one, at 
random, until you correctly identify all of the letters. You 
have gotten as far as “co–pr–ss.” You see that the answer 
must be “compress,” and that the missing letters are “m” 
and “e.” How did you identify these two letters? You did not 
see the letters as unrelated parts to be identified on their 
own but saw them as collectively conveying a single 
concept—a word.

CS is analogous to such a game, where letters repre-
sent samples. Instead of seeing samples as unrelated to 
each other, CS identifies the concepts the samples are 
collectively conveying. These concepts are few compared 
to the number of samples, like many letters convey a sin-
gle word. Some samples required by the Nyquist theorem 

are missing, but by identifying the concepts being 
conveyed, the CS algorithm is able to fill in the missing 
samples.

On the other hand, imagine playing the game without 
the assumption that the letters form a word. This significant-
ly increases the complexity of the problem, since any com-
bination of letters is a possible solution. Without any 
vocabulary to draw from, there is no way to identify the 
missing letters and you will have to wait until all of the 
letters have been revealed.

Conventional sampling is like the latter scenario. It does 
not interpret what the samples are conveying but treats 
each sample as an individual concept to be identified cor-
rectly. All of the Nyquist samples must be taken; there is no 
way of filling in any gaps.

Analogy 2—Filling in the Gaps 
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Minimizing sparsity—perfect 
recovery algorithms
We have seen how it is possible for a 
CS system to preserve the information 
in x from only the measurements y.
But how will one go about recovering 
x from y?

In developing a CS recovery algo-
rithm, our aim is to obtain a unique 
solution to an underdetermined system 
that is the sparsest of all solutions. This 
can be formulated as

subject to ,s y smin 0 H=u u (5)

where · 0  is the 0, -norm defined as 
the number of nonzero elements in a 
vector. The problem reads: “Minimize 
the number of nonzero elements in ,su
subject to su  being a possible solution 
to the system.” The general p, -norm is 
defined as .s sn

N
n

pp
p 1R= =

To illustrate, consider the follow-
ing combinatorial 0, -minimization 
algorithm:

for k 1! to M 1-
for all combinations of k  out of N

coefficient locations in su
Find the least-squares solution slt  to 

y sH= l lu

if y s y "H= =l lt t break.
This algorithm tries all possible 

combinations of sparse coefficient loca-
tions, starting with a single one, until it 
finds an exact least-squares solution to 
the subsystem.

Consider the system in (3) with s
unknown. The first try would assume that 
only s1 is significant and solve the result-
ing subsystem, giving the least-squares 
solution .s 0 0621 =- . This gives y =t
[ . ,0 064 . ,0 052 . ]0 015 T- ,y!  which is 
not an exact solution.

Eventually we reach the combi -
nation ( , )s s2 5 , which leads to the 
subsystem in (4) with sl  unknown, 
for which the least-squares solu-
tion is ( , ) ( . , . ),s s 1 0 0 52 5 =  giving y =t
[ . , . , . ] ,y0 357 0 612 0 137 T- =  an exact 
solution. This also happens to be the 
first combination that gives an exact 
solution, as expected. While there are 
many more solutions, the algorithm ac-
cepts this one as correct since it is spars-
est. If desired, we can now calculate 

.x sW=t t

Unfortunately, a combinatorial 0,

algorithm is computationally infeasible 
for problems of practical sizes [1]. For a 
practically feasible recovery algorithm 
we use the p, -norm formulation

subject to , ,s y smin p0 1p 1 #H=u u

(6)

which can be solved using a variety 
of efficient optimization algorithms 
[10]. The 1,  problem can be recast as 
a linear program [3], [8], and requires 
around ( ( / ))logO K N K  measurements 
when using a random sensing matrix 
[2]. For p0 11 1  the problem is non-
convex with multiple minima, but local 
optimizers nevertheless perform well, 
particularly when .p 0 5= [10].

To visualize why the p, -norm favors 
sparsity when p0 11 # , consider the 
graphs in Figure 4 for . ,p 0 5= ,p 1=
and .p 2= The p,  balls shown in blue 
represent the points at which su  has 
constant p, -norm. Since the norms must 
be minimized, imagine the balls being 
inflated until they first touch the lines 
of possible solutions shown in red. For 

p0 11 # , the p, -norms favor sparse 
solutions that lie on the axes. By com-
parison, minimizing the common 
Euclidean norm p 2=^ h is not useful 
since it does not obtain a solution which 
is necessarily sparse.

Conclusions
In this article, we learned how CS ex -
ploits redundancy to reduce sampling 
rates, and we saw under which con-
ditions the original signal is preserved 
despite the system being underdeter-

mined. We observed how universal 
sampling schemes requiring the exis-
tence but not knowledge of a sparsify-
ing basis may be developed by using 
random sensing matrices. Finally, we 
saw how an 0, -minimization algorithm 
can recover a signal with knowledge of 
the sparsifying basis, and considered 
the rationale behind p, -minimization 
algorithms for p0 11 # .
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Ljubiša Stanković, Miloš Daković, and Ervin Sejdić

Vertex-Frequency Analysis: A Way to Localize 
Graph Spectral Components

C urrently, brain and social networks 
are examples of new data types 
that are massively acquired and dis-

seminated [1]. These networks typically 
consist of vertices (nodes) and edges 
(connections between nodes). Usually,  
information is conveyed through the 
strength of connection among nodes, but 
in recent years, it has been discovered 
that valuable information may also be 
conveyed in signals that occur on each 
vertex. However, traditional signal pro-
cessing often does not offer reliable tools 
and algorithms to analyze such new data 
types. This is especially true for cases 
where networks (e.g., the strength of con-
nections), or signals on vertices, have 
properties that change over the network.

This lecture note presents a new 
method to analyze changes in signals on 
graphs. This method, called the vertex-
frequency analysis, relies on Lapla-
cian matrices to establish connections 
between vertex changes and spectral 
content [2]–[5]. Specifically, this lec-
ture note aims to connect concepts from 
frequency and time-frequency analyses 
(e.g., [6] and [7]) to the spectral analysis 
of graph signals. Graph signal process-
ing is a major research area, however, we 
still lack understanding of how to relate 

graph signal processing concepts to con-
cepts from traditional signal processing.

Relevance
The vertex-frequency analysis presented 
here is a valuable tool that can be used 
to analyze vertex-varying changes in net-
works (graphs) such as brain networks (e.g., 
brain changes during consecutive swal-
lows [8]), changes in social interactions in 
a large group of people, or to understand 
traffic patterns during rush hour in major 
metropolitan areas. Theoretically, it con-
nects principles of the Fourier analysis and 
eigenvalue decomposition from under-
graduate courses, to more advanced topics 
such as time-frequency representations 
typically taught at a graduate level.

Prerequisites
The prerequisites for understanding this 
lecture note are linear algebra and an 
understanding of basic signal process-
ing concepts.

Problem statement and solution

Problem statement
A graph consists of vertices and edges. 
If we denote the weights of graph edges 
connecting vertices n  and m  as ,wnm

then the graph Laplacian operator is 
defined by

,L D W= -

where the matrix W elements are weight-
ing coefficients wnm  and D is a diagonal 
matrix with elements .d wm

N
n nm1R= =

An example of such a graph is shown 
in Figure 1(a).

Consider a signal x whose samples 
are ( ),x n  as shown in Figure 1(c), and 
these samples are assigned to (sensed at) 
the graph vertices as shown in Figure 1(b). 
The Laplacian operator applied to a signals 
on the graph is equal to Lx, with elements 

.( ) ( ( ) ( ))n w x n x mLx m nmR= -

The spectral representation of a dis-
crete-time signal ( )x n on the graph is 
defined as its expansion onto the set of 
eigenvectors (discrete-time basis eigen-
functions) of the Laplacian. To accom-
plish this expansion, the Laplacian L is 
decomposed as

,L U UTK=

where U is a matrix of the Laplacian 
eigenvectors uk  and K  is a diagonal 
matrix of its eigenvalues .km

The spectrum ( )X km  of signal x on a 
graph is calculated as its projection onto 
the corresponding eigenvectors uk  of 
the Laplacian:

( ) ,u xX k k
Tm =

or in vector notation .X U xT=

Since the eigenvectors are orthogo-
nal, the signal reconstruction is defined 
as ( ) .x u UXXk

N
k k1 mR= ==
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Spectral decomposition of a graph 
signal is illustrated in Figure 1(d). This 
spectrum contains three components 
corresponding to the constant com-
ponent at ,01m =  a low-frequency 
component at . ,0 69342m =  and a high-
frequency component at . .2 46446m =

We can split the signal into, for example, 
its low-frequency part by summing over 

,k 1 2= and the high-frequency part by 
using k 6= as ( ) .uX 6 6m

The meaning of weighting coeffi-
cients wnm  in a graph is highly depen-
dent on the application, especially as 
the graph Laplacian is defined by these 
coefficients, and the Laplacian operator 
then defines the set of basis functions 
for signal expansion. For example, clas-
sical Fourier analysis can be obtained 
by considering the second-order deriva-
tive estimation (Laplace operator); see 
“Fourier Analysis and Laplacian.” The 
Laplacian operator is also known as 
the Kirchhoff matrix in electrical cir-
cuit theory; see “Laplacian, Kirchhoff, 
and Ohm’s Laws on an Electric Circuit 
Graph.” In image processing, the coef-
ficients wnm  may be proportional to the 
similarities of adjacent image pixels. 
Similarly, graphs are widely used in 
neuroscience, and edge coefficients are 
used to describe the strength of interac-
tions among brain regions. In the case 
of a graph signal corresponding to a 
Euclidian network, the coefficient val-
ues are related to the vertex distances. A 
common way to define the coefficients 
in such networks is /expw rnm nm x= -^ h

for wnm 2 l  and w 0nm = elsewhere, 
where rnm is the Euclidian distance 
between vertices n and ,m and x  and 
l  are constants. This approach is used 
in Figure 1(a).

The presented spectral analysis of 
signals on graphs provides a way to 
process signals in the graph spectral 
domain, that is, to implement signal 
processing techniques such as filtering, 
denoising, or to reconstruct missing sig-
nal values at some vertices if the graph 
signal spectrum is sparse.

Similar to Fourier domain analysis in 
traditional signal processing, the con-
sidered spectral analysis of signals on 
graphs has its limitations. For exam-
ple, let us consider the graph shown in 

Figure 2(a) and two signals on this graph, 
presented in Figure 2(b) and (c). While 
these two signals ( )x n1  and ( )x n2  are 
obviously different, their spectral rep-
resentations on this graph ( )X k1 m  and 

( )X k2 m  are almost the same as depicted 
in Figure 2(d) and (e). Hence, it would be 
very difficult to implement any machine-
learning schema that would be able to 
differentiate these two cases in the spec-
tral domain. Therefore, an analysis is 
needed, similar to the time-frequency 
analysis in traditional signal processing, 
that is able to provide localized vertex 
information about the spectrum.

Solution
Localizing a spectral content around 
each vertex n can be achieved via vertex-
frequency analysis. This analysis is an 
extension of the traditional time-fre-
quency analysis to graph signals. As in 
the classical time-frequency analysis, a 
spectral transformation of a signal 
localized around the considered ver-
tex n  yields the basic formulation of 
the vertex-frequency analysis. This 
spectral transformation is typically 
achieved using a localization window. 
While different approaches exist, we 
will present two of them, one based on 

shifting a window in the vertex-frequen-
cy domain, and the other based on a 
vertex neighborhood analysis.

Convolution-based definition
To define a localized spectrum, let us 
consider two signals nx^ h and nh^ h on 
a graph with the corresponding Lapla-
cian ,L  whose eigenvalues and eigen-
vectors are km and ( ),u nk  respectively, 
while signal spectra are given by ( )X km

and ( ).H km  Here, the signal nh^ h  is 
used to localize the spectral charac-
teristics of .x n^ h  For these two graph 
signals Parseval’s theorem is given by 

( ) ( ) ( ) ( ).x n h n X Hn
N

k
N

k k1 1 m mR R== =

The shift of a signal on a graph can-
not be extended in a direct way from 
the traditional signal processing the-
ory. Hence, a generalized convolution 
operator on graphs is defined under the 
assumption that the spectrum of convo-
lution ( ) ( ) ( )y n x n h n= *  on a graph is 
equal to the product of signal spectra 

( ) ( ) ( ).Y X Hk k km m m=  The convolution 
is then equal to the inverse transform 
of ( ),Y km

( ) ( ) ( )

( ) ( ) ( ).

y n x n h n

X H u n
k

N

k k k
1

m m

=

=
=

*

/
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FIGURE 1. Sample graphs: (a) a graph with weighted edges; (b) a sample graph with signal values on 
each vertex; (c) a signal, ( );x n  and (d) the spectrum of ( ).x n
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This is the definition of the generalized 
convolution operator of two signals on 
a graph [3].

Convolution can be used to define 
the shift on a graph as ( )h m n- =

( ) ( ) ( ) ( ) ( )h m m H u n u mk
N

n k k k1d mR= =*
where ( )mnd  is the delta function at 
the thn vertex. Its spectrum ( )n kmD
is equal to the thn  sample of the 

thk eigenfunction, since ( )n kmD =

( ) ( ) ( ).m u m u nm
N

n k k1dR ==

The localized ver tex spectrum 
(LVS) on a graph can be calculated 
as the spectrum of a graph function 

nx^ h  multiplied by a shifted window 
( )h n m-

( , ) ( ) ( ) ( )

( ) ( ),

n x m h m n u m

x m h m

LVS

,

x k
m

N

k

m

N

n k

1

1

m = -

=

=

=

/

/

where the localized version of the win-
dow on vertex and frequency axes is 
denoted by

( ) ( ) ( ) ( ) ( ),h m H u n u m u m,n k l l l k
l

N

1

m=
=

6 @/

where we can use,  for example, 
( ) ( ).expH Ck km m x= -

The inverse formula is then a 
sum of ( , ),nLVSx km  multiplied by 

Fourier analysis uses the idea that a 
signal, ,( )x t  can be expanded in terms 
of orthogonal basis functions (cos ft2r )
and .(sin ft2r )  In other words, the 
resulting Fourier representation is a pro-
jection (scalar product) of the signal 
onto sinusoidal basis functions.

Interestingly enough, the Fourier 
expansion can be also considered 
from the Laplacian (Laplace differen-
tial operator), ,{ ( } ( /x t d x t dtL 2 2=-) )
point of view. The Laplacian eigen-
functions (u t ) are the solutions of 

.t( ) (u u tL m= )" ,  We can easily con-
clude that (cos ft2r ) and (sin f2r t ) are 
the eigenfunctions of the Laplacian 
with the eigenvalues .f2 2m r= ^ h

Therefore, the Fourier analysis can be defined as an expan-
sion of the signal (tx ) onto the set of eigenfunctions of the 
Laplacian operator.

In the discrete-time domain the Laplacian can be defined 
using a symmetric second-order difference operator

.
( ( ) ( )) ( ( ) ( ))

( ( ) ( ))

( ) ( ) ( ) ( )x n x n x n x n
x n x n x n x n

w x n x m
1 1

1 2 1L

{ , }
nm

m n n1 1

= - - + - +

= -

=- - + - +

! - +

" ,

/

The Laplacian is a matrix L that can be used to transform 
a discrete-time signal (x n ) into its second-order difference. 
Eigenvectors of this Laplacian are the discrete-time sine 
and cosine functions.

A graph corresponding to circular form of this 
Laplacian, sample signal ( ,x n )  and corresponding spec-
trum ( )X km , for ,N 8=  are shown in Figure S1. Signal 
values are assigned to graph vertices, and the resulting 
spectrum ( )X km  is obtained by decomposing (x n ) onto 

the Laplacian eigenvectors. The Laplacian matrix (in a 
circular form) is

L .

2
1
0
0
0
0
0
1

1
2
1
0
0
0
0
0

0
1
2
1
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0
0

0
0
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0
0
0
1
2
1
0
0

0
0
0
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1
2
1
0

0
0
0
0
0
1
2
1

1
0
0
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0
0
1
2

=

-

-
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The Laplacian operator maintains the relationship 
among vertices (signal samples) regardless of their order-
ing. Even if vertices (signal samples) are arbitrarily reor-
dered, the eigenvectors of the Laplacian produce the 
same spectrum.

If the signal vector x is a stacked-column representation 
of a two-dimensional N N#  image, then with the 
summation for , , , ,m n N n n n N1 1! - - + +" ,  when 
w 1nm =  in ( ) ,x nL" ,  the two-dimensional Fourier analysis 
can be defined.

Fourier Analysis and Laplacian
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FIGURE S1. A (a) graph for Fourier signal analysis, (b) signal on a graph, and (c) the corresponding 
spectrum.
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the shifted and modulated windows 
( ),h m,n k

( )
( ) ( )

( , ) ( ).

x n
H u n

LVS i h n

1

,

k k
k

N

k
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Note that the outlined approach [3] can 
be computationally expensive, and a fast 
implementation algorithm is proposed 
in [9].

Definition based on vertex 
neighborhood
To obtain a localized spectrum of a 
graph signal, we can utilize localiza-
tion functions (windows) corresponding 
to window functions in classical signal 
processing. As in classical signal pro-
cessing, a window function should be 
narrow enough to provide good local-
ization of the spectral components but 
wide enough to produce high resolution 
of such components. In other words, the 
window should contain the considered 
signal sample and some neighboring 
vertex samples. That is, the window is 
defined by a set of vertices that contain 
the current vertex n  and all vertices that 
are close to the thn  vertex.

There are several ways to define the 
local neighborhood for a vertex. For 
example, we can consider that two verti-
ces are close if there is an edge between 
them, or if there is a path with its 
length (number of edges) smaller than 
an assumed threshold. Edge weights 
could also be taken into consideration 
to decide whether two nodes are close 
enough or not.

Commonly, the edge weights are given 
by /expw rnm nm x= -^ h for ,rnm 1 l  and 
w 0nm= otherwise. Here, rnm denotes a 
distance between vertices, while x  and 
l  are constants. If we consider two arbi-
trary vertices n  and m  on a graph, then 
the path weight between these two ver-
tices can be defined as the product of all 
edge weights that are included in the con-
sidered path: .p w w wnm nk k k k mb1 1 2g=

If there is more than one path between 
thn  and thm  vertices, the shortest path 

(with the highest pnm value) is consid-
ered. It can also be stated that the vertex 
m belongs to the local neighborhood of 
the thn  vertex if ,p hnm T$  where hT is 
a threshold defining the window size.

The simplest window has a value 
of ( )h m 1n =  for all vertices m  that 
belong to the window centered at the 

thn  ver tex,  and ( )h m 0n =  o ther-
wise. It is analogous to a rectangular 

window in traditional signal process-
ing. When ( )h m 1n =  for each ,m  the 
standard spectrum is obtained on a 
graph. We can define window function 
values ( )h mn  based on the distances 
pnm  that will attenuate farther vertex 
samples. Now we can define the sig-
nal localized around the thn  vertex as 

( ) ( ) ( ).x m x m h mh n=  The correspond-
ing local spectrum is then defined as:

( , ) ( ) ( ) ( ),n x m h m u mLVSx k
m

N

n k
1

m =
=

/

and the inverse definition follows from 
the inverse spectrum relation with addi-
tional summation over all vertices:
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Note that for the windowed signal 
( ) ( ),x m h mn  only M N#  samples are 

nonzero, meaning that it can be con-
sidered as a zero padded signal. To 
reconstruct this signal, we only need 
M spectral coefficients ( , )nLVSx km  for 
M  different values of .km The remain-
ing coefficients can be calculated from 
the system of equations obtained by 
using the fact that ( ) ( )x m h m 0n =

Kirchhoff and Ohm’s laws on a graph
The Laplacian can be considered from the basic electric circuit 
theory point of view (Kirchhoff matrix). Let us assume that a 
graph represents an electric circuit. Then, the signal values 

(x n ) represent node voltages at the corresponding circuit verti-
ces .( ) ( )x n v n=  The weight coefficients /w R1nm nm=  repre-
sent conductance (reciprocal resistance Rnm ) values in the 
edges connecting vertices n and ,m  for vertices that are 
not connected by an edge .w 0nm =  The value of the cur-
rent  in the edge from vertex n  to m  is given by 

( ( ) ( ))/ ( ( ) ( ))i v n v m R w x n x mnm nm nm= - = - . The sum of all 
currents going into a vertex n must be 0. In general, the 
external current source connected to vertex n  is equal 
to the sum of all currents going from this vertex, 

( ) ( ( ) ( )) ( ) ( ),i n w x n x m d x n w x mi mG nm n nmR R= - = -  where 
d wmn nmR= .
The matrix form of the voltage to current relation 

is L i ,G=x  where L is the Laplacian of the graph 

(circuit). The node (vertex) voltage vector v x=  is 
determined (up to the constant referent voltage) from 
the vector of external currents iG  via a system of linear 
equations.

As in the Fourier analysis, the solution of this system can 
be simplified using the spectral decomposition of the cur-
rent and the node voltage vectors onto the set of eigenvec-
tors of the Laplacian. Starting with Lv U U v iGTK= =  and 
understanding that U UT  is a unitary matrix, we obtain 

U v U i .G
T TK =  This represents an Ohm’s law analog on a 

g raph , ( ) ( ),V Ik k km m m=  where  u v(V k k
Tm =)  and 

u i( )I Gk k
Tm =  are the spectral coefficients of the vertex volt-

age ( ) ( ),x n v n=  and the external vertex current ( )i nG  on 
the graph.

A similar analysis can be performed for a heat trans-
fer flux, with edge weights representing heat transfer 
coefficients in an appropriate thermodynamics prob-
lem definition.

Laplacian, Kirchhoff, and Ohm’s Laws on an Electric Circuit Graph
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FIGURE 2. Graph signal processing in action: (a) a graph with shaded nodes belonging to a localization window centered at the first vertex (the green-
shaded vertex); (b) a sample signal, ( );x n1  (c) a sample signal, ( );x n2  (d) the graph spectrum, ( ) ,X k1 m  of ( );x n1  (e) the graph spectrum, ( ) ,X k2 m  of 

( );x n2  (f) a vertex-frequency representation of ( );x n1  and (g) a vertex-frequency representation of ( ).x n2
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FIGURE 3. The vertex-frequency analysis of a graph signal: (a) a graph and a window centered at the fourth vertex (the vertices included in the window are 
shaded); (b) a graph signal and its spectrum; (c) a vertex-frequency representation of the graph signal; and (d) an instantaneous (vertex-based) frequency 
representation.
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outside the window support. It produces 
a system of N M- linear equations 

( , ) ( )un m 0LVSN
x k kk 1 mR ==  for verti-

ces outside the window support. This 
system provides conditions for the spec-
tral coefficients “interpolation” using 
M-calculated values ( , ).nLVSx km

To visualize the local spectral con-
tent, we should order vertices, i.e., find 
the Hamiltonian path in the correspond-
ing graph. This ordering is not unique, 
and a possible way for ordering is to 
keep in mind that neighboring vertices 
have the highest possible edge weights.

Numerical examples

Example 1
Let us first consider a vertex-frequen-
cy analysis of two graph signals shown 
in Figure 2(b) and (c). For each vertex n
we can define a window ( )h mn  and cal-
culate the local spectrum ( , )nLVSx km

of the windowed signal. A localized 
support for a window, centered at the 
first vertex, is presented in Figure 2(a)
with red-shaded vertices corresponding 
to the window support. In this way, we 
obtain a two-dimensional representa-
tion ( , )n kLVSx  of the analyzed signal 
presented, as a function of the vertex 
and eigenvalue index, in Figure 2(f) and 
(g). We can see that different signals, 
having almost the same spectrum on 
graph, have different vertex-frequen-
cy representations.

Example 2
Consider a signal, ,x n^ h  defined on 
a graph with N 64= vertices as pre-
sented in Figure 3(a). Let’s assume 
that the signal values nx^ h  are defined 
with Laplacian eigenvectors ( )u nk

as: ( ) ( )x n u n17=  for ,n17 32# #

( ) ( )x n u n30=  for  n33 48# # ,  and 
( ) ( )x n u n10= otherwise.

Signal samples and its spectrum are 
given in Figure 3(b). The signal spectrum 
clearly depicts peaks at , ,k k10 17= =

and .k 30= Small spectrum values (side 
lobes) around these eigenvalues exist 
since the components are not complete 
over all vertices. The vertex-frequency 
analysis of this signal is performed using 

the localization window ( ).h mn  A local-
ization area for the ( )h m4  window, cen-
tered at the fourth vertex, is shown in 
Figure 3(a) (red-shaded vertices). The 
local spectrum ( , )nLVSx km  of the win-
dowed signal is calculated and presented 
in Figure 3(c). From this representation, 
we can see localized signal components 
at “frequencies” , ,k k10 17= =  and 

.k 30=

Finally, an instantaneous frequency 
representation is provided in Fig-
ure 3(d). It should be noted that the 
“instantaneous frequency” definition 
for graphs is different from such a defi-
nition in traditional signal processing, 
where instantaneous frequency is de-
fined as a signal’s phase derivative with 
respect to time. Here, we determine 
the “frequency” (eigenvalue) index at 
each vertex, and this “frequency” in-
dex represents the k th index for which 
the spectrum reaches maximum at that 
particular vertex. Next, we can plot 
vertical lines with their lengths and 
colors proportional to the position (fre-
quency) of the spectral maximum for 
each vertex as depicted in Figure 3(d). 
This essentially yields a vertex-based 
instantaneous frequency representa-
tion depicting the localization of signal 
components on graph vertices.

What we have learned
Graph signal processing is a new field 
that compliments traditional signal 
processing. While traditional signal 
processing techniques for the analy-
sis of time-varying signals are well 
established, the corresponding graph 
signal processing equivalent ap-
proaches are in their infancy. In this 
lecture note, we presented novel al-
gorithms for the analysis of vertex-
varying graph signals. We expect that 
the considered technique will find 
its many uses in neuroscience, social 
sciences, and genome processing, as 
graphs (networks) in those applica-
tions tend to be “nonstationary,” and 
current analytical tools widely ignore 
this fact. Hence, the vertex-frequency 
analysis is of paramount importance 
for such applications.
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Digital Envelope Detection: The Good, the Bad, and the Ugly

During a recent consulting job to ana-
lyze  acoustic telemetry signals trans-
mitted by a deep-sea drill pipe, I was 

forced to investigate a process called digital 
envelope detection. This process is used to 
estimate the instantaneous magnitude 
of a zero-mean fluctuating-amplitude 
digital signal. While much tutorial infor-
mation regarding envelope detection is 
available, that information is spread out 
over a number of communications text-
books and many websites. The purpose 
of this article is to collect and describe var-
ious digital envelope detection methods 
in one concise and consistent lesson.

Envelope detection is used in a wide 
variety of signal processing applications, 
where we want to detect the presence 
of a narrowband signal or estimate the 
instantaneous energy of a signal. Such 
applications include amplitude modula-
tion (AM) radio demodulation, automat-
ic gain control, modulated optical signal 
detection, medical blood pressure evalu-
ation, and ultrasound signal analysis, just 
to name a few.

The only prerequisites for understand-
ing this article are knowledge of the fun-
damental fluctuating-amplitude nature of 
discrete time signals and familiarity with 
simple digital signal processing (DSP) sig-
nal flow, i.e., block diagrams.

Problem of envelope detection
The problem solved by envelope detec-
tion is to acquire a fluctuating-amplitude 

sinusoidal discrete signal where the 
positive-amplitude fluctuations, i.e., 
the sinusoid’s envelope, contain some 
sort of desired information and to 
extract that information. An example 
of such a sinusoid is the amplitude 
modulated radio-frequency (RF) signal 
shown in Figure 1(a). The dashed curve 
in that figure represents the RF signal’s 

( )m n envelope, and it is the goal of 
envelope detection to extract and make 
available that envelope signal as shown 
in Figure 1(b).

An important note: although the 
signal waveforms in Figure 1 appear 
to be continuous, keep in mind that 
they are indeed discrete-time quan-
tized numerical sequences, i.e., digital 
signals. Furthermore, the blue curve 
in Figure 1(a) represents a fluctuating-
amplitude ( )cos f nt2 c sr  discrete sinu-
soidal sequence whose frequency is 
fc Hz, and ts is the reciprocal of the 

sequence’s fs  sample rate.

Possible solutions
DSP practitioners have developed a 
remarkably wide variety of different 
methods to perform envelope detection 
over the past few decades. Here I illus-
trate their cleverness by describing 
today’s most common envelope detec-
tion techniques.

Asynchronous half-wave 
envelope detection
Figure 2(a) is a digital version of the 
popular diode envelope detector used in 
the analog world for AM radio demodu-

lation. Here, the thresholding operation 
sets all the negative-valued samples in 
the modulated RF input sequence to zero, 
a process we rightfully call half-wave 
rectification. This simple envelope detec-
tor is called asynchronous because it does 
not generate a constant-amplitude copy of 
the incoming ( )cos f nt2 c sr  RF sinusoid, 
as do some of the other detectors that will 
be discussed in this article.

Due to the harmonics, i.e., multiples 
of the incoming fc  carrier frequency, 
generated by the nonlinear half-wave 
rectification in Figure 2(a), and possible 
spectral aliasing depending on the sys-
tem’s fs  sample rate, careful spectrum 

Digital Object Identifier 10.1109/MSP.2017.2690438
Date of publication: 11 July 2017

(a)

(b)

Time

Envelope
(Dashed Curve)Modulated

RF

0

Amplitude Modulated RF
Carrier, m(n) cos (2πfcnts)

Time

m(n) Envelope Signal

0

FIGURE 1. (a) A fluctuating-amplitude RF signal 
and (b) its m(n) envelope signal.

Richard Lyons
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analysis of the half-wave rectified sinu-
soid is necessary to help you determine 
the appropriate cutoff frequency of the 
digital low-pass filter.

Asynchronous full-wave 
envelope detection
We can reduce the high-frequency noise 
riding on Figure 2(a) detector’s output 
by performing full-wave rectification as 
shown in Figure 2(b) [1]. In Figure 2(b), 
the :  symbol means the computation 
of the absolute value.

Here, the lowest-frequency spectral 
harmonic at the filter’s input is f2 c  Hz, 
thus that harmonic is more thoroughly 

attenuated at the Figure 2(b) low-pass 
filter output compared to the fc  Hz 
amplitude fluctuations at the Figure 2(a)
filter output.

Asynchronous real square-law 
envelope detection
Figure 2(c) is a digital version of a 
popular square-law analog envelope 
detector, sometimes called a product 
detector or a root mean square (RMS)
demodulator. Here, the spectral har-
monics at the low-pass filter’s input 
are roughly the same as those in Fig-
ure 2(b). This envelope detection meth-
od is used in Analog Devices’ AD8361 

Detector integrated circuit. Reference 
[2] gives a mathematical description 
of the Figure 2(c) square-law enve-
lope detector.

Asynchronous Hilbert 
complex envelope detection
Figure 2(d) shows a popular digital enve-
lope detector that uses a finite impulse 
response (FIR) Hilbert transformer to 
compute an ( ) ( )I n jQ n+ complex-val-
ued version of the incoming signal. The 
Delay element, whose time delay is equal 
to the Hilbert transformer’s group delay, 
measured in samples, is required to 
achieve discrete signal synchronization 

Detected Envelope

Time Time

Time Time

Half-Wave Rectified Sinusoid Full-Wave Rectified Sinusoid
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Low-Pass

Filter
Low-Pass

Filter

Low-Pass
Filter

0

Modulated
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RF

0
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Detected Envelope

Low-Pass
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0
Time
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0
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Detected Envelope

Time
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0

Asynchronous Half-Wave
Envelope Detector
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| . |
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FIGURE 2. Four methods of asynchronous envelope detector are shown in (a)–(d).
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with the delayed output of the Hilbert 
transformer. This detector, using an ex -
ponential averaging low-pass filter, is 
described in more detail in [3].

Asynchronous complex 
square-law envelope detection
Another digital envelope detector that 
uses a Hilbert transformer is shown 
in Figure 3(a). Reference [4] touts this 
detector’s advantage that no low-pass 
filtering is needed at the output of the 
square root operation. However, I have 
learned this only to be true for noise-free 
modulated RF input signals! In practi-

cal real-world applications, the low-pass 
filter shown in Figure 3(a) is necessary. 
Reference [2] presents a mathematical 
description of this complex square-law 
envelope detector.

Synchronous real 
envelope detection
Figure 3(b) shows an envelope detec-
tor that is called synchronous because 
the modulated RF input signal is 
multiplied by a local oscillator signal 
whose frequency is fc  Hz. This detector 
is sometimes called a coherent enve-
lope detector.

The complicated part of this detec-
tor is that the fc  Hz carrier frequency of 
the received RF input signal must be 
regenerated, which is a process called 
carrier recovery, within the envelope 
detector to provide the local oscilla-
tor’s ( )cos f nt2 c sr i+  signal. A phase 
error, ,i  between the received RF sig-
nal’s carrier and the local oscillator will 
cause a low-pass filter output amplitude 
reduction because that output is pro-
portional to ( ).cos i  A small constant i
can be tolerated, but a fluctuating value 
for i  causes unacceptable output signal 
“fading.” Furthermore, it is critical to 

+

FIR Hilbert
Transformer

Delay
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Low-Pass

Filter

Time
0

Asynchronous Complex
Square-Law Envelope Detector

Detected Envelope

Low-Pass
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Time

Time

Mixer Output

0

0

Local Oscillator:
cos (2πfcnts + θ)
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Real Envelope Detector

Detected Envelope

Time
0

Modulated
RF
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Q(n)
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Time

Detected Envelope

Time
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RF

I(n)

Q(n)Low-Pass
Filter
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sin (2πfonts)
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Detected Envelope

FIGURE 3. (a) and (c) show two asynchronous envelope detector methods while (b) shows one synchronous envelope detector method.
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ensure the local oscillator’s frequency 
is within a few hertz of the input RF 
carrier’s frequency.

It’s worth noting that the envelope 
detector in Figure 3(b) is used in Texas 
Instruments’ LM1596 and Analog 
Devices’ AD630 Modulator/Demodu-
lator integrated circuits. Reference [1]
presents a mathematical description of 
this synchronous envelope detector.

Asynchronous complex 
envelope detection
Reference [5] proposes the Figure 3(c)
envelope detector that computes a com-
plex-valued version of the incoming 
signal. This detector is asynchronous in 
operation because the local oscillators’ 
fo  frequency need not be equal to the fc

frequency of the incoming modulated 
RF. An fo  within 25% of fc  is accept-
able so long as the low-pass filters suf-
ficiently attenuate spectral energy near 

f fc o+  Hz.
Because the ( )I n and ( )Q n sequenc-

es are in quadrature, phase cancelation 
occurs in the adder 
such that only spectral 
energy in the vicinity 
of 0 Hz ap  pears at 
the adder’s output. As 
such, this detector is 
very tolerant of local 
oscillator frequency/
phase drift just so 
long as the local co -
sine/sine oscillators 
remain in quadra-
ture. This envelope de -
tector is used in CML Microcircuits’ 
CMX991 RF Quadrature Transceiver 
integrator circuit.

The detector in Figure 3(c) is the final 
envelope detector we present in this arti-
cle. Having said that, let’s now discuss 
a few practical implementation issues 
regarding the aforementioned enve-
lope detectors.

DC bias on the modulated RF
The described behavior of the aforemen-
tioned envelope detectors is based on 
the assumption that the dc bias, which 
is the average value, of the incoming 
modulated RF signal is small, i.e., less 
than 5% of the maximum value of the 
modulated RF. Happily, this restriction 
will always be satisfied if the modulat-
ed RF signal was generated by today’s 
commercially available analog to digital 
converters.

Downsampling
I have encountered several websites that 
suggest digital downsampling, i.e., deci-
mation, is appropriate at various stages 
within a given envelope detector. For 
example, [6] shows downsampling 

following the squ-
aring operation in 
Figure 2(c) as well 
following the square 
root operation in Fig-
ure 3(a) prior to any 
low-pass filtering. 
Downsampling may 
be beneficial at vari-
ous stages within an 
envelope detector, but 
you must ensure that 
any downsampling 

does not violate the Nyquist criterion. 
Failing to do so may force you to update 
your job resume!

Hilbert transformers
The Hilbert transformers in the  Fig-
ures 2(d) and 3(a) envelope detectors 
need not be superhigh performance, 
such as a wide-band Hilbert trans-
former whose passband extends from 
nearly 0 Hz to nearly half the sample 
rate / .f 2 Hzs^ h  The transformers’ pass -
bands need only be wide enough to 
include the spectral energy of the in -
coming modulated RF signal.

Complex magnitude estimation
You may have noticed that two of the 
previously mentioned envelope de  tectors 
require the computation of the magnitude 
of the complex sequence ( ) ( ),I n Q nj+  as 
shown in Figure 4(a). Square root opera-
tions are computa  tionally expensive, 
so in real-time ap    plications you might 
consider the computationally efficient 
magnitude es  timation scheme shown in 
Figure 4(b).

Called the alpha max plus beta min 
method, the processing in Figure 4(b)
replaces the troublesome square root 
operation with a few simple logical com-
parison operations. Variables a  and b are 
constants, and for various values of those 
constants the magnitude estimation error 
can be as little as 1%. The error perfor-
mance for various combinations of a  and 
b can be found in [7].

Detector performance: 
The good, the bad, and the ugly
You’ll notice that we’ve presented no 
statistical information on the signal-
to-noise ratio (SNR) performance of 
the aforementioned envelope detectors. 
In fact, that was not our goal in this arti-
cle. However, based on my MATLAB 

Envelope detection is 
used in a wide variety 
of signal processing 
applications, where 
we want to detect the 
presence of a narrowband 
signal or estimate the 
instantaneous energy 
of a signal.

(a) (b)

+

I (n)

Q (n)

|I (n) + jQ (n)|
I2(n) + Q2(n)

I (n)

Q (n) +

Max(n)

Min(n)

≈ |I (n) + jQ (n)|

Max(n) =

max{|I (n)|,|Q (n)|}

Min(n) =

min{|I (n)|,|Q (n)|}

α

β

FIGURE 4. Complex sequence magnitude estimation: (a) the traditional method and (b) the alpha max plus beta min method.
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software modeling of the various envelope 
detectors, with
■ Sample rate: ,f 8 000 Hzs =

■ RF carrier frequency: 600 Hz
■ Modulation: 60 Hz sine +30 Hz cosine 

wave
■ Modulated RF signal SNR: +23 dB
■ LP filter: third-order Butterworth infi-

nite impulse response (≈240 Hz cutoff 
frequency)

I rank the detectors’ performances (from 
best to worst) as shown in Table 1.

Summary
Various popular methods of envelope 
de  tection were listed and briefly des -
cribed. Although computationally simple 
to implement, the Figure 2(a) detector 
should be avoided due to its high output 
noise behavior.

For moderate-performance applica-
tions, such as AGC or analyzing medi-
cal signals, the detectors in Figures 2(b) 

and (c) and 3(b) and (c) are appropriate 
choices. Note that, despite its compu-
tationally simple implementation, the 
Figure 2(b) detector performs quite well 
compared to the other detectors in this 
moderate-performance category.

For high-performance applications, 
such as in digital communications sys-
tems, the detectors in Figures 2(d) and 
3(a) are the preferred choices. While their 
SNR performances are very similar, note 
that the Figure 2(d) detector requires far 
fewer arithmetic operations per output 
sample than the Figure 3(a) detector.

As a general rule, if you need an 
envelope detector in your signal pro-
cessing application, I suggest you im -
plement several of the aforementioned 
detectors to see which method is opti-
mum for your input signals, your fs  data 
sample rate, and your data throughput 
requirements. To quote Forrest Gump, 
“And that’s all I have to say about that.”

Author
Richard Lyons (R.Lyons@ieee.org) is 
a consulting signal processing engineer. 
Winner of the IEEE 2012 Education 
Award, he is the author of Understanding 
Digital Signal Processing 3/E (Prentice 
Hall, 2010). He is the editor of, and 
contributor to, Streamlining Digital 
Signal Processing, A Tricks of the Trade 
Guidebook (IEEE Press/Wiley, 2007) 
and the coauthor of The Essential 
Guide to Digital Signal Processing
book (Prentice Hall, 2014).

References
[1] C. Johnson, Jr., W. Sethares, and A. Klein,
Software Receiver Design. Cambridge, U.K.:
Cambridge Univ. Press, 2011, pp. 82–84.

[2] S. A. Tretter. Amplitude modulation. [Online]. 
Available: ht tp://www.ece.umd.edu/~tret ter/
commlab/c6713slides/ch5.pdf

[3] R. Lyons, Understanding Digital Signal 
Processing, 3rd ed. Englewood Cliffs, NJ: Prentice 
Hall, 2011, pp. 786–784.

[4] D. Ciardullo. A fast envelope detector, 
Brookhaven Nat. Lab., AGS/AD/Tech. Note No. 386.
[Online]. Available: http://www.agsrhichome
.bn l .gov/AGS/Accel /Repor ts/Tech%20Notes/
TN386.pdf

[5] M. E. Frerking, Digital Signal Processing in 
Communications Systems. London: Chapman & 
Hall, 1994, pp. 235–238.

[6] MathWorks, Inc. Envelope detection. [Online]. 
Available: https://www.mathworks.com/help/dsp/
examples/envelope-detection.html?s_tid=gn_loc_
drop 

[7] C. Turner. Fast magnitude calculation. [Online]. 
Avai lable: ht tp://www.claysturner.com /dsp/
FastMagnitude.pdf

SP

Table 1. Envelope detector performances.

Highest output SNR Asynchronous complex square-law [Figure 3(a)]

. Asynchronous Hilbert complex [Figure 2(d)]

. Asynchronous full-wave [Figure 2(b)]

. Asynchronous real square-law [Figure 2(c)]

. Asynchronous complex [Figure 3(c)]

. Synchronous real [Figure 3(b)]

Lowest output SNR Asynchronous half-wave [Figure 2(a)]
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CONFERENCE HIGHLIGHTS
Magdy Bayoumi

It Really Was Lagniappe!
Highlights from ICASSP 2017 in New Orleans

In Cajun slang, spoken in southern 
Louisiana, lagniappe means some-
thing extra, and the IEEE International 

Conference on Acoustics, Speech, and 
Signal Processing (ICASSP) 2017, held 
5–9 March in New Orleans, really was 
lagniappe. This beautiful and historic 
city welcomed ICASSP attendees and 
the IEEE Signal Processing Society 
(SPS) with open arms and rich culture. 
New Orleans is the heart of great bay-
ous; the melting pot of Cajun, Zydeco, 
and Creole cultures; the capital of jazz 
music; and the home of Mardi Gras.

ICASSP 2017 drew 2,231 attendees 
from about 50 countries. The technical 
program was hot and spicy (the Cajun 
style). It was a streamlined program 
of 2,518 very high-quality papers. All 
papers were rigorously reviewed. This 

outstanding technical program was 
attributed to the excellent contributions 
and hard work of the technical pro-
gram committees, reviewers, and, most 
importantly, the authors. The program 
included a set of 16 special sessions 
focused on emerging and futuristic 
technologies and visions, which were 
very well attended. The tutorials were 
extremely popular and addressed the 
state-of-the-art topics and technologies, 
and they attracted very large crowds. 
The tutorial “Methods for Interpret-
ing and Understanding Deep Neural 
Networks” drew more than 160 people!

One of the main highlights of the 
technical program was four keynote 
lectures by prominent researchers and 
leaders from industry and academia. 
These keynotes were carefully selected 
because of their vision, and they met our 
high expectations. The distinguished 
keynote speakers list included:

■ Rana El-Kaliouby, chief executive 
officer and cofounder of Affectiva, a 
startup in the field of emotion intel-
ligence 

■ Ray Liu, University of Maryland, 
College Park, and founder of Origin 
Wireless Inc.

■ David Nahamoo, IBM fellow and 
chief scientist for Conversational 
Systems

■ Jan Rabaey, Donald Oscar Pederson 
Distinguished Professor, University 
of California at Berkeley.
ICASSP 2017 also included several 

new initiatives. Very popular and warm-
ly welcomed by the attendees, they 
served as “Tabasco” to add additional 
seasonings to the ICASSP program. The 
new initiatives included the following:
■ Building on past years’ traditions, the 

student paper contest was held at 
ICASSP and, for the first time, the 
contest took place in a dedicated open 

Digital Object Identifier 10.1109/MSP.2017.2698119
Date of publication: 11 July 2017

Active Technical Exchanges
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session. The finalist papers were pre-
sented at a poster session held on 
Monday evening, 6 March, during a 
very relaxed atmosphere of a wine 
and cheese reception. Top papers 
received generous awards. In addition, 
IBM sponsored a student paper award 
dedicated to a paper in the speech 
processing area.

■ An M.S./Ph.D. forum also took place 
Monday evening at the same recep-
tion. Students had a chance to commu-

nicate with professors and indus  trial 
professionals. A contest among the 
presenters took place with awards 
given to the winners.

■ Several events were organized to in -
troduce ICASSP attendees to new and 
emerging technologies, new research 
opportunities, and ongoing intellec-
tual discussion:

a National Science Foundation panel 
on funding opportunities in signal 
processing fields and applications

a panel on signal processing open 
research issues and challenges
a forum on acoustics applications 
and funding opportunities in the 
Gulf of Mexico for oil spills and 
environment.
the Internet of Things (IoT) in in -
dustry forum
a workshop on IoT curricula and 
challenges.

In addition to this stimulating and 
intellectually inspiring technical program, 

Opening Ceremony 

Active Technical Exchanges (continued )
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a colorful, cultural, and entertaining 
social program was planned. Attend-
ees could feel the celebratory mood the 
entire duration of the conference.
■ On Sunday evening, 5 March, 

a  jazz and zydeco festival took 

place to welcome attendees to 
ICASSP 2017 and New Orleans. 
Attendees sampled gumbo, jam-
balaya, bread pudding, and other 
New Orleans delicacies. It was 
also a chance for our community 

to try the New Orleans two-step 
and jitterbug. Dance lessons were 
available to all attendees before 
the reception.

■ On Tuesday evening, 7 March, the 
Mystick Krewe of ICASSP was 

Colorful Social and Cultural Programs
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in  itiated through a Mardi Gras Ball. It 
was a real Mardi Gras experience 
topped by the best zydeco band in 
the world.

■ The conference finale took place on 9 
March, a goodbye and thanking festi-
val of our own talent in music and 
singing took place. This talent show 
fitted very well the spirits of the con-
ference. Students, young profession-
als, and young spirited friends had a 
very good time at this social event.

A great time had by all 
ICASSP 2017 was a festival of knowl-
edge, information, technology, educa-
tion, culture, music, and food. We are 
pleased that 2,231 attendees joined us in 
New Orleans, and we hope they found 

ICASSP 2017 a rewarding, informative, 
and stimulating experience. For readers 
who could not make this year’s confer-
ence, we hope you enjoy reading the 
highlights in this new column in IEEE 
Signal Processing Magazine and will 
check out the technical results from the 
ICASSP proceedings in IEEE Xplore;
the presentation slides and posters 
archived in IEEE SigPort; and the ple-
nary videos that are available online at 
http://tiny.cc/ICASSP.

Acknowledgments
Many people, colleagues, and friends 
helped make this conference a success. 
Special thanks are given to the SPS lead-
ership, office staff, and administration 
team. My gratitude is given to all of the 

members of the organizing committee 
for their dedication and working as a 
team as well as Billene Cannon and her 
conference management service team. I 
am very grateful to Dr. Savoie, the presi-
dent of the University of Louisiana-
Lafayette and its leadership. I would also 
like to thank my dear student volunteers 
who kept the conference running smooth-
ly. Support from the following companies 
and organizations is gratefully ack-
owledged: Microsoft Corporation; Aliba-
ba Group; Apple Inc.; Yahoo! Japan 
Corporation; Baidu Inc.; Google, Inc.; 
MathWorks; Amazon; Datatang Tech-
nology, Inc.; Nuance Communications 
Inc.; Qualcomm Inc.; IBM Research; 
and Starkey Hearing Technologies.

SP

Plenary Speakers

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://tiny.cc/ICASSP
http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


192 IEEE SIGNAL PROCESSING MAGAZINE |   July 2017 |

Please send calendar submissions to: 
Dates Ahead, Att: Jessica Welsh, E-mail: j.welsh@ieee.org 

2017

AUGUST

25th European Signal Processing 
Conference (EUSIPCO)
28 August–2 September, Kos Island, Greece.
General Chairs: Petros Maragos 
and Sergios Theodoridis
URL: www.eusipco2017.org

14th IEEE International Conference 
on Advanced Video and Signal-Based 
Surveillance (AVSS)
29 August–1 September, Lecce, Italy.
General Chairs: Cosimo Distante 
and Larry S. Davis
URL: www.avss2017.org

SEPTEMBER

IEEE International Conference 
on Image Processing (ICIP)
17–20 September, Beijing, China.
General Chairs: Xinggang Lin, 
Anthony Vetro, and Min Wu
URL: http://2017.ieeeicip.org/

OCTOBER

IEEE Workshop on Applications 
of Signal Processing to Audio and 
Acoustics (WASPAA)
15–18 October, New Paltz, New York, USA.
General Chairs: Patrick A. Naylor 
and Meinard Müller
URL: http://www.waspaa.com/

19th IEEE International Workshop on 
Multimedia Signal Processing (MMSP)
16–18 October, London-Luton, 
United Kingdom.
General Chairs: Vladan Velisavljevic, 
Vladimir Stankovic, and Zixiang Xiong
URL: http://mmsp2017.eee.strath.ac.uk/

NOVEMBER

Fifth IEEE Global Conference on 
Signal and Information Processing 
(GlobalSIP)
14–16 November 2017, Montréal, Canada.
General Cochairs: Warren Gross 
and Kostas Plataniotis 
URL: http://2017.ieeeglobalsip.org

DECEMBER

Ninth IEEE Workshop on Information 
Forensics and Security (WIFS)
4–7 December, Rennes, France.
General Cochairs: Teddy Furon and 
Carmela Troncoso
URL: http://wifs2017.org/

Seventh IEEE Conference of the Sensor 
Signal Processing for Defence (SSPD)
6–7 December, Edinburgh, Great Britain.
General Chairs: Mike Davies, Jonathon 
Chambers, and Paul Thomas
URL: www.sspd.eng.ed.ac.uk/

17th IEEE International Workshop on 
Computational Advances in Multisensor 
Adaptive Processing (CAMSAP)
10–13 December, Curacao, Dutch Antilles.
General Chairs: André L.F. de Almeida 
and Martin Haardt
URL: http://www.cs.huji.ac.il/conferences/
CAMSAP17/

17th IEEE International Symposium on Signal 
Processing and Information Technology (ISSPIT)
18–20 December, Bilbao, Spain.
General Cochairs: Begona García-Zapirain 
and Adel Elmaghraby
URL: http://www.isspit.org/isspit/2017/

2018

APRIL

IEEE International Symposium on Biomedical 
Imaging (ISBI)
4–7 April, Washington, D.C.
Conference Chairs: Amir Amini and Scott Acton 
URL: https://biomedicalimaging.org/2018/

43rd International Conference on Acoustic, 
Speech, and Signal Processing (ICASSP)
22–27 April, Seoul, South Korea.
General Chair: Monson Hayes 
General Cochair: Hanseok Ko 
URL: http://2018.ieeeicassp.org/

JULY

IEEE International Conference 
on Multimedia and Expo (ICME)
23–27 July, San Diego, California. 
General Chairs: C.-C. Jay Kuo, Truong Nguyen, 
and Wenjun Zeng
URL: http://www.icme2018.org/

OCTOBER

25th IEEE International Conference 
on Image Processing (ICIP)
7–10 October, Athens, Greece.
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The main theme of ICME 2017 is “The New 
Media Experience.” Approximately 400 par-
ticipants mainly from Asia, Europe, and North 
America will gather in Hong Kong 10–14 July 
to discuss the latest development in multime-
dia technologies and related fields.

DATES AHEAD
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IEEE International Conference on Image Processing
17-20 September 2017
Beijing, China 

Keynote Speakers

Michael Elad
Prof at Technion

Song-Chun Zhu
Prof at UCLA

Karri Pulli
CTO at Meta

Special Sessions
Computational Imaging
Light Field Imaging and Display
Perceptual Quality Evaluation of Advanced Multimedia Systems
Saliency Detection and Applications for Image/Video Analysis
Recent Advances in Video Compression in Open Codecs
Real-World Visual Content Modeling and Understanding
Trends in Statistical Analysis of Manifold-Valued Data

Tutorials
Vision and Language: Bridging Vision & Language with Deep Learning 
Multi-camera processing, analysis and applications
Modern First-Order Optimization Methods for Imaging Problems
Future Video Coding – Coding Tools and Developments beyond HEVC
Distance Metric Learning for Image and Video Understanding
Hyperspectral Image and Video Processing 
Scalable Deep Learning for Image Processing

Grand Challenges
Light Field Image Coding
Video Compression Technology
Use of Image Restoration for Video Coding
Content-Based Video Relevance Prediction

Advanced Registration Deadline: July 31 
http://2017.ieeeicip.org
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keep some level of anonymity. We need 
new approaches and tangible solutions 
to tackle this issue as it will cause sig-
nificant problems in our future, but the 
question of how we will accomplish 
this still remains.

When it comes 
to secure storage of 
biometric data, there 
have been some clever 
techniques proposed 
in the past, enabled 
by signal processing, 
including fuzzy hash 
[7] (e.g., the ability 
to compare two dis-
tinctly different items and determine 
a level of similarity between the two), 
fuzzy vault [8] (e.g., an encryption 
scheme that encodes information in a 
way that is difficult to obtain without a 
key), and secure sketch [9] techniques. 
However, these techniques suffer from 
one of two problems. First, many of the 
security techniques proposed, from a 
quantification, storage, and communi-
cation point of view, are designed for 
discrete data and use simple similarity 
measures. However, true biometric data 
requires complex similarity functions. 
Second, the techniques designed for real-
world biometric data are either ad hoc 
and without formal proof of security or 
don’t provide a sufficiently rigorous secu-
rity formulation.

Is technology giving companies 
unprecedented access to our data?
For most of us, the use of fingerprints 
today might be limited to our phone or 
computer, but what does the future hold 
for biometric authentication? As technol-
ogy advances, we will encounter privacy 
and security issues even more frequently. 
It’s within reach for companies to use 

new technology to replace all passwords, 
security personal identification numbers, 
access codes, etc. MasterCard and HSBC 
are great examples [10] of companies 
using facial recognition technology to 

verify a user’s identi-
ty. Even Ford is part-
nering [11] with a 
machine vision com-
pany to add facial rec-
ognition technology 
to its vehicles.

But these advanc-
es might allow com-
panies to “go too 
far” with a person’s 

biometric data, giving unprecedented 
access. While your face isn’t a secret, the 
data about you and your loved ones that 
it’s linked to should be protected unless 
we truly do want to live in a “Big Broth-
er” society.

All in all, these security concerns will 
only increase and evolve with time, but 
signal processing plays a significant role 
in providing potential solutions to these 
issues. Although there is a fascination 
with the science behind our biometric 
data, we can’t head into a future in which 
we’ll be identified at every step of our 
lives. We must be diligent in ensuring the 
right policies and laws prevent biometric 
data from being used indiscriminately. 
We must ask ourselves how biometric 
authentication, which is a convenience 
in our lives, be prevented from becom-
ing an avenue for companies to invade 
our privacy.
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Nasir Memon

How Biometric Authentication Poses New Challenges 
to Our Security and Privacy

The use of biometric data—an indi-
vidual’s measurable physical and 
behavioral characteristics—isn’t 

new. Government and law enforcement 
agencies have long used it. The Federal 
Bureau of Investigation (FBI) has been 
building a biometric recognition data-
base [1]; the U.S. Department of Home-
land Security is sharing [2] its iris and 
facial recognition of foreigners with the 
FBI. But the use of biometric data by 
consumer goods manufacturers for 
authentication purposes has skyrocketed 
in recent years. For example, Apple’s 
iPhone allows users to scan their finger-
prints to unlock the device, secure 
mobile bill records, and authenticate 
payments. Lenovo and Dell [3] leverage 
fingerprints to enable users to sign onto 
their computers with just a swipe.

Using biometric data to access our 
personal devices is increasing as a way 
to get around the limitations of the com-
monly used password-based mecha-
nism: it’s easier, more convenient, and 
(theoretically) more secure. But biomet-
ric data can also be stolen and used in 
malicious ways. Capturing fingerprints 
at scale isn’t as easy as lifting a credit 
card or Social Security number, but 
experience and history tells us that once 
something is used extensively, criminals 
will figure out how to misuse and mon-
etize it.

In addition, with the uptick in data 
breaches [4] (Yahoo! being the most 
recent example [5]), we’ve demonstrated 

we can’t keep secrets or properly protect 
identities. As more companies use bio-
metric authentication, we must be con-
cerned about how our biometric data is 
secured: currently there is no restriction 
on what biometric information compa-
nies can share and with whom. This is 
why we need better solutions—we must 
develop techniques 
and protocols based 
on cryptography and 
signal processing 
that would protect 
biometric data and 
yet allow authentica-
tion. We need mech-
anisms that provide 
a user some control on when and how 
their biometric data are being used.

To ensure we’re staying on top and 
ahead of threats to our personal infor-
mation, we must better understand the 
dangers associated with the use of bio-
metric authentication (and the role sig-
nal processing can play in alleviating 
them), and the concerns that come to 
light with technological advances.

The dangers of frequent biometric 
authentication
Why is biometric authentication an 
important issue now more than ever? 
Companies are increasingly using dif-
ferent means to identify people and 
assess their buying decisions and how 
they live their lives. By simply upload-

ing your picture to 
Facebook or using 
your thumb to un  l-
o c k  y o u r  s m a r t -
phone, you may be 
giving away critical 
data without realiz-
ing where the infor-
mation is going and 

what it’s being used for. It’s feasible to 
envision a society in which we’re all 
identified, all the time and wherever we 
go. This is dangerous because it can 
lead to illegal spying [6] from govern-
ment and law enforcement agencies. To 
address these concerns, mechanisms 
must be put in place to permit people to 
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As more companies use 
biometric authentication, 
we must be concerned 
about how our biometric 
data is secured:
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Adaptation, Detection, Estimation, and Learning 

IEEE TRANSACTIONS ON

The new publishes high-quality papers 
that extend the classical notions of processing of signals defined over vector spaces (e.g. time and space) to 
processing of signals and information (data) defined over networks, potentially dynamically varying. In signal 
processing over networks, the topology of the network may define structural relationships in the data, or 
may constrain processing of the data. Topics of interest include, but are not limited to the following:

Editor-in-
-ieee 

SIGNAL AND INFORMATION PROCESSING 
OVER NETWORKS

Now accepting paper submissions
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Distributed detection and estimation 
Distributed adaptation over networks
Distributed learning over networks
Distributed target tracking 
Bayesian learning; Bayesian signal processing
Sequential learning over networks 
Decision making over networks 
Distributed dictionary learning 
Distributed game theoretic strategies
Distributed information processing 
Graphical and kernel methods 
Consensus over network systems 
Optimization over network systems 

Communications, Networking, and Sensing 
Distributed monitoring and sensing 
Signal processing for distributed communications and 
networking
Signal processing for cooperative networking 
Signal processing for network security 
Optimal network signal processing and resource 
allocation 

Modeling and Analysis 
Performance and bounds of methods
Robustness and vulnerability
Network modeling and identification

Modeling and Analysis (cont.)
Simulations of networked information processing 
systems
Social learning  
Bio-inspired network signal processing 
Epidemics and diffusion in populations

Imaging and Media Applications 
Image and video processing over networks 
Media cloud computing and communication 
Multimedia streaming and transport 
Social media computing and networking 
Signal processing for cyber-physical systems 
Wireless/mobile multimedia 

Data Analysis 
Processing, analysis, and visualization of big data 
Signal and information processing for crowd 
computing 
Signal and information processing for the Internet of 
Things 
Emergence of behavior 

Emerging topics and applications 
Emerging topics 
Applications in life sciences, ecology, energy, social 
networks, economic networks, finance, social 
sciences, smart grids, wireless health, robotics, 
transportation, and other areas of science and 
engineering 
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SPECIAL SECTION ON SOUND SCENE AND EVENT ANALYSIS

EDITORIAL

Introduction to the Special Section on Sound Scene and Event Analysis http://dx.doi.org/10.1109/TASLP.2017.2699334 . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . G. Richard, T. Virtanen, J. P. Bello, N. Ono, and H. Glotin 1169

PAPERS

Maximum Likelihood Decision Fusion for Weapon Classification in Wireless Acoustic Sensor Networks
http://dx.doi.org/10.1109/TASLP.2017.2690579 . . . . . . . . . . . . . . . . . . . . . . . . . . . . H. A. Sánchez-Hevia, D. Ayllón, R. Gil-Pita, and M. Rosa-Zurera 1172
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IEEE TRANSACTIONS ON

The IEEE Transactions on Computational Imaging 
publishes research results where computation plays 
an integral role in the image formation process. All areas 
of computational imaging are appropriate, ranging from 
the principles and theory of computational imaging, to mod-
eling paradigms for computational imaging, to image for-
mation methods, to the latest innovative computational imaging system 
designs. Topics of interest include, but are not limited to the following:

Computational Imaging Methods and  
Models

Coded image sensing
Compressed sensing
Sparse and low-rank models
Learning-based models, dictionary methods
Graphical image models
Perceptual models

Computational Image Formation

Sparsity-based reconstruction
Statistically-based inversion methods
Multi-image and sensor fusion
Optimization-based methods; proximal itera-
tive methods, ADMM

Computational Photography

Non-classical image capture
Generalized illumination
Time-of-flight imaging
High dynamic range imaging
Plenoptic imaging

Computational Consumer 
Imaging

Mobile imaging, cell phone imaging
Camera-array systems
Depth cameras, multi-focus imaging
Pervasive imaging, camera networks

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopy

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy
Light field microscopy

Imaging Hardware and Software

Embedded computing systems
Big data computational imaging
Integrated hardware/digital design

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic aperture imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

For more information on the IEEE Transactions on Computational Imaging see

W. Clem Karl
Boston University
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CALL FOR PAPERS
IEEE Journal of Selected Topics in Signal Processing 

Special Issue on Hybrid Analog - Digital Signal Processing for Hardware-Efficient Large 
Scale Antenna Arrays

5G and beyond systems necessitate the exploitation of high-gain MIMO beamforming/precoding by using large 
antenna arrays at both the base stations and the mobile units to deliver the high data rates promised. The high cost 
and power consumption of radio frequency (RF) components such as high-resolution analog-to-digital converters 
(ADCs) makes dedicating a separate RF chain for each antenna prohibitive, and thus the conventional, fully digital 
baseband (BB) processing becomes infeasible. This is further pronounced in emerging applications such as the 
internet of things (IoT) involving massive connectivity. Hybrid analog-digital (AD) processing provides a key 
solution for allowing a reduced number of RF chains and low-specification RF components, where the transceiver 
processing is divided into the analog and digital domains. This special issue seeks to bring together contributions 
from researchers and practitioners in the area of signal processing for wireless communications with an emphasis on
new methods for hybrid AD signal processing architectures and transmission. We solicit high-quality original 
research papers on topics including, but not limited to:

Fundamental limits of communication by hybrid AD architectures;
Hybrid AD signal processing techniques for large scale MIMO systems;
Signal processing techniques robust to low-specification RF components and hardware imperfections;
Reduced RF chain implementations through parasitic arrays and load modulated MIMO;
Adaptive transmission / reception techniques for parasitic, reflect, phased, load modulated and other
hybrid massive antenna array structures
Channel modelling for hybrid AD large scale antenna systems;
Studies and optimization of antenna topologies for massive MIMO deployment with hybrid AD
transmission;
Efficient channel state information (CSI) acquisition techniques for hybrid AD transmission;
Beamspace MIMO transmission;
Distributed multi-cell hybrid AD transmission;
Novel applications of hybrid AD signal processing, including security, energy harvesting, IoT among
others;
Hybrid RF antenna arrays for K, V, W and mmWave frequency bands, including wideband designs;

In addition to technical research results, we invite very high quality submissions of a tutorial or overview nature. We
also welcome creative papers outside of the areas listed here but related to the overall scope of the special issue. 
Prospective authors can contact the Guest Editors to ascertain interest on topics that are not listed above.  

Prospective authors should visit http://www.signalprocessingsociety.org/publications/periodicals/jstsp/ 
for information on paper submission. Manuscripts should be submitted using the Manuscript
Central system at http://mc.manuscriptcentral.com/jstsp-ieee. Manuscripts will be peer reviewed according 
to the standard IEEE process. 

Manuscript Submission: September 1, 2017
First review completed: November 1, 2017
Revised manuscript due: January 1, 2018
Second review completed: February 1, 2018
Final manuscript due: March 1, 2018
Publication date: May 2018

Guest Editors 
Dr. Christos Masouros, University College London, UK, email: c.masouros@ucl.ac.uk
Dr. Mathini Sellathurai, Heriot-Watt University, UK, email: m.sellathurai@hw.ac.uk
Prof. Constantinos Papadias, Athens Information Technology, Greece, email: papadias@ait.edu.gr
Prof. Linglong Dai, Tsinghua University, China, email: daill@tsinghua.edu.cn
Prof. Wei Yu, University of Toronto, Canada, email: weiyu@ece.utoronto.ca
Dr. Theodore Sizer, Nokia Bell Labs, U.S.A., email: theodore.sizer@nokia-bell-labs.com
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CALL FOR PAPERS
IEEE Journal of Selected Topics in Signal Processing 

Special Issue on Hybrid Analog - Digital Signal Processing for Hardware-Efficient Large 
Scale Antenna Arrays

5G and beyond systems necessitate the exploitation of high-gain MIMO beamforming/precoding by using large 
antenna arrays at both the base stations and the mobile units to deliver the high data rates promised. The high cost 
and power consumption of radio frequency (RF) components such as high-resolution analog-to-digital converters 
(ADCs) makes dedicating a separate RF chain for each antenna prohibitive, and thus the conventional, fully digital 
baseband (BB) processing becomes infeasible. This is further pronounced in emerging applications such as the 
internet of things (IoT) involving massive connectivity. Hybrid analog-digital (AD) processing provides a key 
solution for allowing a reduced number of RF chains and low-specification RF components, where the transceiver 
processing is divided into the analog and digital domains. This special issue seeks to bring together contributions 
from researchers and practitioners in the area of signal processing for wireless communications with an emphasis on
new methods for hybrid AD signal processing architectures and transmission. We solicit high-quality original 
research papers on topics including, but not limited to:

Fundamental limits of communication by hybrid AD architectures;
Hybrid AD signal processing techniques for large scale MIMO systems;
Signal processing techniques robust to low-specification RF components and hardware imperfections;
Reduced RF chain implementations through parasitic arrays and load modulated MIMO;
Adaptive transmission / reception techniques for parasitic, reflect, phased, load modulated and other
hybrid massive antenna array structures
Channel modelling for hybrid AD large scale antenna systems;
Studies and optimization of antenna topologies for massive MIMO deployment with hybrid AD
transmission;
Efficient channel state information (CSI) acquisition techniques for hybrid AD transmission;
Beamspace MIMO transmission;
Distributed multi-cell hybrid AD transmission;
Novel applications of hybrid AD signal processing, including security, energy harvesting, IoT among
others;
Hybrid RF antenna arrays for K, V, W and mmWave frequency bands, including wideband designs;

In addition to technical research results, we invite very high quality submissions of a tutorial or overview nature. We
also welcome creative papers outside of the areas listed here but related to the overall scope of the special issue. 
Prospective authors can contact the Guest Editors to ascertain interest on topics that are not listed above.  

Prospective authors should visit http://www.signalprocessingsociety.org/publications/periodicals/jstsp/ 
for information on paper submission. Manuscripts should be submitted using the Manuscript
Central system at http://mc.manuscriptcentral.com/jstsp-ieee. Manuscripts will be peer reviewed according 
to the standard IEEE process. 

Manuscript Submission: September 1, 2017
First review completed: November 1, 2017
Revised manuscript due: January 1, 2018
Second review completed: February 1, 2018
Final manuscript due: March 1, 2018
Publication date: May 2018

Guest Editors 
Dr. Christos Masouros, University College London, UK, email: c.masouros@ucl.ac.uk
Dr. Mathini Sellathurai, Heriot-Watt University, UK, email: m.sellathurai@hw.ac.uk
Prof. Constantinos Papadias, Athens Information Technology, Greece, email: papadias@ait.edu.gr
Prof. Linglong Dai, Tsinghua University, China, email: daill@tsinghua.edu.cn
Prof. Wei Yu, University of Toronto, Canada, email: weiyu@ece.utoronto.ca
Dr. Theodore Sizer, Nokia Bell Labs, U.S.A., email: theodore.sizer@nokia-bell-labs.com
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Q. Ke, S. An, M. Bennamoun, F. Sohel, and F. Boussaid 731
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No-Reference JPEG Image Quality Assessment Based on Blockiness and Luminance Change . . . . Y. Zhan and R. Zhang 760
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IEEE International Symposium on Biomedical Imaging

The IEEE International Symposium on Biomedical Imaging (ISBI) is a scientific conference dedicated to mathematical, algorithmic, and 
computational aspects of biological and biomedical imaging, across all scales of observation. It fosters knowledge transfer among 
different imaging communities and contributes to an integrative approach to biomedical imaging. ISBI is a joint initiative from the IEEE 
Signal Processing Society (SPS) and the IEEE Engineering in Medicine and Biology Society (EMBS). The 2018 meeting will include tutorials, 
and a scientific program composed of plenary talks, invited special sessions, challenges, as well as oral and poster presentations of 
peer-reviewed papers. High-quality papers are requested containing original contributions to the topics of interest including image 
formation and reconstruction, computational and statistical image processing and analysis, dynamic imaging, visualization, image quality 
assessment, and physical, biological, and statistical modeling. Accepted 4-page regular papers will be published in the symposium 
proceedings published by IEEE and included in IEEE Xplore. To encourage attendance by a broader audience of imaging scientists and 
offer additional presentation opportunities, ISBI 2018 will continue to have a second track featuring posters selected from 1-page abstract 
submissions without subsequent archival publication.

Connect with us:

Important Dates

Proposal Submission
Tutorials, Special Sessions, 
& Challenges 

4 page papers
Submission Opens 
Submission Deadline
Accept/Reject Notification
Final Submission

1 page papers
Submission Opens 
Submission Deadline
Accept/Reject Notification 
Final Submission Opens
Final Submission Deadline

May 29, 2017- 
September 25, 2017 

July 31, 2017 
October 16, 2017 
December 18, 2017 
January 8, 2018 

November 20, 2017 
December 18, 2017 
January 22, 2018 
January 22, 2018 
February 5, 2018 

Sam Achilefu, Washington University in St. Louis, Optical Molecular Imaging

Kim Butts Pauly, Stanford University, MR guided Focused Ultrasound

Peter Basser, National Institutes of Health, MR Diffusion Tensor Imaging

Anne Carpenter, Broad Institute, Harvard/MIT, Cellular Image Analysis

Laura Waller, UC Berkeley, Microscopy and Computational Imaging

Keynote Speakers Organizing Committee:
Conference Chairs
Amir Amini  (amir.amini@louisville.edu)
Scott Acton (acton@virginia.edu)
Program Chairs
Erik Meijering (meijering@imagescience.org)
Ron Summers (rms@nih.gov)
Plenary Chairs
Julia Schnabel (julia.schnabel@kcl.ac.uk)
Michael Unser (michael.unser@epfl.ch)
Tutorial Chairs
Jerry Prince  (prince@jhu.edu)
Tanveer Syeda-Mahmood (stf@us.ibm.com)
Special Sessions
Arrate Muñoz-Barrutia (mamunozb@ing.uc3m.es)
Erin Girard (erin.girard@siemens.com)
Challenges
Bram van Ginneken
(bram.vanginneken@radboudumc.nl)
Stephen Aylward (stephen.aylward@kitware.com)
Dan Weller (dsw8c@virginia.edu)
Exhibits and Industry Liasons
Marie-Pierre Jolly (marie-pierre.jolly@siemens. com)
Erhan Bas (base@janelia.hhmi.org)
Eliot Siegel (esiegel@umaryland.edu)
Student Awards
Yuping Wang (wyp@tulane.edu)
Lei Ying (leiying@buffalo.edu)
Local Arrangements
Siddhartha Sikdar (ssikdar@gmu.edu)
Juan Cebral (jcebral@gmu.edu)
Murray Loew (loew@gwu.edu)

http://biomedicalimaging.org/2018/

April 4-7, 2018, Omni Shoreham Hotel, Washington, D.C.
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This issue presents feature articles showcasing the sig-
nificant and versatile roles that signal processing has 
been playing in quantitative finance, spatial audio, and 
visual depth sensing. The “SP Education” column pres-
ents systematic engineering outreach efforts at precolle-
giate levels, for which signal processing is a key building 
block in many projects engaging young students. The 
“Life Sciences” column presents velocity estimation in 
medical ultrasound images. The “From the Editor” column 
highlights an effort of “content ecosystem” that the maga-
zine is exploring with other Society initiatives.

14 SIGNAL PROCESSING
FOR FINANCE, ECONOMICS,
AND MARKETING
Xiao-Ping (Steven) Zhang 
and Fang Wang

36 PERCEPTUAL SPATIAL AUDIO 
RECORDING, SIMULATION, 
AND RENDERING
Hüseyin Hacıhabiboğlu, 
Enzo De Sena, Zoran Cvetković, 
James Johnston, and 
Julius O. Smith III

55 COMPUTATIONAL DEPTH SENSING
Zhiwei Xiong, Yueyi Zhang, 
Feng Wu, and Wenjun Zeng
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   The CNN as a Guided Multilayer 

RECOS Transform
C.-C. Jay Kuo

   Effectively Interpreting Discrete Wavelet 
Transformed Signals
Rodrigo Capobianco Guido

94 Life Sciences
   Velocity Estimation in Medical Ultrasound

Jørgen Arendt Jensen, 
Carlos Armando Villagómez Hoyos, 
Simon Holbek, and 
Kristoffer Lindskov Hansen

101 Tips & Tricks
   Autocalibrated Sampling Rate Conversion 

in the Frequency Domain
Lifan Zhao, Xiumei Li, Lu Wang, 
and Guoan Bi

112 In the Spotlight
   Signal Processing for Social Good

Kush R. Varshney
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6 Reader’s Choice
Top Downloads in IEEE Xplore

8 Society News
New Society Officers Elected for 2018

10 Special Reports
   New Directions in Navigation 

and Positioning
John Edwards

69 SP Education
   Engineering Outreach: Yesterday, 

Today, and Tomorrow
Mónica F. Bugallo and Angela M. Kelly
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(continued on next page)

Please PRINT your name as you want it to appear on your membership card and IEEE 
correspondence. As a key identifier for the IEEE database, circle your last/surname.

PERSONAL INFORMATION

To better serve our members and supplement member dues, your postal mailing address is made available to 
carefully selected organizations to provide you with information on technical services, continuing education, and 
conferences. Your e-mail address is not rented by IEEE. Please check box only if you do not want to receive these 
postal mailings to the selected address. 

Start your membership immediately: Join online www.ieee.org/join

Name & Contact Information1

I have graduated from a three- to five-year academic program with a university-level degree.
 Yes      No

This program is in one of the following fields of study:
Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

This academic institution or program is accredited in the country where the institution 
is located.     Yes      No      Do not know

I have ______ years of professional experience in teaching, creating, developing, 
practicing, or managing within the following field:

Engineering
Computer Sciences and Information Technologies
Physical Sciences
Biological and Medical Sciences
Mathematics
Technical Communications, Education, Management, Law and Policy
Other (please specify): _________________

Attestation2

I hereby apply for IEEE membership and agree to be governed by the 
IEEE Constitution, Bylaws, and Code of Ethics. I understand that IEEE 
will communicate with me regarding my individual membership and all 
related benefits. Application must be signed.

Signature Date

Please Sign Your Application4

3 Please Tell Us About Yourself

 Male  Female           Date of birth (Day/Month/Year) /     /

Please complete both sides of this form, typing or printing in capital letters.
Use only English characters and abbreviate only if more than 40 characters and 
spaces per line. We regret that incomplete applications cannot be processed.

(students and graduate students must apply online)

A. Primary line of business
1. Computers
2. Computer peripheral equipment
3. Software
4. Office and business machines
5. Test, measurement and instrumentation equipment
6. Communications systems and equipment
7. Navigation and guidance systems and equipment
8. Consumer electronics/appliances
9. Industrial equipment, controls and systems

10. ICs and microprocessors
11. Semiconductors, components, sub-assemblies, materials and supplies
12. Aircraft, missiles, space and ground support equipment
13. Oceanography and support equipment
14. Medical electronic equipment
15. OEM incorporating electronics in their end product (not elsewhere classified)
16. Independent and university research, test and design laboratories and

consultants (not connected with a mfg. co.)
17. Government agencies and armed forces
18. Companies using and/or incorporating any electronic products in their

manufacturing, processing, research or development activities
19. Telecommunications services, telephone (including cellular)
20. Broadcast services (TV, cable, radio)
21. Transportation services (airline, railroad, etc.)
22. Computer and communications and data processing services
23. Power production, generation, transmission and distribution
24. Other commercial users of electrical, electronic equipment and services

(not elsewhere classified)
25. Distributor (reseller, wholesaler, retailer)
26. University, college/other educational institutions, libraries
27. Retired
28. Other__________________________

Over Please

B. Principal job function
9. Design/development 
  engineering—digital

10. Hardware engineering
11. Software design/development
12. Computer science
13. Science/physics/mathematics
14. Engineering (not elsewhere

specified)
15. Marketing/sales/purchasing
16. Consulting
17. Education/teaching
18. Retired
19. Other

1. General and corporate management
2. Engineering management
3. Project engineering management
4. Research and development 
  management
5. Design engineering management
  —analog
6. Design engineering management
  —digital
7. Research and development
  engineering
8. Design/development engineering
  —analog

D. Title
1. Chairman of the Board/President/CEO
2. Owner/Partner
3. General Manager
4. VP Operations
5. VP Engineering/Dir. Engineering
6. Chief Engineer/Chief Scientist
7. Engineering Management
8. Scientific Management
9. Member of Technical Staff

10. Design Engineering Manager
11. Design Engineer
12. Hardware Engineer
13. Software Engineer
14. Computer Scientist
15. Dean/Professor/Instructor
16. Consultant
17. Retired
18. Other 

C. Principal responsibility 
1. Engineering and scientific management
2. Management other than engineering
3. Engineering design
4. Engineering
5. Software: science/mngmnt/engineering

6. Education/teaching
7. Consulting
8. Retired
9. Other

Are you now or were you ever a member of IEEE? 
 Yes   No    If yes, provide, if known:

Membership Number                        Grade                            Year Expired

Select the numbered option that best describes yourself. This infor-
mation is used by IEEE magazines to verify their annual circulation. 
Please enter numbered selections in the boxes provided.

2017 IEEE MEMBERSHIP APPLICATION 

Title       First/Given Name                Middle                   Last/Family Surname

Primary Address

Street Address

City State/Province

Postal Code Country

Primary Phone
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Postal Code Country
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IEEE Aerospace and Electronic Systems AES010 25.00 12.50

IEEE Antennas and Propagation AP003 15.00 7.50

IEEE Broadcast Technology BT002 15.00 7.50

IEEE Circuits and Systems CAS004 22.00 11.00

IEEE Communications C0M019 33.00 16.50

IEEE Components, Packaging, & Manu. Tech. CPMT021 15.00 7.50

IEEE Computational Intelligence CIS011 29.00 14.50

IEEE Computer C016 60.00 30.00

IEEE Consumer Electronics CE008 20.00 10.00

IEEE Control Systems CS023 25.00 12.50

IEEE Dielectrics and Electrical Insulation DEI032 26.00 13.00

IEEE Education E025 20.00 10.00

IEEE Electromagnetic Compatibility EMC027 31.00 15.50

IEEE Electron Devices ED015 18.00 9.00

IEEE Engineering in Medicine and Biology EMB018 40.00 20.00

IEEE Geoscience and Remote Sensing GRS029 19.00 9.50

IEEE Industrial Electronics IE013 9.00 4.50

IEEE Industry Applications IA034 20.00 10.00

IEEE Information Theory IT012 30.00 15.00

IEEE Instrumentation and Measurement IM009 29.00 14.50

IEEE Intelligent Transportation Systems ITSS038 35.00 17.50

IEEE Magnetics MAG033 26.00 13.00

IEEE Microwave Theory and Techniques MTT017 24.00 12.00

IEEE Nuclear and Plasma Sciences NPS005 35.00 17.50

IEEE Oceanic Engineering OE022 19.00 9.50

IEEE Photonics PHO036 34.00 17.00

IEEE Power Electronics PEL035 25.00 12.50

IEEE Power & Energy PE031 35.00 17.50

IEEE Product Safety Engineering PSE043 35.00 17.50

IEEE Professional Communication PC026 31.00 15.50

IEEE Reliability RL007 35.00 17.50

IEEE Robotics and Automation RA024 9.00 4.50

IEEE Signal Processing SP001 22.00 11.00

IEEE Social Implications of Technology SIT030 33.00 16.50

IEEE Solid-State Circuits SSC037 22.00 11.00

IEEE Systems, Man, & Cybernetics SMC028 12.00 6.00

IEEE Technology & Engineering Management TEM014 35.00 17.50

IEEE Ultrasonics, Ferroelectrics, & Frequency Control UFFC020 20.00 10.00

IEEE Vehicular Technology VT006 18.00 9.00

PROMO CODECAMPAIGN CODE

 Yes     No     If yes, provide the following:

Member Recruiter Name

IEEE Recruiter’s Member Number (Required)

Credit Card Number

Name as it appears on card

Signature

Proceedings of the IEEE ....................... print $49.00 or online $43.00
Proceedings of the IEEE (print/online combination)...................$59.00
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Please total the Membership dues, Society dues, and other amounts 
from this page:
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Payment Method
All prices are quoted in US dollars. You may pay for IEEE membership 
by credit card (see below), check, or money order payable to IEEE, 
drawn on a US bank.

6

CARDHOLDER’S 5-DIGIT ZIP CODE

(BILLING STATEMENT ADDRESS) USA ONLY
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EXPIRATION DATE
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7
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Complete both sides of this form, sign, and return to:
IEEE MEMBERSHIP APPLICATION PROCESSING
445 HOES LN, PISCATAWAY, NJ 08854-4141 USA
or fax to +1 732 981 0225
or join online at www.ieee.org/join

Add IEEE Society Memberships (Optional)5 2017 IEEE Membership Rates 
(student rates available online)

6
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Payment Amount8
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Minimum Income or Unemployed Provision
Applicants who certify that their prior year income did not exceed US$14,900
(or equivalent) or were not employed are granted 50% reduction in: full-year dues,
regional assessment and fees for one IEEE Membership plus one Society Membership. 
If applicable, please check appropriate box and adjust payment accordingly. Student 
members are not eligible.

I certify I earned less than US$14,900 in 2016
I certify that I was unemployed in 2016

The 39 IEEE Societies support your technical and professional interests.
Many society memberships include a personal subscription to the core journal, 
magazine, or newsletter of that society. For a complete list of everything 
included with your IEEE Society membership, visit www.ieee.org/join. 
All prices are quoted in US dollars.

Please check the appropriate box.

One or more Society publications

Society newsletter

Legend—Society membership includes:
Online access to publication

CD-ROM of selected society 
publications

IEEE member dues and regional assessments are based on where 
you live and when you apply. Membership is based on the calendar 
year from 1 January through 31 December. All prices are quoted 
in US dollars.

Please check  the appropriate box.

RESIDENCE
United States .................................................................$199.00 ............... $99.50
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JOIN NOW FOR 2017
The IEEE Signal Processing Society is the world’s premier association for 

signal processing engineers and industry professionals, servings its nearly 
17,000 members with highly-ranked publications, world class conferences, 

professional development resources, job opportunities, and more.

Access members-only discounts on SPS publications and conferences. 
Gain eligibility to apply for travel grants to our flagship conferences 
ICASSP, ICIP, and GlobalSIP.

SAVE

CONNECT
Network with other professionals through SPS conferences, workshops, 
Technical Committees, Special Interest Groups, and local events curated 
by more than 180 worldwide SPS Chapters.

ADVANCE
Further your career with world-class educational resources, including the 
new SPS Resource Center, opportunities for awards and recognition, and 
volunteer opportunities across society activities.

SCAN TO JOIN

@ieeeSPS

/ieeeSPS

signalprocessingsociety.org
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Benefit and Package Essential
Membership

Preferred
Membership

Inside Signal Processing eNewsletter

IEEE Signal Processing Magazine Digital
Electronic

Digital
Electronic

Print

IEEE Signal Processing Content Gazette

Signal Processing Digital Library
     Electronic access to seven solely-owned SPS 
     publications through IEEE Xplore®

SPS Resource Center

IEEE Professional Member Price
Membership through 31 December 2017

$22.00 $39.00

IEEE Student Member Price
Membership through 31 December 2017

$11.00 $20.00

Affiliate Member Price
Membership through 31 December 2017

$96.50 $113.50

JOIN SPS TODAY AND RECEIVE

In addition, all SPS members receive:

 › Networking and collaboration opportunities with a global network of nearly 
   17,000 signal processing professionals
 › Discounts on SPS conferences and workshops, including our flagship 
   conferences ICASSP, ICIP, and GlobalSIP
 › Discounts on print editions of SPS-sponsored publications
 › Eligibility to apply for travel grants to SPS conferences
 › Connect with members near you through local events curated by SPS’ 180+    
   worldwide Chapters
 › Career growth and professional development tools and resources
 › Eligibility to join a Technical Committee or Special Interest Group to meet SPS 
  members with similar technical interests to develop and strengthen technical 
  communities within signal processing, having a voice in awards, conferences, 
  publications, education, and more
 › Volunteer opportunities throughout Society activities, including publications, 
   conferences, membership, public visibility, and more.
 › Students get exclusive access to competitions, job fairs, and networking events
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