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This issue presents feature articles showcasing the sig-
nificant and versatile roles that signal processing has 
been playing in quantitative finance, spatial audio, and 
visual depth sensing. The “SP Education” column pres-
ents systematic engineering outreach efforts at precolle-
giate levels, for which signal processing is a key building 
block in many projects engaging young students. The 
“Life Sciences” column presents velocity estimation in 
medical ultrasound images. The “From the Editor” column 
highlights an effort of “content ecosystem” that the maga-
zine is exploring with other Society initiatives.
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FROM THE EDITOR
Min Wu  |  Editor-in-Chief  |  minwu@umd.edu

Content Ecosystem
Serving diverse interests in our community

I am writing this editorial just days 
after coming back from New Orleans, 
Louisiana, where the 42nd International 

Conference on Acoustics, Speech, and 
Signal Processing (ICASSP) was success-
fully held. It was an action-packed week, 
filled with technical presentations and ex-
changes as well as a broad range of dis-
cussions on our Society and community 
developments. About 50 committees and 
boards of the IEEE Signal Processing So-
ciety (SPS) met at ICASSP, engaging hun-
dreds of volunteers from around the world.

My discussions with a number of col-
leagues during the conference were about 
our IEEE Signal Processing Magazine
(SPM), either to explore ideas for poten-
tial articles as inspired by technical talks 
and panels or to brainstorm how the mag-
azine can help support the initiatives or 
activities of the IEEE Signal Processing 
Society (SPS). For this latter role, a notion 
of “content ecosystem” was coined in my 
meeting with chief editors of the SigPort 
Repository, Dr. Yan Lindsay Sun, and of 
the Resource Center (formerly SigView), 
Dr. John McAllister, respectively, and the 
SPS staff members on public outreach 
and publications. 

We have been seeing an increase in 
the diverse needs from our members, and 
SPS and IEEE have been developing mul-
tiple products and tools to address these 
needs. For example, SigPort offers an 
increasingly popular platform to archive 
slides and posters from the latest confer-

ences as well as student theses and reports 
viewable by anyone free of charge, while 
the Resource Center hosts keynote videos 
and tutorial webinars from curated sourc-
es, such as ICASSP plenary talks, as an 
SPS member benefit and may be available 
for a fee for nonmembers (see page 109 
for more information about the Resource 
Center). As the Resource Center expands 
its content, where could a constant stream 
of candidates come from systematically? 

Our magazine’s tutorial articles pro-
vide a pool of candidates for the Resource 
Center—authors can be approached 
and encouraged to create a multimedia 
companion to their article, which allows 
content to reach a bigger audience. In the 
meantime, the slides and posters provided 
by SigPort users include download statis-
tics that shine a light on the community’s 
interests toward more recent technical 
work and grassroots educational materi-
al. SigPort thus can offer an additional set 
of candidates for the Resource Center to 
explore. If a healthy mechanism is devel-
oped and coordinated well, the contents 
on all three platforms can work hand in 
hand as an ecosystem. 

Another example of coordinating 
multiple platforms and developing a con-
tent ecosystem was piloted in 2016 when 
we solicited input on student hands-on 
projects, and this is currently being ex-
panded in collaboration with the SPS Ed-
ucation Committee. More specifically, 
SigPort provides a handy platform for 
students to archive their project reports, 
which is perhaps the only worldwide 
repository for such grassroots material. 

Editors from SPM and the Education 
Committee can evaluate these archived 
documents on a rolling basis and peri-
odically create a curated summary and 
a set of highlights to share with the com-
munity, for example, through the maga-
zine’s Inside Signal Processing e-News-
letter and/or through a column in SPM.
Some of the selected projects may also 
feed into the content pool for the Resource 
Center. These recognitions and visibilities 
provide positive feedback and encourage 
the students to engage in interesting proj-
ects and share the projects with the com-
munity at large. 

For researchers and frequent authors 
of original research publications, a reposi-
tory to host and broadly share their pre-
prints is attractive. In addition to SigPort, 
quite some signal processing authors are 
archiving their preprints on arXiv.org, 
which traces its roots to the science com-
munity. For various historical reasons, 
arXiv does not have an electrical engi-
neering topic branch; topics such as infor-
mation theory and control theory are put 
either as part of computer science or ap-
plied mathematics, and there was no ex-
plicit topic category of signal processing. 

The SPS Board of Governors had a 
long discussion on this issue last fall on 
approaching the arXiv leadership to cre-
ate a signal processing topic category. 
Although it is perhaps easier to create a 
signal processing category under the 
existing computer science or applied 
math categories, several board members, 
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PRESIDENT’S MESSAGE
Rabab Ward  |  SPS President  |  rababw@ece.ubc.ca

 Diversity Through Adversity

T he IEEE Signal Processing Society 
(SPS) aims to serve a global com-
munity of signal processors and 

stimulate collaboration among a diverse 
mix of scientists, academics, inventors, 
and industries. Our work thrives based 
on the diversity of our members—stu-
dents, professors, engineers, researchers, 
and more in terms of cultural background, 
religion, gender identity, sexual orienta-
tion, profession, and age—whatever 
our defining characteristics, one com-
mon feature among signal processors is 
that we are problem solvers. We thrive on 
challenges, and those challenges include 
overcoming cultural and personal adversi-
ties. Recent news seems to have increased 
those challenges.

Engineers and scientists are not 
always notable activists, and we are cer-
tainly not immune to personal and cul-
tural bias, which can adversely impact 
the development of technological break-
throughs. For many centuries, the great-
est minds in science, including Galileo 
and Newton, were confounded by the 
problem of finding an accurate mea-
surement for latitude, which left sail-
ors lost at sea and curbed exploration. 
While scientists looked for the answer 
in the skies, through astronomy, an 
English carpenter named John Harrison 
set his mind to developing a seaworthy 
clock, spending decades refining his 
successful invention, while facing ridi-
cule from stargazing scientists. Imagine 
how many shipwrecks might have been 

prevented if the scientists had partnered 
with the carpenter?

Perhaps the greatest modern example 
of a fruitful partnership that crossed 
virtually every cultural divide was that 
between Cambridge University don, Prof. 
Hardy, and the young, self-taught Indian 
mathematician, Srinivasa Ramanujan. 
Ramanujan’s work was dismissed by Brit-
ish scientists, but fortunately Hardy rec-
ognized his genius. Their collaboration 
inspired the 2016 movie The Man Who 
Knew Infinity and the 2007 play, A Disap-
pearing Number, which elegantly depict-
ed the ways that diverging and converging 
series in mathematics become a metaphor 
for the struggles of nonconforming dias-
poras. Hardy was an atheist and a disciple 
of scientific rigor, while Ramanujan was 
driven by intuition and, as a devout Hindu, 
equated the meaning of equations to the 
hand of God.

Their complex relationship beautifully 
illustrates that our personal, political, reli-
gious, geographic, and cultural differenc-
es can stimulate and propel science. The 
task of problem solving has no single lan-
guage, nationality, color, gender, faith, or 
personality type. Consider the most basic 
equation in our electrical engineering 
discipline: voltage = current × resistance, 
which is a product of scientists from dif-
ferent countries. Voltage is named after 
Alessandro Volta, an Italian physicist and 
chemist. Current is measured in amperes, 
named after the Frenchman André Marie 
Ampère, an early innovator in experimen-
tal physics. Resistance was named after 
the German physicist George Ohm, who 
for many years faced resistance by aca-

demics in the field. Taking this equation 
one step further, if you multiply voltage by 
current, you will get power, measured in 
watts, after the self-taught Scot instrument 
maker James Watt, whose early attempts 
to commercialize his inventions were 
often stymied by financial hardship and 
academic barriers. Tolerance, acceptance, 
and open communication are imperative 
for successful science. Closing channels 
for the exchange of ideas, knowledge, and 
information is not only scientifically dis-
advantageous but an affront to forward-
thinking, solutions-based progress of the 
engineering field.

Let’s also remember that the val-
ues of these quantities are expressed in 
Arabic numerals, and these include the 
number zero, which was developed in 
India in the third century and spread to 
the Middle East within 200 years. But it 
was absent from Western mathematics 
until the 1600s, in part due to political 
and racial bias.

Sometimes, we have to literally dig 
through history to find the proof of a 
breakthrough’s origins and set the scien-
tific record straight. Until recently, 14th 
century European scholars were believed 
to have cracked the code for predicting 
the movement of objects in space–time. 
However, a German astro-archeologist 
who has devoted many years  attempting 
to decipher (Iraq’s) Babylonian cunei-
form tablets, has re  cently found a miss  ing 
piece in the puzzle, receiving photo-
graphs from a Viennese astrophysicist 
of un   catalogued tablets from the British 
Museum in London. It turned out that 
ancient Babylonians had already mapped 
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planetary trajectories to calculate their future position using 
advanced geometrical calculations.

Many scientists have had to solve problems while also fac-
ing and overcoming personal life challenges and social stigmas.

For much of Alan Turing’s early life, he had absentee parents 
and spent his formative years at boarding schools, where his 
natural gift and passion for math was often overlooked. He later 
endured homophobia, all the while developing a general-purpose 
computer and a code-breaking device that would ultimately save 
many lives.

The beautiful mind of John Nash wrestled with mental ill-
ness as well as its stigma and its draconian treatments, enduring 
insulin shock therapy, yet he later developed the Nash equilibria 
and game theory.

Sometimes our founding interests, theories, and inventions 
are seeded by personal challenges. My own life and career have 
been enriched by research collaborators who have overcome 
their own personal adversities, such as Charles Laszlo, a bio-
medical engineer. Laszlo started his long struggle with hearing 
loss at the age of 21 during his military service and then went 
on to develop many hearing-assistance devices and technolo-
gies that help people with hearing problems. My research col-
laboration with Laszlo was on analyzing the signals of a crying 
baby to understand why the baby is crying, for the benefit of 
those parents who are deaf. I have also worked closely with 
Gary Birch on brain–computer interface research. At 18, Birch 
became a quadriplegic. Yet within five years, he became a 
medal-winning Paralympian, while also studying engineering. 
He went on to receive a doctorate in electrical engineering and 
turned to researching brain–computer interfaces, a fascinating 
area of research that taps into the brain’s signals to enrich the 
lives of people with disabilities. These colleagues have both 
received the highest award in Canada, The Order of Canada, in 
recognition for their tremendous contributions to society.

These colleagues have not only stimulated my career, they 
have become dear friends. Life cannot evolve and advance if 
we live and work in isolation. Technological breakthroughs 
are the result of diverse collaborations, and it’s the goal of 
the SPS to facilitate and enhance these collaborations, with 
each other and by connecting with the world’s current and 
future innovators.

You may have noticed that I didn’t mention the important, 
barrier-breaking contributions of women scientists and engi-
neers that have developed breakthrough technologies. I’ve had 
the good fortune to work with many women engineers and sig-
nal processors. To use the cliché, we’ve come a long way. Yet 
society still has a way to go to bridge the gender gap. I will talk 
about this fascinating subject in a future column. Meanwhile, I 
look forward to hearing any of your ideas about ways in which 
we can strengthen diversity and break barriers, both inside and 
outside the global signal processing community.

SP

Professor/Associate Professor/Assistant Professorship in 
the Department of Electrical and Electronic Engineering 

The University 
Established in 2012, the Southern University of Science and 
Technology (SUSTech) is a public institution funded by the municipal 
of Shenzhen, a special economic zone city in China. Shenzhen is a 
major city located in Southern China, situated immediately north of 
Hong Kong Special Administrative Region. As one of China’s major 
gateways to the world, Shenzhen is the country’s fast-growing city 
in the past two decades. The city is the high-tech and manufacturing 
hub of southern China, home to the world’s third-busiest container 
port, and the fourth-busiest airport on the Chinese mainland. A 
picturesque coastal city, Shenzhen is also a popular tourist destination 
and was named one of the world’s 31 must-see tourist destinations 
in 2010 by The New York Times. The Southern University of Science 
and Technology is a pioneer in higher education reform in China. 
The mission of the University is to become a globally recognized 
institution which emphasizes academic excellence and promotes 
innovation, creativity and entrepreneurship. The teaching language 
at SUSTech is bilingual, either English or Putonghua. Set on five 
hundred acres of wooded landscape in the picturesque Nanshan 
(South Mountain) area, the new campus offers an ideal environment 
suitable for learning and research. 

Call for Application
The Southern University of Science and Technology now invites 
applications for the faculty position in the Department of Electrical and 
Electronic Engineering. It is seeking to appoint a number of tenured or 
tenure track positions in all ranks. Candidates with research interests 
in all mainstream fields of electrical and electronic engineering will 
be considered, including but not limited to IC Design, Embedded 
Systems, Internet of Things, VR/AR, Signal and Information 
Processing, Control and Robotics, Big Data, AI, Communication/
Networking, Microelectronics, and Photonics. SUSTech adopts the 
tenure track system, which offers the recruited faculty members a 
clearly defined career path. Candidates should have demonstrated 
excellence in research and a strong commitment to teaching. A 
doctoral degree is required at the time of appointment. Candidates 
for senior positions must have an established record of research, 
and a track-record in securing external funding as PI. As a State-
level innovative city, Shenzhen has chosen independent innovation 
as the dominant strategy for its development. It is home to some of 
China’s most successful high-tech companies, such as Huawei and 
Tencent. As a result, SUSTech considers entrepreneurship is one of 
the main directions of the university, and good starting supports will 
be provided for possible initiatives. SUSTech encourages candidates 
with intention and experience on entrepreneurship to apply. 

Terms & Applications 
To apply, please send curriculum vitae, description of research 
interests and statement on teaching to eehire@sustc.edu.cn. 
SUSTech offers competitive salaries, fringe benefits including medical 
insurance, retirement and housing subsidy, which are among the best 
in China. Salary and rank will commensurate with qualifications and 
experience. Candidates should also arrange for at least three letters 
of recommendation sending directly to the above email account. 
The search will continue until the position is filled. For informal 
discussion about the above posts, please contact Professor Xiaowei 
SUN, Head of Department of Electrical and Electronic Engineering, 
by phone 86-755-88018558 or email: sunxw@sustc.edu.cn.
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READER’S CHOICE

Top Downloads in IEEE Xplore

E ach “Reader’s Choice” column focus-
es on a different publication of the 
IEEE Signal Processing Society (SPS). 

This month we are highlighting articles in 
IEEE Signal Processing Letters.

IEEE Signal Processing Letters is a 
monthly, archival publication designed to 
provide rapid dissemination of original, 
cutting-edge ideas and timely, significant 
contributions in signal, image, speech, 
language, and audio processing. Papers 
published in IEEE Signal Processing Let-
ters can be presented within one year of 
their appearance in signal processing con-
ferences such as the IEEE International 
Conference on Acoustics, Speech, and 
Signal Processing; IEEE Global Confer-
ence on Signal and Information Process-
ing; and IEEE International Conference 
on Image Processing and also in several 
workshop organized by the SPS.

This issue’s “Reader’s Choice” column 
lists the top ten articles most downloaded 
for the past two years at the time of the 
print deadline. Your suggestions and com-
ments are welcome and should be sent to 
Associate Editor Chungshui Zhang (zcs@
mail.tsinghua.edu.cn).

A Universal Image Quality Index
Wang, Z.; Bovik, A.C.
In this paper, a new universal objective 
image quality index, which is easy to cal-
culate and applicable to various image 
processing applications, is proposed. The 

proposed index is designed by modeling 
any image distortion as a combination of 
three factors: loss of correlation, lumi-
nance distortion, and contrast distortion.

March 2002

Reversible Image Data Hiding 
with Contrast Enhancement
Wu, H.-T.; Dugelay, J.-L.; Shi, Y.-Q.

This paper proposes a novel reversible 
data hiding (RDH) algorithm for digital 
images. The proposed algorithm enhances 
the contrast of a host image to improve its 
visual quality. The authors claimed that it 
was the first algorithm that achieved 
image contrast enhancement by RDH.

January 2015

On the Performance of 
Non-Orthogonal Multiple Access 
in 5G Systems with Randomly 
Deployed Users
Ding, Z.; Yang, Z.; Fan, P.; Poor, H.V. 
In this letter, the performance of nonor-
thogonal multiple access (NOMA) is 
investigated in a cellular downlink sce-
nario with randomly deployed users. 
The developed analytical results show 
that NOMA can achieve superior per-
formance in terms of ergodic sum rates. 

6
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The application deadline for 2018-2019 
Fellowships is 8 December 2017.

For eligibility requirements and application information, go to 
www.ieeeusa.org/policy/govfel
or contact Erica Wissolik by emailing  

e.wissolik@ieee.org or by calling +1 202 530 8347.

Congressional Fellowships
Seeking U.S. IEEE members interested in 
spending a year working for a Member of 
Congress or congressional committee.

Engineering & Diplomacy Fellowship
Seeking U.S. IEEE members interested in 
spending a year serving as a technical adviser 
at the U.S. State Department.

USAID Fellowship
Seeking U.S. IEEE members who are interested 
in serving as advisors to the U.S. government 
as a USAID Engineering & International 
Development Fellow.

2018-2019
IEEE-USA Government 

Fellowships

However, the outage performance of 
NOMA depends critically on the choic-
es of the users’ targeted data rates and 
allocated power.

December 2014

Fairness for Non-Orthogonal 
Multiple Access in 5G Systems
Timotheou, S.; Krikidis, I. 
The authors study nonorthogonal multi-
ple access from a fairness standpoint and 
investigate power allocation techniques 
that ensure fairness for the downlink 
users under 1) instantaneous channel 
state information (CSI) at the transmitter 
and 2) average CSI. They have devel-
oped low-complexity polynomial algo-
rithms for these nonconvex problems 
that yield the optimal solution in both 
cases considered.

October 2015

Robust Edge-Stop Functions for 
Edge-Based Active Contour Models 
in Medical Image Segmentation
Pratondo, A.; Chui, C.-K.; Ong, S.-H.
In this paper, authors propose a frame-
work to construct a group of edge-stop 
functions (ESFs) for edge-based active 
contour models to segment objects with 
poorly defined boundaries. In this frame-
work, which incorporates gradient infor-
mation as well as probability scores from 
a standard classifier, the ESF can be con-
structed from any classification algorithm 
and applied to any edge-based model 
using a level set method.

February 2016

Discrete Anamorphic Transform 
for Image Compression
Asghari, M.H.; Jalali, B.
The authors introduce a physics-based 
transform that enables image compres-
sion by increasing the spatial coherency. 
They also present the stretched modula-
tion distribution, a new density function 
that provides the recipe for the proposed 
image compression.

July 2014

An Adaptive Motion Model 
for Person Tracking with 
Instantaneous Head-Pose Features
Baxter, R.H.; Leach, M.J.V.; Mukherjee, 
S.S.; Robertson, N.M. 

This letter presents novel behavior-based 
tracking of people in low resolution using 
instantaneous priors mediated by head 
pose. The authors extend the Kalman fil-
ter to adaptively combine motion infor-
mation with an instantaneous prior belief 
about where the person will go based on 
where they are currently looking.

May 2015

Empirical Mode Decomposition 
as a Filter Bank
Flandrin, P.; Rilling, G.; Goncalves, P. 
This paper reports on numerical experi-
ments empirical mode decomposition 
(EMD) based on fractional Gaussian 
noise. In such a case, it turns out that 
EMD acts essentially as a dyadic filter 
bank resembling those involved in wave-
let decompositions. It is also pointed out 
that the hierarchy of the extracted modes 
may be similarly exploited for getting 
access to the Hurst exponent.

February 2004

An Experimental Study on 
Speech Enhancement Based on 
Deep Neural Networks
Xu, Y.; Du, J.; Dai, L.-R.; Lee, C.-H.

This letter presents a regression-based 
speech enhancement framework using 
deep neural networks with a multiple-
layer deep architecture. A series of pilot 
experiments were conducted under mul-
ticondition training with more than 100 h 
of simulated speech data, resulting in a 
good generalization capability even in 
mismatched testing conditions.

January 2014

Fast Matrix Inversion Updates 
for Massive MIMO Detection and 
Precoding
Rosário, F.; Monteiro, F.A.; Rodrigues, A.
In this letter, the authors propose an on-
the-fly method to recompute the zero 
forcing filter when a user is added or 
removed from massive multiple-input, 
multiple-output system. They evaluate the 
recalculation of the inverse matrix after a 
new channel estimation is obtained for a 
given user. With fewer operations, the per-
formance after an update also remains 
close to the initial one.

January 2016

SP
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SOCIETY NEWS

New Society Officers Elected for 2018

The Board of Governors (BoG) of the 
IEEE Signal Processing Society 
(SPS) elected three new officers who 

will start their terms on 1 January 2018: 
Ahmed H. Tewfik (University of Texas at 
Austin) will serve as 2018–2019 SPS 
president-elect. He succeeds Ali H. Sayed 
who has held the post of president-elect 
and will become SPS president in 2018. 
Fernando Pereira (Instituto de Telecomu-
nicações, Portugal) will serve as 2018–
2020 SPS vice president, conferences. He 
succeeds Carlo Regazzoni, who has held 
this position since January 2015. Sergios 
Theodoridis (University of Athens, Greece) 
will serve as 2018–2020 SPS vice presi-
dent, Publications. He succeeds Thra-
syvoulos N. Pappas who has held this 
position since January 2015.

Meet the Newly Elected 
Society Officers

2018–2019 SPS President-Elect

Ahmed H. Tewfik 
Ahmed H. Tewfik 
received his B.Sc. 
degree from Cairo Uni-
versity, Egypt, in 1982 
and his M.Sc., E.E., 
and Sc.D. degrees 
from the Massachu-

setts Institute of Technology, Cambridge, in 
1984, 1985, and 1987, respectively. He is 

the Cockrell Family Regents Chair in 
Engineering and the chair of the Depart-
ment of Electrical and Computer Engi-
neering at the University of Texas at 
Austin. As chair, he is credited with sub-
stantially increasing the funding of the 
department; establishing public-private 
partnerships; and increasing the hands-on, 
industry, and entrepreneurial experiences 
of its students. He was the E.F. Johnson 
Professor of Electronic Communications 
with the Department of Electrical Engi-
neering at the University of Minnesota 
until September 2010. 

Dr. Tewfik worked at Alphatech, 
Inc. and served as a consultant to sev-
eral companies, including MTS Sys-
tems, Inc., Eden Prairie, Minnesota; 
Emerson-Rosemount, Inc., Eden Prai-
rie, Minnesota; CyberNova, Milipitas, 
California; Macrovision, Santa Clara, 
California; Visionaire Technology, Fre-
mont, California; Ipsos, New York; 
InterDigital Communications, King of 
Prussia, Pennsylvania; Keyeye Com-
munications, Sacramento, California; 
Transoma Medical, Arden Hills, Min-
nesota; and St. Jude Medical, Min-
netonka, Minnesota. From August 
1997 to August 2001, he was the presi-
dent and chief executive officer of Cog-
nicity, Inc., an entertainment marketing 
software tools publisher that he 
cofounded, while on partial leave of 
absence from the University of Minne-
sota. His current research interests are 
in technology for human cognitive aug-
mentation and decision making, brain 

computing interfaces, bioelectronics, 
and mobility. 

Dr. Tewfik is an IEEE Fellow. His pro-
fessional activities include founding 
cochair, 2013 IEEE GlobalSIP Confer-
ence; SPS vice president, technical direc-
tions (2010–2012); general chair, 2009 
IEEE Genomic Signal Processing and 
Statistics Conference; member-at-large, 
SPS BoG (2006–2008); president, SPS/
IEEE Communications Society Minneso-
ta Chapter (2003–2005); SPS Distin-
guished Lecturer (1998–1999); first 
editor-in-chief, IEEE Signal Processing 
Letters (1993–1999); associate editor, 
IEEE Transactions on Signal Processing
(TSP); and guest editor of three special 
issues of TSP on wavelets and their appli-
cations and watermarking, special issue 
of IEEE Transactions on Multimedia on 
multimedia databases, and special issue 
of IEEE Journal of Selected Topics in Sig-
nal Processing on bioinformatics. He was 
awarded the IEEE Third Millennium 
Medal (2000), the E.F. Johnson Profes-
sorship of Electronic Communications at 
the University of Minnesota (1993), the 
Taylor Faculty Development Award from 
the Taylor Foundation (1992), and a 
National Science Foundation Research 
Initiation Award (1990). He has given 
several plenary and keynote lectures as 
well as taught tutorials on bioinformatics, 
ultrawideband communications, water-
marking, and wavelets at major IEEE 
conferences. He has also volunteered in 
technical and STEM activities at the 
IEEE Central Texas Society Chapter. 
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2018–2020 SPS Vice President, 
Conferences

Fernando Pereira 
Fernando Pereira 
graduated with a 
degree in electrical 
and computer engi-
neering from Institu -
to Superior Técnico 
(IST), Universidade 

Técnica de Lisboa, Portugal, in 1985. He 
received his M.Sc. and Ph.D. degrees in 
electrical and computer engineering from 
IST in 1988 and 1991, respectively. Prof. 
Pereira is currently with the Department 
of Electrical and Computer Engineering of 
IST and with the Instituto de Telecomuni-
cações, Lisbon, Portugal. He is responsible 
for IST’s participation in many national 
and international research projects.

He is a Fellow of the IEEE (2008), the 
Institution of Engineering and Technolo-
gy (IET) (2015), and the European Asso-
ciation for Signal Processing (EURASIP) 
(2013). He was elected to serve on the 
European Signal Processing Society 
Board of Directors for the term 2015–
2018. He has contributed more than 250 
papers in international journals, confer-
ences, and workshops and delivered mul-
tiple invited talks at conferences and 
workshops. His areas of interest are video 
analysis, coding, description and adapta-
tion, and advanced multimedia services.

Prof. Pereira is/has been a member of 
the scientific and program committees of 
many IEEE international conferences and 
workshops, including: technical program 
cochair, IEEE International Conference 
on Image Processing (ICIP) 2010 and 
2016; technical program chair, 2014 
IEEE Workshop on Multimedia Signal 
Processing and 2008 and 2012 Interna-
tional Workshop on Image Analysis for 
Multimedia Interactive Services; and 
general chair, 2007 Picture Coding Sym-
posium, he has assumed many other roles 
in IEEE and SPS conferences and work-
shops. He has also been involved in the 
following professional activities: mem-
ber, SPS Awards Board (2017–2018); 
area editor, Signal Processing: Image 
Communication Journal (2017–present); 
member-at-large, SPS BoG (2012 and 
2014–2016); ICIP 2016 representative, 

Technical Directions Board (2015–2016); 
and member, Publications Board (2013–
2015). He has also been the editor-in-
chief, IEEE Journal of Selected Topics in 
Signal Processing (2013–2015); Editorial 
Board member, IEEE Signal Processing 
Magazine (2009–2011); associate editor, 
IEEE Transactions on Circuits and Sys-
tems for Video Technology, IEEE Trans-
actions on Image Processing (2002–2007), 
and IEEE Transactions on Multimedia
(2009–2012); member, SPS Image, 
Video, and Multidimensional Signal Pro-
cessing Technical Committee (2004–
2009), SPS Multimedia Signal Pro  cessing 
Technical Committee (2006–2009 and 
2011–2013), Circuits and Systems (CAS) 
Visual Signal Processing and Communi-
cations Technical Committee and CAS 
Multimedia Systems and Applications 
Technical Committee; and SPS Distin-
guished Lecturer (2005). In terms of 
international standardization efforts, he 
has been the MPEG Requirements chair 
from 2002 to 2007 and since February 
2016, he has been the JPEG Require-
ments chair. 

2018–2020 SPS Vice President, 
Publications

Sergios Theodoridis 
Sergios Theodoridis 
is a professor of sig-
nal processing and 
machine learning in 
the Department of 
Informatics and Tele-
communications of 

the University of Athens. He was the 
Otto Monstead guest professor, Techni-
cal University of Denmark, 2012, and 
holder of the Excellence Chair, Depart-
ment of Signal Processing and Commu-
nications, University Carlos III, Madrid, 
Spain, 2011. His research interests lie in 
the areas of adaptive algorithms, distrib-
uted and sparsity-aware learning, 
machine learning and pattern recogni-
tion, and signal processing for audio 
processing and retrieval. He is the author 
of Machine Learning: A Bayesian and 
Optimization Perspective (Academic 
Press, 2015); the coauthor of Pattern 
Recognition (Academic Press, fourth edi-
tion, 2009) and Introduction to Pattern 

Recognition: A MATLAB Approach (Aca-
demic Press, 2010); the coeditor of Effi-
cient Algorithms for Signal Processing 
and System Identification (Prentice Hall, 
1993); and the coauthor of three books 
in Greek, two of them for the Greek 
Open University. 

Prof. Theodoridis is the coauthor of 
seven papers that have received Best 
Paper Awards, including the 2014 IEEE 
Signal Processing Magazine Best Paper 
Award and the 2009 IEEE Computation-
al Intelligence Society Transactions on 
Neural Networks Outstanding Paper 
Award. He is the recipient of the 2014 
IEEE Signal Processing Society Educa-
tion Award and the 2014 EURASIP 
Meritorious Service Award. 

He is a Fellow of the IEEE, IET, and 
EURASIP and is a corresponding fellow 
of the Royal Society of Edinburgh. His 
professional activities include editor-in-
chief, IEEE Transactions on Signal Pro-
cessing and Signal Processing book 
series (Academic Press); coeditor-in-
chief, E-Reference Signal Processing 
Handbook (Elsevier); Distinguished 
Lecturer, SPS (2009–2010) and CAS 
(2014–2016); chair, SPS Signal Pro-
cessing Theory and Methods Technical 
Committee (2013–2015); member, SPS 
Fellows Committee (2014–2016); gen-
eral chair, European Signal Processing 
Conference (1998) technical program 
cochair, the International Symposium 
on Circuits and Systems (ISCAS) 2006 
and ISCAS 2013; cochair and cofound-
er, CIP Workshop on Cognitive Infor-
mation Processing 2008 and cochair, 
CIP 2010; member, CAS Board of 
Governors (2008–2010); and mem-
ber-at-large, SPS Board of Governors 
(2011–2013). He also served as a mem-
ber, Greek National Council for 
Research and Technology; chair, SP 
advisory committee for the Edinburgh 
Research Partnership; vice chair, Greek 
Pedagogical Institute; and member, 
Board of Directors of COSMOTE (the 
Greek mobile phone operating compa-
ny) for four years. He served as the 
president of EURASIP (2004–2006) 
and currently serves as chair, EURA-
SIP Fellows Committee. 

SP
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SPECIAL REPORTS
John Edwards

1053-5888/17©2017IEEE

In an era of same-day product deliver-
ies, interplanetary space probes, and 
autonomous vehicles, transporting 

something—or someone—from here to 
there quickly, directly, and precisely is 
becoming increasingly important.

An array of navigation and position-
ing technologies are now available to help 
guide and locate vehicles, people, and 
almost endless number of objects. The 
satellite-based global positioning sys-
tem (GPS), for instance, now lies at the 
heart of an almost endless array of loca-
tion, navigation, timing, mapping, and 
tracking tools. Real-time location sys-
tem (RTLS) technologies, meanwhile, 
rely on resources such as GPS, Wi-Fi, 
Bluetooth, near-field communication 
(NFC), and radio-frequency identifica-
tion (RFID) to detect the current loca-
tion of a target, which may be anything 
from a vehicle to an item in a manufac-
turing plant to a person.

With navigation and positioning 
technologies continuing to fuel the de -
velopment of innovative commercial, 
industrial, consumer, and scientific appli-
cations, researchers are turning to signal 
processing methods and approaches to 
tweak the performance of existing sys-
tems as well as to pioneer completely new 
tools and services.

A GPS alternative
Researchers at the University of Cali-
fornia, Riverside (UCR), have developed 

a new navigation system that is based 
entirely on existing terrestrial signals, 
such as cellular and Wi-Fi, rather than 
GPS. The new technology, which the 
researchers claim is both highly reliable 
and accurate, can function as a standalone 
alternative to GPS or as an alternative to 
satellite signals to enable highly reliable, 
consistent, and tamper-proof navigation in 
autonomous systems, such as robots, driv-
erless terrestrial vehicles, and unmanned 
aerial vehicles (UAVs).

“GPS is unreliable for anytime, any-
where navigation, including indoors 
and in deep urban canyons,” says team 
leader Zak Kassas, an assistant professor 
of electrical and computer engineering 
in UCR’s Bourns College of Engineer-
ing. He notes that GPS signals are also 
highly vulnerable to interference, jam-
ming, and spoofing. “However, in most 
GPS-challenged environments, there 
are dozens of signals of opportunity 
(SOPs) that are available at various fre-
quencies, geometry and transmission 
protocols, and whose received power is 
much higher than GPS,” Kassas says.

By exploiting abundantly available 
SOPs, the new approach reduces the sen-
sory payload that’s typically used to com-
pensate for GPS’s shortcomings. “Current 
and future vehicles, whether manual, 
semiautonomous or fully autonomous, 
ground and aerial, would benefit from this 
research,” Kassas says.

The system can be used by itself 
or to supplement inertial navigation 
system data in the event of GPS fail-
ure. The researchers’ approach include 

theoretical analysis of SOPs in the envi-
ronment, building specialized software-
defined radios (SDRs) that can extract 
relevant timing and positioning infor-
mation from SOPs, developing practical 
navigation algorithms and, finally, test-
ing the system on ground vehicles and 
unmanned drones.

“We have designed state-of-the-art 
specialized SDRs for cellular code 
division multiple access and long-term 
evolution (LTE) signals,” Kassas says. 
“We mounted our SDRs on ground 
vehicles and UAVs and demonstrated 
experimentally these vehicles navi-
gating to an unprecedented level of 
accuracy only with cellular signals.” 
The trajectories produced by the SDRs 
were within a few meters from a tra-
jectory produced with traditional GPS 
receivers (Figure 1). “To my knowl-
edge, we were the first to demonstrate 
UAVs navigating exclusively with cel-
lular signals,” Kassas remarks.

Kassas notes that the system uses sig-
nal processing in all of its stages. “We 
start by studying the SOPs and deriving 
theoretical signal models for what use-
ful position-navigation-timing informa-
tion we can extract from these signals,” 
he says. “We then design SDRs that 
process these signals and output useful 
information [then] fuse the extracted 
information with signals from other sen-
sors to achieve an accurate and robust 
navigation solution.” The SDRs con-
tain phase-locked loops, delay-locked 
loops, frequency-locked loops, fast 
Fourier transforms, inverse FFTs, and 

New Directions in Navigation and Positioning
Signal processing-enabled technologies pinpoint people, places, and things
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numerically controlled oscillators. “Our 
in  tegrated navigation filter uses extended 
Kalman filters,” Kassas says.

SOPs have been extensively analyzed 
for communication applications, yet are 
still not well understood as potential 
PNT sources. “We have been deriv-
ing theoretical signal models capturing 
phenomena that were never discovered 
prior to our research, because these 
signals were not intended for PNT pur-
poses,” Kassas says. “For example, we 
discovered that the observed clock bias 
corresponding to different sectors in 
the same base transceiver station cell 
is not the same.” The difference turned 
out to be on the order of nanoseconds. 
“While the difference is not harmful for 
communication purposes, it introduces 
positioning error of tens of meters if not 
modeled and accounted for appropri-
ately,” Kassas explains.

Kassas says that autonomous vehicles 
are likely to benefit most from his team’s 
research. “Autonomous vehicles will 
inevitably result in a sociocultural revolu-
tion,” he says. “Our overarching goal is 
to get these vehicles to operate with no 
human in the loop for prolonged periods 
of time, performing missions such as 
search, rescue, surveillance, mapping, 
farming, firefighting, package delivery, 
and transportation.”

Space optical communication
and navigation
In 2013, the U.S. National Aeronautics 
and Space Administration (NASA) 
demonstrated the Lunar Laser Com-
munication Demonstration experiment, 
a laser communication prototype that 

achieved record-breaking data down-
load and upload speeds between Earth 
and the moon. Now, a NASA optical 
physicist claims he can equal those 
speeds and create extremely precise dis-
tance and speed measurements using a 
single compact package (Figure 2).

FIGURE 1. The simulation results for an unmanned drone flying over downtown Los Angeles showing the true trajectory (red line) with GPS navigation 
only (yellow line) and GPS aided with cellular signals (blue line). (Figure used courtesy of UCR.) 

FIGURE 2. NASA optical physicist Guan Yang (right) and research associate Wei Lu pose in front of 
the lasercom breadboard they created to demonstrate high data-rate download and uplink speeds as 
well as highly precise distance and speed measurements all from the same, relatively small package. 
(Photo used courtesy of NASA.)
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The new Space Optical Communication 
and Navigation System is a miniaturized 
lasercom transceiver comprising commer-
cially available components that simu-
late both ground and space terminals. In 
recent laboratory tests, the system showed 
that it could provide micrometer-level 
distance and speed measurements over 
a 622 Mb/s laser communication link. 
“This technology decreases ranging and 
range-rate errors by orders of magnitude,” 
says Guangning Yang, an optical physicist 
at NASA’s Goddard Space Flight Center 
in Greenbelt, Mary-
land. “We can more 
precisely determine 
a spacecraft’s orbit 
relative to an abso-
lute location.” Besides 
transmitting data at 
LLCD’s record-break-
ing rate of 622 Mb/s, 
the new transceiver 
measured speed within 
a precision of less than 
10 nm/s and distances within 20 nm. 
The system achieved the precise mea-
surements by incorporating a Doppler 
frequency enabled by an FFT.

NASA’s current space communica-
tion and navigation systems, such as 
the tracking data and relay satellite 
(TDRS), provide two major services—
communication and satellite tracking. 
Tracking keeps tabs on a satellite’s loca-
tion, speed, and orbit. “We do this by 
continuously measuring the spacecraft’s 
distance and speed relative to a fixed 
reference point with an RF communi-
cation satellite, like TDRS,” Yang says. 
“With these measurements, we can cal-
culate the spacecraft’s speed, distance, 
and orbit.” Space optical communica-
tions promise to provide similar servic-
es, but with higher data bandwidth and 
enhanced tracking precision.

“With significantly improved satellite 
location and speed information, we will 
enable better scientific-data collection 
and processing,” Yang says. “This high-
precision instrumentation, which is low 
mass, consumes less power, is relatively 
small, and will enable many other scien-
tific instruments that require high-preci-
sion ranging, such as flying information 
with a constellation of satellites.”

The system’s precise measurement ca -
pability is tied directly to high-precision 
frequency synthesizing, low-noise imple-
mentation of frequency and timing detec-
tion. “The final instrumentation will be 
carried out in a digital domain with lots of 
digital signal processing,” Yang says. “The 
types of digital signal processing we used 
include digital frequency synthesizing, 
digital-phase detecting, digital-phase lock 
loops, digital filters, and digital-time inter-
val counters for ranging measurements,” he 
explains. The measurements are processed 

in a software tool that 
relies on an extended 
Kalman filter to pro-
duce high-precision 
orbit-state estimates.

Yang says that the 
biggest challenge faced 
so far has been conduct-
ing high-precision fre-
quency measurements 
of a Doppler-shifted 
clock signal within a 

digital domain. “The obvious advantage 
with digital implementation is size and flex-
ibility,” Yang notes. “A single field-pro-
grammable gate array can accomplish 
much more in a small form factor.” 

Yang says that the project is moving 
ahead in two directions. “On one hand, we 
will try to implement the current version 
of this technology on an existing hard-
ware platform, such as Goddard’s Nav-
Cube (a spacecraft bus that is typically no 
larger than a shoebox), which is a powerful 
navigational technology,” he remarks. “At 
the same time, we are pushing to further 
advance the technology into continuous 
optical-phase measurement.”

Atomic gyroscope
U.S. National Institute of Science and 
Technology researchers have devel-
oped a compact, low-power atomic gyro-
scope design that promises to give precise 
navigational capabilities to spacecraft, 
submarines, and other vehicles hampered 
by size, weight, and power restrictions. 
The gyroscope can also simultaneously 
measure acceleration, enabling navigation 
by “dead reckoning” without reference to 
external landmarks or stars.

The gyroscope, an atom interfer-
ometer, is based on an expanding cloud 

of laser-cooled atoms, an approach 
first demonstrated at Stanford Univer-
sity. Traditional optical interferometry 
involves combining or “interfering” the 
electromagnetic waves in light and then 
extracting information about the original 
light paths from the resulting wave pat-
terns. An atom interferometer leverages 
the ability of atoms to act as both par-
ticles and waves, interfering these waves 
to measure the forces exerted on atoms. 
When atoms speed up or rotate, their 
matter waves shift and interfere in pre-
dictable ways that are visible in interfer-
ence patterns.

The basic concept behind the new 
gyroscope is similar to the principle 
underlying optical ring-laser gyroscopes, 
says Gregory Hoth, a postdoctoral re -
search associate in NIST’s Time and 
Frequency Division. “We take a wave 
and split it into two parts, he says. “We 
arrange for the two wave packets to travel 
along different paths and then recombine 
them and look at the amplitude of the 
wave that comes out.” If the separated 
paths enclose an area, the output wave 
amplitude will depend on whether or 
not the device is rotating. “This is often 
called the Sagnac effect,” Hoth says. For 
optical gyroscopes, the waves are light 
waves, and the amplitude corresponds to 
the intensity of the light. “For our gyro-
scope, the waves are matter-waves and 
the amplitude corresponds to the prob-
ability for an atom to occupy a specific 
energy state,” Hoth says.

At the gyroscope’s heart is a small 
glass chamber containing a sample of 
about 8 million cold rubidium atoms that 
are continuously trapped and released. 
As the atoms fall under gravity, a laser 
beam causes them to transition between 
two energy states. The process gives the 
atoms momentum and forces their mat-
ter waves to separate and later recom-
bine to interfere. The cold atom cloud 
expands to as much as five times its ini-
tial size during the 50 ms (thousandths 
of a second) measurement sequence, 
which creates a correlation between each 
atom’s speed and its final position. The 
interference effect on an atom depends 
on its speed, so rotations generate inter-
fering bands of atoms across images of 
the final cloud (Figure 3).

Yang says that the biggest 
challenge faced so far 
has been conducting 
high-precision frequency 
measurements of
a Doppler-shifted  
clock signal within
a digital domain.
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The atoms are imaged by shining 
a second, weak laser beam through the 
cloud. Because atoms in different energy 
states absorb light of different frequen-
cies, the final energy state of the atoms 
can be detected. The resulting images 
show interference bands of atom popula-
tions in the two different energy states. 
The rotation rate and axis are measured by 
analyzing the spacing and direction of the 
interference bands across the atom cloud. 
Acceleration is deduced from changes in 
the central band. The interferometer is sen-
sitive to acceleration along the direction of 
the light and sensitive to rotations perpen-
dicular to the light.

“The signal processing challenge in 
our experiment is to take images of the 
transition probability and estimate the 
wavelength of the fringe pattern,” Hoth 
says. “To use the system as a gyroscope, 
you would use the wavelength of the 
fringe pattern to infer the unknown rota-
tion rate.” In experiments to date, the 
researchers’ goal has been to quantify 
the relationship between the rotation rate 
and the wavelength of the fringe pattern 
so they can compare that relationship to 
theoretical predictions. “We do that by 
applying a known rotation rate and mea-
suring the wavelength of the observed 
fringe pattern,” Hoth says.

The process requires three images. 
“Each image has a fringe pattern with the 
same wavelength, but we vary the phase 
so that we see different parts of the fringe 
pattern,” Hoth says. “By combining the 

three images, we can get the fourth image, 
which shows the spatial variation of the 
interferometer phase.” The fringe pattern 
is equivalent to a slope or gradient in the 
interferometer phase. “By calculating the 
spatial phase, we solve both of our prob-
lems,” Hoth continues. “The unwanted 
structure is suppressed and the hard prob-
lem of estimating a fringe wavelength has 
turned into the easy problem of estimating 
a best fit slope.”

“The basic idea is that the part of 
the signal we’re interested in changes 
when we modulate the phase, but the 
parts that we want to suppress stay the 
same,” Hoth says. “So, by combining 
multiple images, we can separate the 
signal we want from the structure that 
we don’t want.”

Hoth goes on to say that the research-
ers are still experimenting with different 
ways of implementing the signal process-
ing strategy. “It’s mostly variations on the 
idea of modulating the phase and looking 
at the response,” he says.

Although Stanford researchers were 
the first to demonstrate the technique of 
using an expanding cloud of laser-cooled 
atoms, they presented it in a 10-m-tall 
“atomic fountain” that was designed to 
be the world’s most sensitive accelerome-
ter. “In contrast to their work, our system 
was designed to be compact to open up 
the possibility of portable applications,” 
Hoth says. The current experimental sys-
tem is tabletop sized, but the researchers 
plan to eventually shrink the apparatus 
down to a portable cube approximately 
the size of a mini refrigerator. “There’s a 
lot of very exciting work on atom inter-
ferometry being done all over the world,” 
Hoth says.

Author
John Edwards (jedwards@johnedwards 
media.com) is a technology writer based 
in the Phoenix, Arizona, area.
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FIGURE 3. NIST’s compact gyroscope measures 
rotation by analyzing patterns of interfering 
matter waves in an expanding cloud of atoms 
transitioning between two energy states. Each 
atom’s speed determines both its final position 
in the cloud and the size of the rotational signal 
that shifts the interference patterns. Thus, 
rotations generate interfering bands of atoms 
across images of the final cloud. The color 
coding indicates how much the interference 
patterns shift in radians, the standard unit of 
angular measure. The orientation of the inter-
fering bands (horizontal in the image) indicates 
the rotation axis. The rotation rate, determined 
by an analysis of the band spacing, is 
44 milliradians/s. (Figure used courtesy of NIST.)

FROM THE EDITOR (continued from page 3)

myself included, argued for a strategy 
that interacts with arXiv to put signal 
processing under a more appropriate 
topic branch, which may also need to 
be created. Thanks to the efforts led 
by SPS Vice President for Membership 
Dr. Nicholas Sidiropoulos, we learned 
that the arXiv scientific board has 

agreed to work toward creating an 
electrical engineering topic branch 
under which signal processing, infor-
mation theory, and control theory will 
be hosted. This would be a wonderful 
development as SPS enriches its con-
tent ecosystem. Ultimately, our hope 
is that you, our readers and members, 

will find the content ecosystem ben-
eficial to your professional develop-
ment and be a regular contributor to 
the ecosystem.

SP
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E
conomic data and financial markets are intriguing to 
researchers working on data and quantitative models. With 
rapid growth of and increasing access to data in digital 
form, finance, economics, and marketing data are poised to 

become one of the most important and tangible big data appli-
cations, owing not only to the relatively clean organization and 
structure of the data but also to clear application objectives and 
market demands. However, data-related economic studies often 
have different viewpoints from signal processing (SP). Also, 
many fundamental economics and business problems have been 
well formulated and studied in both theory and practice. The 
knowledge of foundational finance and economic theories will 
help SP and data researchers avoid reinventing the wheel and 
develop meaningful and useful research in these areas.

This tutorial article intends to introduce the mainstream 
foundational concepts and framework in finance, economics, 
and marketing research, elaborate on the relationships between 
the traditional economic research paradigm and SP methodol-
ogy, and help SP researchers identify relevant research direc-
tions. The article aims to present a refreshing SP perspective of 
finance, economics, and marketing research as well as in-depth 
examples on SP applications in these fields. We hope to empower 
SP researchers to broaden their knowledge beyond their current 

areas of expertise and quickly grasp the right formulations of the 
research questions and related evaluation criteria in these fields.

Introduction
For SP researchers, comparing an economic system, either a 
financial market or a consumer market, with a familiar physical 
input–output system with an impulse–response relationship is 
intriguing. However, it is important to understand the different 
and unique perspectives of an economic system. An economic 
system is an open-loop system in which humans are active par-
ticipants. System models to be used in analysis are not known a 
priori and for certain. In economic studies, researchers always 
work with assumptions or hypotheses that cannot be verified 
using physical or natural laws. In addition, it is difficult to per-
form controlled experiments as is usually done in SP systems.

Increasing amounts of digital market data are readily 
available, due to the rapid growth of electronic trading along 
with the development of broadband Internet. Electronic trad-
ing platforms can record every bid and ask as well as every 
high-frequency transaction. Indeed, finance, economics, and 
marketing data are poised to become one of the most impor-
tant and tangible big data applications not only because of the 
relative clean organization and structure of the data but also 
because of clear application objectives and market demands.

For example, owing to its familiar appearance, financial 
time series has become a major interest for SP researchers, 
as is evident by recent special issues [1]–[3] on related topics. 
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Many SP researchers are eager to apply SP techniques to stock 
price prediction or profitable trading strategy by analyzing 
price time series. However, without economic justifications 
and rigorous out-of-sample tests, such analysis may easily 
fall into the category of technical analysis, which is not main-
stream in finance academia or among financial professionals.

The knowledge of the major streams of finance theories is 
very useful for SP researchers to position and formulate their 
research before applying SP techniques to financial data analy-
sis. Economic behaviors of people are often about individual 
choices. The foundational theory (or hypothesis) of economic 
choices is the expected utility theory, which explains the rela-
tionship between investment risk and expected return. Almost 
all asset-pricing models are based on the expected utility theory. 
To understand the aggregated market behavior, a fundamental 
and insightful theory in finance and economics research, the 
efficient market hypothesis (EMH) [4], was developed. The 
EMH assumes that all information is incorporated into price 
and that the market reaches equilibrium through rational deci-
sions of market participants. Stock returns are compensation for 
risks investors take in markets. The fundamental asset-pricing 
model and portfolio theory are formulated on the basis of the 
EMH [5]. Overwhelming empirical evidence supports the 
EMH, suggesting that it holds most of the time.

Although the EMH is a foundational theory in academic 
finance research, most stock analyses used by financial practi-
tioners, such as technical analysis [6], which is popular among 

individual investors, and fundamental analysis, which is popular 
among professional investors, contradict the EMH [4] because 
the current price does not reflect all available market informa-
tion. Instead, these analyses share some common ground with 
behavioral economics theories [7]–[9]. Although powerful, 
behavioral economics theories rely on empirical psychological 
and qualitative arguments to explain economic events and have 
not led to fully developed asset-pricing models. In contrast with 
the EMH-based models, it is often difficult to develop rigorous 
mathematical formulations for psychological effects, making SP 
methodology difficult to apply to behavioral economics studies.

The knowledge of extant data techniques, results, and issues 
in finance research will greatly help SP researchers to exert use-
ful research effort by identifying correct problem formulations 
more effectively. For example, SP researchers are often inter-
ested in market correlation structures, an area where modern 
asset-pricing and portfolio theories [5] have well formulated the 
correlation structure within stock markets under the normality 
assumption. In contrast with SP research in which controlled 
experiments or simulations are conducted and ground truth is 
often the basis for testing and verifying the models, model test-
ing and verification in finance pose many traps and difficulties.

Nevertheless, with the tremendous increase in the amount 
of economic data in digital form, the demand for applying SP 
techniques to finance, economics, and marketing research is 
increasing, presenting huge opportunities to SP researchers. 
Many economics applications (including finance and marketing) 
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beyond stock price prediction, such as input–output relation-
ships in certain economic systems [10]–[12], are available, and 
research questions await answers. The recent surge in high-fre-
quency trading (HFT) practices and related theoretical studies 
[13] provides further opportunities for SP researchers to exam-
ine market microstructures and high-frequency system response. 
Indeed, many SP models and methods share common mathe-
matical grounds with traditional econometric analysis [14] but 
present different analytical aspects. Therefore they can provide 
new tools for economic system modeling, analysis, and informa-
tion extraction for massive finance and economic data.

This tutorial article intends to concisely introduce the main-
stream foundational concepts and frameworks in finance, eco-
nomics, and marketing research to SP researchers, with conceptual 
elaboration of the relationships between traditional economic re-
search paradigms and SP methodology, and help SP researchers 
understand economics and business literature and identify rel-
evant research directions with economic significance.

First, we introduce the risks and the foundational economics 
theory. Then, we formulate the fundamental market equilibrium 
asset-pricing model in finance within the parameters of modern 
portfolio theory. Equipped with a basic understanding of the mini-
mum set of economics theories and principles, we introduce an 
economic viewpoint and basic hypotheses within the context of 
a free and competitive market—the EMH and competing behav-
ioral economics along with the prospect theory. We elaborate on 
how different economics theories factor in the individual person—
the center of any economic system—his or her choices, decision 
processes, and emotions. We present a philosophical analysis of 
the test on economic models with a data–joint hypothesis test. SP 
perspectives are provided across the article to help readers quickly 
grasp the differences.

We then move to introduce the fundamental econometrics 
models and time-series analysis in comparison to the parallel 
tools known in SP. We focus more on the basic concepts that 
are rarely present in SP but that are critical in analyzing time-
series data in economics and business applications, such as unit 
roots and causality. We then briefly summarize the relationships 

between SP and econometric models so that SP researchers can 
apply their SP knowledge to quickly take advantage of economet-
rics models. These fundamental economics concepts and meth-
odology that we will introduce have won Nobel Prizes from 1990 
to 2013. They are by no means comprehensive, but they encom-
pass a skeleton and basic set of building blocks for data-based 
economic studies.

We also provide a few detailed state-of-the-art examples in 
reference to applying SP to economics, finance, and market-
ing studies. Furthermore, we focus on a few illustrative formula-
tions of economic and business problems. In addition, we give 
an empirical data analysis example to demonstrate the insight 
of economic systems that SP is poised to make significant con-
tributions. Throughout this article, we use sidebars to present 
mathematical formulations and examples to further clarify and 
illustrate main concepts and ideas.

Risk, risk premium, portfolio optimization,
and capital asset pricing
In this section, we introduce fundamental concepts that serve 
as language and building blocks for economics and finance 
theory. We begin by introducing the expected utility theory 
and risk premium (RP).

Expected utility theory and RP
The expected utility theory (or hypothesis) is a cornerstone for 
economics, game theory, and decision theory and pertains to 
people’s preferences and choice. In economics, a utility func-
tion ( )U w is defined as a concave function of overall wealth .w
An example is shown in Figure 1. Such a utility function 
assumes that 1) utility is increasing with wealth, i.e., ( )U w  is 
monotonically increasing, and 2) wealth has diminishing mar-
ginal utility, represented by the concavity of ( ) .U w  Therefore, 

( ) ,dU w dw 02  and ( ) .d U w dw 02 2 1  The expected utility 
theory further assumes that people make rational choices 
according to the overall expected utility .( )U WE6 @  Here, W
represents a random variable.

Now, assume that a risk asset (e.g., a stock or an investment) 
has two possible outcomes of wealth with equal probability in 
the future, w0 and w1 and .w w0 11  The expected wealth is

[ ] ( ).W w w
2
1E 0 1= + (1)

The expected utility of this risk asset is

[ ( )] [ ( )] [ ( )] .U W U w U w
2
1E E E0 1= +^ h (2)

Given the concavity of the utility function, we have 
.[ ( )] [ ]U W U WE E1 ^ h  That is, a rational person is risk averse 

and thus would prefer a riskless asset, such as cash, with guar-
anteed wealth of [ ],WE  to the risk asset with expected wealth 
of the same [ ].WE  The certainty equivalent (CE) represents 
guaranteed wealth whose utility is equivalent to that of the risk 
asset; i.e.,

[ ( )] .CE U U WE1= - ^ h (3)

Concave Utility Function

Wealth

U
til

ity A Utility Function That Is
Increasing with Wealth
But Has Diminishing
Marginal Utility

FIGURE 1. The expected utility theory assumes that people make choices 
according to the expected utility [ ( )]U WE .
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The RP is therefore the amount of money that a rational person 
would demand for taking on a risk asset, or the amount of money 
that a rational person is willing to pay to eliminate risk. Thus,

[ ] .RP W CEE= - (4)

According to the expected utility theory, the source of the 
excess return of a risk asset, such as stock, is the RP. The RP is 
the reason people pay insurance premiums to insurance com-
panies to remove risk, and it is also reflected by the interest 
rate of a loan. Figure 2 shows the relationship among expected 
wealth [ ],WE  expected utility [ ( )],U WE  CE, and RP. See 
“Take a Bet: Source of the Excess Return” for a gambling 
example for the risk-averse behavior and the RP.

Asset correlations and portfolio optimization
For a security/asset i, the net return R ,i t  at time t is

,R
p

p p d
,

,

, , ,
i t

i t

i t i t i t

1

1
=

- +

-

- (5)

where p ,i t  is the price at time t and d ,i t  is the dividend dur-
ing the period t – 1 to t. [The logarithm of the total return 

( )log R1 ,i t+  is often used because of asymmetry of the net 
return. It is easy to show that the log return and the net return 
are essentially the same when the net return is small. The log 
return is more commonly used in empirical research.]

Assume that R ,i t  is stationary and its return is represented by 
a random variable .Ri The expected return is [ ] [ ].R RE E ,i i t=

If the utility function can be approximated by quadratic form 
[15], [16], the expected utility maximization becomes a mean-
variance investment criterion: maximize the expected return 
for a given variance, or minimize the variance for a given 
expected return. The risk of an asset is represented by the 
variance ( )RVari i

2v =  or the square root of variance ,iv  also 
called volatility in finance.

Using SP concepts, we can rephrase mean-variance criteri-
on: because people are risk averse, they like the signal (expected 

return) but not the noise (risk). If we have a pool of securities, we 
can take advantage of the correlations among individual securi-
ties and improve the signal-to-noise ratio (SNR) by investing in 
a portfolio (i.e., a basket of n securities). The portfolio return is 

,R x Rp ip ii

n

1
=

=
/  where xip is the weight of the ith security, 

.x 1ipi
=/  The portfolio expected return is

[ ] [ ],R x RE Ep ip
i

n

i
1

=
=

/

and the portfolio variance is

,x xx xR ip
j

n

i

n

jp ij p
T

p
2

11
pv v R= =

==

//

where ( , )R RCovij i jv =  is the covariance of Ri and R j and 
R is the covariance matrix. We can rewrite

( , ).x x x R RCovR ip
i

n

jp
j

n

ij ip
i

n

i p
2

1 1 1
pv v= =

= = =

e o/ / /

We see that the contribution of security i to the risk or vari-
ance of the return on portfolio p is ( , ),x R RCovip i p  i.e., the 
risk of security i  in portfolio p or the weighted average of 
covariances. From the SP perspective, this risk is a projection 
of Ri  on .Rp  We can therefore formulate a portfolio optimiza-
tion problem (see “Mean-Variance Portfolio”) to find the best 
portfolio (weights) [17].

To find the optimal mean-variance portfolios (MVPs), 
we use the Lagrangian expression:

,[ ]J r x R x2 2 1E
n

R e e ip
i

i e ip
i

2

1
pv m z= + - + -

=

c cm m/ / (6)

where 2 em  and 2 ez  are the Lagrange multipliers. We then 
take derivative and set it to zero:

[ ] , , , ,
x

R i n2 2 0 1E
ie

R
e i e

2
e

2
2

6 f
v

m z- - = =

Expected Utility and RP

w

U (w )
U (w1)

U (w0)
RP

U (  [W ])

(  [W ])

[U (W )]

CEw0 w1

FIGURE 2. The relationship among expected wealth [ ]WE , expected utility 
[ ( )]U WE , CE, and RP.

Assume you win the lottery and have the following two 
choices:
1) the bet: flip a coin (equal probability on both sides); 

heads, you get US$2,000, tails, you get US$0
2) cash US$1,000.

Would you take the bet or the cash? What if the cash 
amount were changed to US$900? US$800? Or more? 
The cash amount for which you are indifferent between 
choices 1) and 2) is the CE for the risky bet 1). The RP is then 
1,000–CE, which is the extra money you need to be com-
pensated for the risk you are taking in 1) or the price you 
are willing to pay to eliminate the risk in 1) in exchange for 
the certainty in 2). Are you risk averse? Do you believe the 
saying that a bird in the hand is worth two in the bush?

Take a Bet: Source of the Excess Return
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where the subscript e  represents the optimal (efficient) port-
folio. Therefore,

[ ] , .x R i n0 1Eje
j

n

ij e i e
1

6 gv m z- - = =
=

/ (7)

In matrix form, [ ] .x R 0Ee e em zR - - =  Along with 
,[ ]x R rEe

T
e=  and ,x 11T

e =  we have

[ ] .
[ ]

R
xR

r0
0

0
0 11

1 0
E

E
T

T

e

e

e

em

z

R
-

-

=> > >H H H
The optimal MVP can then be obtained by solving the lin-
ear equation.

Capital asset pricing model
Assume that market participants, or at least some of them, 
are rational in the sense of mean-variance optimal (by maxi-
mizing the expected utility). Then all securities in the market 
should be priced such that the market is in equilibrium. Note 

that we are indifferent to holding different assets given risk-
compensated premia (in “Take a Bet: Source of the Excess 
Return,” it means we are indifferent to taking the cash or the 
bet). Therefore, the market portfolio (e.g., the basket of all 
stocks in the U.S. stock market) must be an efficient 
portfolio  .e

Note that according to the envelope theorem [22], the 
Lagrange multiplier 2 em  in (6) is the rate of change (the slope) 
of the optimal portfolio variance R

2
ev  as a function of desired 

expected portfolio return [ ];RE e  i.e.,

,
[ ]d R

d2
E

e
e

R
2

em
v

=

i.e., the efficient frontier is parabolic, as shown in Figure 3.
Figure 3 also shows that the efficient frontier is the boundary 
of all attainable portfolios and securities (within the efficient 
frontier). The portfolio B is the minimum-variance portfolio.

For an efficient portfolio A, the slope of the tangent line in 
Figure 3 is

.
[ ]

S
d

d RE
e

R

e

R

e

e ev v
m

= =

We know that an efficient portfolio satisfies (7), implying that

[ ] [ ].x R x RE Eje
j

n

kj e k je
j

n

ij e i
1 1

v m v m- = -
= =

/ /

Multiplying both sides by xke and then summing over ,k  we get

[ ].r x RER e e je
j

n

ij e i
2

1
ev m v m- = -

=

/

Note that the expected return of the efficient portfolio is 
[ ]R rE e e=  by definition. Rearranging, we get

[ ] [ ] .R R x1E Ei e
e

je
j

n

ij R
1

2
em

v v- = -
=

e o/

Therefore,

[ ] ( [ ] ) ( , )R R S S R RCovE Ei e e R
R

e
i ee

e

v
v

= - +

( , )
[ ]

r
R r

R RCov
E

e
R

e e
i e0

0

ev
= +

-

[ ] ,r R rEe e e e0 0 0b= + -^ h (8)

where

( , )
,

R RCov
e

R

i e
0 2

e

b
v

= (9)

and the quantity

[ ]r R SEe e e R0 e_ v- (10)

is the intercept with zero variance and represents a risk-free asset. 
The relationship (8) must hold in the market equilibrium between 
the return of a single security and the efficient portfolio. Therefore, 
there is no expected return reward for the part of security risk that 
is uncorrelated (zero covariance) with the efficient frontier.

MVP Efficient Frontier

Attainable Pool of
Risk Securities and Portfolios

r0e

A

B

rf

M

O

P

[R p]

σRP

FIGURE 3. The efficient frontier of MVP.

Mean-variance portfolios (MVPs) are the solution of the 
following mean-variance optimization (convex quadratic 
programming) criterion:

in ( ) ,x xarg mx J xip x ip R p
T

p
2

ip
pv R= = =) " ,

[ ] [ ] [ ] ,R x R x R rs.t. E E Ep ip
i

n

i p
T

e
1

= = =
=

/

where .x 1ipi =/  Here, re is a given target level of 
expected return. Such portfolios are called mean-variance 
efficient portfolios. All efficient portfolios with different re’s 
constitute an efficient frontier.

Mean-Variance Portfolio
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If the market risk-free rate is ,r f  a market participant will 
hold a combination of the risk-free asset r f and a risk portfolio 
or security within or on the efficient frontier. Apparently, the 
best risk portfolio to hold is on point A because the tangent 

line provides the best portfolios in terms of the mean-variance 
criterion. Indeed, the tangent line provides the best SNR from 
the SP perspective. [The Sharpe ratio of a portfolio p  can be 
considered the SNR defined in finance: [ ] .R rE p f Rpv-^ ^h h ]

The efficient portfolio A is called the tangency portfolio.
In market equilibrium, the market portfolio M  (i.e., the port-
folio consisting of all risk securities) must be the tangency 
portfolio .A  A market index, such as the S&P 500 index, is 
often used as a proxy of the market portfolio .M  All securi-
ties must have prices that satisfy (8). Such a price relation-
ship (or correlations) among all risk securities in the market is 
described in the capital asset-pricing model (CAPM) [18]–[21]
(see “CAPM” for details).

As we show, the CAPM is consistent with the expected util-
ity theory and portfolio optimization. According to the CAPM, 
the stock return is an RP and is only related to its correlation 
with the market portfolio (i.e., the market risk a stock carries). 
The higher the ,b the larger is the expected stock return. The 
diversifiable (idiosyncratic) risk a stock carries (i.e., the com-
pany-specific risk) does not have RP rewards.

Operationally, a higher expected return can always be 
achieved by leveraging the risk (i.e., by borrowing money to 
buy market portfolio). In Figure 3, this means moving along 
the tangency line to the right, thus generating higher risk and 
higher return with a fixed Sharpe ratio (or SNR).

The CAPM provides a way to evaluate an investment 
portfolio and attribute its performance (see “Evaluating an 
Active Portfolio Manager—Is There Alpha?”). “An Exam-
ple CAPM Regression” shows a typical empirical regres-
sion study.

Fama–French three-factor model
and multifactor asset pricing
It is difficult to have a significant alpha, i.e., to beat the market. 
People have long strived to find excess returns over the market 
premium. Many of the identified excess returns turned out to 
be statistically chance results, though a few proved to be per-
sistent. The most prominent model identifying excess returns 
beyond the CAPM is the Fama–French (FF) three-factor 

The price of a security i (or a portfolio) in a free market 
can be determined by the CAPM, also called the Sharpe–
Lintner model, as follows:

[ ] ( [ ] ), ,R r R r iE Ei f iM M f 6b= + -

where

( )
( , )

.
R
R RCov

iM
M

i M
2b
v

=

Time-series regressions are used in practice to com-
pute .b  The following time-series regression is perhaps 
the most famous linear regression in the world:

( ) .R r R r, , , , ,i t f t iM M t f t i tb f= + - +

Insights
The CAPM is a market equilibrium that must hold.
There is no expected return reward for idiosyncratic 
risk, the part of security risk that is uncorrelated with 
the market portfolio M.

The CAPM is the foundation of asset pricing. It is com-
monly used in corporate finance, such as merger-and-
acquisition practice to evaluate a company and the cost 
of capital.
Terms Related to the CAPM and Asset Pricing

Risk asset: assets that have uncertain returns, e.g., 
stocks, bonds, real estate, gold, crude oil. Their prices 
fluctuate over time. Almost all assets are in this category.
Risk-free asset: assets that have fixed (certain) 
returns. Treasuries (especially T-bills) are considered 
to be risk free because they are backed by the U.S. 
government. The return on risk-free assets is very 
close to the current interest rate.
Excess return: [ ]R rE i f-  is the expected return in 
excess to the risk-free rate to reward the security risk, 
i.e., an RP.
Market RP: [ ]R rE M f-  is the excess expected return 
to reward market risk (approximately 7% annually in 
the U.S. market).
Systematic risk: market risk that cannot be diversified 
and is rewarded by the expected return. Represented 
by .b
Idiosyncratic risk: firm-specific risk that can be diver-
sified, thus not rewarded by the expected return. 
Represented by .,i tf  Note [ ] .0E ,i tf =  It looks like 
the noise term in SP, but it is not noise in economics.

CAPM

The time-series CAPM regression for an investment port-
folio is

( ) ,R r R r, , , , ,p t f t pM M t f t p ta b f- = + - +

where a is the intercept of the regression. It should be 
statistically insignificant according to the CAPM, i.e., 

.0a =

The skill of an investment manager should not be eval-
uated by the expected return or the excess return over 
the market portfolio but rather by .a

Evaluating an Active Portfolio Manager— 
Is There Alpha?
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Table S1 shows time-series regressions of excess stock portfolio 
returns (in percent), ,R r ,pt f t-  on the excess stock-market return, 

,R r, ,M t f t-  from July 1963 to December 1991 (342 months) 
for 25 portfolios using Center for Research in Security Prices 
monthly return data of all U.S. market stocks. The 25 portfolios 
are constructed by dividing firms using market caps (size) and 
book-to-market (B/M) ratios into quintile buckets. The empirical 
results are extracted from [23]. The t-values and (s f) are in 
parentheses. The residual standard error (s f) is the root-mean-
square error of the regression. As can be seen, only a few a
coefficients are statistically significant, i.e., .( )t 22a  All of 
the b coefficients are statistically significant.

Table S1. The time-series regressions from July 1963 
through December 1991.

B/M Ratio 

Size Low 2 3 4 High 

a  and t -value ( )t a

Small  –0.22  0.15  0.30  0.42 0.54 

(−0.90) (0.73) (1.54) (2.19) (2.53) 

2  −0.18  0.17  0.36  0.39  0.53 

(−1.00) (1.05) (2.35) (2.79) (3.01) 

3  −0.16  0.15  0.23  0.39  0.50 

(−1.12) (1.25) (1.82) (3.20) (3.19) 

4  −0.05 −0.14  0.12  0.35  0.57 

(−0.50) (−1.50) (1.20) (2.91) (3.71) 

Big  −0.04 −0.07 −0.07  0.20  0.21 

(−0.49) (−0.95) (−0.70) (1.89) (1.41) 

Table S1. The time-series regressions from July 1963 
through December 1991.

B/M Ratio 

Size Low 2 3 4 High 

b  and t-value ( )t b
Small 1.40 1.26 1.11 1.06 1.08 

(26.33) (28.12) (27.01) (25.03) (23.01)

2 1.42 1.15 1.12 1.02 1.13 

(26.33) (28.12) (27.01) (25.03) (23.01)

3 1.36 1.15 1.04 0.96 1.08 

(26.33) (28.12) (27.01) (25.03) (23.01)

4 1.24 1.14 1.03 0.95 1.10 

(26.33) (28.12) (27.01) (25.03) (23.01)

Big 1.03 0.99 0.89 0.84 0.89 

(26.33) (28.12) (27.01) (25.03) (23.01)

Adjusted R2 and Residual Standard Error ( )s f

Small 0.67 0.70 0.68 0.65 0.61 

(−1.46) (3.76) (3.55) (3.56) (3.92) 

2 0.79 0.79 0.76 0.76 0.71 

(3.34) (2.96) (2.85) (2.59) (3.25) 

3 0.84 0.84 0.80 0.79 0.74 

(2.65) (2.28) (2.33) (3.26) (2.90) 

4 0.89 0.90 0.87 0.80 0.76 

(2.01) (1.73) (1.84) (2.21) (2.83) 

Big 0.89 0.91 0.54 0.79 0.69 

(1.66) (1.35) (1.73) (1.95) (2.69) 

An Example CAPM Regression

The FF three-factor model is an empirical asset-pricing 
model featuring two cross-sectional return factors, the 
small-minus-big (SMB) factor and the high-minus-low 
(HML) factor:

[ ] [ ] [ ] [ ] .R r R r R RE E E Ef M M f s hSMB HMLb b b- = - + +

The SMB factor is a firm size factor, represented by 
the portfolio return of SMB (a portfolio of long 
small-market-cap stocks and short big-cap stocks. Firm 
size is measured by firm market capitalization (cap). 
Small-size firms have excess returns in addition to the 
market RP.

The HML is a market-value factor, calculated by the port-
folio return of HML (a portfolio of long high-value stocks 
and short low-value stocks). Firm value is measured by 
the B/M ratio or the price-to-earnings ratio. High B/M 
ratios represent value stocks and low ratios growth 
stocks. Value stocks have excess returns in addition to 
the market RP.

Insight
SMB (or small-market cap) and HML (or value) portfolios 
have significant nonzero alpha with respect to the CAPM, 
i.e., excess returns in addition to the market RP. Note that 
these two excess returns are predicted by the cross-sectional 
factors determined by firm accounting features. Cross-
sectional means across various stocks/portfolios (sections).

FF Three-Factor Model and Cross-Sectional Returns
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model [24], [23] (see “FF Three-Factor Model and Cross-
Sectional Returns”), which suggests that the size and firm 
value factors can generate excess returns.

Based on the FF three-factor model, prior empirical 
studies suggest that additional factors persistently produce 
excess returns. The most notable include the momentum 
factor, as in the four-factor model by Carhart [25], and the 
two additional factors, profitability and investment patterns, 
that Fama and French [26] added in their more recent five-
factor model. Theoretically, multiple-factor models can be 
explained by multifactor minimum-variance (MMV) port-
folios [27]. See “MMV Portfolios and Intertemporal CAPM.” 
New research evaluating investment alpha needs to incorpo-
rate all known factors in the present multiple-factor models. 
Historical empirical analysis has shown that, when the four-
factor model is considered, no skilled or informed mutual 
fund portfolio managers can generate persistent investment 
alpha [25].

The CAPM-related study is a mature area with established 
statistical methodology. Current studies in this area are 
mainly empirical research identifying new cross-sectional 
factors, e.g., [26]. Beta evaluation in traditional study is 
based on a windowed regression with typically three- to five-

year windows, assuming stationarity within the window. 
The opportunity for SP might lie in the time-varying non-
stationary models. The difficulty of any time-varying model 
is the evaluation criteria given that there are no ground-truth 
beta parameters.

Portfolio analysis and array SP
Consider the return series of an asset as a noisy signal. A portfo-
lio can be considered a way to use diversity to improve SNR. 
This is quite similar to many SP formulations. See “Minimum-
Variance Portfolio and Capon Beamformer” for the relation-
ships between them in array SP.

Even if we cannot generate investment alpha in portfolio 
construction, there are other aspects of a portfolio with which 
we are concerned. For example, different people often have 
different preferences for systematic market risks represented 
by various risk factors. These systematic market risks cannot 
be eliminated by diversification, but investors can choose/ana-
lyze the amount of portfolio exposure to those market risks 

Consider the problem of finding the minimum-variance 
portfolio, i.e., point B in Figure 3, formulated as

( ) [ ] ( ), , , .R t a R t i n1Ei i i i ff= + =

Find weights xmv  such that

,x x xargmin
x p

T
R pmv

p
R=

subject to the weight normalization:

.x a 1p
T =

In array SP, this is exactly the minimum-variance distor-
tionless response beamformer, also known as the Capon 
beamformer, to recover the signal sources [ ]E Ri  with 
minimum noise variance [29]:

.x
a a

a
T

R

R
1mv

R
R

= -

Remarks
1) Many portfolio construction/analysis problems have 

similar forms to array SP problems. 
2) The covariance matrix RR  can be a very large matrix 

in portfolio analysis because n is large. It is often 
difficult to estimate such a large matrix reliably. In 
addition, because of high correlations among assets, 
this matrix often has a very high conditional number 
(close to singular), and therefore it is difficult to com-
pute its inverse.

Minimum-Variance Portfolio  
and Capon Beamformer

Other than expected returns, do people have other 
tastes? That is, they may like aspects of a firm other than 
the expected return. For example, a potential explanation 
for the value factor is that many people like to hold 
growth stocks (e.g., unicorn firms) for the glory and there-
fore lower their return expectation.

With multiple tastes/preferences, the MMV portfolio 
optimization problem can be formulated as follows:

                        ( ) ,x xargminx J x
x R p

T
p

2
ie ip p

ip
v R= = =" ,

. , , , , ( . ., ),x b bx b b s S i e1s.t
i

n

p
T

p e
1

ip is es f= = =
=

/

       [ ] [ ] [ ] ,xR x R R rE E Ep
i

n

i p
T

e
1

ip= = =
=

/

,x 1
i

ip =/

where re is the desired level of expected return. Note 
that s represents the tastes other than expected returns 
and bes  is the desired level of the sth taste.

The market equilibrium for the MMV criterion is a mul-
tifactor intertemporal CAPM [28]:

[ ] ( [ ] ) ( [ ] ), .R r R r E R r iE Ei f ie M f is
s

S

s f
1

6b b- = - + -
=

/

That is, there are multiple MMV-efficient market portfo-
lios (factors).

MMV Portfolios and Intertemporal CAPM
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(by changing the weight of the risk-free asset). The idiosyncrat-
ic risk represented by the regression residual (or noise) is the 
risk not rewarded (priced) by the market and therefore is the 
part of the risk that investors need to try to remove by diversifi-
cation. A portfolio analysis and risk-factor attribution problem 
usually has the following formulation.

For a set of n portfolios, the time-series model of the portfo-
lio excess return (with risk-free rate subtracted) is

( ) ( ) ( ), , , ,R t R t t i n1i si
s

K

s i
1

fb f= + =
=

/

where , , ,R s K1s f=  are risk factors. Note that risk factors 
are also portfolios.

The portfolio analysis or construction problems can be 
1) finding common risk portfolios Rs given ;Ri 2) given risk 
factors, which are often represented by different market or 
section indices, or cross-sectional portfolios, such as those 
in the FF three- or five-factor models, finding the risk load-
ings (betas), which reflect the risk exposures of a portfolio; or 
3) covariance estimation, portfolio optimization or analysis, 
often subject to various constraints, such as long/short, bor-
rowing, liquidity, and transaction cost. This is an area to which 
the SP research can directly contribute due to the similarity in 
problem formulation in statistical and array SP.

Specifically, practical portfolio construction and optimiza-
tion usually has following steps.
■ Identify portfolio constraints. First, identify the desired 

expected return or the tolerable risk represented by variance. 
Note that we can either minimize the variance given the 
expected return or maximize the expected return given the 
variance. Second, identify the investable security pool along 
with investment constraints, including short sell constraints, 
liquidity constraints, transaction costs, and risk-factor expo-
sure constraints. In practice, these constraints are often 
determined by the requirements from the investment fund 
stakeholders, trading systems, and regulatory bodies.

■ Identify historical data or proxy data that can be used to, 
first, estimate covariance and expected returns of a security 
pool and, second, conduct backtesting.

■ Find a robust algorithm to estimate the covariance matrix 
(or precision matrix) and expected returns.

■ Formulate a constrained optimization problem, and find a 
robust solution.

■ Conduct backtesting, and evaluate the portfolio performance 
against benchmark models, usually known factor models.
In “Example SP Research on Portfolio Optimization and 

Related Risk Modeling,” we show SP research in portfolio 
optimization. The nature of an economic system is differ-
ent from that of an SP system. So far, all economic models 
and theories we introduced are hypotheses. In SP, system and 
signal models are often rooted in physical laws known to be 
sufficiently accurate descriptions of system mechanisms. SP 
researchers tend to be quite confident with their models and 
believe that the same physical law applies at all times (yester-
day, today, and tomorrow).

Therefore, even when the mathematical representation 
in portfolio analysis, and in economic and business studies 
in general, is similar to that in SP [36], the treatment can be 
quite different. For example, in financial empirical studies, 
when certain risk factors are identified mathematically using 
the data at hand, it is actually not clear whether the identified 
risk factors are indeed true risk factors or a result of statistical 

In [30], a subspace formulation of MVP optimization with 
risk-factor constraints and related toy examples is given. 
For example, a market-neutral portfolio requires 
x ,F 0T

p =  where F is the loading weights of a single 
market factor, usually estimated by a time-series regres-
sion of all security return time series with a market index, 
and xp  represents the desired portfolio weights. Torun et 
al.’s article in IEEE Signal Processing Magazine [31]
shows an eigenfiltering method to estimate the covariance 
matrix with a large number of securities. When the securi-
ty pool is large, the raw covariance matrix is almost singu-
lar due to high correlations among securities. Note that 
the inverse of the covariance matrix, i.e., the precision 
matrix, is often necessary in MVP optimization. Therefore, 
a noise regularization term is added on the eigenfiltered 
covariance matrix to improve the robustness of covari-
ance matrix estimation and its conditional number. The 
same authors [32] further use an autoregressive model to 
improve the stability and computational efficiency of esti-
mation of the empirical covariance matrix of highly corre-
lated securities. We also direct readers to an example in 
[33] that uses Bayesian and regularization methods for 
the estimation of the unknown observation covariance 
matrix and the related MVP optimization algorithm. Also, 
the authors in [34] propose to use smooth and monotone 
regularization to tackle the high correlation problem in 
covariance matrix estimation. The work in [35] summariz-
es the relative performance of different estimation strate-
gies for minimum-variance portfolio optimization problems 
using the inversion of the estimated covariance matrix or 
the direct estimation of the precision matrix.

Remarks
We caution SP researchers that the risk and optimal 
portfolio obtained from the covariance matrix are only 
from a period of historical data, assuming that there is 
a stationary joint return distribution among the assets. It 
is, at most, a rough approximation of the ever-changing 
financial market. The out-of-sample backtesting is neces-
sary and helpful, but it is by no means comprehensive 
and bullet proof in terms of representing the future distri-
butions. Therefore, the economic reasoning and under-
standing of risk factors are always necessary in both 
practice and economics theoretical development.

Example SP Research on Portfolio 
Optimization and Related Risk Modeling
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chance. Two commonly used methods can verify this: 1) con-
duct statistical significance analysis with out-of-sample 
data and 2) have reasonable economic explanations for the 
identified factor. Even then, the results are still confirmatory 
rather than conclusive because there are no certain physical 
laws in the market activities, it is unknown whether the same 
model will hold over time, and controlled experiments cannot 
be conducted to test the model. Because researchers always 
operate on hypotheses in economic and business studies, the 
burden of proof is on their side, especially when results con-
tradict with conventional wisdom or well-recognized theories, 
such as the EMH.

Efficient market theory and behavioral economics
An efficient capital market is a market that is efficient in process-
ing information: asset prices fully reflect available information. 
An efficient market does not necessarily mean that the stock 
price follows the random-walk model or any existing model.

EMH
Because of the similarity to many noisy signals in SP applica-
tions, the stock return series is fascinating to many SP 
researchers. It is tempting to look into the historical stock 
charts trying to identify money-making patterns and hope that 
an autoregressive moving average (ARMA) model can fit the 
chart. It is often all too easy for SP researchers to think that 
they may be able to predict stock price using sophisticated SP 
models to make free money.

However, as the expected utility theory suggests, the source 
of excess return is the risk that investors carry. In contrast 
with a physical system, two parties are involved in any finan-
cial transaction. In a free market, the two parties agree on a 
(fair) price for the transaction. In market equilibrium, the price 
should reflect all available information in the market, such that 
the transaction is merely an RP changing hands. For example, 
if both seller and buyer predict that the price of an asset will 
go up tomorrow, the price should go up today. A rational seller 
will not sell if the price is lower than what he or she predicts. 
The efficiency of information processing in the market is 
indeed a natural consequence of competition in a free market.

In the 1960s, Eugene Fama, a 2013 Nobel Laureate in Eco-
nomics, was one of the first using computers to study stock 
prices. Based on his empirical study, he proposed that secu-
rity prices at any time fully reflect all available information 
[4]. Such a market is called an efficient market. See “Efficient 
Capital Markets—Different Forms.”

Holding the utility function constant, we can argue that the effi-
cient market means that the stock price tomorrow is unpredictable, 
as all available information has been incorporated into today’s 
price. The market only moves by new information, not by known 
information. See “Fundamental Analysis, Technical Analysis, and 
Quantitative Analysis” for different types of stock analysis.

Joint hypothesis testing and its implications in SP
To test the market efficiency, we need to have a market equi-
librium model, i.e., an asset-pricing model, such as the 

CAPM, the FF three-factor model, or the random-walk 
model. We need to test whether the properties of expected 
returns implied by the market equilibrium asset-pricing 
model are observed in actual returns. The main difficulty in 
testing market efficiency indeed lies in the joint hypothesis 
test: when the test fails—i.e., we find credible anomaly in 
price behavior—we do not know whether the market is ineffi-
cient, a conclusion people often jump to, or the asset-pricing 
model used is wrong. Note that while the random-walk model 
is a simple (hypothetical) form for an efficient market (an 
idea popularized by a bestselling book [37]), an efficient 
market does not necessarily mean that the stock price follows 
the random-walk model or any existing model, as many 
people have assumed.

While all empirical scientific research is more or less sub-
ject to the joint hypothesis test, in SP, researchers do not pay 
much attention to 1) statistical significance and confidence 
of model estimation, 2) error distribution of the estimation 

An efficient capital market is a market that is efficient in 
processing information and asset prices fully reflect 
available information. Markets have different forms of 
efficiency.

Weak form: current prices fully reflect all information 
in past prices. Technical analysis using past price pat-
terns will not produce profits.
Semistrong form: current prices fully reflect past prices 
and all publicly available information. Fundamental 
analysis (e.g., studying financial statements) will not 
produce profits.
Strong form: current prices fully reflect all informa-
tion, public and private. Insider trading will not pro-
duce profits.

Evidence
1) For the weak form, the random-walk stock price mod-

el has been empirically validated for short-term stock 
returns in many tests, i.e., the short-term stock return 
series is not statistically different from white noise 
and therefore is unpredictable. 

2) For the semistrong form, a large number of event 
studies have compared the stock returns before and 
after corporate news events, such as stock split and 
earning announcements, showing that the infor-
mation is incorporated into the stock price almost 
immediately. 

3) For the strong form, insider trading makes profit, in-
dicating that the strong-form market efficiency does 
not hold. However, mutual fund managers who have 
more private information than the general public do 
not outperform on a consistent basis.

Efficient Capital Markets—Different Forms
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beyond the Cramér–Rao bound, and 3) statistical tests against 
alternative models, because the confidence in the model used 
is established from the understanding of physical laws rather 
than purely from data. For example, to track a flying missile, 
we have basic understanding of its motion model based on 
Newton’s laws and sources of noise. However, we do not have 
such understanding of the market price movement other than 
common sense. The statistical test is often the only quantitative 
tool on which we can rely.

Thus, for stock price prediction, researchers need to ask 
themselves, Are we confident that we have done enough 
tests to bet the money in the market? Are we confident that 
our price model beats the mainstream asset-pricing models 
and the collective information processing (crowdsourcing) 
of all other market participants? Note that market equilibri-
um is reached by competing arbitrage-seeking efforts in the 
market. Apparently, there is a large burden of proof against 
the EMH.

Prospect theory and behavioral economics
Both the expected utility theory and the EMH assume that 
people, or at least some people, act rationally and optimally to 
exploit risk-free profit in the market to maximize the expected 
utility. Therefore, the only source of excess return is risk. The 
expected utility theory and the EMH were dominant before 
the 1980s in academia.

However, people frequently argue that it is often the irra-
tional or emotional decisions that drive the market, generat-
ing bubbles and recessions. Such psychological overreaction 
or underreaction to information moves the market, generat-
ing mispricing and predictable market movement patterns, 
and thus possible risk-free profitable opportunities. This 
line of thinking has led to the development of behavioral 
economics, embraced by many people eager to justify price 
anomalies and patterns, both academics and (more) practi-
tioners, as it provides a formidable (desirable) alternative to 
the EMH.

In 1979, the psychologists Daniel Kahneman and Amos 
Tversky developed prospect theory [7], which has become a 
foundational theory for behavioral economics. Daniel Kahne-
man won the 2002 Nobel Memorial Prize in Economic Scienc-
es for his foundational work in behavioral economics (Amos 
Tversky died in 1996).

In contrast with the expected utility theory, prospect theory 
states that people make choices based on the value function 
illustrated in Figure 4. The value function states that people 
make financial decisions not from the expected utility of the 
absolute total wealth but from the psychological and emotional 
perceptions of joy and pain depending on the relative gain or 
loss. The function is asymmetric in that the amount of pain 
from losing US$1,000 is about double the amount of joy of 
winning the same amount. The gain part is concave, while the 
loss part is convex. A loss-aversion gambling example is shown 
in “Take a Bet Again—Intolerance of Loss?”

Prospect Theory: Value Function

Gains

Value

Losses

US$1,000 Win

US$1,000 Loss

FIGURE 4. The prospect theory assumes that people make choices accord-
ing to the value function. The amount of pain felt from losing US$1,000 is 
about double the amount of joy felt from winning the same amount.

Fundamental analysts analyze financial statements, 
management and competitive advantages, competitors, 
and markets to find the intrinsic value of a firm. Fundamental 
analysis is the mainstream methodology for financial 
professionals.

Pick a company with mispriced intrinsic/correct 
value
Critique: subjective guesswork is required for future 
growth and risks.

Technical analysts (chartists) analyze price and volume 
patterns/charts to predict price movement and direc-
tion. Technical analysis is not mainstream among finan-
cial professionals.

Buy low, sell high by analyzing price-chart patterns, 
e.g., head-and-shoulder or double top/bottom rever-
sal patterns.
Technical indicators: moving average, relative 
strength index, moving average convergence diver-
gence, etc.
Critique: the pattern definition is subjective and with-
out rigorous statistical tests. Different chartists have 
different opinions.

Quantitative analysts (quants) analyze financial mar-
kets using complex mathematical and statistical model-
ing, measurement, and research of historical data.

All quantitative risk modeling and algorithm trading, 
and increasingly more hedge funds, are based on 
quantitative analysis.
Critique: many quantitative analyses lack economic 
justifications. History may not represent the future. 
The validity of the analysis is subject to various 
model and data mining risks.

Fundamental Analysis, Technical Analysis, 
and Quantitative Analysis
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The implication of prospect theory to economics, decision 
theory, and business management is profound. However, it is 
also all too easy for researchers to attribute any stock return 
anomaly found against established asset-pricing models to 
behavioral factors. Note that for a purely behaviorally caused 
market anomaly to persist over time, one must assume that 
even smart investors as a group do not learn over time (or gen-
erations) from their psychological mistakes.

It is important to note that most mathematical mod-
els in economics are based on the expected utility theory 
and EMH. For example, the Black–Scholes option pric-
ing model [38] assumes an efficient market, in that stock 
price follows a random walk and there are no riskless arbi-
trage opportunities. (Both Robert C. Merton and Myron S. 
Scholes won the 1997 Nobel Prize in Economics for their 
contributions to option pricing.) Behavioral factors in the 
market are still difficult to quantify and have not led to 
fully developed asset-pricing models that can be tested and 
potentially rejected.

Long-term stock return predictability—efficient  
market or behavioral?
Robert Shiller, a prominent behavioral economist who won 
the 2013 Nobel Prize in Economics the same year as Fama, 
found that long-term stock return is predictable: a higher stock 
price (P) to dividend (D) ratio signals a lower expected return, 
and vice versa [8], [39]. The following time-series regression 
between the portfolio return and the portfolio firm dividend-
to-price (D/P) ratio has significant nonzero coefficient b:

( / ) .R a b D Pt t t1 1f= + ++ +

The efficient market economist John H. Cochrane illus-
trated this well in an op-ed article in the Wall Street Journal at 
the end of 2008 [67], the height of the financial crisis, shown in 
Figure 5. In hindsight, the article turned out to be an accurate 
prediction of the stock market movement.

From the efficient market viewpoint [40], such predictable 
long-term stock returns are caused by time-varying risk pre-
mia. That is, the utility function is time varying. People are 
more risk averse in recessions because they do not have finan-
cial security and demand higher risk premia, i.e., lower stock 

prices and higher expected returns. By contrast, people are 
more tolerant of risks in economic booms, and therefore stock 
prices are high and expected returns (RP) are low. However, 
behavioral economists like Shiller believe that people overre-
act to economic situations, resulting in speculative bubbles in 
booms due to irrational exuberance [41] and recessions due to 
a lack of psychological confidence. Oftentimes, economists in 
both camps agree on the findings from data but dispute the 
cause: whether excess returns are indeed RP or psychologi-
cal mispricing.

Signal and information processing in efficient  
markets and traps in data
In the most purely efficient market, information is processed 
immediately and fully reflected in the price, as shown in 
Figure 6(b). That is, the market moves from one equilibrium to 
another equilibrium in no time. SP researchers are more familiar 

Assume you got a traffic ticket and have the following 
two choices:
1) the bet: flip a coin (equal probability on both sides); 

heads, you pay a US$2,000 fine, tails, you pay 
no fine

2) cash: you pay a US$1,000 fine in cash.
Would you take the bet or pay the US$1,000 cash 
fine? Are you loss averse and risk seeking?

Take a Bet Again—Intolerance of Loss?
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FIGURE 5. The D/P ratio can predict a future seven-year return. (Image 
courtesy of John H. Cochrane, a former president of the American Finance 
Association, updated from [40]. An earlier version of this figure also 
appeared in [67].)
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FIGURE 6. The information processing in the market: (a) it takes time for 
market participants to process complex information and for this information 
to reflect in the price, whereas in a mostly pure efficient market, information 
is processed immediately and fully reflected in the price (b). (This figure is 
modified from a figure in [42]. Image courtesy of John. H. Cochrane.)
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with the information-processing process as shown in Fig-
ure 6(a). They know that it often takes time (however short) 
for market participants to process complex information, 
whether it comes from human behaviors or trading/communi-
cation systems. Such transition processes are not well studied 
quantitatively in finance literature, posing opportunities for SP 
researchers. It is possible to use SP models and methodologies 
to find impulse response to certain events, exploring the 
microstructure of trading systems, especially in HFT systems.

Without ground-truth models and controlled experiments/
studies in modeling economic systems, the validity of SP mod-
els relies on data as well as economic explanations. We note 
several traps in dealing with the model and data as follows.
■ Traps in data. First, survivorship bias: only data from success-

ful companies or funds are used in analysis. For example, 
stock data downloaded from popular websites like Yahoo 
Finance do not include historical delisted companies. Second, 
forward-looking bias: future (test) data are used to estimate 
the model or inform the model construction. Third, selection 
bias: data are selectively reported in a database, e.g., only 
mutual funds/hedge funds performing well report results.

■ Solution: use unbiased data sets, e.g., Center for Research 
in Security Prices (CRSP) data set, a gold standard in aca-
demic research on U.S. market daily stock returns. See [43]
for more details.
When evaluating and interpreting empirical results, 

researchers need to be careful to select meaningful criteria and 
statistical test methodology.
■ Test against alternative models, e.g., can you beat the FF 

three-factor or the random-walk model?
■ Minimum mean-squared errors are not enough. Note that 

asset-pricing model residuals are often considered idiosyn-
cratic risks or the unknown risks that are not captured by 
known factors. The important thing may be whether a model 
properly attributes different types of risks rather than mini-
mizes the residual. The explanatory power of a model should 
be given more consideration depending on the applications.

■ Conduct extensive out-of-sample tests, and prove with sta-
tistical significance that your results are not due to chance.
Again, we caution that out-of-sample backtesting is helpful 

as much as out-of-sample testing in SP and machine-learning 
applications to check model fitness and robustness for known 
data over multiple time periods. However, multiple models may 
have similar fit into a set of data, and the past data may not per-
fectly represent the future in an open economic system. There 
is generally no gold criterion to know the ground-truth model 
without controlled experiments. Indeed, we do not even know 
whether there exists a ground-truth model. The joint hypoth-
esis problem always exists in discovering a model or a theory. 
Therefore, economic justifications are always an integral part 
of economic and business studies.

Basic econometric models,
time-series analysis, HFT, and SP
SP shares many similar terms and mathematics with economet-
rics, even though there are few interactions between the two 

communities. Understanding basic concepts in econometrics 
will help propel SP researchers in their work and allow them to 
appreciate application issues in economics and business.

ARMA
In time-series econometrics [14], [44], the definitions of mod-
els have similar forms to those in SP. An autoregressive (AR) 
process with the first-order, AR(1) process, is defined as

,Y c Yt t t1z f= + +-

AR(p) processes are defined as

,Y c Yt i t i t
i

p

1

z f= + +-
=

/

and ARMA(p, q) processes are defined as

,Y c Yt i
i

p

t i t i
i

q

t i
1 1

z f i f= + + +
=
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=

-/ /

where tf  is white noise with zero mean and variance 2v  and 
[ ] 0E tf f =x  when .t ! x  Note that tf  are indeed unpredict-

able innovations (shocks).
In econometrics, in place of the Z transform used in SP, a lag 

operator L is used to represent time shift. Thus, the ARMA(p, q)
process can be represented by lag operator polynomials as

.L Y c L1 1i
i

p
i

t i
i

q
i

t
1 1

z i f- = + +
= =

e eo o/ /

When observing an economic system, researchers do not 
have control of the innovation or the unexpected shock, ,tf  which 
can be various events, such as a sudden decrease of crude oil 
prices. Meanwhile, there may be other exogenous variables that 
are not uncorrelated white noise, such as the advertising invest-
ment of a company or interest rates set by central banks. Thus, to 
analyze an economic system, the ARMA model needs to be gen-
eralized to the ARMA processes with the exogenous variables 
(ARMAX) model. ARMAX(p, q, r) can be defined as

,Y c Y Xt i
i

p

t i t i
i

q

t i i
i

r

t i
1 1 1
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=
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where Xt represents exogenous variables. A special case of 
the ARMAX model is AR distributed lag models (ARDL). An 
ARDL( p, r) model is defined as

.Y c Y Xt i
i

p

t i i
i

r

t i t
1 1

z h f= + + +
=

-

=

-/ /

A vector AR (VAR) model can be used to examine the inter-
action of a set of n economic variables. VAR(p) is specified as

,y c yt i
i

p

t i t
1

fU= + +
=

-/

where ,yt ,c and tf  are n 1#  vectors and iU  is an n n#
matrix.
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Nonstationary, integrated processes, and unit roots
The subtle differences in econometric time-series model defi-
nitions from SP reveal the different applications and assump-
tions in economics. A main difference is that in SP, the 
distinction between the system/model and the process/signal is 
clear because researchers can actively control or at least simu-
late the signal. In economics, the model is often a characteris-
tic of the time series, which oftentimes can only be observed 
but not controlled or changed. In SP systems, there is no con-
stant term ,c  as the output in a linear SP system is zero with 
zero input. In economic time series, the constant term c actu-
ally defines the stable status of the variable. For example, for 
AR(p) time series, we have

[ ] .Y c

1
E i

i
i

p

1

z

=

-
=

/

A more startling difference is that in SP, only stable pro-
cesses and systems are investigated, i.e., the roots/poles must 
be within the unit circle. However, economic time series are 
often nonstable (the econometrics term is nonstationary or 
evolving). The nonstationarity (i.e., evolution) is often a desired 
property for economic variables. For example, a company 

hopes that its sales grow over time rather than die out over 
time, as does a country in terms of its gross domestic prod-
uct (GDP). The analysis of nonstationary processes generates 
many research problems and tools.

A basic nonstationary evolving process is a random-walk 
process with drift:

.Y c Yt t t1 f= + +-

Apparently, this process has one root on the unit circle, i.e., 
it has a unit root. Its first-order difference is stationary, and 
thus it is a process of integrated order 1, denoted by I(1). An 
integrated process with order d, I(d) process, is a nonstation-
ary (unit-root) process whose dth-order difference is station-
ary. A unit-root process is also called an evolving process. See 
Figure 7 for the U.S. GDP time series and its differences.

The related AR integrated moving-average (ARIMA), 
ARIMA(p, d, q), model is defined as

,Y c Yd
t i

i
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t i t j
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q

t j
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z f i fD D= + + +
=
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=

-/ /

where dD  is the dth difference operator.
The first analysis step for an economic time series is often 

to determine whether it has a unit root, i.e., to conduct the unit-
root test; see “Unit-Root Test.”

Cointegration and causality
As we have shown, in contrast with the signals studied in SP, 
many economic time series are nonstationary integrated processes 
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FIGURE 7. The U.S. GDP time series and its differences. This time series is 
an I(2) process.

AR(1) unit-root (random-walk) test:

, ~ ( , ), ( , ) , .Y c Y N t s0 0Covt t t t t s1
2 6 !z f f v f f= + + =-

The null hypothesis is : ( ) .H 1 unit root0 z =  There is no 
analytical closed-form expression for the distribution of 
z estimate. The Dickey–Fuller test [45] uses empirical 
distribution of the test statistics:

( )
,DF

SE
1

t
z

z
=
-
t

t

where zt  is the OLS estimate.
The augmented Dickey–Fuller test tests unit root for the 

AR(p) process:

,Y c Y Yt t i
i

p

t i t1
1

1

z d fD= + + +-

=

-

-/

for the null hypothesis : ( ) .H 1 unit root0 z =  The test sta-
tistics are the same as above.

Unit-Root Test
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with at least one unit root. The integration order is a property of 
the process and represents a trend of the time series. In SP 
research, researchers do not care about this trend because they are 
working on stationary signals. However, a serious problem occurs 
when examining relationships of multiple nonstationary integrated 
economic time series. 

Consider the following simple linear regression:

.Y c Xt t tb f= + +

When Xt and Yt are both unit-root processes with different 
orders, i.e., when tf  is also a unit-root process, regression 
results and statistics become spurious or meaningless. Regres-
sion results are only meaningful when Xt  and Yt  have a com-
mon trend (i.e., the same integration order) or are cointegrated. 
Clive W.J. Granger’s finding of such spurious regressions [46]
invalidated many empirical economic studies before the 1970s 
and, along with his work on cointegration [47], won him the 
2003 Nobel Memorial Prize in Economic Sciences. For coin-
tegrated time series, there must exist a linear combination of 
them that is stationary. The Engle–Granger test [47] applies 
the Dickey–Fuller unit-root test to examine the cointegration 
of multiple time series.

The time-series model helps capture correlations among 
time series but does not find causal relationships. In SP, inputs 
cause outputs because information flows are obvious in a phys-
ical system. However, in analyzing economic data or any data 
from nonphysical systems, such as a social network, causal 
relationships are not obvious and cannot be taken for granted. 
Yet identifying such causal relationships is of great importance 
to discover information hidden in the data and is necessary for 
decision making in many big data applications.

The causality relationship is always difficult to define and 
quantify. Granger gives a definition from the time-series per-
spective [48], [49]. If we agree that the cause must occur before 
the effect, the Granger noncausality (or strong exogeneity) can be 
defined if the following equation holds for the conditional mean:

, , ( ), .Y Y X X t Y Y1E Et t t t t1 1g- =+ +66 @@
If we further agree that for Xt  to be the cause of ( ),Y t 1+  it 

must contain unique information about ,Yt 1+  then Xt  is said 
to Granger-cause Yt 1+  if for some ,A

, ,P Y A X P Y A Xt t t t t t1 1! !X X= -+ +^^ hh
where P  is the probability and tX  represents all knowledge in 
the universe available at time .t Note that Granger causality is 
only one of many definitions on causality, but it is statistically 
testable using a time-series model (VAR or ARDL model), 
making it instrumental in causality analysis.

Generalized AR conditional heteroskedasticity models
As we already discussed, volatility is a fundamental risk quan-
tity that needs to be estimated in finance, especially in risk 
modeling and option pricing. As has been observed, the histor-
ical volatility of a time series changes over time. See Figure 8
for S&P 500 daily prices and returns.

The time-varying nature of volatility is called heteroskedastic-
ity. Robert F. Engle invented the AR conditional heteroskedas-
ticity (ARCH) model to capture the time-varying dynamics 
of volatility, winning the 2003 Nobel Memorial Prize in Eco-
nomic Sciences. The qth order ARCH(q) model for a zero-
mean normally distributed asset return time series, ,Yt  with 
time-varying volatility tv is specified as

~ , ,Y N 0t t
2v^ h
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q
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1

2v a a= +
=

-/

It is indeed an MA model for time-varying variance.
Adding an AR term for ,tv  the generalized ARCH 

(GARCH) model [50], GARCH(p, q), is defined as
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Many variations of the GARCH model have been subsequent-
ly developed and widely used in risk models, high-frequency 
volatility models, large-scale multivariate ARCH models, and 
derivative pricing models [51].

Relationships between SP and econometric models
The time-series analysis has achieved great success in eco-
nomics, finance, and business studies. It is encouraging for SP 
researchers, as the time-series models and basic concepts are 
essentially similar to SP models. Indeed, the Granger causali-
ty concept was partly inspired by Nobert Wiener [48], [52].
Many other models used in econometrics [14], [53], including 
spectrum analysis, Kalman filtering, Markov models, maxi-
mum likelihood and Bayes methods, particle filtering, and 
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FIGURE 8. The S&P 500 daily prices and returns (2000–2016). When the 
price is low, the return volatility is high.
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sequential Monte Carlo methods, are similar to those in SP 
as well.

However, researchers need to note major differences when 
applying these models to economic and finance applications.
1) As discussed previously, model specification is more 

important in economics and finance than in SP applica-
tions, because model specification is often not so obvious 
and testable in economics as it is in SP and the joint 
hypothesis problem always exists.

2) Statistical analysis and tests are always necessary for 
model verification and applications. Just an estimated 
number is not enough. Distributions and confidence inter-
vals of parameter estimates need to be analyzed. Equally 
important is the distribution of the error terms, which often 
represent money and risks in financial decisions.

3) In economic applications, researchers often operate on 
nonstationary time series, and the causal relationships are 
not obvious and may be difficult to test.

4) In empirical studies, data are noisy and the SNR is low 
because there are often too many factors (interferences) in 
an economic system. For example, the Sharpe ratio of the 
U.S. market S&P 500 index is around 0.4, which roughly 
translates to an SNR of -8 dB.

5) The data traps discussed previously always exist in eco-
nomic studies. Application-dependent conceptual justifica-
tions, alternative model testing, and out-of-sample tests are 
always necessary because, theoretically, multiple models 
could fit finite data well.

6) Although stock price forecasting and trading strategies 
using SP tools are attractive, these are probably the 
most difficult tasks because the price itself is, after all, a 
signal for resource allocation and is sensitive to all mar-
ket actions, trading strategies, and information. The 
efficient market concept is a logically good approxima-
tion of information processing in the financial market. 
Conversely, many other economic and business time 
series and processes, such as production, sales, earn-
ings, investments, and so on, may be easier to forecast 
and model.

Examples of applying SP to market data
In this section, we provide some examples of applying SP to 
economics, finance, and marketing studies based mainly on 
our own experiences. As such, they are only illustrative and by 
no means comprehensive. These examples, in our view, repre-
sent a few broader cutting-edge directions to which SP can 
contribute significantly.

Market evolution analysis using SP models
In financial markets and general economic systems, market 
participants can only passively observe the system input–
output dynamics but are not able to manage input factors, as 
we can often do in SP systems. For example, a macroeconom-
ic event, such as unemployment or interest rate change, as a 
market input can move the financial market in a certain way, 
but market participants cannot actively design and use such 

inputs to achieve desired market movement (output) unless 
they are central bankers or policymakers. Even policymakers 
are restricted in their power of managing input factors and 
cannot change many inputs, such as consumer confidence. In 
contrast, market participants in commercial product markets 
can actively manage many market inputs, such as a firm’s 
marketing budget, product pricing, and research and develop-
ment (R&D) investment, to achieve desired market outputs, 
such as sales targets. SP models are therefore poised to be 
useful in these types of product marketing research, e.g., to 
analyze and model market dynamics and optimize marketing 
strategies and investments. We present a market evolution 
analysis as an example to demonstrate the use of SP methods 
in marketing research.

In a commercial product market, when using a time-series 
model for market dynamics, first we would be able to observe 
the output of the market response [54]. For a company, among 
the most important observable market output time series is 
product sales. Evolving sales are always desirable, i.e., sales 
are a unit-root process, not a stationary process. However, 
many causes can lead to evolving sales, and managers need to 
know how to maintain sales performance. Meanwhile, mar-
ket inputs, such as advertising, price cuts, promotions, R&D, 
and competitor investments, may affect market outputs, such 
as sales. Managers can indeed actively manage their market-
ing budgets and decisions. They search for market opportu-
nities in which positive effects of a one-time investment can 
persist at least partly (i.e., have a hysteresis effect) and hope 
that the negative effect of a price war or product defect is short 
lived and has no hysteresis. Accurately understanding market 
input–output relationships is critical for managers to make the 
right investment decisions and take real-time actions to capture 
fleeting market opportunities.

For simplicity, we use the advertising-sales relationship as 
an example of the general marketing and business input–output 
dynamics. To clearly demonstrate basic concepts, first-order 
models are used whenever possible. Our first objective is to dis-
criminate the different market dynamics, as shown in Figure 9.

Time
0

Performance Output

Marketing Input

ρInitial
Impact Persistent

Effect

Performance Output

Instantaneous
Effect

t = 1 t = 2

FIGURE 9. The different market input–output dynamics.
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To identify market output characteristics, conventionally the 
following first-order time-series model is used to test whether 
the sales St is evolving (a unit-root test with null hypothesis 

: ):H 10 z =

.S S et t t1n z= + +-

When the sales St  is evolving, managers need to know the 
role of the advertising investment At in creating and supporting 
sales evolution to budget advertising investment. The following 
market input–output model is established given known :At

.S c S A et t t t1a b= + + +-

Note that the sales St and advertising At are monetary value 
time series. To examine whether the sales evolution is intrinsic 
(i.e., a favorable market feature) or supported by advertising 
(i.e., a less favorable market feature with which continuous 
advertising needs to be budgeted), an intrinsic market evolution 
(IME) test is proposed [10] to test null hypothesis : .H 10 a =

If H0 is rejected, the market is intrinsically stationary; i.e., 
a short-term advertising investment has a short-term instanta-
neous effect on sales. Sales evolution needs to be supported by 

the persistent advertising spending. In SP language, the system 
function has no poles on or outside the unit circle. The unit root 
(pole) of the output S(Z) is indeed generated by the unit root of 
input A(Z). In reality, when advertising of a product increases, 
sales increase, but when advertising is withdrawn, sales revert 
to the original level. Marketing managers need to evaluate the 
investment return to maintain the most profitable sales level.

Conversely, if H0 is not rejected with the IME test, the mar-
ket is inherently evolving. A short-term advertising investment 
will have a long-term persistent effect on sales. In SP language, 
the system function itself has poles on or outside the unit cir-
cle. The unit root (pole) of the output S(Z) is indeed generated 
by the intrinsic market dynamic. Such a phenomenon is not 
common in SP systems, and researchers may question why it 
is important to identify intrinsically evolving markets. In the 
economic and business world, an intrinsically evolving mar-
ket indicates a more favorable business environment in which 
a short-term advertising campaign drives sales up; when the 
advertising is withdrawn, sales maintain their level or even 
continue to grow. Such a phenomenon could be caused by the 
intrinsically superior product characteristics that retain loyal 
customers and attract new customers by word of mouth, or a 
growing emerging market yearning for such products. Short-
term advertising only acts as ignition. When an intrinsically 
evolving market is identified, managers can increase their 
marketing campaign budgets to capture such opportunities in 
time [12].

In addition to identifying the market nature, SP models 
build budgeting strategy. For example, a simple percentage 
budgeting model is

( ) ( ( )) ( ).A t f S t S t1 1bc= - = -

That is, the marketing budget is based on sales of the previous 
period. By this budgeting model, the optimal budgeting 
sequence can be quantified according to various constraints 
and costs to support the sales evolution in an intrinsically sta-
tionary market. Figure 10 shows an example of various adver-
tising budget effects with different bc  given . .0 8a =  More 
detailed methodology, analysis, and applications are available 
in [10]–[12].

Real-world marketing dynamics can be more sophisticated. 
With possible lag effects of market inputs and outputs and mul-
tiple variables, multivariate [12] and higher-order models [11]
can be built based on these concepts. With more complexity in 
data and model analysis, SP model-based econometric analysis 
can certainly play an instrumental role in quantitative market-
ing and business research.

Time-varying risk models based on Kalman  
filtering and Gaussian processes

Time-varying systematic risk analysis  
based on Kalman filtering
In financial markets, the systematic risk is represented by the 
market risk beta in the CAPM or the multifactor betas in the FF 
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FIGURE 10. The different sales effects of percentage advertising bud-
get practices with different bc  given . ,0 8a =  i.e., in an intrinsically 
stationary market. (a) The sales die out without maintaining advertising. 
(b) The sales still die out at a slower rate (along with the advertising) with 
inadequate advertising percentage budget. (c) The continuous advertising 
budget as a percentage of sales induces and supports the sales evolution. 
(d) The continuous advertising budget as a larger percentage of sales 
leads to increasing sales (and subsequent increasing advertising).
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three-factor model, including market beta, size beta, and value 
beta. In practice, the ordinary least squares (OLS) time-series 
regression is used to estimate beta by assuming constant beta 
over the observation period. Prior research has shown evidence 
of time-varying beta [55]. The OLS time-series regression does 
not account for any significant economic event that could affect 
systematic risks of an asset.

The piecewise mean-reverting (PMR) model is based on 
the observations of the FF three-factor systematic risk behav-
iors in empirical tests. The betas tend to jump with relevant 
significant events and revert to their means with different 
rates depending on the type of events. The reverting rate indi-
cates how quickly the systematic risk of a stock recovers from 
a sudden change. For the CAPM model, the PMR model con-
sists of a system equation that represents the PMR dynamic 
of the hidden time-varying variable beta and an observation 
equation of the stock return given by the CAPM. The system 
equation is

( ) ,z u1t t t t t t t1b z b z b p= - + + +-r

where br  represents the average b  over time and tz  is the 
mean-reverting rate in the range of [0,1]. The larger is ,tz
the slower is the mean reverting. The jump process is based 
on the Bernoulli random variable ,zt and a zero-mean nor-
mally distributed variable, ~ , ,u N 0t u

2v^ h  represents the 
amount of jump, i.e., zt takes the value of 1 with a given 
probability p and the value of 0 with probability ;p1-

~ ,N 0t
2

p vp^ h represents a random perturbation of .b  The 
observation equation is simply the CAPM, i.e., the asset 
return time series

( ) .R r R r,t f t t M t f ta b f- = + - +

This model assumes that significant economic events can 
lead to the abnormal changes in beta. A modified Kalman fil-
ter can be used to estimate and track the PMR beta [56], [57].
In addition, the methodology can be extended to multifactor 
models, such as the FF three-factor model [57].

As previously discussed, model validation is always an 
open issue. To achieve validation, researchers can compare the 
model with alternative models and try to obtain the real-world 
data to examine whether betas change when major events 
occur. However, such case studies are confirmatory rather 
than conclusive.

Gaussian process regression stochastic volatility model
Volatility modeling is one of the most active research areas of 
financial time series. With the recent development of Bayesian 
nonparametric modeling in SP and machine-learning commu-
nities, flexible tools and modeling methods, such as the 
Gaussian process (GP) [58]–[60] and copula process [61], can 
be applied to model financial data volatility.

By combining the GP state-space modeling framework 
with the stochastic modeling concept [62], a GP regression 
stochastic volatility (GPRSV) model can be built to solve the 

problem of modeling and predicting time-varying variance of 
financial time-series data. In GPRSV models, a GP prior is 
placed over the state transition function, and the state transi-
tion function is a random function sample from the GP. It is 
therefore not limited to a fixed linear AR form, as in GARCH-
type models and pure stochastic volatility (SV) models. For 
a zero-mean normally distributed asset return time series, Yt,
with time-varying variance ,t

2v  a GPRSV model is represented 
by the following set of equations:

,

( ) ,

~

~ ( , ),

,

( ( ), ( , )),

log

a Y
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E

where n  is the mean of ,Yt at is the innovation of the return 
series, vt is the logarithm of variance t

2v  at time ,t and tf

and th are independent and identically distributed zero-mean 
standard Gaussian distributed white noises. A well-known 
asymmetric effect is called financial leverage, representing a 
negative correlation between today’s return and tomorrow’s 
volatility [63], [64]. This asymmetric leverage effect is cap-
tured by the correlation t  between te  and .th  The unknown 
parameters x  and t  are to be estimated. The hidden state 
transition function f is assumed to follow a GP, defined by 
the mean function xm^ h and covariance function ( , ).k x xl
The parameters in xm^ h and ( , )k x xl  are called hyperparam-
eters. For example, if the mean function is defined as 

,m x cx=^ h  then c  is a hyperparameter. The mean function 
xm^ h  can encode prior knowledge of system dynamics. 

Figure 11 shows the graphical model representation of a 
GPRSV model.

Particle-filter-based Markov chain Monte Carlo learning 
methods can be used to efficiently estimate the GPRSV model 
and make volatility inferences. The GPRSV model demonstrates 

f (v0)

v0 … ...

f (v1) f (vt–1)

v1 v2 vt

a0 a1 a2 at

FIGURE 11. A graphical model representation of a GPRSV model of time-
varying volatility/ :at  the observation variable at time t, :vt  the hidden vari-
able (logarithm of volatility), and :ft  the transition function sampled from
a GP. The thick horizontal line represents fully connected nodes.
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superior volatility prediction performance with both simulated 
and empirical financial data compared with alternative GARCH 
and SV models. The previous examples show that SP can con-
tribute to investigating time-varying characteristics of finance 
and economic systems.

Big data analysis of financial data based on SP
Returning to stock returns, we present some empirical statisti-
cal facts to illustrate the potential information that can be 
sifted from financial big data.

Does the path matter in momentum patterns?
Stock price momentum is a well-known phenomenon in 
which the stock return continues its direction in the short run. 
The momentum factor is included in the Carhart four-factor 
model [25]. From an SP perspective, the momentum is a sim-
ple two-point pattern. A natural question is, would multiple 
point patterns (paths) predict the stock return behavior?

The data set is CRSP monthly price data from 1965 to 
2012. The CRSP data set is the gold standard in historical 
stock return research. To compare stock returns of different 
stocks, all stock returns are normalized using the methodol-
ogy in [6]. Ten preset three-point price patterns are construct-
ed. Specifically, ten groups of three-point price patterns in the 
data set are created according to their correlation with each of 
the ten preset patterns, as shown in Figure 12. The correlation 
similarity threshold is 0.95. The subsequent one-month stock 
returns conditional on each of the ten three-point patterns 
are analyzed. The null hypothesis H0  is that the mean con-
ditional return of the subsequent month is zero, i.e., the same 
as unconditional returns. Both a nonparametric Kolmogorov–
Smirnov (KS) test and parametric t-test are conducted. Table 1
summarizes the results.

There are more than 2.8 million three-point patterns. The 
means of all stock returns are normalized to zero. As can be 
seen, eight of ten conditional returns have statistically significant 
means with different directions. The p-values are reliable given 
the large number of samples. This statistical fact shows that in 
historical stock return data, 1) the three-point patterns contain 
information about future returns and 2) the path does matter in 
addition to the two-point momentum pattern.

That said, the results do not necessarily mean that one can 
profit from these patterns because potential constraints, such 
as liquidity and transaction costs, exist to prevent trading prof-
it, and the results are just a summary of historical data. Rather, 
these results along with the results presented in [6] show that 
fine structures exist in stock returns and markets (more than 
traditional economic research indicates) and that SP can pro-
vide powerful analytical tools.

Can the past inform about the future?
All theories and models are based on historical data with the 
assumption that the past can represent the future. In SP, 
researchers do not often ask the question of whether the past 
can inform about the future because they are confident about 
natural physical laws. However, in financial markets, people 
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FIGURE 12. The ten preset three-point patterns: five with up direction with 
different paths and five with down direction with different paths.

Table 1. The statistical analysis of historical stock 
returns conditional on ten three-point patterns.

KS Test t-Test

Pattern Matches Mean Std H p H p

All 2,855,470 0.000 0.996 0 1 0 1.000

1 189,760 −0.016* 0.969 1 0 1 0.000

2 333,443 0.003 0.937 1 0 0 0.067

3 445,424 0.004* 0.916 1 0 1 0.021

4 362,097 0.010* 0.937 1 0 1 0.000

5 170,181 0.007* 0.938 1 0 1 0.002

6 168,005 −0.001 0.975 1 0 0 0.598

7 337,782 0.011* 1.051 1 0 1 0.000

8 435,628 0.012* 1.106 1 0 1 0.000

9 306,364 −0.032* 1.076 1 0 1 0.000

10 163,672 −0.034* 1.012 1 0 1 0.000

Null hypothesis H0: the mean return is not significantly different from zero. The null 
hypothesis is rejected in eight of ten patterns (significant values are marked by an 
asterisk under .0 05a = ).
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have always been skeptical about models and statistical results 
summarized from historical data, especially so after the 2008 
financial crisis. Some people have even gone so far as to say 
that the past cannot inform about the future, and therefore 
models and statistics coming from historical data are not useful 
or trustworthy.

In the following, we show some interesting empiri-
cal results as a small step forward to answer this question. 
The stock daily returns of Russell 3000 
component stocks from January 1995 to 
September 2014 are examined. The Rus-
sell 3000 is used because those stocks are 
relatively liquid and the price data are a 
good reflection of real market transac-
tions. Note that the component stocks of 
the Russell 3000 are changing over time. 
The test period is set to about four years from January 2011 
to September 2014. Starting from the first trading day of 
2011, the return distribution of the historical data of the past 
16 years is used to predict the return distribution of the next 
day. We want to examine overall how accurate it is to use 
the historical stock return distribution as a representation 
of the future distribution. The following procedure is used 
to examine the differences between historical distributions 
and future distributions.

At time t, we use all historical daily returns of the preceding 16 
years to create a distribution f. We then define K equal probabil-
ity quantile bins , , ,Q k K1k f=  with bin (stock return) bound-
aries , .q qK1 1f -  Apparently, ( ) / , .P R Q K t1k 6! #x=x ^ h  If 
the future distribution is the same as the past distribution, we 
can expect that at time t, the returns of the 3000 stocks will 
fall into each bin uniformly, i.e., ( ) / .P R Q K1t k! =^ h  The 
chi-square test can be conducted to test this hypothesis. We 
aggregate all bin counts and plot two scenarios in Figure 13
with 50 bins, i.e., .K 50= Figure 13(a) shows the performance 
of the past unconditional distribution. Figure 13(b) shows the 
performance of the past distribution conditional on the preced-
ing ten-day patterns.

The bar charts should be flat if the past distribution and 
the future distribution are the same. Given the large number 
of samples, by chi-square tests, we can statistically reject 
the null hypothesis that the future distribution is the same 
as the past distribution for the testing periods. Note that 
both distributions underestimate tail risks. The statistical 
test results justify people’s concern that the past data do 
not represent the future. However, as Figure 13 shows the 
past distribution does contain some information about the 
future, e.g., the mean values. In addition, the past distri-
butions conditional on the preceding ten-day price pattern 
contain more information about the future than the uncon-
ditional past distributions.

These findings from the data are encouraging for SP 
because they indicate that sophisticated structures contain-
ing information in data need to be identified and understood. 
Meanwhile, these findings also pose challenges because 
hypotheses and systems in these economic data are different 

from those in typical SP applications. Related SP problems and 
solutions for such big data and modeling applications need to 
be carefully formulated.

Other related works in SP
We have mainly focused on the literature in economics and 
business research and provided the SP understanding on the 
literature. Note that there have been three special issues on SP 

for finance [1]–[3]: one in IEEE Signal 
Processing Magazine in 2011, and the 
other two in IEEE Journal of Selected 
Topics in Signal Processing in 2012 and 
2016. Readers can find more SP examples 
there, especially on portfolio and risk anal-
ysis, HFT, and algorithmic trading. When 
going through SP technologies, readers can 

focus more on the economic problem formulation and evalua-
tions of solutions with the concepts discussed in this tutorial. 
Also, an overview of business analytics related to SP can be 
found in [65] and [66], which provide perspectives on system 
modeling of a business.

Conclusions and thoughts
In this tutorial, we present an introduction to some fundamen-
tal economic theories that govern financial markets and peo-
ple’s economic decisions, including expected utility, RP, 
portfolio theory and asset-pricing models, EMH, prospect the-
ory, and behavioral economics. We also introduce basic 
econometric tools and theories from an SP perspective.

We emphasize that when analyzing data and building eco-
nomic models, researchers should keep in mind existing eco-
nomic theories and hypotheses. The burden of proof is high 
when findings contradict or are inconsistent with existing 
theories. For example, any price anomaly found in financial 
markets needs to be carefully examined because it may con-
tradict existing models and the EMH and could be a chance 
result. It is always difficult to predict prices because these 
are usually determined by market equilibrium no matter how 
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FIGURE 13. The bar charts should be flat if the past distribution and the 
future distribution are the same.

All theories and models 
are based on historical 
data with the assumption 
that the past can 
represent the future.
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unreasonably they may seem. Excess economic benefits are 
associated with risks.

Time-series models, system models, and statistical mod-
els are certainly useful tools to analyze economic data. SP 
researchers can try to formulate the economic problems into 
filtering, array SP, impulse responses, finite-state machine, 
Markov models, and state-space models. Whenever a lagged 
transform seems to be useful, researchers can consider the Z
transform, Laplace transforms, and spectral analysis, which 
may provide additional insights into economic systems and 
problem solutions.

Caution also needs to be exercised when formulating 
input–output relationships and objective functions for an 
economic system. In many cases, humans are only observ-
ers of the system and have little power to change the input, 
e.g., consumer price indices, or the output, e.g., sales or GDP. 
Meanwhile, humans are oftentimes also part of an economic 
system, and any human actions or predictions may change the 
system or system equilibrium. For example, a buying order 
for a stock may inevitably change the price of the stock. There 
are times when humans are indeed actively responsible for 
the input of the system, such as an investment budget decision 
on R&D or marketing for a company. The different nature 
of inputs and outputs shapes not only problems and models 
but also the methodology to the solution and interpretation 
of results.

In terms of mathematical formulations and modeling tools, 
many similarities exist between SP and econometrics. How-
ever, the weaknesses of SP methodology come from what is 
often taken for granted in SP, such as the knowledge of physi-
cal systems, ground-truth data, controlled experiments, or 
the confidence in simulated data. Mean-squared errors or 
variances are often good statistics in SP performance evalu-
ation but are not sufficient in economic and business studies. 
Indeed, when making investment suggestions and decisions, 
i.e., putting one’s money to bet on a model, researchers need to 
understand more of the probability and statistical significance 
of their predictions, estimation, data samples, model validity, 
etc. They need to understand causal relationships and examine 
all possible alternative models and hypotheses about the data 
because an accurate mechanism of a social or economic sys-
tem is always unknown.

In the big data era, there is a wealth of data analysis and 
processing work for which SP tools are useful, e.g., denoising 
and data cleaning, feature extraction, pattern detection, track-
ing, and abnormality detection. Note that traditional econom-
ics are more about equilibrium, and SP can play a big role 
in understanding the process and transition patterns to reach 
equilibrium from data analysis.

Indeed, numerical data are at the core of SP. SP is promis-
ing in exploring economic big data to learn information better 
and faster and in finding sophisticated subtle structures within 
data. Researchers need to be careful not to be biased by the 
data at hand.

As SP research and applications are expanding, SP research-
ers can broaden their vision and take advantage of the meth-

odologies and advancements in econometrics, economics, and 
statistical methods for SP problems. For example, game theory 
has been an active research tool in communication systems 
and resource allocation. More cross-pollination between SP 
and economics will produce fruitful results in research as well 
as practical applications affecting people’s daily lives.
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D
evelopments in immersive audio technologies have been evolving 
in two directions: physically motivated systems and perceptually 
motivated systems. Physically motivated techniques aim to repro-
duce a physically accurate approximation of desired sound fields 

by employing a very high equipment load and sophisticated, computa-
tionally intensive algorithms. Perceptually motivated techniques, howev-
er, aim to render only the perceptually relevant aspects of the sound 
scene by means of modest computational and equipment load. This arti-
cle presents an overview of perceptually motivated techniques, with a 
focus on multichannel audio recording and reproduction, audio source 
and reflection culling, and artificial reverberators.

The spatial sound scene
Since Alan Blumlein introduced the original concept of stereophonic 
recording using a pair of figure-eight microphones, spatial sound tech-
nologies have steadily grown in sophistication, complexity, and capabili-
ties. Delivering a convincing illusion of a desired sound field requires 
finding solutions to several problems at the intersection of physics, psy-
choacoustics, and engineering. First, the relevant sound-field information 
needs to be identified, and methods for its acquisition devised, which 
amounts to designing an array of microphones. Then, methods for ren-
dering the identified spatial audio information in some optimal way need 
to be developed. This requires the design of a playback system, including 
a hardware configuration and the necessary signal processing algorithms. 
If the spatial sound field is virtual, i.e., not generated by an actual acous-
tic event, the required playback signals need to be synthesized rather 
than recorded. To that end, an accurate approximation of the desired 
sound field would ideally be computed and then recorded using a virtual 
microphone array, to be played via the corresponding actual loudspeaker 
array. This process is referred to as auralization. However, due to the 
very high numerical complexity of sound-field simulation methods, the 
auditory perspective is typically first rendered via level differences 
between pairs of loudspeakers and then overlaid by room effects. The 
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Hüseyin Hacıhabiboğlu, Enzo De Sena, Zoran Cvetković,  
James Johnston, and Julius O. Smith III

An overview of spatial-audio techniques 
based on psychoacoustics

past nine decades of spatial audio reproduction and synthesis 
have seen innovations and developments in all these directions.

Generating the experience of a spatial sound scene can be 
achieved in a number of ways. Comparing different methods, 
at one extreme there are binaural techniques [1], which pro-
vide a convincing experience over two channels by presenting 
stereophonic audio cues, i.e., interaural time, level, and spectral 
differences, which are known as ear signals. Binaural presenta-
tions work best over headphones. However, with crosstalk can-
celation [2], they can also be successfully used with a pair of 
loudspeakers, although the effect is confined to a very narrow 
listening area. For a listener who is not static, the auditory illu-
sion can be maintained via head-tracking mechanisms combined 
with the real-time adaptation of the binaural signals. The advent 
of virtual and augmented reality systems has recently revived 
interest in binaural systems. However, some inherent problems 
of binaural audio, such as individualization, remain [3], limiting 
the spatial quality of the auditory experience they provide.

At the other extreme, there are systems that aim to recon-
struct an accurate physical approximation of a sound field. 
Notable examples include wave field synthesis (WFS) [4]
and higher-order Ambisonics (HOA) [5]. WFS is based on 
the Huygens principle and Kirchhoff–Helmholtz integral, 
which together state that the sound field due to a primary 
source can be exactly synthesized by infinitely many second-
ary sources on the surface enclosing a reproduction volume. 
Such a system can achieve a spatially extensive listening area 
and can be used in large auditoriums, such as film theaters. 
Ambisonics is based on sound-field approximation using 
its spherical harmonics at the center of the listening area. 
HOA is capable of achieving results comparable to WFS 
close to the center of the reproduction rig. While both WFS 
and HOA provide elegant solutions to the spatial recording 
and reproduction problem, they have high equipment load 
requirements, which can reach several hundreds of carefully 
positioned loudspeakers. For this reason, their application 
domain has so far been confined to specialist high-end sys-
tems. WFS and HOA can also run on systems with a more 
practical equipment load by including perception-inspired 
corrections. Comprehensive reviews of WFS and HOA have 
recently been published [6], [7].

In between these two extremes are systems with five to ten 
channels that are suitable for use in small to medium-size lis-
tening rooms. Such systems do not possess a sufficient number 
of channels to physically reconstruct a sound field in a wide 
listening area, nor are they capable of accurately reconstruct-
ing the ear signals for listeners in multiple locations. Therefore, 
they must rely to a large degree on perceptual effects similar 
to those used for binaural systems to generate the illusion of a 
desired sound field within not overly confined areas.

As with recording and reproduction technologies, there are 
many techniques for sound-field simulation. At one extreme, 
there are physically motivated methods, which aim to calcu-
late an approximate solution of the wave equation. For that 
purpose, several numerical methods have been developed that 
achieve a very high level of accuracy. However, they typically 
have prohibitively high computational costs. Examples include 
the finite-difference time domain, finite element method 
(FEM), and boundary element method (BEM) [8]. While these 
approaches lend themselves to parallelization, the associated 
computational cost is still too high for real-time operation at 
interactive rates and on low-cost devices.

Conversely, there are methods that try to render only some 
higher-level perceptual effects. These methods, called artifi-
cial reverberators, require only a fraction of the computational 
load associated with physically motivated room simulators and 
typically aim to mimic only certain characteristics of the tail of 
typical room impulse responses, such as modal density, echo 
density, and timbral quality [9]. They do not explicitly model 
a given physical space but, rather, are used to obtain a pleasing 
reverberant effect and have been widely used for artistic pur-
poses in music production.

In between these two extremes are methods that aim to ren-
der a certain physical sound scene, but by modeling only its 
most perceptually relevant aspects. Full-blown room auraliza-
tion systems typically aim to render each and every reflection 
and diffraction up to a given order for each source [10], [11].
More recent methods achieve remarkable computational sav-
ings by accurately rendering only first-order reflections, while 
replacing higher-order reflections with their progressively 
coarser approximations [12]. Further computational savings are 
possible by eliminating sources whenever they are inaudible, a 
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process referred to as audio source culling. This article is con-
cerned with spatial audio systems and methodologies that sub-
stantially rely on psychoacoustics.

Spatial auditory perception
The psychophysics of spatial hearing has been an active 
research area for the past century. Most of the information 
given in this section has been thoroughly reviewed by Blauert 
in [13]. Interested readers are referred to this excellent volume 
for more information and an extensive set of further referenc-
es. The primary mechanism humans use to localize sound 
sources in the horizontal plane is based on the differences 
between the signals received by the two ears. Due to the spa-
tial separation between the ears, the sound wave generated by 
a sound source reaches the two ears with a different delay, 
called the interaural time difference (ITD). Moreover, the 
sound wave is scattered by the head, causing the level of the 
signal at the ear farther away from the source, the contralateral 
ear, to be reduced in comparison with the level of the signal at 
the ear closer to the source, the ipsilateral ear. This level dif-
ference is called the interaural level difference (ILD).

The interaural time delay for a typical human head can vary 
between ±750 sn  in the acoustic free field. Humans can detect 
ITDs as low as 10–20 sn  at the front direction, corresponding to 
about 1° in the horizontal plane. Similarly, the ILD is frequency 
dependent and can be as high as 21 dB at 10 kHz. Sensitivity to 
changes in the ILD is also frequency dependent. For instance, 
for pure tones, it varies between 0.5 and 2.5 dB. In contrast with 
the ITD, which is the primary localization cue at low frequen-
cies, ILD cues are more important in sound source localization 
at higher frequencies. This is due to the low level of scattering at 
low frequencies when the wavelength is close to or larger than 
the size of the head. ITD and ILD cues also change with the 
distance of a sound source and the size of the head.

Note that ITD and ILD pairs do not uniquely specify the 
source direction. For the purpose of illustration, if we assume a 
spherical head, binaural cues will be identical for sound sourc-
es placed on cone-shaped surfaces at each side of the head. 
These surfaces are called cones of confusion. In the horizon-
tal plane, sources on the conic section that is the intersection 
of the horizontal plane with the cone of confusion will have 
front–back ambiguity. Humans can typically resolve this ambi-
guity by small head movements.

The elevation of a sound source is perceived based primar-
ily on the spectral shaping of its signal that occurs as a result of 
the scattering of the sound around the head. This spectral shap-
ing depends on the elevation in a manner determined by the 
sizes and shapes of the pinnae, head, and torso. Consequently, 
the frequency content of the sound itself also affects the per-
ception of the elevation of its source.

Subjective localization of sound sources involves a significant 
level of uncertainty. Localization blur is the smallest change in 
the direction of a source that will result in a change in its per-
ceived direction. For sources in the horizontal plane, localization 
blur is generally less than around 10°. For sources in the median 
plane, localization blur on the order of 20° can be observed. 

A related concept is locatedness, which refers to the perception 
of the spatial extent of a sound source. This is an important attri-
bute because the center of mass of a sound source can be local-
ized accurately, yet the source can still be diffusely located. Two 
other measures of spatial resolution of hearing are the minimum 
audible angle (MAA) and minimum audible movement angle 
(MAMA). The MAA corresponds to the minimum change in the 
direction of a static source for a listener to discriminate it as being 
to the left or to the right of the original direction. The MAMA, 
on the other hand, is a measure of spatial resolution for moving 
sources; it quantifies the smallest arc that a moving sound source 
must travel to be discriminable from a stationary source [14].

The perception of the distance of a sound source is both 
less reliable and less well understood than the perception of the 
direction of a sound source. Several cues affect the perception 
of distance. Among these, intensity is the only cue inherently 
related to the sound source and is also the only absolute cue. 
The other distance cues are related either to the environment 
(the direct-to-reverberant energy ratio and lateral reflections), 
the physical properties of the listener (e.g., auditory parallax), 
or cognitive aspects (e.g., familiarity) [15].

An interesting property of distance perception is the over-
estimation and underestimation of distance at different ranges 
and for different sounds. Apparent distances of sources far 
away from a listener are underestimated, and those closer than 
around 1–2 m are overestimated [15]. Familiarity, which is a 
cognitive cue related to prior exposure to and knowledge of the 
characteristics of the sound source, also has a similar effect. 
For example, the distance of whispered speech is underesti-
mated, while that of shouted speech is overestimated.

An important capability of the human auditory perception 
mechanism lies in its ability to localize sources in reverberant 
environments such as rooms and other enclosed spaces. This is 
made possible by suppressing reflections that come immedi-
ately after the direct sound. When a broadband impulse and a 
delayed copy of it are presented from different directions with 
a short delay of less than 1 ms in between, a single auditory 
event is perceived at a direction between the directions of the 
two sources, gradually shifting toward the leading source as the 
lag in the time of arrival increases. (An auditory event is defined 
as an event perceived by a listener typically, but not necessar-
ily, in response to a sound event.) This effect is known as sum-
ming localization, and both sources contribute to the perceived 
direction of the auditory event. When the delay is between 1 and 
5 ms, a single fused auditory event close to the leading source 
can be heard. Within this delay range, the presence of the lag-
ging source is audible since it changes the timbre of the auditory 
event, but its direction cannot be easily discriminated. Above 
5 ms, the broadband click and its echo are perceived as distinct 
sound events. The time delay above which two distinct events are 
heard is called the echo threshold. While the classic demonstra-
tion of these effects involves broadband click pairs, different sig-
nals will have different echo thresholds. For example, the echo 
threshold can be as high as 20 ms for speech and music signals.

The effect that the direction of the auditory event depends 
predominantly on the leading source is known as localization 
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dominance, whereas the effect that a single auditory event is 
perceived when there are two sound events is called fusion. The 
effect that the discrimination of the direction of the lagging sound 
source is suppressed is termed lag discrimination suppression.
These three are collectively known as the precedence effect [16].

Another important binaural cue is interaural coherence (IC), 
which is a measure of the coherence of signals received by the 
two ears. IC is high for sounds coming directly from the source, 
where the two ear signals are highly correlated, and low in the 
diffuse sound field, where the correlation is low. Therefore, IC 
provides information about the level of reverberation and thus 
about the spaciousness of the environment.

The history of perceptually motivated
spatial audio
Binaural audio and multichannel stereophony are two of the 
most common spatial audio technologies, predating more 
recent technologies such as WFS by more than half a century. 
Binaural audio has found extensive use and received renewed 
interest, especially for virtual reality (VR) applications, while 
multichannel systems have been the de facto standard for 
home entertainment and automotive audio systems. 
Simultaneously, due to the popularity and market dominance 
of two-channel audio formats, stereophony using two loud-
speakers is still commonly employed.

Binaural audio
Binaural audio is based on a simple assumption: if the signals 
that would be received at the ears of a listener as a result of an 
acoustic event are provided to the listener with sufficient accu-
racy, the person will perceive an auditory event corresponding 
to the original acoustic event. These ear signals can either be 
recorded with microphones implanted in the ear canals of an 
artificial human head, such as Knowles Electronic Manikin 
for Acoustic Research or Neumann KU-100, or synthesized 
using signal processing methods. In both cases, the signals are 
usually presented over a pair of headphones.

The microphones used for recording binaural audio are 
also termed dummy head microphones and are manufactured 
to resemble a typical human head. The external ears of these 
microphones are typically molded in silicon and are modeled 
after the external ears of humans who have exceptional spatial 
hearing acuity. The recorded signals need to be played back 
using headphones equalized appropriately with free-field or 
diffuse-field equalization, depending on the environment in 
which the recording was made [1].

Binaural synthesis is based on the knowledge of the acoustic 
transfer paths between the source and the two ears. These paths 
are characterized by their impulse responses, referred to as the 
head-related impulse response (HRIR) and head-related transfer 
function in the frequency domain. For each source position, there 
will be two of them, one for the left ear and one for the right. 
When HRIRs are convolved with dry source signals, the resulting 
signals will incorporate the necessary binaural cues for the given 
source position. In the case of a sound field created by P sources 
in the far field, the right and left ear signals can be synthesized as

( ) ( ) * ( ),x n x n h n, ,L p
p

P

L
1

p p= i z

=

/ (1)

( ) ( ) * ( ),x n x n h n, ,R p
p

P

R
1

p p= i z

=

/ (2) 

where ( )x np  is the pressure signal due to source p; ( )h n, ,L p pi z

and ( )h n, ,R p pi z  represent the HRIRs for the left and the right 
ears for a source at a direction ( , ),i z  where i  and z are the 
azimuth and elevation angles, respectively; and * denotes con-
volution. This approach assumes that the acoustical system 
consisting of these sources and the listener is linear and time 
invariant and that the resulting left and right ear signals 
provide the necessary spatial hearing cues pertaining to the 
acoustic field that would be generated by these P sources.

In free field, HRIRs can be considered finite and are typi-
cally up to 12-ms long, corresponding to approximately 512 
samples at the 44.1-kHz sampling rate. This does not present 
a significant computational cost for a single component. How-
ever, as the number of components increases, such as when a 
source and its reflections in a room are being rendered, the 
computational cost of convolution becomes an important 
bottleneck. To overcome this limitation, different filter design 
approaches have been proposed, e.g., [17]. These filters are 
designed to capture salient binaural cues while significantly 
reducing the computational cost.

Two essential requirements of binaural synthesis are 1) the 
availability of a set of HRIR measurements densely sampled on a 
spherical shell and 2) the match between these HRIRs and the actual 
HRIRs of the listener. Regarding the first requirement, interpola-
tion methods such as kernel regression [18] can be used to increase 
the granularity of the available directions. The second requirement 
necessitates the measurement of individualized HRIRs, which is 
both time consuming and costly. For that reason, many existing 
research-grade and commercial solutions use generic HRIRs. This, 
however, is not an ideal solution, since there are significant differences 
between the spectra of the generic HRIRs and individual HRIRs of 
the listener, and these cues are essential for elevation perception [13].
Practical setups that allow quick measurement of HRIRs around a 
geodesic sphere surrounding the listener’s head have recently been 
developed [19]. There also exist commercial products that allow 
tailoring a stored set of HRIRs based on head size (https://www
.ossic.com). However, head size alone can improve only the ITD and 
ILD cues provided by the system, not the spectral cues used in the 
perception of source elevation.

Binaural synthesis also allows interactivity if the position 
and orientation of the listener’s head can be tracked [20]. High-
precision and high-accuracy magnetic trackers had been the 
de facto method for tracking a listener’s head. Recent develop-
ments made it possible to track a user’s head with inexpensive 
devices (http://www.3dsoundlabs.com). These developments 
make binaural synthesis an excellent solution for VR applica-
tions. For binaural synthesis, a side effect of system errors—
such as a pair of improperly equalized headphones, an HRIR 
set that does not well match the HRIRs of the user, or inaccu-
rate head tracking—is inside-the-head localization [21]. This 
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undesirable effect can be partly alleviated by adding simulated 
reflections and artificial reverberation.

Binaural audio can also be presented via a pair of loudspeak-
ers; however, each ear then receives not only its intended signal 
but also the signal intended for the other ear, which impairs the 
coherence of binaural cues. This effect is known as crosstalk
[22]. There are methods for crosstalk cancelation based on pre-
dicting the response of the crosstalk path and inverting it [23].
Such methods preprocess the left and right channels using a 
2 × 2 crosstalk cancelation filter matrix, which is obtained as the 
inverse of the matrix containing the direct and crosstalk acous-
tic transfer paths. When a listener is sitting still at the position 
for which crosstalk cancelation is made, a single set of crosstalk 
cancelation filters can be very effective. However even small 
head movements require filter adaptation, which increases the 
computational overhead associated with crosstalk cancelation.

Crosstalk-canceled binaural audio, also known as transau-
ral audio, has distinct benefits in comparison with two-channel 
stereophony and headphone-based binaural presentation: 1) it 
can simulate sources behind the listener, even when there is no 

corresponding physical source (i.e., a loudspeaker), and 2) it pro-
vides a better externalization of the simulated sources due to the 
presentation being made over loudspeakers [24].

Two-channel stereophony
Two-channel stereophony is an alternative spatial audio technol-
ogy that requires the minimal number of channels to produce the 
impression of spatial sound. In its usual implementation, two-
channel stereophony uses two loudspeakers, each at the same 
distance from the listener, positioned 30° to either side of the 
front direction, providing a frontal auditory scene within a base 
angle of 60°. The ideal listening position, referred to as the sweet 
spot, thus forms an equilateral triangle with the loudspeakers. 
Two-channel stereophony creates the illusion of a sound source 
in a given direction within the base angle by means of the inter-
channel time differences (ICTDs) and interchannel level differ-
ences (ICLDs) of the two channels over which the source signal 
is presented. Figure 1(a) shows the standard stereophonic setup 
and illustrates how the gains and delays of each channel are 
linked to the ICTD and ICLD. Although it is intuitively clear that 
the direction of the virtual source is pulled toward the loudspeak-
er that produces the louder and earlier version of the signal, 
knowing the precise relationship between the perceived source 
direction and the presented (ICTD and ICLD) pairs requires 
extensive psychoacoustic measurements.

The first comprehensive study of the relationships between 
ICTD and ICLD, termed stereophonic panning laws, was con-
ducted by Franssen [25]. Another study, by Williams [26], com-
bined earlier studies on ICTD and ICLD. The panning curves 
presented in that study are now known as Williams’s curves.
Williams’s psychoacoustic curves are illustrated in Figure 1(b),
which shows curves of ICTD/ICLD pairs that create a virtual 
source in the direction of the left loudspeaker (the blue curve) 
and the right loudspeaker (the orange curve). ICTD/ICLD pairs 
that are below or above the two curves are also localized at 
the left and right loudspeaker, respectively. Virtual sources in 
directions between the loudspeakers are then created by means 
of ICTD/ICLD pairs that evolve along a line that connects two 
points on the psychoacoustic curves.

Note that there are many different ICTD/ICLD pairs that 
can create a virtual source in the same direction. Intensity ste-
reophony is achieved when the ICTD is zero and only ICLDs 
are used for generating the stereophonic auditory perspec-
tive. In Figure 1(b), intensity panning curves are associated 
to the vertical axis, e.g., the dashed vertical line connecting 
points AL and BL. An ICLD of ±18 dB is sufficient to pan a 
virtual source exactly in the direction of the right or the left 
loudspeaker. Time-of-arrival stereophony is achieved when 
the ICLDs are zero and only ICTDs are used for generating 
the stereophonic auditory perspective. In Figure 1(b), time-of-
arrival panning curves are associated to the horizontal axis, 
e.g., the dotted horizontal line connecting points CL and DL.
An ICTD of ±1.2 ms is sufficient to create a virtual source in 
the direction of the right or the left loudspeaker.

Time–intensity stereophony is achieved when a combina-
tion of ICTDs and ICLDs is used. The solid line in the figure 
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FIGURE 1. (a) The standard stereophonic setup according to Williams 
[27], where gL  and gR  are the left and right channel gains and dL  and dR

are the left and right channel delays, respectively, and (b) the associated 
psychoacoustical curves representing the ICTD and ICLD that are neces-
sary to pan the direction of a virtual source from the direction of the left 
loudspeaker to the right one.
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connecting points EL and FL is an example of a time–intensity 
panning curve. Here, an ICTD of −0.5 ms combined with an 
ICLD of −12 dB will result in a virtual source aligned with the 
left loudspeaker. As the ICTD and ICLD are increased toward 
zero, the virtual source shifts from the left direction to the 
midline direction. Increasing the ICTD and ICLD further to 
0.5 ms and 12 dB, respectively, shifts the virtual source to the 
direction of the right loudspeaker.

Based on whether interchannel time and level differences 
are obtained naturally while recording an acoustic scene or are 
introduced artificially, stereophony can be divided into two 
categories: recorded (true) stereophony and synthetic stereo-
phony [27]. Recorded stereophony is constrained by the char-
acteristics of the available physical microphones, primarily 
in terms of their directivity patterns. Microphones with first-
order directivity patterns are typically used because of their 
affordability and availability. These microphones have direc-
tivity patterns of the following types:

( ) ( ) ( ),cos1L L L Li a a i iC = - + - (3)

( ) ( ) ( ),cos1R R R Ri a a i iC = - + - (4)

where ( )L iC  and ( )R iC  are the directivity patterns that repre-
sent the directional sensitivity of the left and the right 
microphones, respectively; i  is the angle defined counter-
clockwise from the acoustic axis of the corresponding micro-
phone; and Li  and Ri  are the rotation angles of the left and 
the right microphones, respectively. Designing stereophonic 
microphone pairs then requires optimizing the ICTD and 
ICLD by careful selection of 1) La  and ,Ra  2) Li  and ,Ri  and 
3) the distance D between the two microphones.

One of the first stereophonic recording microphone 
pairs was developed by Alan Blumlein and consisted of two 
coincident bidirectional microphones (i.e., )1L Ra a= =

positioned at right angles with each other. Many differ-
ent microphone configurations have been devised since 
then. These methods can be categorized roughly into three 
groups: coincident, near coincident, and spaced [28]. Coin-
cident pairs have two colocated ( )D 0=  directional micro-
phones, resulting in the recorded left and right channel 
signals that have only amplitude differences. Examples of 
coincident microphone pairs are the Blumlein pair, the XY 
stereo pair, and the M/S pair [28]. Spaced arrays, such as the 
AB pair [28], typically use omnidirectional microphones 
( ),0L Ra a= =  with a separation D that is many multiples 
of the desired wavelength. This makes the ICTD the main 
cue used to pan the sound source. Near-coincident record-
ing techniques, on the other hand, use directional micro-
phones separated by a small distance comparable to the size 
of a human head and record both the ICTD and ICLD. Two 
notable examples are the Nederlandse Omroep Stichting
(NOS) and Office de Radiodiffusion Télévision Française
(ORTF) pairs, which both use cardioid ( . )0 5L Ra a= =

microphones and have separations of D 17 cmORTF =  and 
D 30 cmNOS = [28].

Synthetic stereophony has been predominantly based on 
intensity panning, since it is thought to provide the most stable 
virtual sound imaging. Indeed, the inclusion of ICTDs is some-
times considered to yield audible artifacts, such as tonal color-
ation due to comb filter effects. Another often-cited reason to 
avoid using ICTDs is the difficulty of controlling the direction 
of a virtual source by means of time delays. This view has been 
recently challenged [29] and will be discussed in the “Percep-
tual Sound Field Reconstruction” section.

The general form of an intensity panning law relates the 
gains gL and gR of the left and right loudspeakers, respective-
ly, to a function of the source direction si and the stereophonic 
base angle Bi  between the loudspeakers. More specifically, a 
panning law has the form

( ) ( )
( ) ( )

( )
( )

.
g g
g g

f
f

L s R s

L s R s

B

s

i i

i i

i

i

+

-
= (5)

The total power can be maintained via the constant power 
constraint ( ) ( ) .g g 1L s R s

2 2i i+ =  Two commonly used func-
tions are ( ) ( )sinf i i=  and ( ) ( ),tanf i i=  which give rise 
to the so-called sine panning law and tangent panning 
law, respectively.

The tangent panning law was derived based on perceptual 
considerations independent of known psychoacoustic curves 
[30]. In the context of Williams’s psychoacoustic curves [see 
Figure 1(b)], the tangent panning law operates along the vertical 
axis, i.e., zero ICTD, and connects two points with !3 level 
differences. Thus, as opposed to panning laws described by 
Williams’s curves, which specify the minimal level differences 
needed to create virtual sources in loudspeaker directions, the 
tangent law achieves the same effect by employing maximal 
level differences.

Multichannel stereophony
An early work by Steinberg and Snow [31] in 1934 suggested 
that a better auditory perspective is possible if at least three 
independent microphones are used to capture a frontal sound 
field and these signals are played back via three loudspeakers. 
Due to the hardware requirements and technical difficulties in 
the integration of a three-channel system in radio broadcasts, 
however, this finding has been obscured by the success and 
widespread adoption of two-channel stereophony.

The advent of quadrophony and cinematic sound spurred 
interest in multichannel systems. Traditionally, there are two 
different types of multichannel audio formats: discrete and 
matrix [32], [33]. In discrete multichannel audio, there is a one-
to-one correspondence between channels and speakers. The 
storage and transmission of multichannel audio are made using 
the same number of channels. In matrix multichannel, the origi-
nal channels are encoded to a smaller number of channels (e.g., 
two) for transmission or storage over common channels or media 
and then decoded back to the original channel multiplicity prior 
to playback. This requires appending auxiliary information to 
the encoded audio to be used at the decoding stage. More recent-
ly, object-based formats have appeared where content and con-
text are encoded separately.
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Surround sound is the more commonly known name for 
multichannel stereophony. There exist several reproduction setups, 
such as 5.1, 7.1, 10.2, and 22.2, which use five, seven, ten, and 22 
main channels, respectively, and one or two low-frequency chan-
nels, as described in an International Telecommunication Union 
(ITU) report (ITU-R BS.2159-4). There are also commercial, 
object-based formats such as Dolby ATMOS (http://www.dolby
.com/us/en/brands/dolby-atmos.html), DTS-X (http://
dts.com/dtsx), and Auro-3D (http://www.auro-3d.com), which are 
very flexible and are likely to dominate the cinematic sound 
industry into the foreseeable future, considering the new Inter-
national Organization for Standardization/International Electro-
technical Committee standards such as MPEG-D and MPEG-H.

Commercial microphone arrays for multichannel recording 
exist, but these arrays are based more on practice in the field than 
on a solid theory and understanding of the underlying acoustic 
processes. The microphone arrays used for recording 5.1 mul-
tichannel audio typically include cardioid, supercardioid, or 
hypercardioid microphones positioned on a tree structure [34],
[35]. These arrays can in general be separated into two groups: 
1) five-channel main microphone techniques and 2) front–rear 
separation techniques. The former uses five closely positioned 
microphones mapped directly to the five main channels of a 
5.1 reproduction setup. The latter uses two separate arrays to 
record direct field and ambience separately. For some arrays 
(such as the INA-5 [36]), there is a one-to-one correspondence 
between the microphone and loudspeaker channels. For some 
other arrays (such as the Soundfield Microphone [37], Fukada 

Tree [38], or Hamasaki Tree [39]), the signals obtained from 
individual microphone channels need to be mixed.

Some well-known multichannel arrays used for record-
ing multichannel audio are shown in Figure 2. It may be 
observed that a variety of microphone arrangements exist 
that try to address the common objective of obtaining an 
authentic auditory perspective and a high level of envelop-
ment and immersion using existing first-order microphone 
directivity patterns. The microphone arrays for recording 
10.2 multichannel stereophony are still rather experimental 
(see the ITU-R BS.2159-4 report). Similarly, recording for a 
22.2 reproduction system will depend strongly on the venue 
and context. In fact, multichannel stereophonic systems with 
higher channel counts, by virtue of the degrees of design 
freedom they provide, allow for more flexibility but also 
make it more difficult to design recording setups with strict 
perceptual rationale.

Recommended reproduction setups for multichannel systems 
are either standardized (e.g., ITU-R BS.775-1) or in the process of 
standardization by different standardization bodies [40]. These 
setups rely mainly on the frontal channels for the presentation 
of audio content that accompanies visual content (usually films 
or games). The left and right front channels typically correspond 
exactly to the two-channel stereophonic setup for cross- and 
backward compatibility. The difference in these setups is mainly 
about how ambience is played back. Some of the standards, such 
as ITU-R BS.1116.1 and ITU-R BS.1534.1, define formal proce-
dures for the subjective evaluation of these systems.
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FIGURE 2. Some different microphone array configurations for recording 5.1 multichannel audio showing (a) complete arrays, (b) arrays used to record 
the frontal scene, and (c) rear-only arrays. The dimensions of the arrays are not drawn to scale. IRT: Institut für Rundfunktechnik.
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Perceptually motivated multichannel
recording and reproduction
There has been some recent work in the direction of develop-
ing systematic frameworks for the design of multichannel 
stereo systems, most notably vector-base amplitude panning 
(VBAP), directional audio coding (DirAC), and perceptu-
al sound-field reconstruction (PSR).

Vector-base amplitude panning 
It was shown as early as 1973 that tangent panning provides a ste-
reophonic image that is more robust to head rotations than sine 
panning for the standard stereophonic loudspeaker setup [30].
Pulkki showed that tangent panning can be expressed using an 
equivalent, vector-based formulation in the horizontal plane and 
also proposed a three-dimensional (3-D) extension to two-chan-
nel intensity panning that allows rendering elevated virtual sourc-
es over flexible loudspeaker rigs [41]. This method is VBAP.

Originally, VBAP was designed for a loudspeaker array 
with elements placed on a geodesic dome’s vertices that are 
situated at the acoustic far field of the listener. Figure 3 shows 
a section of such a sphere with three loudspeakers, with a 
listener positioned at the center of the array. The directions 
of the three loudspeakers are indicated as , ,v v1 2  and ,v3  and 
the corresponding gains as , ,g g1 2  and .g3 A virtual source in 
a direction vs  between the loudspeakers can be generated by 
selecting the gains that satisfy ,v Vgs =  where V is a matrix 
whose columns are the directions of the loudspeakers and 

[ ] .g g g g T
1 2 3=  In addition, the calculated loudspeaker gains 

are normalized to keep the total power constant.
On the full geodesic sphere, active regions are selected 

based on the closest three points on the grid, and only those 
loudspeakers are used for source rendition. This is in contrast 
with physically based approaches such as Ambisonics, where 
even for a single source from a single direction, all loudspeak-
ers are potentially active. A major assumption behind VBAP in 
three dimensions is that summing localization would occur not 
only with two sources but also with three. This assumption was 
subjectively tested for different setups and virtual source direc-
tions, and it was shown to result in a good subjective localiza-
tion accuracy for elevated virtual sources [42], [43].

An issue resulting from the utilization of intensity pan-
ning in VBAP is the nonuniformity of the spatial spread of the 
panned source. More specifically, sources panned closer to the 
actual loudspeakers in the reproduction rig have a smaller spa-
tial spread, while virtual sources panned to directions between 
loudspeakers have a larger spatial spread. The main cause of this 
issue is the use of a single loudspeaker when the virtual source 
direction coincides with the direction of that loudspeaker.

This issue was addressed by panning the virtual source to 
multiple directions by using three loudspeakers (instead of two) 
for all source directions in the horizontal plane, or four loud-
speakers (instead of three) in the 3-D case. This approach was 
called multiple-direction amplitude panning (MDAP) [44]. In 
a study comparing VBAP with MDAP, it was shown that both 
provide good subjective localization accuracy, with MDAP 
being more accurate than VBAP [45]. In another, more recent 

evaluation carried out within the context of the MPEG-H stan-
dard, VBAP resulted in very good subjective localization accu-
racy, including not only the source azimuth but also its distance 
[46]. In yet another study, VBAP was shown to provide good 
localization performance also for sources in the median plane 
[47]. Note that VBAP is a technology for sound-field synthesis, 
and in the context of sound-field recording and reproduction it 
is used at the reproduction end of schemes such as DirAC.

Spatial encoding methods
A class of multichannel audio methods involves dividing 
recorded signals into time or time–frequency bins and estimat-
ing certain spatial attributes within each bin. One of these meth-
ods is the spatial impulse response rendering (SIRR) method 
[48], [49]. At the recording stage, SIRR records the impulse 
response of a room using a B-format microphone, i.e., a micro-
phone that provides the omnidirectional sound pressure compo-
nent as well as the three axial pressure-gradient components of 
the sound field [28]. The impulse response is first transformed 
into a time–frequency representation and is then processed to 
obtain estimates of the acoustic intensity vectors at each time–
frequency bin. It is assumed that each time–frequency bin cor-
responds to a single plane wave and thus that the direction of 
the acoustic intensity vector also represents the direction of that 
plane wave. A diffuseness estimate is obtained for each time–
frequency bin using the ratio of the real part of the acoustic 
intensity to the total energy. These parameters, along with the 
sound pressure component obtained from the B-format record-
ing, form the basis of the reproduction stage.

At the reproduction stage, direct and diffuse parts of the 
signal are treated differently. For the direct part, azimuth 
and elevation estimates in each time–frequency bin are used 
to pan portions of the B-format omnidirectional component, 
accordingly using VBAP. The diffuse part is reproduced by 
generating multiple decorrelated copies of the recorded sound 
played back from all the loudspeakers. The so-obtained chan-
nel impulse responses are then convolved with the desired 
anechoic sound sample. A similar method, called the spatial 
decomposition method (SDM), was recently proposed in [50].

v2

vsv3

v1

FIGURE 3. An arrangement of three loudspeakers and a phantom image 
panned using VBAP. The vectors used in the formulation of VBAP are 
also shown.

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

Previous Page | Contents | Zoom in | Zoom out | Front Cover | Search Issue | Next Page q
q
M

M
q

q
M

M
qM

THE WORLD’S NEWSSTAND®

http://www.signalprocessingsociety.org
http://www.qmags.com
http://www.signalprocessingsociety.org
http://www.qmags.com


44 IEEE SIGNAL PROCESSING MAGAZINE | May 2017 |

Instead of using a time–frequency representation of the room 
impulse response, SDM simply divides it into time frames. As 
with SIRR, SDM assumes that within each time frame there is 
at most a single acoustic event (e.g., a reflection from the room 
walls), the direction of which is calculated using available 
direction-of-arrival estimation algorithms. Using this estimate, 
each time frame of the impulse response is panned between the 
loudspeakers using VBAP. The loudspeaker signals are then 
convolved with the desired anechoic sound sample.

Notice that, as opposed to SIRR, SDM does not explicitly dif-
ferentiate direct and diffuse components. However, the later part 
of the room impulse response is still rendered as diffuse. This is 
due to the fact that, as time passes, a progressively larger number 
of echoes appears within each time frame, and, as a consequence, 
the direction-of-arrival algorithm tends to provide random esti-
mates. In a formal listening experiment using synthesized room 
impulse responses, SDM was shown to outperform SIRR [50].

SIRR and SDM are not designed for continuous signals but 
for spatial room impulse responses, which are then convolved 
with an anechoic signal. In other words, they cannot be used 
for actual recordings of dynamic sound scenes. DirAC is a flex-
ible spatial audio system for recording, coding, compression, 
transmission, and reproduction based on SIRR that overcomes 
this limitation [51]. As with SIRR, DirAC starts with an energy 
analysis of the recorded sound to assign a direction and a dif-
fuseness level to each instant of the output channels of a filter 
bank that approximates the equivalent rectangular bandwidth 
scale. The direction predictions are then smoothed to imitate 
the temporal resolution of the auditory system. At the reproduc-
tion stage, these components are panned using VBAP. Figure 4
shows DirAC’s recording, processing, and reproduction stages.

DirAC was evaluated and compared with Ambisonics (with 
different decoders) for reproduction quality using listening tests 
similar to multiple stimulus with hidden reference and anchor 
(also known by the acronym MUSHRA) [52]. The evaluation 
included different loudspeaker rigs (with four, five, eight, 12, and 
16 loudspeakers), different audio material (music, speech, singing 

voice, and percussion), different simulated reverberation charac-
teristics, and different listener positions. It was found that DirAC 
provides an excellent reproduction quality (better than an average 
of 80 or more out of 100) for the central listening position, and 
acceptable reproduction quality (better than an average of 60 or 
more out of 100) for the off-center positions. Ambisonics repro-
ductions obtained using both decoders were rated consistently 
below DirAC. These results provide an instructive example of 
a perceptually motivated reproduction method achieving better 
subjective performance than a physically motivated approach.

Perceptual sound field reconstruction
PSR [29], [53] is a recently developed flexible multichannel 
recording, reproduction, and synthesis technology. As with 
DirAC, it provides a systematic framework for recording and 
reproduction of sound scenes. However, in contrast to DirAC, 
which performs panning of individual time–frequency compo-
nents and renders the diffuse sound field via all channels rely-
ing on extensive processing of microphone array recordings to 
extract the necessary directional information and components, 
PSR relies on designing the underlying microphone arrays in a 
way that captures the required directional cues. When the 
recorded signals are played back with no additional processing, 
the directions of the wave fronts of all sound sources and all 
reflections are rendered accurately. A block diagram of a five-
channel PSR system with uniform distribution of channels is 
shown in Figure 5. Another difference between DirAC and PSR 
is that, while DirAC uses only ICLDs for rendering auditory 
perspective, PSR employs both ICLDs and ICTDs and allows 
for trading one for the other while designing the directivity pat-
terns of the microphones used in the arrays.

PSR uses near-coincident circular microphone arrays to cap-
ture the time differences between channels. The difference in 
the time of arrival of a sound wave propagating from a direction 
i between microphones at angles lz  and l 1z +  (see Figure 6) is

( ) ,sin sin
c
r2

2 2l
a l l l l1 1

x i
z z z z

i=
- +

-
+ +c cm m

B-Format
Microphone

Input
Filterbank

Directional/
Diffuseness

Analysis
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Virtual Cardioid
Beamforming

Decorrelation

Decorrelation

...

...

...

...

Loudspeaker
Outputs

Gain
Factors

...

...

Direction

Diffuseness: ψ

B-Format Audio
Monochannel Audio
Parameter

1 – ψ

ψ

FIGURE 4. A DirAC flow diagram indicating different stages of analysis. (Image adapted from [51]. Figure used courtesy of the Audio Engineering Society.)
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where ra  is the radius of the microphone 
array and c is the speed of sound. Micro -
phone directivity patterns ( )l iC  are de -
signed such that the level differences 
with which the sound wave is recorded 
are equal to the level difference that, in 
combination with the time differences as 
given in the above, creates a perception of 
the sound source in the direction .i  One 
way to achieve this is by designing ( )l iC
to satisfy the following relationship:

( )
( )

( )
( )

,
sin
sin

l

l

l

l1

1i

i

z b i

i z b

C
C

=
+ -

- -+

+^
^ h

h (6)

where b  is selected in such a way that 
for ,i  which coincides with the direc-
tion of one of the microphones, the level 
difference is equal to the level difference 
needed to create the perception of the sound wave in the direc-
tion of the corresponding loudspeaker. That level difference is 
labeled EL (or FL with the reversed sign) in Figure 1(b) for the 
case where the maximal ICTD is 0.6 ms. Thus, as the direction 
of the sound source moves between the two microphones, the 
captured time and level differences traverse a curve connecting 
two end points, illustrated by the straight line between points 
EL and FL in Figure 1(b), which correspond to virtual sourc-
es in the directions of two corresponding loudspeakers. 
Microphones are additionally required to satisfy the constant 
power condition and ( ) ( ) ,1l l l l

2
1

2
1# #i i z i zC C+ =+ +

and sufficiently high attenuation outside the sector between the 
axes of the two adjacent microphones, so that every sound wave 
is effectively recorded and rendered only by the pair of the two 
closest channels.

The degree to which time differences are present is con-
trolled by the radius of the microphone array, which is pres-
ent implicitly in the b factor in (6). In the special case where 

,0b =  the system implements intensity stereophony based 
on the tangent panning law. An example of a directivity pat-
tern designed according to PSR principles for a five-channel, 
uniformly spaced system for an array of with r 15 cma = is 
shown in Figure 7, along with its second-order approximation 
and the polar pattern that corresponds to ,0b = which is the 
pattern designed for intensity stereophony according to the 
tangent law.

The five-channel PSR system design based on intensity and 
time–intensity principles as specified earlier in this section was 
subjectively evaluated and compared with second-order Ambi-
sonics in terms of subjective localization accuracy [29]. Fig-
ure 8 shows the results of a localization test carried out using 
different recording/reproduction systems. The time–intensity 
PSR technology performed well, especially at off-center lis-
tening positions, while it performed worse for localization at 
lateral source directions, which is due to the fact that psycho-
acoustic curves for frontal presentation were used for all the 
pairs of loudspeakers. Another set of tests considered the locat-
edness of generated phantom sources and showed that time–

intensity-based PSR provides better locatedness of phantom 
sources than techniques based on intensity alone (shown in the 
bar charts in Figure 8), which is attributed to the higher natu-
ralness of the presented binaural cues [54].

FIGURE 5. A block diagram of a PSR system indicating a one-to-one correspondence between the 
microphone and loudspeaker channels and no intermediate processing. (Figure used courtesy of [29].)

PSR Microphone
Array

15.5 cm

ra

θ
φl +1

φl

FIGURE 6. Two neighboring elements of the microphone array used in the 
PSR recording system. (Figure used courtesy of [29].)

FIGURE 7. The directivity patterns of the PSR and intensity methods. Also 
shown is the directivity pattern of a second-order implementation of the ideal 
PSR directivity used in subjective evaluations. (Figure used courtesy of [29].) 
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The issue of intensity versus time–intensity techniques 
is a matter of debate among audio engineers and recording 
artists, and the widely held view is that although time–inten-
sity stereophony provides more natural-sounding sources, 
intensity stereophony provides more stable imaging. This 
result provides a new insight into the issue and demonstrates 
that time–intensity techniques, if designed with a careful 
consideration of the underlying psychoacoustical require-
ments, are capable of actually providing a stable auditory 
perspective. The development of techniques for higher-order 
differential microphone arrays [55], [56] enabled the design of 
more sophisticated directivity patterns than those achievable 
by commonly used first-order microphones. This allowed the 
implementation of different panning laws and psychoacousti-
cal panning functions in the multichannel microphone array 
design process.

Enlarging the optimal listening area
When a listener moves away from the center of the sweet spot, 
the auditory event shifts in the direction of the closest loud-
speaker. This is due to the fact that the signal from the closest 
loudspeaker arrives earlier when compared with what is 
observed at the sweet spot. Position-independent stereo [57],
[58] aims to alleviate this problem by designing loudspeaker 
directivity patterns in a manner that compensates for the 
incongruent time delay via appropriate intensity differences.

The design method proposed for this purpose by Rodenas 
et al. [59] consists of two separate optimization procedures. The 
first procedure involves finding a common directivity pattern for 
the left and right loudspeakers of a stereophonic setup to provide 
the level differences needed to compensate for the incongruent 
time differences over a desired listening area. Such directiv-
ity patterns can be obtained by beamforming using an array of 
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loudspeakers. The other optimization procedure involves finding 
the filter coefficients to be used for beamforming.

Figure 9 illustrates the problem of off-center listening and 
loudspeaker directivity patterns implemented to counteract 
this problem using a loudspeaker array with two drivers. It may 
be observed that when the listener moves to the left of the ideal 
listening position, the signal from the left loudspeaker will 
arrive earlier and at a higher level than the right loudspeaker, 
shifting the perceived direction of the virtual source toward 
the left. This problem can be compensated for by adjusting the 
right loudspeaker to have a higher level than the left loudspeak-
er at the corresponding direction, effectively shifting the vir-
tual source back. The loudspeaker directivity patterns shown 
in the figure were designed to achieve this and thus to allow the 
listening area to be enlarged. Rodenas et al. [59] report results 
of an informal listening test with a system realized using loud-
speaker arrays with two tweeter and two midrange drivers each 
and state that the proposed approach widens the sweet spot for 
standard stereophonic material.

While designing loudspeaker directivity patterns for robust 
stereophony is a promising idea, technical difficulties such as 
the equalization of drivers, compensation for diffraction from the 
edges of the loudspeaker cabinets, and the required number of 
loudspeakers used in the design may limit its practical use. These 
techniques, along with the generalization of the design approach 
to multichannel systems and combination with other technologies 
such as PSR, are interesting directions for future research.

Perceptually motivated room auralization
In cases where an acoustic scene actually exists, as in a live 
concert or a tennis match, the scene is recorded and reproduced 
by the techniques reviewed above. These techniques also cap-
ture the acoustics of the environment in which these recordings 
are made. However, there are applications where such scenes 
exist only virtually, as in computer games or VR. In such cases, 
the acoustics of the environment that contains the scene to be 
rendered need to be synthesized. Auralization is the process of 
making the acoustics of a real or virtual environment such as a 
room or a concert hall audible [8].

Rooms are multipath environments where the recording of a 
source by a microphone will include not only the direct path but also 
early reflections, reverberation tail, and diffraction components. Many 
different models have been proposed in the past 50 years to simulate 
room acoustics. A recent review article provides a summary of the 
research on room acoustics modeling [60] and divides algorithms into 
three classes: 1) convolutional algorithms, 2) delay networks, and 3) 
computational acoustics models. Convolutional algorithms involve 
measuring the impulse response of an actual room and convolving it 
with a desired input signal. Delay networks, which will be discussed in 
more detail in the “Perceptually Motivated Artificial Reverberation” 
section, are algorithms where the input is filtered and fed back along 
a number of delay paths designed according to desired reverberation 
characteristics. Computational acoustics models aim to simulate the 
propagation of sound waves in the modeled space.

Among computational acoustics models, there are geo-
metric models, which use geometric arguments to calculate 

the room impulse response. These include the image-source 
method (ISM) [61], [62] and ray tracing [63] or beam trac-
ing [64] and its variants [65]. Other computational acoustics 
models such as finite-difference methods [66], digital wave-
guide mesh [67], FEMs [68], and BEMs [69] are based on the 
time- and space-discretized solutions of the wave equation; 
hence, individual reflections are not rendered explicitly, but 
their effects are merged into the overall simulated wave fields. 
Computational acoustics models are capable of providing very 
accurate results (at least for certain frequency ranges) and are 
therefore used in architectural acoustics. However, their physi-
cal accuracy comes at a very high computational cost. While 
some computation can be carried out offline, auralization will 
typically require real-time operation at interactive rates—for 
instance, to allow a user to explore a virtual environment. The 
main computational bottleneck that this entails is associated 
with the different filtering operations involved in calculating 
and synthesizing reflections and edge diffraction components 
for each source.

Despite their high computational complexity, extremely accu-
rate room auralization methods will always be in demand for 
applications such as architectural acoustics. However, they are 
not suitable for applications such as immersive games and VR, 
where a low computational cost is paramount. Such applications 
warrant the simplification of the model to the lowest possible 
number of components and sources to be rendered, which is typi-
cally achieved by removing perceptually irrelevant content.

Simplification of room acoustics models
The lack of a comprehensive mathematical model of the prece-
dence effect, analogous to models of monaural masking, has, 
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FIGURE 9. A conceptual depiction of position-independent stereo with 
optimal loudspeaker directivity patterns. When the listener moves toward 
the left or right of the stereophonic sweet spot, the directivity pattern 
of the loudspeaker array compensates for the resulting delay, and the 
direction of the virtual source remains unchanged. (Figure adapted from 
[59]. Reprinted with permission. Copyright 2003, Acoustical Society 
of America.)
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for a long time, made it difficult to predict whether an individ-
ual reflection would be audible in the presence of the direct 
sound and other reflections. This is mainly due to the fact that 
the audibility of a reflection depends on many parameters.

One of the first models that aimed to parameterize the audi-
bility of reflections, named reflection masked threshold (RMT), 
was proposed by Buchholz et al. [70]. The RMT is the lowest 
level at which a reflection will be audible, and it is a function of 
the directions of the reflection and of the corresponding direct 
sound, the time delay of the reflection with respect to the direct 
sound, the level of the direct sound, the difference of the fre-
quency spectra between the direct sound and the reflection, 
the effect of other reflections and reverberation, and the signal 
content. The RMT can be used for simplifying room acoustic 
models via culling inaudible reflections. A simpler decision rule 
for culling inaudible early reflections was proposed by Begault 
et al. [71]–[73], based on the relative level of the reflection. In the 
absence of reverberation, the audibility threshold of a reflection 
is 21 dB below the level of direct sound for a delay of 3 ms. The 
presence of diffuse reverberation has the effect of increasing this 
threshold by 11 dB. This threshold is also known to decrease 
with the angle between the direct sound and the early reflection.

Some properties of binaural hearing, such as the precedence 
effect, may also make some reflections inaudible. The exclu-
sion of those reflections from the audio rendering pipeline can 
further reduce the associated computational cost. To that end, a 
model of the precedence effect was proposed in [74], according 
to which perceived directions of acoustic events are modeled as 
normally distributed variables. If the direct path and a reflection 
are present, then the distribution of the perceived direction is a 
mixture of two Gaussians. The audibility of the reflection was 
then shown to be related to the number of modes in the mixture: 
if the mixture is unimodal, the reflection is masked, and if it is 
bimodal, it is audible. The derivation of the model parameters 
was made via subjective localization experiments. This model 
was applied for the culling of reflections in binaural room aural-
ization [75]. More specifically, the ISM was used to obtain a 
number of secondary sources, and these were clustered accord-
ing to their distance from the listener position and their azimuth 
angle. A single reflection masker was obtained for each cluster 
using the precedence effect model, and the rest of the second-
ary sources in the same cluster are excluded from the rendering 
pipeline, thereby reducing the computational cost. Subjective 
evaluations were carried out using different audio material, 
different room geometries, and different listening positions to 
compare the room auralizations using full-room response, lev-
el-based reflection selection, and perceptually motivated selec-
tion based on the precedence effect model. These experiments 
showed that reflection culling based on the precedence effect 
is capable of reducing the number of early reflections by over 
60%, without any significant degradation in subjective localiza-
tion, spaciousness, presence, and envelopment experience.

Another approach to perceptually motivated simplification 
of auralization based on the absolute threshold of hearing was 
recently proposed [76]. According to this model, the duration of 
ray tracing for calculating the room impulse responses for a given 

source depends on a temporal cutoff point determined by the last 
audible ray. It was shown that this approach resulted in notice-
able improvements in the computation time of impulse responses 
without significantly degrading the auditory experience.

Perceptually motivated artificial reverberation
Room impulse responses can be divided in two parts: early 
reflections, where reflections are separated in time and have 
strong directional characteristics, and the reverberation tail, 
where higher-order reflections begin to overlap in time and the 
sound field becomes diffuse (i.e., omnidirectional). The 
human auditory system is sensitive to the direction of the 
direct wave front and the early reflections, while it cannot dis-
cern the directions of individual reflections within the rever-
beration tail [77]. The level and directions of lateral early 
reflections are related directly to the perception of the width of 
a sound source and the spatial impression of an enclosure [78].

As the density of reflections increases, statistical properties 
like reflection density and decay slope become more impor-
tant than the fine temporal structure. In real enclosures, sound 
energy decays exponentially, and the point at which the total 
energy of the room impulse response drops 60 dB below its 
initial value is called the reverberation time [79]. The rever-
beration time has a strong influence on how spacious an enclo-
sure is perceived to be [77]. Other quantities that have a strong 
influence on the perceived quality of reverberation include 
the density of the individual reflections in the late reverbera-
tion tail, called the reflection density [79]; the time-dependent 
profile of the reflection density, called the echo density pro-
file [80]; and the number of damped resonant frequencies per 
Hertz, called the mode density [81]. The typical objective of 
perceptually motivated artificial reverberators is to accurately 
render the reverberation properties described previously.

Since the early part and the reverberation tail are perceived 
differently, a common approach is to model and render them 
separately in a typical room auralization algorithm. For the 
reverberation tail, a statistically compatible model is usually 
acceptable, due to the fact that the human auditory system is not 
sensitive to its fine structure. Figure 10 shows the diagram of 
a typical binaural auralization system. Here, one module sim-
ulates and renders binaurally the direct path and a number of 
early reflections, while an artificial reverberator unit renders the 
reverberation tail. In this context, we refer to an artificial rever-
berator as a room acoustic model (typically a delay network) 
that aims only at reconstructing important perceptual features 
of room reverberation with little regard to its physical accuracy. 
By targeting only the perceptual aspects of room reverberation, 
vast reductions in computational complexity are possible.

Various room auralization systems have been developed in 
the past 20 years [10], [82], [83]. The Digital Interactive Vir-
tual Acoustics system [10], one of the first parametric interac-
tive room auralization systems, simulates all the first- and 
second-order reflections and synthesizes them binaurally or for 
rendition over loudspeakers. It is capable of simulating the absorp-
tion characteristics of different wall materials, air absorption, and 
source directivity. Late reverberation is provided via an artificial 
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reverberator consisting of a recursive structure using comb and 
all-pass filters.

The choice of artificial reverberation in a room auraliza-
tion system is dictated not only by perceptual considerations 
but also by computational cost, and the holy grail in artificial 
reverberator design is an algorithm that can achieve good per-
ceptual quality at a reasonable computational cost. The earliest 
digital artificial reverberators were proposed by Schroeder in 
the 1960s and consisted of comb filters connected in parallel 
to simulate the frequency modes of a room and all-pass filters 
to simulate a dense reverberation tail [84]. The original designs 
by Schroeder sometimes produced a metallic-sounding rever-
beration, and various improvements were subsequently pro-
posed [9], [85]. These improvements, however, did not provide 
any means to explicitly or easily control the characteristics of 
the synthesized reverberation.

Feedback delay networks (FDNs) were developed as a mul-
tichannel extension of the Schroeder reverberator [87], [88]. The 
FDN is a recursive delay network that can generate reverberation 
for a number of input channels, such as individual audio channels 
of a four-channel (i.e., quadrophonic) system. Each of the input 

channels is delayed, fed back recursively through a feedback loop, 
attenuated, and mixed with the incoming channels. The delay 
lines are designed to have incommensurate lengths, and the feed-
back loop consists of multiplication with a unitary matrix.

Jot and Chaigne extended the FDN design and proposed a 
simple and structured procedure to design good-quality rever-
berators with a desired frequency-dependent reverberation 
time [86]. They also introduced the design principle that to 
avoid isolated ringing modes that tend to sound metallic, all the 
structure modes should decay at the same rate. A conceptual 
block diagram of Jot’s reverberator is shown in Figure 11. Notice 
the absorption filters in the feedforward path that allow con-
trolling the decay rate at different frequencies, and a tonal cor-
rection filter that is used to equalize the reverberator frequency 
response so that the generated reverberation sounds more nat-
ural. The original design uses a Householder matrix for the 
feedback path, but other unitary matrices can also be used [89].
These matrices can also be time varying, resulting in improved 
perceptual characteristics [90].

Equivalent to a wide class of FDNs are the digital waveguide 
networks (DWNs) [91], [98]. A DWN consists of a number of 
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digital waveguides (the digital equivalent of analog propaga-
tion lines, formed of two opposite delay lines of equal length) 
connected at lossless scattering junctions (see Figure 12). Each 
scattering junction carries out a simple matrix multiplication to 
scatter the incoming signals on digital waveguides from each of 
its neighbors to generate outgoing signals to be distributed back 
to the same digital waveguides in the opposite direction. A sig-
nal reverberated using a DWN can be obtained by summing all 
the outgoing signals of one of the scattering nodes. DWNs have 
appealing stability properties and significant design flexibility 
owing to the different possible network graphs, types of lossless 
scattering, and lengths of the digital waveguides. While both 
Jot’s reverberator and DWNs are capable of producing respons-
es with a high perceptual quality, the parameters of these mod-
els are not explicitly linked to the physical characteristics of a 
particular room.

Artificial reverberators that are more tightly linked to room 
acoustics also exist. One of the earlier designs proposed by Ken-
dall et al. [92] was based on recirculating delay elements whose 

lengths were determined by using an image-source model of 
a rectangular room. A similar approach was also used in [93].
Karjalainen et al. proposed a class of DWNs designed to simu-
late early reflections and axial modes of rectangular rooms [94].
A drawback of their algorithm is that many of the algorithm’s 
internal parameters still require hand tuning to achieve a satis-
factory reverberation.

An artificial reverberator that inherits all its parameters from 
the physical characteristics of the room it simulates was recently 
proposed [12]. This reverberator, termed the scattering delay 
network (SDN), is a modified DWN where the length of the digi-
tal waveguides and the topology of the network, as illustrated 
conceptually in Figure 13, are derived directly from the geom-
etry of the simulated space. In particular, the SDN is a minimal 
network connecting as many scattering nodes as there are walls 
in the room, and where each scattering node is positioned at the 
point where first-order reflections impinge on the wall.

This design ensures that first-order reflections are rendered 
exactly, while second- and higher-order reflections are simulated 
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FIGURE 12. A conceptual depiction of a DWN. The figure shows a DWN with five nodes (indicated as circles) connected via bidirectional delay lines 
(curves with double arrows). To maximize the reflection density, the delay lengths are chosen to be coprime numbers. The input signal can be fed and the 
output can be obtained from any node. The inset shows the connection between two nodes where incoming and outgoing signals and the individual delay 
elements are clearly visible. (Figure adapted from [91].)
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with a gradually diminishing accuracy. Since first-order early 
reflections are perceptually more important than the higher-order 
reflections, the resulting reverberation is perceptually realistic and 
statistically very similar to that of an actual room. A by-product of 
this design is that the SDN does not require separate modules for 
early reflections and late reverberation, while still allowing precise 
and explicit control of the room geometry, source and receiver direc-
tivity patterns, and wall absorption characteristics. Furthermore, it 
enables a straightforward implementation of virtual multichannel 
recordings and binaural auralization. A block diagram of the SDN 
reverberator is depicted in Figure 14, showing that it has a structure 
very similar to the FDN, while allowing direct and explicit control 
over all the physical characteristics of the space it simulates.

Audio source culling
Complex virtual environments typically include many sound 
sources, which makes synthesizing their acoustics a challenging 
task in terms of the associated computational cost. This difficul-
ty is especially pronounced when rendering such audio content 
over devices with limited computational power, such as mobile 
phones. In a typical scenario involving many concurrent sourc-
es, it may be necessary to select and render only a few.

State-of-the-art game engines typically use volumetric 
culling of sound sources. Each sound source has an associated 
culling volume (cube, sphere, or cylinder), and when the lis-
tener is within this volume, the sound is rendered. This is a 
simple approach that does not incur any significant computa-
tional cost, apart from the relatively simple comparison opera-
tions between the bounding boxes of the listener and each of 
the sound sources. However, this approach does not take into 
account the relative levels of the sound sources. It also does not 
limit the number of sound sources that can be simultaneously 
active. This proximity makes the only determinant of whether 
or not a sound source will be rendered, completely disregard-
ing its perceptual salience. Sound sources are dynamically 
activated in response to user-generated events in interactive 
applications such as games and VR. For scenes comprising 
multiple concurrent sound sources, many of these sources will 
be masked by the others. This makes it redundant to process 
these inaudible sources.

Tsingos et al. [95], [96] provide a perceptually based source-
culling approach. The approach is based on ranking the sources 

in the scene using their binaural loudness at different frequency 
bands as a measure of perceptual salience. Loudness values are 
used to calculate a masking threshold from a time–frequency 
representation of the sound sources and stored for use during 
runtime. As a new sound event occurs, the decision to render 
the new sound source is made at the audio-frame level. Each 
frame is compared with the existing mix for evaluating whether 
the mix can mask it. If it can, the frame is culled. As a result of 
the frame-level temporal resolution, several frames from a sin-
gle sound source can be culled while others are rendered. This 
results in each sound source being only partially culled. A simi-
lar algorithm was proposed by Metan and Hacıhabiboğlu [97].
The audibility calculation in this algorithm is slightly different 
from that of Tsingos et al. As a new sound event is generated, a 
look-ahead algorithm checks for the audibility of each frame of 
a sound source, given the current mix being played. The deci-
sion to render a sound source is based on the ratio of audible 
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FIGURE 13. A conceptual depiction of the SDN reverberator. The figure 
shows a rectangular room as observed from above, with the associ-
ated delay lines interconnected at scattering junctions on the wall. Other 
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shown here for clarity. (Figure used courtesy of [12].)
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frames to the total number of frames in the audio signal to be 
rendered. This way, the whole source and not a portion of it is 
rendered or culled. The advantage of these methods is that they 
potentially allow the preprocessing stage of the source-culling 
process to be integrated with existing perceptual audio-coding 
algorithms such as MPEG-1 Layer I Audio.

Summary
The body of knowledge on spatial hearing and the mecha-
nisms that govern it has been steadily growing. However, a 
comprehensive model that can account for all the different 
aspects of spatial hearing is yet to be developed. Still, the 
existing knowledge can be used to design audio systems and 
algorithms that have lower computational and hardware costs 
but can provide a subjective performance as good as more 
complicated physically motivated systems. 

While developments in computer hardware could make it 
possible to overcome issues due to computational limitations, 
physical limitations such as the size of electroacoustic trans-
ducers or data bandwidth will remain. Similarly, the energy 
cost of carrying out simple operations such as multiplication 
or memory access is likely to diminish but will never vanish, 
and the power efficiency of mobile devices will also continue 
to be relevant. These issues will make it even more desirable to 
design simpler audio systems and algorithms. The importance 
of using our knowledge of auditory perception to that end will 
thus remain high.

Acknowledgments
This work was supported by the Turkish Scientific and 
Technological Research Council under research grant 
113E513, “Spatial Audio Reproduction Using Analysis-Based 
Synthesis Methods,” and by the European Commission under 
grant 316969 in the FP7-PEOPLE Marie Curie Initial 
Training Network, “Dereverberation and Reverberation of 
Audio, Music, and Speech (DREAMS).”

Authors
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D
epth information plays an important role in a variety of applications, including 
manufacturing, medical imaging, computer vision, graphics, and virtual/aug-
mented reality (VR/AR). Depth sensing has thus attracted sustained attention 
from both academia and industry communities for decades. Mainstream depth 

cameras can be divided into three categories: stereo, time of flight (ToF), and struc-
tured light. Stereo cameras require no active illumination and can be used outdoors, 
but they are fragile for homogeneous surfaces [1]. Recently, off-the-shelf light field 
cameras have demonstrated improved depth estimation capability with a multiview 
stereo configuration [2]. ToF cameras operate at a high frame rate and fit time-criti-
cal scenarios well, but they are susceptible to noise and limited to low resolution [3].
Structured light cameras can produce high-resolution, high-accuracy depth, pro-
vided that a number of patterns are sequentially used. Due to its promising 
and reliable performance, the structured light approach has been widely 
adopted for three-dimensional (3-D) scanning purposes. However, 
achieving real-time depth with structured light either requires high-
speed (and thus expensive) hardware or sacrifices depth resolution and 
accuracy by using a single pattern instead [4].

The Microsoft Kinect, the world’s first consumer-grade depth cam-
era, has brought depth-sensing technology into a new era. Taking 
the structured light approach, the Kinect uses a unique speckle 
pattern that can be generated by a low-cost laser-diffuser emitter 
and relies on parallel computation to acquire depth at 30 frames 
per second (fps) with a resolution of 640 × 480 pixels [5], [6].
The Kinect leverages distinct optics design and powerful com-
puting capabilities for a decent performance. This commodity 
depth camera has introduced revolutionary changes in various 
related research areas. Taking computer vision as an example, 
many problems that were considered challenging before can now 
be solved with this easily accessible depth [7]. On the other 
hand, the large demand for depth data has imposed higher 
requirements for depth-sensing technology. Real-time 
depth with even higher resolution and accuracy 
is desirable in many practical applications. 
In the future, more imaging modalities, 
such as those deployed in mobile 
devices, game consoles, robots, 
drones, and emerging VR/AR 
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devices, will largely rely on high-performance commodity 
depth cameras. The recently released Microsoft HoloLens [8]
and Google Tango [9] are two good examples.

Inspired by the success and philosophy of the Kinect, much  
research has been done in the past few years targeting real-
time, high-performance depth sensing. These works share a 
common insight that the codesign of image sensor systems and 
signal processing algorithms is essential to achieve a superior 
performance. Such codesign is called computational depth 
sensing. In this article, we introduce this important concept and 
provide an overview of the latest represen-
tative techniques. By bringing together and 
analyzing interdisciplinary research from 
signal processing, computer vision, and 
optics communities, our goal is to shed light 
on the development of future commodity 
depth cameras, which is a potential great 
interest to a broad audience. Specifically, 
this article will focus mainly on the struc-
tured light approach, which provides a large degree of freedom 
for the design of depth cameras. A recent review of ToF cam-
eras is given in [10], and another on light-field cameras is given 
in [11]. Also, a comprehensive review on traditional structured 
light cameras can be found in [4]. This article will be comple-
mentary to these reviews.

Computational depth sensing
For ordinary digital cameras, what you see is what you get 
under appropriate ambient illumination. By contrast, depth cam-
eras do not sense depth information directly, but, rather, through 
either the space deformation or the time delay of light signals. 
In this sense, computation is actually indispensable for all depth 
cameras. In this article, however, computational depth sensing is 
defined as the redesign of image sensor systems or elements 
followed by advanced signal processing algorithms.
Computational depth sensing can improve the capabilities of 
traditional depth cameras, introduce features that were not pos-

sible with traditional depth cameras, or reduce the cost or size of 
camera elements.

For the completeness of this review, we first briefly in-
troduce traditional structured light techniques, through 
which it is easier to understand the merits of computational 
techniques. Traditional structured light techniques can be 
roughly divided into two categories according to the pattern 
design strategy: time coding and space coding. Time-coding 
methods project multiple patterns sequentially to identify 
each point in the scene with a time series, e.g., binary code 

[12], Gray code [13], N-ary code [14],
and phase-shifted fringe [15]. Due to the 
pixel-independent encoding, time-coding 
methods can provide high-accuracy depth 
with simple decoding algorithms. Howev-
er, time coding cannot deal with dynamic 
scenes unless expensive high-speed hard-
ware is used [16]. In contrast, space-coding 
methods using a single pattern are suitable 

for 3-D capture of dynamic scenes. Generally, this pattern 
needs to be designed in a way that each point is uniquely en-
coded by its neighborhood, e.g., De Bruijn sequences [17],
M-arrays [18], and color-coded [19] and symbol-coded [20]
patterns. Nevertheless, space-coding methods rely on an as-
sumption of local depth smoothness that will be violated by 
abrupt depth changes. Thus, the accuracy of depth obtained 
from space coding is limited.

We still take the Kinect as an example to further explain 
the concept of computational depth sensing. The pattern used 
in the Kinect belongs to space coding for structured light. In 
traditional space-coding methods, color or grayscale informa-
tion is generally used. These color or grayscale patterns need 
to be emitted by projectors. While projectors are often expen-
sive, bulky, low-energy, and offer a small depth of field, the 
emitted light is also susceptible to ambient illumination and 
scene albedo. All of these issues hinder the practical applica-
tion of space-coding depth cameras. The revolutionary change 
in the Kinect is to use a tiny laser-diffuser emitter to replace 
the projector. The diffuser bears a binary, pseudorandom 
speckle pattern, and the laser emits infrared light. Therefore, 
while being invisible to human eyes, an infrared speckle pat-
tern is generated and projected onto the scene, as shown in 
Figure 1. Due to the well-designed pseudorandom distribution 
of the bright dots, this speckle pattern has high distinguish-
ability when observed in a local window. Compared with the 
projector, the laser-diffuser emitter has obvious advantages: 
low cost, compact size, high energy, and large depth of field. 
Moreover, compared with the projector-generated color or 
grayscale patterns, this binary, infrared speckle pattern is 
robust to ambient illumination and scene albedo. All of these 
issues contribute to the reliable performance of the Kinect 
depth camera.

Besides the unique optics design, the Kinect also adopts 
an efficient signal processing algorithm, that is, how to com-
pute depth once the deformed speckle pattern is captured. 
The triangulation principle is used here. A reference image 

FIGURE 1. An infrared camera image of part of the speckle pattern 
projected by the Kinect. 

Due to its promising and 
reliable performance, the 
structured light approach 
has been widely adopted 
for three-dimensional 
scanning purposes. 
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of the speckle pattern is stored in the memory of the Kinect. 
The reference image is acquired only once, by projecting 
the speckle pattern onto a planar object at a proper distance. 
The captured image is then processed with the reference 
image to find a relative shift of the speckle pattern. This 
is implemented using a correlation-based 
image-matching algorithm. A small slid-
ing window scans the captured image and 
correlates it with the reference image, and 
the correlation peak indicates the relative 
shift that can be mapped to depth through 
triangulation. Since the laser-diffuser emit-
ter is strictly calibrated with the infrared 
camera in the Kinect, the shift of the speck-
le pattern will only occur in the horizontal 
direction, which significantly reduces the 
search range for the image matching. The winner-takes-all 
strategy is applied as postprocessing to refine the results. The 
whole implementation is accelerated by parallel computing to 
produce real-time depth.

The Kinect serves as a typical example of computational 
depth sensing, where a distinct optics design in combina-
tion with powerful computing capabilities carves out a way 
toward high-performance commodity depth cameras. For 
the first time, for a few hundred U.S. dollars, everyone can 
have a decent depth camera with millimeter-level accuracy 
at a distance of approximately 1 m. (The accuracy decreases 
as the distance increases.) Nevertheless, the accuracy of the 
Kinect depth is still limited by the space-coding approach. 
There is a large demand for real-time commodity depth 
cameras with improved accuracy. Driven by the increasing 
demand, different computational techniques either inheriting 
the merits of the Kinect or adopting new principles have 
been developed recently. Before we go into the details about 
these techniques, we first categorize them into four groups 
from the perspective of methodology: phase period coding, 
space-time coding, binary phase shifting, and sensor fusion. 
Phase period coding advances the classical phase-shifting 
profilometry to significantly reduce the number of patterns 
required for accurate depth acquisition. Space-time coding 

adaptively exploits the space-time-coded information toward 
a scalable depth-sensing paradigm. Binary phase shifting uses 
defocused, dithered, or filtered binary patterns in pursuit of 
super-high-speed, yet low-cost, depth cameras. Sensor fusion 
jointly takes advantage of two different depth sensors for an 

improved performance while maintaining 
backward compatibility.

Toward high-performance  
commodity depth cameras

Phase period coding
Phase shifting is a well-known structured 
light technique for high-accuracy 3-D mea-
surement [15]. It requires a set of sinusoidal 
fringe patterns with an incrementally shift-

ed phase to be projected and captured. Taking three-step phase 
shifting as an example, each of the three fringe patterns is 
shifted by a phase of /2 3r  from the previous one. Assume the 
fringe is horizontal, as shown in Figure 2(a), the nth
( , , )n 1 2 3=  fringe pattern can be readily generated as

( , ) ,cosP x y C A fy n2
3

2
n r

r= + +` j (1)

where , ,A C and f represent the amplitude, the dc offset, and 
the frequency of fringe, respectively. The corresponding cap-
tured image can be described as

( , ) ( , ) ( , ) ( , )  ,cosI u v I u v I u v u v n
3

2
n C A z

r= + +8 B (2)

where

( , ) ( , ) , ( , ) ( , ) [ ( , )] .I u v u v A I u v u v C u vA Ca a b= = + (3)

One captured image for a real scene is shown in Figure 2(b). 
To differentiate from ,x y^ h denoting the projector coordinates, 
we use ( , )u v  to denote the camera coordinates. ( , )u va  and 

( , )u vb  represent the albedo and the ambient illumination at 
each scene point. There are three unknowns in (2), the sinu-
soidal amplitude ( , ),I u vA  the background intensity ( , ),I u vC

(a) (b) (c) (d)

FIGURE 2. An example of phase shifting. These images depict (a) three projected fringe patterns of the same size, overlapped to demonstrate the phase 
difference; (b) one captured image; (c) a wrapped phase map; and (d) an absolute depth map. 

Driven by the increasing 
demand, different 
computational techniques 
either inheriting the merits 
of the Kinect or adopting 
new principles have been 
developed recently. 
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and the phase ( , ),u vz  so the theoretical minimum number 
of fringe patterns required is three. Using the three captured 
images together, the phase can be calculated as

( , )
( , ) ( , ) ( , )

( , ) ( , )
.arctanu v

I u v I u v I u v
I u v I u v

3
2 3 2 1

2 1
z =

- -
-; E (4)

The phase obtained by (4) ranges from –π to π, which results 
in discontinuities in the phase map as shown in Figure 2(c). 
Thus, a phase unwrapping procedure is needed to convert the 
wrapped phase to the absolute phase as

( , ) ( , ) ( , ) ,u v u v d u v2absz z r= + (5)

where ( , )u vd is an integer disparity within [ , ]M0 1-  and 
M is the number of periods of the fringe pattern. Once the 
absolute phase is obtained, the absolute depth at each scene 
point can be calculated through triangulation between the 
projector and the camera. An exemplar depth map is shown 
in Figure 2(d).

Phase shifting belongs to time coding for structured light, 
as it uses multiple patterns. By concentrating the usable code-
word within a narrow fringe period and 
eliminating the influence of ambient illu-
mination and scene albedo, phase shifting 
can achieve higher accuracy compared 
with other time-coding methods, especially 
when high-frequency fringes are used [21].
Nevertheless, due to the periodical nature 
of the fringe signal, a major problem of this 
technique is the phase ambiguity. That is, 
only depth within a range equivalent to one fringe period can 
be measured directly, and depth exceeding this range will be 
wrapped. While high-frequency fringes are preferred for high-
accuracy measurement, they also lead to severe ambiguity. To 
recover the absolute depth, a prevalent solution is temporal 
phase unwrapping using a large number of additional pat-
terns, e.g., Gray code or multifrequency fringes [22], which 
greatly limits the application of phase shifting in time-criti-
cal scenarios.

Recently, the advancement of projector technology has 
enabled fast and accurate 3-D measurement with phase shift-
ing. One pioneering phase-shifting-based system is described 
by Zhang and Huang in [23]. To achieve real-time depth sens-
ing, they modify a color digital light processing (DLP) projec-
tor and use the red, green, and blue (RGB) channels to project 
three fringe patterns. Moreover, to avoid the time-consuming 
arctangent function when calculating the phase, they propose 
a new phase-shifting method using trapezoidal fringes instead 
of sinusoidal fringes. The 3-D acquisition and reconstruction 
speed of their system is up to 40 fps at 532 × 500 pixels. In 
this work, spatial phase unwrapping [24] is applied to recover a 
continuous phase map from a wrapped one, yet it cannot solve 
the ambiguity when multiple isolated objects or abrupt depth 
changes are present. Although restricted in the scope of appli-
cation, this work demonstrates the feasibility of high-resolution, 
real-time depth sensing with phase shifting.

To maintain a minimum number of required images for 
absolute depth recovery, several phase-shifting methods 
using period coding have been proposed. The common idea is 
to encode a period-specific signal into the fringe, and the phase 
ambiguity is solved by decoding the embedded signal. In [25],
Liu et al. embed a unit-frequency sinusoidal fringe into a high-
frequency one. The high-frequency fringe plays the role of 
phase shifting, while the unit-frequency fringe serves as period 
codes. At least five images are needed to derive a phase pair. 
The unit-frequency phase has no ambiguity, as there is only 
a single period, so it can be used to disambiguate the wrapped 
high-frequency phase. To achieve a real-time performance, they 
also propose a lossless table-lookup method for phase calculation 
and 3-D point cloud generation. The 3-D reconstruction speed of 
their system can reach 228 fps at 640 × 480 pixels, though the 
actual 3-D acquisition speed depends on the projector and the 
camera being used.

In [26], Wissmann et al. propose another phase-shifting 
method with period coding. Specifically, they embed a one-
dimensional (1-D) binary De Bruijn sequence into a four-step 
phase-shifting pattern set, where the embedded signal will not 

affect the phase calculation. They also de-
sign a corresponding decoding strategy to 
extract the period index from the De Bruijn 
sequence. One highlight of this work is the 
cost-effective hardware design. Instead of 
using an off-the-shelf DLP projector, they 
develop a high-speed spatial light modulator 
(SLM) for pattern generation. The four pat-
terns are arranged around the rotational cen-

ter of the SLM. The SLM is illuminated by a light source and 
imaged through a conventional camera lens. Pattern switching is 
achieved via synchronized timing of camera exposure intervals, 
integrating the image of the rotating SLM during the rotation of 
a pattern segment. With this dedicated system, the 3-D acquisi-
tion speed is claimed to be 50 fps, while the 3-D reconstruction 
speed is 11 fps at 640 × 480 pixels.

The aforementioned two methods solve the phase ambigu-
ity using a relatively small number of images. However, one 
drawback is that the amplitude of fringe needs to be reduced 
to accommodate the embedded period codes, which sacri-
fices the signal-to-noise ratio (SNR) and thus the accuracy 
of phase shifting. To retain the SNR of phase shifting, Wang 
et al. propose a period-coding strategy without reducing the 
amplitude of the fringe in [27]. Their key observation is that 
the spatial intensity efficiency of phase-shifted fringes is 
less than 100%, leaving a margin of the available intensity 
dynamic range for adding a period cue signal. Given the step 
of phase-shifting N  and the number of periods of fringe ,M
the period codes can be designed by following several basic 
properties. It should be noted that a smaller N  and a larger 
M will decrease the margin of intensity dynamic range and 
increase the difficulty of code design. If using four patterns, 
16 periods can be supported. In an extreme case of three pat-
terns, at most four periods can be used for reliable decod-
ing. The computational cost of this method is low, and up to 

Different depth sensors 
have complementary 
advantages, and a 
combined device could 
outperform each single 
component. 
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120 fps can be achieved for 3-D acquisition and reconstruc-
tion at 640 × 480 pixels. Still, the limited range of frequency 
of fringe, especially for three patterns, limits the measure-
ment accuracy.

To minimize the number of required images while retain-
ing both the full amplitude and the high frequency of fringe, 
Zhang et al. propose to use three speckle-embedded fringe pat-
terns in which the pseudorandom speckle signal solves the phase 
ambiguity [28]. This work is inspired by the speckle pattern used 
in the Kinect, yet here the speckle signal is adapted for phase 
unwrapping. The nth( , , )n 1 2 3=  speckle-embedded fringe pat-
tern can be described as

( , ) ( , ) ( , ) .cosP x y C B x y Z x y A fy n2
3

2
n
E E r

r= + + +` j (6)

Compared to (1), the newly added second term consists of 
two parts: ,x yZ^ h denotes the distribution of a pseudorandom 
speckle signal similar to Figure 1, and ( , )B x yE  controls the 
intensity of the speckle. Similar to previous period-coding 
methods, this embedded speckle signal will not affect the 
phase calculation.

Suppose the intensity dynamic range of the projected pat-
terns is L-bit grayscale. Generally, the amplitude and the dc 
offset of the fringe signal are set as .A C 2L 1= = -  To embed 
the speckle signal without reducing the amplitude of fringe, 
a straightforward solution is to assign ( , )B x yE  the largest 
available intensity as

( , ) { ( , )},maxB x y P x y2
, ,

E L

n
n

1 2 3
= -

=
(7)

where ( , , )P n 1 2 3n =  denotes the original sinusoidal fringe 
patterns. However, little speckle signal can be embedded when 

( , )P x yn  equals or gets very close to .2L  Actually, as period 
codes, the intensity of the speckle can be either positive or 
negative. Therefore, a better strategy is to assign ( , )B x yE  as

( , ) ,B x y
B

B
B B2 2

otherwise
max

min

max minE
L E

E

L E E$
=

-

-

-) (8)

where

{ ( , )}, { ( , )}.max minB P x y B P x y
, , , ,

max min
E

n
n

E

n
n

1 2 3 1 2 3
= =

= =
(9)

The 1-D illustration for speckle intensity decision is given 
in Figure 3(a). As can be seen, the margin of intensity dynamic 
range in three phase-shifted fringes is fully exploited in this 
way. The three speckle-embedded fringe patterns are shown in 
Figure 3(b). The positive speckle intensity corresponds to the 
brighter dots, and the negative speckle intensity corresponds to 
the darker dots on the fringe background.

The phase-unwrapping process follows the idea of patch-
based image matching used in the Kinect. Since the dispar-
ity in (5) is an integer within [ , ],M0 1-  at most M  possible 
disparities need to be checked for each wrapped phase. To 
improve the robustness of phase unwrapping when high-
frequency fringes are employed in pursuit of high accuracy, 

an efficient voting strategy is further proposed to recover 
the absolute phase region by region instead of pixel by pixel. 
Figure 4 shows the online 3-D reconstruction results of a 
dynamic scene using this method, which demonstrates the 
accuracy of phase shifting that can be achieved by using the 
theoretical minimum number of images. Quantitatively, the 
root-mean-square reconstruction error is submillimeter at a 
distance of approximately 1 m. In other words, the measure-
ment accuracy is an order of magnitude higher compared with 
the Kinect. A potential drawback of this method is that phase 
map segmentation is required, which may cause reliability 
issues in case of complex scenes.

Table 1 lists the main features of the previously discussed 
phase period coding methods. Compared with traditional 
phase shifting using a large number of patterns, systems 
based on these methods can all achieve real-time 3-D acqui-
sition and reconstruction, making high-accuracy depth sens-
ing possible in time-critical scenarios. However, even with 
the minimum of three patterns, motion effects still pose chal-
lenges for developing commodity depth cameras based on 
phase shifting. For example, if a 30-fps acquisition speed is 
expected (which should be enough for general-purpose usage), 
the projector and the camera need to be synchronized at 90 
fps. Such high-speed hardware requirements would greatly 
increase the system cost. It is worth mentioning that since the 
phase relationship between any two consecutive patterns is 

Max (P1, P2, P3)

Min (P1, P2, P3)

P1

P2

P3

2L

0

In
te

ns
ity

B B B

–B–B

Projector Y-Coordinate

(a)

(b)

FIGURE 3. (a) The speckle intensity decision; red regions indicate positive 
values and green regions indicate negative values. (b) Three speckle-
embedded fringe patterns. 
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the same, any newly captured image can be combined with 
its preceding two images to produce a depth map. Therefore, 
one can have a pseudo frame rate of 30 fps even when the 
projector and the camera work at the same speed, by using a 
sliding window strategy in the time dimension. However, 
motion occurring during the acquisition time of three images 
(100 ms in this example) is likely to cause measurement errors. 
To address the motion problem, there are two main directions. 
One is pattern design to further reduce the time dependency, 
and the other is pattern generation to further reduce the hard-
ware cost. In both cases, the accuracy of depth measurement 
should be retained as much as possible. The efforts along these 
two directions are detailed next.

Space-time coding
Human eyes will focus on the object details in a static scene. 
Once the scene becomes dynamic, human attention will be 
largely attracted by the object motion and thus be less sensitive 
to the object details. Therefore, it is possible to take advantage 
of this property to integrate space coding and time coding 
within a scalable depth-sensing paradigm. The basic idea is to 
design a uniform space-time coding through which a high-
accuracy depth map can be reconstructed from multiple con-
secutive frames for a temporally static scene, while a low-delay 
depth map can be reconstructed from a single frame once the 
scene becomes dynamic. The transition between these two 
modes should be immediate and seamless.

Figure 5 shows a general framework for scalable depth sens-
ing with space-time coding. Suppose there is a synchronized 
projector-camera system working with structured light illumi-
nation, and the projected patterns have a temporal period of .N
The currently captured frame It  is first compared with the prior 
N 1- frames for motion detection. If the scene remains static 
within N  frames, the image set ( , , , )I I It N t t1 1f- + -  is processed 
to produce a high-accuracy depth map .D ,H t Otherwise, if the 
scene becomes dynamic during the N  frames, only It  is pro-
cessed to produce a low-delay depth map .D ,L t  The scalability 
can be further extended. On one hand, if the scene remains static 
within ( )n n N1 # #  frames, the image set ( , , , )I I It n t t1 1f- + -

can be processed to produce a depth map D ,n t  with progres-
sively improved accuracy as the value of n increases. On the 
other hand, a regionwise optimal depth map can be produced 
through region-wise motion detection.

Table 1. A comparison of different phase period coding methods.

Period Codes Image Number 3-D Reconstruction Speed Computing Unit Remarks 

None [23] 3 40 fps at 532 × 500 pixels 2.8 GHz CPU Single smooth surface 

Unit-frequency fringe [25] 5 228 fps at 640 × 480 pixels 3.0 GHz CPU Fringe amplitude reduced 

De Bruijn sequence [26] 4 11 fps at 640 × 480 pixels 2.0 GHz CPU Fringe amplitude reduced 

Customized [27] 4 120 fps at 640 × 480 pixels 3.0 GHz CPU Fringe frequency limited 

Speckle [28] 3 15 fps at 640 × 480 pixels 2.83 GHz CPU Phase segmentation required

Scene Capture Depth Output

High Accuracy

Multiframe Reconstruction

Single-Frame
Reconstruction

It-N+1

It-1

It

.

.

.

Motion?
Yes

No
DH,t

DL,t

Low Delay

FIGURE 5. A general framework of scalable depth sensing with space-time 
coding.

FIGURE 4. Online 3-D reconstruction results of a dynamic scene (facial expressions with black eyeglasses) using three speckle-embedded fringe patterns. 
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An early work of space-time coding is described by Zhang 
et al. in [29]. They first design a color stripe pattern by realizing 
a De Bruijn sequence as shown in Figure 6(a), which supports 
single-frame depth reconstruction for high-speed scans of moving 
objects. By smoothing the color-stripe pattern with a Gaussian fil-
ter and projecting its shifted copies (in the direction perpendicular 
to the stripe) over time, multiframe depth reconstruction is then 
supported for high-accuracy scans of static 
scenes. For single-frame reconstruction, they 
develop a multipass dynamic programming 
algorithm that eliminates global smooth-
ness assumptions and strict ordering con-
straints present in previous formulations. For 
multiframe reconstruction, space-time analy-
sis is conducted at each sensor pixel to obtain 
interframe depth localization. Using a short 
sequence of seven time-shifted stripe patterns, the accuracy of the 
multiframe reconstructed depth map is significantly improved for 
static scenes compared with the approach that first obtains seven 
single-frame reconstructed depth maps independently and then 
combines them into a high-resolution one, which demonstrates 
the effectiveness of space-time analysis. Still, this work is one step 
away from scalable depth sensing, as it does not support the transi-
tion between the two types of reconstruction.

The first embodiment of scalable depth sensing is real-
ized by Ishii et al. in [30]. As shown in Figure 6(b), the base 
pattern is periodical in one direction (vertical for example) 
with a period of ,N  while each column represents a 1-D Gray 
code pattern. By shifting the base pattern N 1-  times in the 
vertical direction, one can get a set of patterns that are both 
spatially and temporally periodical based on the Gray code, 
which thus enables space-time coding with a flexible number 
of frames. This work takes N 8= as an example, so there 
are eight decoding types: the first type uses eight codewords 
along the time dimension in eight different frames, the sec-
ond type adds one more codeword in space from the latest 
frame and removes the dependency on the earliest frame, 
and so on. Finally, the eighth type uses all eight codewords 
in space from the latest frame and gets rid of the dependency 
on previous frames. Obviously, the first decoding type is 
effective for measuring static objects, while the eighth type is 
effective for measuring moving objects. The adaptive selec-
tion of decoding types ( )n n N1 # #

is determined based on the frame 
differencing features that detect the 
decoding errors e  caused by motion. 
Specifically, n  is proportional to .e  In 
other words, larger decoding types that 
are robust to motion are selected when 
e  increases, and smaller decoding 
types that enable accurate measure-
ment are selected when e  decreases. 
In this way, scalable depth sensing is 
elegantly realized with a smooth tran-
sition between single-frame and multi-
frame depth reconstruction.

In [31], Taguchi et al. propose another scalable depth-sensing 
method, where they also use a De Bruijn color stripe as 
the base pattern similar to [29] and obtain a temporally peri-
odical pattern set by shifting the base pattern regularly over 
time. The whole pattern set contains eight patterns and 
allows for decoding with a f lexible number of frames 
(e.g., one, two, four, or eight) at every pixel. In other words, 

motion-aware spatiotemporal window se-
lection is supported during decoding. The 
spatial window size decreases as more tem-
poral frames are used. If eight frames are 
used, the spatial window size shrinks to only 
one pixel. One highlight of this work is that 
pixel-wise optimal depth reconstruction is 
supported based on the plane-sweeping al-
gorithm. That is, for each pixel, the opti-

mal depth value should give the maximum matching score in 
terms of the normalized cross-correlation. The matching score 
is computed between the captured images and the projected 
patterns, using all possible spatiotemporal window sizes at a 
given depth layer. This space-time coding can handle dynamic 
scenes with different motions in different parts of the scene 
and improves the accuracy of depth measurement for static or 
slowly moving parts.

As mentioned previously, phase-shifted fringes pro-
vide higher accuracy depth measurement than other time-
coding methods, while the pseudorandom speckle pattern 
provides more robust depth measurement than other space-
coding methods. Combining these two distinct components, 
Zhang et al. introduce a set of hybrid patterns for scalable 
depth sensing in [32], where the nth( , , )n 1 2 3=  pattern can 
be described as

( , ) ( , ) ( , ) .cosP x y B x y Z x y C A f y n2
3

2
n
H H m r

r= + + +c m; E
(10)

Compared to (6), the main difference here is that the amplitude 
of fringe needs to be reduced to support single-frame reconstruc-
tion from the speckle, and [ , ]0 1!m  denotes the percentage of 
intensity dynamic range that the fringe component occupies. It 
has been experimentally investigated that [ . , . ]0 2 0 4!m  can 
provide competitive accuracy of depth measurement in both 

(a) (b) (c)

FIGURE 6. Base patterns of space-time coding: (a) a De Bruijn color stripe, (b) a periodical Gray code, 
and (c) a hybrid speckle and fringe. (Images (a) and (b) are from [29] and [30], respectively.)

Once the scene becomes 
dynamic, human attention 
will be largely attracted by 
the object motion and thus 
be less sensitive to the 
object details. 
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single-frame and multiframe reconstruction. Accordingly, the 
intensity of the speckle is set as

( , ) { ( , )}.maxB x y P x y2
, ,

H L

n
n

1 2 3
m= -
=

(11)

One of the hybrid patterns is shown in Figure 6(c). In this 
work, two sets of hybrid patterns with different frequencies 
of fringes are used for phase unwrapping when performing 
multiframe reconstruction, and patch-based image matching 
is adopted for single-frame reconstruction from the speckle as 
in the Kinect. To enable region-wise mode transition between 
single-frame and multiframe reconstruction, a motion mask that 
separates multiple objects with different motions is estimated. 
Figure 7 shows an example where there are two objects in the 
scene: one is moving and one remains static. As can be seen, 
this scalable depth-sensing method adaptively produces low-
delay depth for the moving object and high-accuracy depth 
for the static object. In general, single-frame depth recon-
struction is computationally intensive due to the correlation-
based image matching. For example, it is reported in [31] that 
the correlation computation for generating one depth map 
takes up to seven seconds on a standard personal computer 
with an Intel Core i7-950 processor. Although the acquisition 
can be performed at a speed as high as 500 fps in [30], the 
reconstruction needs to be conducted offline. Using the cen-
tral processing unit (CPU) for multiframe reconstruction and 
the graphics processing unit (GPU) for single-frame recon-

struction, this work realizes real-time scalable depth sensing 
for the first time. The depth reconstruction speed is 20 fps at 
640 × 480 pixels.

Since scalable depth sensing well coincides with the char-
acteristics of the human visual system and can be easily real-
ized with low-cost hardware, it provides a practical solution for 
many real-world applications when both accuracy and speed 
of depth sensing are concerned. In fact, a compromise always 
has to be made between accuracy and speed in developing 
commodity depth cameras according to the application scenar-
ios, and scalable depth sensing achieves an efficient balance 
between these two requirements.

Binary phase shifting
Phase shifting can achieve high-accuracy 3-D measurement, 
but it is vulnerable to motion. To alleviate the motion effect, 
high-speed hardware is required, but the high-speed DLP pro-
jector is expensive. In practice, there is a speed limit to gener-
ate 8-b grayscale patterns using a DLP projector. However, 
it is much faster to generate 1-b binary patterns, since only 
switchings between two states are needed. Moreover, as dem-
onstrated by the Kinect, it is possible to generate binary pat-
terns using a low-cost laser-diffuser emitter. Therefore, it will 
greatly enhance the speed or reduce the cost of phase shifting 
if binary patterns can be utilized to produce sinusoidal fringes.

An early work along this line is described by Lei and Zhang 
in [33]. The basic idea is to use projector defocusing. The defo-

cused projector is modeled by a point 
spread function that can be approxi-
mated as a Gaussian smoothing filter. 
They find that a sinusoidal fringe pattern 
can be produced by applying the Gauss-
ian filter to a square stripe pattern, as 
shown in Figure 8(a). Therefore, they 
simulate three-step phase shifting us-
ing the defocused square stripes, where 
the phase shift is realized by shifting the 
stripes spatially. This method turns out 
to work quite well, and the phase error is 
negligible, given a proper degree of pro-
jector defocusing and a proper width 
of the stripes. Using a DLP projector 

(a) (b) (c)

FIGURE 7. Depth reconstruction results for a scene with one moving object and one static object: (a) a multiframe reconstruction, (b) a single-frame 
reconstruction, and (c) a scalable depth sensing.

(a) (b) (c)

FIGURE 8. Base patterns of binary phase shifting: (a) a square binary pattern, (b) a dithered binary pat-
tern, and (c) a density-modulated binary pattern.
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and the square binary patterns, a superfast 3-D measure-
ment system has been developed with a speed of 667 fps at 
480 × 480 pixels [34]. Under such a high frame rate, the motion ef-
fect could be largely alleviated. Nevertheless, the square binary pat-
tern has two main drawbacks. First, the depth measurement range 
needs to be small to guarantee a proper degree of projector defocus-
ing, since the stripes will not become sinusoidal when the degree of 
defocusing is not proper. Second, when the stripes are wide, it re-
quires a large degree of defocusing to reshape the square stripes to 
the sinusoidal fringes, which may exceed the capability of the 
projector lens.

To overcome the shortcomings of the square binary pat-
terns, in [35] Wang and Zhang propose another kind of bina-
ry pattern by borrowing the idea of dithering, also known as 
half toning, which has been extensively used in digital image 
processing. The dithered binary pattern they use is shown in 
Figure 8(b). Specifically, the desired sinusoidal fringes are 
produced using the Bayer-ordered dithering technique or the 
error-diffusion dithering technique. Different from the square 
binary pattern, the dithered pattern appears sinusoidal even 
before processing. Therefore, even when the fringes are very 
wide, or the projector is nearly focused, the dithered binary 
pattern can produce ideal sinusoidal fringes. In other words, 
the dithered binary pattern is less dependent on the degree of 
projector defocusing and the width of the fringes. The former 
robustness extends the depth measurement range, while the lat-
ter robustness enables multifrequency phase shifting for abso-
lute depth measurement. Using the dithered binary patterns, 
a superfast two-frequency phase-shifting method is developed 
for absolute 3-D measurement of live rabbit hearts at 800 fps 
with a resolution of 576 × 576 pixels [36].

The aforementioned defocusing techniques generally 
require much calibration effort, since most of the existing cali-
bration techniques assume the projector to be in focus. Alter-
natively, Yang et al. propose density-modulated binary patterns 

to carry the phase information [37]. Different from defocus-
ing, the phase is implicitly represented by the 1-D density 
variation of bright dots in the pattern. Figure 8(c) shows an 
exemplar pattern with density variation in the vertical direc-
tion. Specifically, when denoting the pattern as ( , ),P x yB  the 
number of bright dots in different rows of ( , )P x yB  is defined 
as a sinusoidal function

( ) ,sink y
T
y

2 1 1Round #r i c= + + +` j8 B$ . (12)

where ()Round  is a function to round a floating number to an 
integer, T  is the number of rows in a sinusoidal period, and c is a 
scaling factor controlling ( )yk as an integer from 1 to K  that 
determines the number of different densities in a period. The three 
patterns for three-step phase shifting are generated by setting i to 

/ , ,2 3 0r-  and / ,2 3r  respectively. A low-pass filter is then applied 
to the captured images to extract the phase, which is accomplished 
by calculating the average energy in a small sliding window. It is 
verified that the energy images well approximate the phase-shifted 
sinusoidal fringes and thus support high-accuracy depth measure-
ment. Furthermore, an error correction method is proposed to 
reduce the quantization errors introduced by approximating sinu-
soidal fringes with a limited number of densities.

Figure 9 shows the depth reconstruction results of some 
indoor scenes in comparison with original phase shifting and 
the Kinect. It can be seen that depth from the density-modulated 
patterns is consistently better than that from the Kinect, in terms 
of surface details and object boundaries. Compared with origi-
nal phase shifting, some details are lost as binary patterns 
cannot represent phase as perfectly as grayscale patterns. 
However, a distinct property of the density-modulated binary 
pattern is that it still preserves the locally unique distribution 
of bright dots in the vertical direction. Therefore, using three 
density-modulated binary patterns, the advantages of scalable 
depth sensing in [32] and unambiguous 3-D measurement in 

(a) (b) (c) (d)

FIGURE 9. Depth reconstruction results for two indoor scenes: (a) the color image, (b) the Kinect results, (c) the results of density-modulated binary pat-
terns, and (d) the results of original phase shifting.
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[28] can be inherited. While single-frame depth reconstruc-
tion is supported simultaneously, the phase ambiguity can be 
eliminated through patch-based image matching. These advan-
tages are beyond the capabilities of original phase shifting using 
grayscale patterns.

Moreover, the density-modulated binary patterns can be 
generated using low-cost laser-diffuser emitters as is done in 
the Kinect, which gets rid of expensive DLP projectors. This 
property is extremely important for devel-
oping commodity depth cameras. Fig-
ure 10(a) shows the coded optical element 
customized for the usage of the diffuser. It 
is done on an opaque base with a 25-mm 
diameter. The pattern is in the center of the 
base with a 15-mm length in each dimension. 
The size of a bright dot is .m m20 20#n n

Figure 10(b) shows the depth camera pro-
totype on the fly. Since the binary pattern 
is fixed on the diffuser in front of the laser, three lasers are 
needed to be aligned with three properly shifted patterns. A 
timing circuit then controls the three lasers to be on and off 
sequentially, together with a synchronized camera. Depth can 
be reconstructed from either a single frame or three consecu-
tive frames, depending on the motion detected in the scene. 
Note that the physical size of the laser-diffuser emitter can be 
much more compact in actual production. Besides its low cost 
and compact size, the laser emitter also offers high energy and 
large depth of field that far surpass DLP projectors.

Sensor fusion
A depth camera is ideally fast, accurate, and robust. 
Unfortunately, no existing depth camera is perfect on its own. 
A feasible way to enhance the performance of depth cameras 
is sensor fusion, as different depth sensors have complementa-
ry advantages, and a combined device could outperform each 
single component. Due to its passive properties, stereo is easy 
to combine with active illumination sensors. For example, 
structured light illumination has been used to improve the 
accuracy of stereo sensors, since structured light can provide 
distinguishable features for stereo matching on textureless 
surfaces [38].

The combination of stereo and structured light has other 
forms. To achieve high-accuracy, low-delay depth sensing, 
Weise et al. built a novel depth camera based on three-step 
phase shifting, where the phase ambiguity is solved by stereo 
[39]. Their system consists of a DLP projector, two high-
speed monochrome cameras, and a color camera. The two 
monochrome cameras are synchronized and record the three 
images of phase-shifted fringes. As mentioned previously, 

the phase ambiguity is an integer disparity 
within [ , ],M0 1-  where M  is the number 
of periods of the fringe pattern. While ste-
reo matching can be performed between 
the two monochrome cameras to solve the 
ambiguity, the number of possible disparity 
is limited to .M Therefore, no dense stereo 
matching is needed, which allows for a fast 
implementation. To increase the robustness 
to noise, specularities, and occlusions, an 

optimization algorithm using loopy belief propagation fol-
lowed by a consistency check is proposed to reduce the phase-
unwrapping error. Meanwhile, a motion compensation method 
is proposed to reduce the motion error. The resulting system 
can give accurate depth measurement of complex dynamic 
scenes at 17 fps with the assistance of a GPU. This stereo-
assisted phase-unwrapping idea is further extended in [40] by 
enforcing viewpoint and temporal consistencies.

Stereo has also been used to improve the accuracy of ToF 
sensors, since stereo can make use of high-resolution com-
modity cameras, while ToF sensors are limited in resolution. 
On the other hand, ToF sensors perform better than stereo 
on textureless surfaces, while stereo is more reliable on sur-
faces with rich textures that poses difficulties for ToF sensors 
due to the large variation of scene albedo. In [41], Zhu et al. 
describe a multisensor system with two color cameras and a 
SwissRanger SR3000 ToF sensor. The probability distribu-
tion functions of depth estimates from each sensor modal-
ity are fused using a Markov random field model, and belief 
propagation is then applied on the combined data from ToF 
and stereo to produce enhanced depth estimates through 
global regularization. Note that the ToF and stereo sensors 
need to be calibrated into a common Euclidean coordinate 
system in advance.

Generally, the combination of passive stereo and active 
illumination sensors performs better than either alone. But 
there is an inherent limitation for stereo: failure on texture-
less surfaces. In this case, only active illumination sensors can 
work. In [42], Zhang et al. propose a novel fusion framework 
to combine ToF and phase shifting, which is the first attempt 
to combine two active illumination sensors. The basic idea is to 
use the coarse, low-resolution depth from ToF to disambiguate 
the wrapped, high-resolution depth from phase shifting. The 
proposed system is shown in Figure 11, which consists of a sec-
ond-generation ToF Kinect (the Kinect Gen2), an off-the-shelf 
DLP projector, and a monochrome camera. Specifically, two 
key technical issues are addressed in this work. First, both ToF 
and phase shifting emit light signals, so they will inevitably 

(a) (b)

FIGURE 10. (a) The coded optical element customized for the diffuser 
usage. (b) The depth camera prototype using laser-diffuser emitters to 
generate density-modulated binary patterns.

A common insight behind 
most of the techniques 
discussed previously is to 
improve the efficiency of 
space-time multiplexing 
in terms of the light 
signal usage. 
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Monocamera

Kinect Gen2

DLP Projector

FIGURE 11. The system of ToF and phase-shifting fusion. 

interfere with each other unless precise synchronization is 
conducted. To this end, an interference-free synchronization 
strategy is designed with minimal restrictions on the system, 
after analyzing the properties of light signals emitted by the 
ToF and phase-shifting sensors. Second, calibration is essential 
for establishing an accurate mapping between the depth mea-
surements from ToF and phase shifting. Thanks to the high-
resolution RGB camera that is well calibrated with the ToF 
sensor in the Kinect Gen2, a cross-modal calibration strategy 
is designed to reliably relate the depth measurements from ToF 
and phase shifting. Based on the calibration and synchroni-
zation strategies, a 30-fps real-time depth-sensing system has 
been developed with the assistance of a GPU. Figure 12 shows 
some 3-D reconstruction results of fusion in comparison with 
ToF and phase shifting alone. As can be seen, this fusion meth-
od produces accurate and robust depth with high resolution and 
low delay, which successfully integrates the advantages of ToF 
and phase shifting. Note these two scenes are both with tex-
tureless surfaces, which poses difficulty for the previous fusion 
methods using passive stereo.

Summary
Now that we have reviewed the representative computational 
depth-sensing techniques, let us summarize by taking a deeper 
look into the common essence of these techniques and how 
these techniques will facilitate the future development of high-
performance commodity depth cameras.

A common insight behind most of the techniques discussed 
previously is to improve the efficiency of space-time multiplex-
ing in terms of the light signal usage, which is different from 
traditional structured light cameras that explicitly separate 
space coding and time coding for specific application scenarios 
(dynamic capture or static scanning). Actually, to achieve the 
goal of fast and accurate depth sensing, space-time multiplex-

ing is indispensable. From this perspective, phase period cod-
ing exploits the space redundancy in time-multiplexing signals 
(i.e., phase-shifted fringes) to reduce the time dependency of 
high-accuracy phase shifting, space-time coding exploits the 
time redundancy in space-multiplexing signals (e.g., De Bruijn 
sequence, Gray code, and speckle pattern) for improved accu-
racy of motion-insensitive regions in the scene, and sensor 
fusion exploits the cross-modal redundancy to pursue even 
higher efficiency of space-time multiplexing through precise 
calibration and synchronization. On the other hand, cost is an 
important consideration. For structured light cameras, DLP 
projectors, especially high-speed ones, are usually the most 
expensive components. Therefore, improving the efficiency 

(a) (b) (c) (d)

FIGURE 12. Three-dimensional reconstruction results of two scenes with textureless surfaces: (a) the color image, (b) the ToF results, (c) the results of 
three-frequency phase shifting (nine patterns), and (d) the results of ToF and phase-shifting fusion (three patterns).
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of space-time multiplexing promotes the usage of commod-
ity hardware while maintaining the measurement accuracy. 
Specifically, it is worth mentioning that binary phase shifting is 
a promising approach to enable the design of high-performance 
commodity depth cameras, as binary patterns can be easily 
generated using relatively inexpensive DLP 
projectors or laser-diffuser emitters that cost 
much less than DLP projectors.

Another common insight behind these 
techniques is that interdisciplinary design of 
system principles and components could break 
the performance limit of traditional depth 
sensing. From this perspective, phase period 
coding implicitly uses space coding to solve the phase ambiguity 
in phase shifting (a kind of time coding) without using a large num-
ber of patterns, space-time coding explicitly integrates advantages 
of space coding and time coding within a scalable depth-sensing 
paradigm, and sensor fusion directly combines different types of 
depth sensors for an improved performance while maintaining 
backward compatibility. Furthermore, binary phase shifting bor-
rows the idea of dithering from digital image processing to achieve 
high-accuracy depth measurement with elegantly simulated sinu-
soidal fringes from binary patterns.

Essentially, the aforementioned insights can be summarized 
into two aspects: advanced signal processing algorithms and 
redesign of image sensor systems or elements, which together 
mark the era of computational depth sensing. Along with the 
ever-increasing computing power and the advancement of light 
source technology, we believe computational techniques will 
play a more and more important role in the development of 
future depth cameras.

Advanced issues

Open problems
Despite the rapid progress made in the field of computational 
depth sensing, there are still some major challenges that are 
considered important open problems.

Outdoor and global illumination
One issue that restricts the application of active depth cameras 
is undesired illumination. A typical scenario is outdoors, where 
the presence of strong sunlight severely interferes with active 
illumination. Attempts to overcome this difficulty usually have 
side effects of degraded measurement accuracy or speed [43].
Another kind of undesired illumination, called global illumina-
tion, refers to interreflections, surface scattering, and other 
effects that are not directly from the light source. Global illumi-
nation effects frequently pose obstacles for active depth camer-
as, and avoiding them has been investigated in the literature 
[44]. Nevertheless, it remains challenging to maintain measure-
ment accuracy, speed, and reliability at the same time.

Hardware-friendly algorithm design
For real-time, high-resolution depth sensing, parallel com-
puting is indispensable. Both the signal processing algorithm 

and the hardware equipped in depth cameras should support 
highly parallel computing. While the processing for tradi-
tional techniques such as space coding and time coding are 
parallelizable in principle, more sophisticated algorithms 
may be required for an improved performance in computa-

tional depth sensing, which are not neces-
sarily easy to be parallelized. On the other 
hand, previous works generally demon-
strate parallel implementation on CPU/
GPU, yet seldom on resource-constrained 
hardware such as field-programmable gate 
arrays [45]. The latter, however, is closer 
to the real case for the deployment of 

commodity depth cameras. Therefore, the design of parallel 
signal processing algorithms adapted to resource-constrained 
hardware should receive more attention.

Depth cameras on mobile phones
In this mobile-first world, high-accuracy depth information 
would enable a great deal of applications if available on 
mobile phones. However, it is difficult to integrate active 
depth cameras into mobile phones, mainly due to the physical 
size of the light source. Although the laser-diffuser emitter 
used in the Kinect could meet the rigorous requirements, 
safety is another issue to be considered, as lasers may not be 
preferred for near body usage. Fortunately, the advancement 
of projector technology could relieve this problem. The minia-
turized version of DLP projectors would soon be available on 
mobile phones [46]. The Lenovo Phab 2 Pro [47], the first 
commodity Tango-powered mobile phone with a built-in ToF 
depth camera, is already on the market. Still, practical issues 
such as energy efficiency and measurement range need to be 
taken into consideration for the development of depth cameras 
on mobile phones.

Promising applications
With improved performance and reduced cost, commodity 
depth cameras have found their applications in a number of 
emerging scenarios. Here we discuss several application 
scenarios that are expected to have a large impact in the future.

VR/AR
VR and AR are becoming extremely popular. However, the 
richness of the content is one bottleneck for this industry. As 
3-D information is necessary for generating an immersive 
user experience, depth cameras play an indispensable role in 
this scenario. Equipped with a high-performance depth cam-
era, VR/AR devices can easily obtain the 3-D information of 
the environment in real time and then render the reality as 
one wishes. That is the working principle behind the 
Microsoft HoloLens [8] and Google Tango [9]. To be com-
petitive in the market, depth cameras on VR/AR devices 
should have low cost, compact size, and large measurement 
range. As can be expected, the growth of the VR/AR indus-
try will greatly promote the development of commodity 
depth cameras.

In this mobile-first world, 
high-accuracy depth 
information would enable a 
great deal of applications if 
available on mobile phones. 
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Artificial intelligence/robots
Artificial intelligence has seen its renaissance 
recently, and intelligent robots are again 
attracting mass attention. While RGB-
depth images are widely used in computer 
vision tasks and show significant advantag-
es, a pair of RGB and depth cameras would 
become the default configuration for intelli-
gent visual analysis. Future robots that are 
able to segment, detect, recognize, and track different objects 
in an environment will heavily rely on the accurate depth infor-
mation. Still, depth cameras need to be customized to meet the 
specific requirements under different environments. For exam-
ple, on drones, where depth information is essential for navi-
gation, depth acquisition should be highly robust to ambient 
illumination; whereas when human beings are involved for 
interaction, it is better to use infrared light instead of visible light 
for the light source.

Human–computer interaction
Game consoles have been demonstrated as a killer applica-
tion of depth cameras, where human–computer interaction 
can be conducted in an easy and natural way. However, the 
potential of high-performance commodity depth cameras is 
far greater. Eventually, scenes from science fiction films will 
become real. We will be able to easily control the equipment 
around us with our bodies, just as we control the characters 
in the Kinect games. That will greatly facilitate every aspect 
of our daily lives—entertainment, education, surgery, and 
disability assistance, to name just a few.

Conclusions
By adding one missing dimension back to digital imaging, 
depth cameras provide indispensable information for inter-
preting the environment. Because of the rapid advancement 
of computing power and light sources, commodity depth 
cameras have been developed with improved accuracy and 
speed through the redesign of image sensor systems and 
advanced signal processing algorithms. In this article, we pro-
vided an overview of representative techniques of computa-
tional depth sensing, analyzed their pros and cons, and 
summarized the common insights behind these techniques. 
Looking forward, we also discussed the open problems for 
computational depth sensing as well as promising applica-
tions that can be explored with the availability of high-
performance commodity depth cameras.

Besides depth, there are other dimensions missing in tra-
ditional digital imaging. Taking the spectrum dimension 
as an example, multi/hyperspectral cameras can capture 
color details beyond the capability of ordinary RGB cam-
eras. Similar to depth cameras, computational techniques 
have been extensively used to improve the performance of 
multi/hyperspectral imaging when both accuracy and speed 
are concerned [48]. The future trend of computational imag-
ing will integrate more dimensions, for example, depth and 
spectrum together [49], [50], toward the ultimate goal of 

resolving the plenoptic function in a single 
shot. We hope the principles of computa-
tional depth sensing revealed in this article 
help lift the roadblocks ahead and inspire 
brand-new imaging modalities.
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Engineering Outreach: 
Yesterday, Today, and Tomorrow

T his article discusses the current 
landscape of outreach efforts in the 
United States to engage K–12 stu-

dents in engineering. It then provides an 
overview of two programs run by the 
College of Engineering and Applied 
Sciences, and the Institute for Science, 
Technology, Engineering, and Mathe-
matics Education at Stony Brook Uni-
versity (SBU) to promote student 
participation and interest in engineer-
ing. These efforts are aligned with the 
recently released Next Generation Sci-
ence Standards (NGSS), which empha-
size incorporating engineering design 
principles in K–12 science education. 
We describe two models, one in the 
form of an on-campus summer camp 
and the other as a series of after-school 
activities with both on- and off-campus 
offerings. These experiences are rarely 
available in K–12 schools and have the 
added benefit of exposing students to 
engineering faculty and researchers. 
The programs are focused on electrical 
and computer engineering with empha-
sis on signal and information process-
ing and analysis and have hosted more 
than 200 students for the past six years. 

We argue that offering continuing 
education opportunities to teachers and 
counselors at schools will have a con-
siderably higher impact, and we describe 
two innovative programs targeting those 
populations as well as a new format of 

student experiences based on one-day 
campus visits.

Overview
A major challenge in our increasingly 
technological society is the need to build 
awareness and excitement for engineer-
ing careers to help attract the engineers of 
the future. Unfortunately, students often 
view engineering as an unattractive and 
inaccessible subject and career option 
[1]. Contributing to this view is the tradi-
tional lack of engineering instruction in 
elementary, middle, and high schools 
(known collectively as the K–12 schools), 
compounded by a limited awareness of 
engineering knowledge and careers 
among teachers and school counselors 
[2], [3]. However, the recent adoption of 
the NGSS [4] by 16 states has shown tre-
mendous promise for widespread prolif-
eration of engineering in K–12 education. 

The NGSS explicitly integrates sci-
ence content knowledge, engineering 
practices, and cross-cutting concepts so 
students may identify, explain, and solve 
everyday problems through engineering 
design. The NGSS complement the 
American Society for Engineering Edu-
cation (ASEE) K–12 Science, Technolo-
gy, En  gineering, and Mathematics 
(STEM) Guidelines for All Americans 
[5], which emphasize the scope of engi-
neering practice, understanding engi-
neering design, and applying STEM 
concepts to technological challenges. 
These standards and guidelines present 
an opportunity for universities to impact 

precollege engineering education by 
sharing resources and expertise. This 
article explores the current status of 
engineering education and careers in the 
United States, successful engineering 
outreach programs and curricula, and the 
efforts at SBU in advocating for a broad-
er participation in engineering through 
university–community partnerships.

Recent reports have documented the 
chronic shortage of engineering talent in 
the United States [6]–[8]. The U.S. Bureau 
of Labor Statistics projected an increase 
of 365,000 engineering job openings, due 
to replacing current engineers bet  ween 
2010 and 2020, and an additional need 
for 160,300 engineers due to new job 
growth [9]. It is questionable whether 
colleges and universities will be able to 
maintain the pace with engineering 
employment demands. There were 106,658 
bachelor’s degrees awarded in all engi-
neering disciplines in 2014–2015 in the 
United States [5], yet there are indica-
tions that retention and diversity in under-
graduate engineering programs are 
persistent concerns [10]. Undergraduate 
engineering enrollment in the United 
States was 541,705 in 2014, including 
104,033 women, 27,163 African Ameri-
cans, and 60,017 Hispanic students [11]. 
The graduation rate of engineering 
majors in the United States was 60% 
over six years [12], with both academic 
preparation and nonacademic factors 
contributing to attrition [12], [13]. The 
traditional disparities in undergraduate 
engineering education are reflected in 
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the demographics of the current work-
force. In 2014, there were 1,680,854 engi-
neers in the United States, of whom 
12.9% were women, 3.6% were African 
American, and 8.3% were Hispanic [11]. 
Disparities in engineering interest develop 
before college, with 14.5% high school 
men and just 2.5% of high school women 
intending to major in engineering [14]. 
Students entering higher education to 
study engineering need to be prepared dif-
ferently, and it is essential that more 
diverse populations are attracted to and 
retained in the field [15].

Issues in K–12 STEM education
Intrinsic to the shortage of engineering 
talent is a lack of tradition of engineer-
ing education in K–12 schools [16], 
[17]. This has been manifested in current 
policies and existing science and mathe-
matics curricula, inadequate teacher 
preparation, and limited resources for 
providing appropriate student guidance. 
There has been much discussion about 
the inclusion of engineering in K–12 
classrooms and disjointed state efforts to 
do so [18], [19], yet research into STEM 
integration has not kept pace with chang-
es in policy [20]. New York State, for 
example, has no distinct K–12 teacher 
certification in engineering and does not 
allow engineering coursework to meet 
licensing requirements. New York State 
is not prepared to meet the incorporation 
of engineering content and practices 
necessitated when the NGSS are fully 
adopted [21]. These standards originated 
in the U.S. National Research Council’s 
Framework for K–12 Science Education 
[22], which recommended curricula that 
incorporate cross-cutting concepts, scien-
tific practices, and disciplinary core 
ideas. With most states moving forward 
on the adoption of the NGSS, school dis-
tricts will be required to provide engi-
neering experiences embedded within 
traditional science, mathematics, and 
technology curricula.

K–12 STEM teachers and the need 
for professional development
Current science and mathematics teach-
ers will require significant professional 
development to incorporate engineering 
knowledge and design principles in their 

classroom teaching. Most science teach-
ers are unfamiliar with engineering prac-
tices, lack confidence in teaching design 
principles, and have an inaccurate under-
standing of the skills and training required 
for engineering careers [23], [24]. Lim-
ited resources are currently available to 
help them overcome these restrictions 
[20]. Research-based principles provide a 
compelling model for effective profes-
sional development supporting effective 
NGSS implementation, which comple-
ments the goals of ASEE [25], [26]. In-
service teacher professional development 
is necessary to facilitate meaningful inte-
gration of science content and engineer-
ing design.

Purzer et al. proposed that teacher pro-
fessional development should emphasize 
evidence-based decision making through 
collaborations with science and engi-
neering education researchers. New cur-
ricula should be developed that integrate 
science content and engineering practic-
es; teachers should encourage critical 
thinking and the development of liter-
acy skills with the aid of formative 
assessments [25]. Stereotypical con-
texts should be avoided (e.g., building 
fast cars) to reduce inequitable practices 
in engineering education and encourage 
diverse participation in engineering 
careers [27]. A related STEM knowledge 
integration model suggests that students 
should learn diverse ideas about science 
and engineering, develop evaluative cri-
teria, and test their ideas by collecting 
evidence [28]. 

In Bell and Gilbert’s model of effec-
tive professional development [29], 
successful teachers express a desire to 
improve their practice, reflect critically 
on their pedagogy, integrate new ideas, 
and become empowered to implement 
new strategies and inspire others 
through collaboration. Frequent oppor-
tunities for interactions with colleagues 
and mentors contribute to curricular 
reform efforts [30]. Theoretical support 
is further evidenced by research sug-
gesting professional development 
should be sustained over time [31], 
[32]. Effective training programs typi-
cally require 50–80 hours of instruction 
in authentic settings before significant 
treatment effects are evident [33], [34].

School counselors and the
need for STEM training
The need for school guidance personnel 
trained in appropriate precollege academ-
ic preparation for engineering study is 
acute. Many high school students depend 
on the advice of counselors in choosing 
elective coursework and deciding where 
to send college applications. Counselors 
often have final decision-making authori-
ty on which courses a student will take. 
Engineering is a discipline where gate-
way precollege STEM coursework deter-
mines access to and success in the 
college major [35], [36]. Counselors and 
science teachers have been highly influ-
ential in encouraging students to pursue 
STEM-related careers, particularly those 
whose parents cannot advise on neces-
sary choices [37], [38]. Access to high-
quality STEM counseling is typically 
limited for underresourced schools [39], 
where students may be dissuaded from 
pursuing advanced science and math-
ematics in ill-conceived efforts to pri-
oritize graduation rates [40]. Also, 
engi  neering is often viewed by counsel-
ors and teachers as a course of study for 
the academic elite, which further dimin-
ishes encouragement [24].

Underresourced student guidance has 
had a dramatic impact on the preparation 
of high needs students to pursue engi-
neering. Just 4% of underrepresented stu-
dents have taken the mathematics and 
science courses required for admission to 
the majority of engineering schools [41]. 
Each successive level of mathematics 
and science course-taking has been asso-
ciated with an 8.2% increase in the likeli-
hood of declaring a STEM major [42]. 
Coursework in physics and calculus is 
particularly significant [43]. Research has 
suggested that providing support and 
training school counselors regarding the 
value of STEM coursework will have a 
positive impact on students’ STEM per-
formance, course choices, and awareness 
of STEM careers [44], [45]. Counselors 
are well positioned to manage the align-
ment between students’ career expecta-
tions and curricular decisions [46]. More 
work needs to be done with school pro-
fessionals in the position to educate high 
school students on the challenges and 
rewards of engineering study.
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Theoretical support for precollege 
engineering education
Student-related engineering program de-
signs are supported by a sociopsycho-
logical theoretical framework that 
synthesizes elements of the expectancy-
value model and the theory of planned 
behavior. Career choice has often been 
associated with outcome expectations or 
the anticipation of probable results from 
chosen actions [47]. This construct is par-
tially explained by the expectancy-value 
model, which suggests that behaviors are 
based upon two considerations: the antic-
ipation of actual outcomes and the im-
portance or value attached to that choice 
[48]. Students generally do not choose 
careers in which they do not feel compe-
tent, and they do not see their relevance 
and social value early in the academic 
pipeline; this is particularly true for tradi-
tionally underrepresented students in 
math-intensive fields such as engineering 
[49]. The choice of engineering majors 
and persistence in the field has been 
linked to whether students possess an en-
gineering identity that is consistent with 
their sense of self [50].

The theory of planned behavior [51] 
built upon the expectancy-value model by 
suggesting that one’s controllability of 
career choice is predicated by self-effica-
cy. The theory states that human behavior 
is guided by likely consequences, the nor-
mative expectations of others, and beliefs 
about inhibiting factors. Engineering may 
be viewed as an achievable career choice 
if students have the confidence that they 
can overcome potential obstacles along 
the way. For example, undergraduate 
engineering majors have often experi-
enced declines in self-efficacy early in 
their academic majors, and social sup-
ports are necessary for overcoming their 
self-doubts [52]–[54]. Our educator-relat-
ed project designs also incorporate expec-
tancy value and the theory of planned 
behavior in professional development; we 
believe teachers must be aware of these 
constructs in appropriately advising stu-
dents about engineering careers.

Current outreach efforts
in the United States
Research has shown that early exposure 
to engineering activities can significant-

ly increase student awareness of engi-
neering as a rewarding career path. 
Effective engineering programs in K–12 
education have tended to incorporate in-
ductive teaching approaches, which are 
referred to as problem-based or discov-
ery learning. Collaborative knowledge 
construction is another strategy for 
modeling engineering practices [55], 
[56]. When working with diverse groups 
of students, engineering pedagogy that 
is interactive and student centered helps 
students recognize their cultural capital 
and improves their overall engagement 
[57]. Engineering education based upon 
NGSS and ASEE guidelines can im-
prove engineering knowledge and skills 
as well as the scientific literacy neces-
sary to understand and solve real-world 
problems [58]. These pedagogical prin-
ciples have guided many engineering 
education projects. We provide some ex-
amples of these existing programs to sit-
uate our own work in building upon 
successful models.

The core objective of many outreach 
efforts is to align activities and work-
shops consistent with ASEE’s goal that 
all Americans will be able to apply con-
cepts of science, technology, and mathe-
matics to engineering processes and 
problems [5]. Previous work in the field 
has generated engineering curricula for 
students and research on their impacts 
has been mostly positive [58], [59], [60]. 
Some curricula are for full-year courses 
specifically in engineering. For example, 
Project Lead the Way (PLTW) [61] 
developed curricula for one-year high 
school courses in introductory engineer-
ing, aerospace engineering, civil engi-
neering, digital electronics, and other 
engineering-related focus areas. They 
provide professional development, 
resources, and ongoing training for 
teachers to implement PLTW curricula 
effectively. A review of PLTW research 
revealed that participating students per-
formed as well or slightly better than 
non-PLTW peers, while teachers report-
ed increasing their STEM integration 
over time [62]. Engineer Your World, a 
high school curriculum developed by 
UTeach at University of Texas Austin 
[63], is a one-year engineering design 
course based on socially relevant issues. 

Students learn about engineering design 
and habits of mind while also exploring 
the breadth of engineering professions.

Other engineering education inno-
vations were designed for teachers to 
incorporate engineering in their exist-
ing science, technology, or mathemat-
ics curricula. The Infinity Project [64] 
provides two-day professional develop-
ment for teachers to create and imple-
ment individual design projects in their 
middle and high school classrooms. 
Engineering Is Elementary was created 
for elementary and middle school 
teachers to include engineering activi-
ties related to real-world problems 
[65]. Out-of-school time (OST) pro-
grams, such as In the Middle of Engi-
neering (IME) [66], provide informal 
exposure to engineering activities that 
parallel their school-based science 
and physics curricula. IME is targeted 
toward girls in middle and high 
school and involves women engineers 
as teachers and role models. These 
programs and others have resulted in 
increased STEM interest among partic-
ipating students [17], [67], an internal 
construct that often leads to further 
STEM persistence.

Current outreach efforts at SBU
Our current outreach efforts focus on 
OST programs targeting high school 
students. Participation in OST programs 
has been shown to improve students’ in-
terest in STEM study and careers [68], 
so we have developed these programs to 
increase the number of students who in-
tend to major in engineering. We de-
scribe two of our outreach initiatives 
here to illustrate how research and best 
practices informed our project designs. 
The first one is an engineering summer 
camp for high school sophomores and 
juniors. The second program comprises 
school and SBU-based OST engineer-
ing programs for freshman, sopho-
more, and junior students. For both 
programs, special emphasis has been 
placed on recruitment of underrepresent-
ed and high needs students and financial 
support has been obtained to promote 
their inclusion.

The goal of these programs is to ex-
pose students to the challenge, passion, 
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and opportunity of engineering through 
an ample menu of hands-on activities in 
engineering with particular focus on the 
field of electrical and computer engineer-
ing. Whenever possible, tasks related to 
signal and information processing and 
data analysis are included as part of the 
activities. The general learning objec-
tives include: 1) understanding and gain-
ing appreciation for what engineers do, 
and, in particular, what electrical and 
computer engineers do; 2) learning basic 
theoretical and practical concepts related 
to the electrical and computer engineer-
ing fields; and 3) learning how to analyze 
an engineering challenge both qualita-
tively and quantitatively, how to design a 
solution for a problem by breaking it 
into smaller pieces, and how to evalu-
ate and test the proposed solution.

The activities have been created and 
initiated by SBU faculty in engineering, 
physics, and science education with the 
assistance of staff and graduate students 
and with the support of both internal and 
external funding. Industry experts guide 
and advise on topics of interest for the 
activities and STEM teachers affiliated 
with SBU provide pedagogical and cur-
riculum insights. The activities have a 
class size of 20–24 students.

There are different ranges of difficulty 
for the activities depending on students 
grade levels and backgrounds. In all activi-
ties, students are assessed on their knowl-
edge, practical application of engineering 
skills, justification of designs based on 
data, and their ability to engage effectively 
in the peer-review process. Activities 
involve different engineering disciplines in 
general, but as mentioned previously, the 
greatest focus to date has been on elec-
trical and computer engineering as well as 
computer science, leveraging the expertise 
of the College of Engineering and 
Applied Sciences faculty. As we shall 
see, many projects incorporate sensing 
or signal/data analysis, whereby students 
are introduced to elementary forms of 
signal processing techniques and basic 
concepts. The pedagogical design of each 
activity is currently aligned with the 
NGSS with the following guiding 
principles:
■ Each performance expectation must 

combine a relevant practice of sci-

ence or engineering with a core dis-
ciplinary idea and cross-cutting 
concept [4]. The activities combine 
science concepts with engineering 
design; for example, students learn 
about basic electromagnetism princi-
ples when building metal detectors.

■ Students engage collaboratively in 
argumentation from evidence [22]. 
They advocate for their chosen 
designs by explaining their reasoning 
and associated evidence for their 
claims. For example, when building 
a pilotable helium balloon, they pres-
ent their prototype in a peer-review 
process and debate various design 
components. They respond to diverse 
perspectives and assess the merits of 
counter arguments [4].

■ When developing models, students 
have the opportunity to revise the 
designs based on evidence to opti-
mize performance [4]. Students con-
sider the relationships among the 
components of their system when 
making modifications.

In addition to academic activities, the 
programs include presentations by engi-
neers from local industry and the Office 
of Admissions and Career Center at SBU 
to discuss career opportunities and 
requirements for engineering programs. 
This is consistent with research that sug-
gested students career expectations are 
important when choosing pathways to 
specific postsecondary careers [47], [69].

Engineering Summer Camp
The Engineering Summer Camp was 
developed for high school students in 
their sophomore and juniors years [70]. 
This residential two-week university-
based program was offered from 2009 
to 2015 and is currently being rede-
signed for broader implementation. A 
total of 93 students have attended the 
camp (23 female), 16 of whom were 
totally or partially awarded scholarships 
to attend the camp based on their socio-
economic status.

The menu of activities has changed 
over the years and has been modern-
ized and adjusted according to stu-
dents’ and instructors’ feedback as well 
input from a board of advisors com-
prising teachers and social science 

experts. Figure 1 shows some students 
participating in the 2012 camp. Here 
we briefly describe four activities that 
have been offered over the years, 
although more than 20 different ones 
have been developed and instructed. 
Most of them have a duration of one 
camp day (about six hours of instruc-
tion) although there are some excep-
tions that require up to two days.

Understanding sonar, radar, and GPS 
This activity consists of a series of exper-
iments to highlight the simplicity of mea-
surement of the speed of sound (which is 
the key to sonar operation) and object 
localization [which is the fundamental 
principle used in sophisticated applica-
tions like radar and global positioning 
system (GPS)]. We briefly describe two 
experiments related to the activity.

Experiment 1–Measuring the speed of sound 
The speed of sound is measured using 
an experimental setup consisting of a 
speaker and two microphones. The 
speaker generates a pulse waveform, 
which is recorded on each of the micro-
phones. The time delay between the 
subsequent arrivals of the waveform at 
the microphones is measured using a 
PC-based software oscilloscope and the 
sound card. Based on the known dis-
tance between the microphones and the 
measured delay, the students can calcu-
late the speed of sound.

Experiment 2–Object localization 
Students learn the concepts of trilatera-
tion and multilateration. These methods 
allow determination of an object location 
in a sonar or radar system using time of 
flight or time difference of arrival, 
respectively. Multilateration is also used 
to determine location in GPS receivers. 
The effect of measurement errors is 
also discussed, along with some tech-
niques to optimize the solution in that 
case. The students calculate the alge-
braic solution for the location of an 
object using trilateration in a noise-free 
case. The data for this case can either 
come from oscilloscope measurements 
performed by the students (in which 
case there is some small error), or the 
students can be given synthesized data. 
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The students also develop a method for 
solving the multilateration problem 
with noisy measurements using the 
computer. This can be accomplished 
either in Excel or in a programming 
language such as MATLAB, depending 
on the students’ background.

Understanding frequency
with speech and music
This is a series of experiments in which 
students are led to an understanding of 
the importance of the concept of fre-
quency in everyday signals, mainly in 
speech and music. The experiments are 
performed in real time on dedicated 
digital signal processing (DSP) chips, 
using a visual programming environ-
ment. Audio clips and the students’ own 
voices are taken as inputs via micro-
phones, and loudspeakers are used as 
the main outputs. In addition, preset os-
cilloscopes are used to obtain a real-
time visual concept of the outputs. The 
experiments enable the students to create 
sound effects on their own, in addition to 
performing assigned tasks. Figure 1(a) 
shows students in the DSP laboratory 
working on various experiments.

Experiment 1–Effects of suppressing and 
removing frequencies from a signal
Students first synthesize and play sinu-
soids of various frequencies and change 
frequencies while listening to the outputs. 

They then synthesize and play sums of 
sinusoids, both harmonically related and 
nonharmonic, and change relative ampli-
tudes while listening to the outputs. By 
inputting an audio signal (music or the 
student’s voice) to the DSP board and lis-
tening to the effects of preprogrammed 
filters (high pass, bandpass, and low 
pass) on the signal, they observe how 
these effects change as the cut-off fre-
quencies are altered. The same exercise is 
repeated by inputting a recorded audio 
signal corrupted by noise and using a 
low-pass filter to lower the noise audibili-
ty. Finally, some initial concepts related 
to Fourier manipulation of signals is 
introduced, and students synthesize or 
input a square-wave and listen to the out-
put. Then they pass the square-wave 
through a narrow-band, bandpass filter, 
and vary the center frequency to identify 
the sinusoidal components. The outputs 
are observed both audibly and on the 
oscilloscope.

Experiment 2–Effects of shifting
and scrambling frequencies
A preprogrammed frequency shifter is 
used to shift the frequencies of voice 
inputs in both directions (up and down) 
by up to an octave to demonstrate the 
effects of pitch changes. The frequency 
shifter demonstrates the limitations of 
sampling by continually raising the out-
put frequency until aliasing converts it 

into a low frequency. Also, the frequen-
cy shifter is set to half of the sampling 
frequency, which results in spectral 
inversion (high frequencies are convert-
ed to low and vice versa). The result is 
a simple voice scrambler, which is test-
ed on the students’ voices. Finally, a 
more complex voice scrambler, based 
on multiband spectral shifting and 
inversion, is demonstrated and again 
tested with the students’ voices.

Line-following robot
Students learn concepts related to a line-
following robot, a mobile machine that 
automatically follows a specified path 
without the need for human steering [Fig-
ure 1(b)]. Such a machine has various 
applications in areas such as industrial 
automation, warehousing, and automatic 
guided vehicles on roads of the future. A 
line-following robot has three main 
components: a sensing system, a drive 
system, and a microcontroller. The sens-
ing system is responsible for determin-
ing the position of the robot with respect 
to the line it has to follow; the drive sys-
tem generates the motion of the robot; 
and the microcontroller runs the control 
algorithm that controls the speed and 
direction of the robot along the specified 
line. Students build, program, and test a 
line-following robot. The sensing sys-
tem consists of six reflective optical sen-
sors. These sensors have a light-emitting 

FIGURE 1. Different activities from the 2012 Engineering Summer Camp for high school students: (a) understanding frequency with speech and music 
and (b) line-following robot.

(a) (b)
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diode (LED) and a phototransistor. The 
LED emits a light toward a surface, 
and the phototransistor enables mea-
surement of this light reflected from the 
surface. The line is specified with a 
black color on a white/light colored sur-
face. When an optical sensor is above 
the white surface, a large amount of 
light is reflected back to the phototrans-
istor. If, on the other hand, the optical 
sensor is directly above the black line, 
very little light is reflected back to the 
phototransistor. Thus, by using a sen-
sor array on the bottom of the robot, 
students determine the position of the 
robot with respect to the line by mea-
suring the outputs of all the sensors. The 
drive system for our robot consists of 
two small dc motors. The shafts of 
the motors are coupled to rubber 
wheels attached to axles connected to 
the main body of the robot. The torque 
generated by the motors is transferred to 
the wheels to give motion to the robot.
■ Students use an Atmel ATmega8 mi-

crocontroller. A control algorithm is 
implemented that controls the speed 
and direction of the robot. The mi-
crocontroller has six analog-to-digi-
tal converter channels that are 
connected to the outputs of the six 
sensors. This allows the microcon-
troller to determine the position of 

the robot with respect to the line and 
control the speed and the direction 
of the robot accordingly. Pulsewidth 
modulation (PWM) varies the speed 
of the dc motors and allows for 
varying speed of the motor by 
changing the width of successive 
pulses sent to the motor. These puls-
es are fed to the motor through a 
simple drive circuit consisting of a 
logic-level metal–oxide–semicon-
ductor field-effect transistor and a 
diode. The higher the width of the 
pulses, the faster the motor rotation 
and robot speed and vice versa. The 
direction of the robot is controlled 
by a differential mechanism where-
by the speed of one of the motors is 
increased or decreased with respect 
to the other to turn the robot in a 
particular direction.

■ The complexity of the path and the 
speed with which the robot can follow 
it depends upon the control algorithm 
implemented in the microcontroller. 
Students explore three types of algo-
rithms; in other words, bang-bang 
control, proportional control, and pro-
portional-derivative-integral control. 
Based on the observed results of the 
line following, they tune the control 
parameters of these algorithms to 
achieve better performance.

Creating prototypes
This topic is essentially “Microcomput-
ers 101.” Students learn and utilize fun-
damental microcomputer system design 
techniques, resulting in the construction 
of a fully working design prototype. The 
design is a simple ambient temperature 
monitoring system. This two-day activity 
has a lecture/laboratory format. A full 
design overview is provided, and by the 
end of the second day, each student has 
constructed, fully tested, and optimized 
the system prototype.
■ Each day students spend approxi-

mately two hours in lecture, and the 
remaining time in the Embedded 
Systems Design Laboratory. The lec-
tures present important theoretical 
descriptions of the hardware and soft-
ware utilized for the implementation 
of the system. The lab periods are 
spent constructing, testing, trouble-
shooting, and verifying proper sys-
tem operation of their prototype 
[Figure 2(a) shows a lab session of 
the activity].

■ Theoretical concepts during the initial 
day include discussions about system 
block diagram (high level), the sys-
tem schematic, and fundamental 
operations, as well as basic bread-
boarding concepts. The lab session is 
used to give an overview of the 

FIGURE 2. The creating prototypes activity at the 2012 Engineering Summer Camp: (a) the lab session and (b) the final device, a portable battery-powered 
temperature, humidity, and barometric pressure-monitoring system. JTAG: Joint Test Action Group.
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breadboarding system and wiring 
techniques, explanations on the sol-
derless breadboard and system parts 
layout, a description of interconnect 
and wiring techniques, and system 
wiring. For the second day, the lecture 
revolves around concepts of data pro-
cessing and collection, application 
program high-level flow chart, intro-
duction to application modules and 
coding, and system troubleshooting 
and operation. The practice consists 
of continuation of system wiring, ap-
plying power (the strobe test), trou-
bleshooting and verifying basic 
system operation, and adding one or 
more system extensions as time per-
mits. Figure 2(b) shows the final de-
vice with the different components.
In addition to the strictly academic 

activities, students are also exposed to 
campus life and a variety of extracurric-
ular events, for example, meeting with 
engineering admissions staff and having 
lunch with engineers working in univer-
sity laboratories and industry. On the last 
day of the camp, there is a showcase of 
built devices and experimental results 
from the different activities (see 
Figure 3), and a panel of judges decide 
on different awards that are given during 
a closing ceremony.

Data were collected from 38 students 
over a two-year period (2012–2013); this 
was done after the researchers improved 
the previous instruments to collect more 
nuanced data on the students’ engineer-
ing knowledge and attitudes. Students 
significantly improved their knowledge 
of electrical and computer engineering 
principles and processes as measured by 
pre/postassessments; this outcome was 
observed for both female and male par-
ticipants. Students’ confidence in per-
forming engineering tasks also significantly 
improved as a result of their participa-
tion, although motivation for engineering 
careers did not change (likely due to self-
selection for the camp) [70]. Qualitative 
data revealed students felt empowered by 
making connections between engineering 
principles and their personal experiences 
and interests, as well as optimizing and 
improving functionality of their designs. 
Survey responses indicated students 
particularly enjoyed meeting with 

university researchers and industrial 
engineers. These interactions helped stu-
dents strengthen their engineering self-
identity and envision themselves in 
engineering occupations in the future 
[71]. The camp activities were modified 
over several years and serve as the 
test bed for our other initiatives with 
expanded outreach to students and sci-
ence teachers.

After-school engineering offerings
The after-school engineering program 
was developed with local school dis-
tricts to inspire high school students in 
grades 9–11 with the opportunities and 
rewards of participating in engineering. 
It was piloted in the fall of 2015 and is 
mostly an off-campus program hosted 
by local schools with at least a one-time 
campus visit per student group. It con-
sists of several out-of-school offerings 
(of about two and a half hours each) 
spread throughout the academic year for 
at least 24 hours of exposure to engi-
neering disciplines as well as computer 
science, with an emphasis on the pro-
cessing of signals and data related to 
different technological problems. The 
activities combine exploration of theo-
retical concepts with hands-on practice. 
Approximately 72 students have bene-
fited from these preliminary offerings 
with nearly half of the attendees identi-
fied as female students. Moreover, in 

these first offerings, all students attend-
ed schools in high needs districts. Quali-
tative and quantitative data were 
collected to measure student impacts. 
Our preliminary research showed that 
students were enthusiastic about learn-
ing about engineering and programming 
to design solutions, and they were more 
motivated to pursue engineering after 
participating in the program. Howev-
er, they did note that they were general-
ly dissatisfied with school counseling 
on engineering study and careers—a 
finding that confirms our recent efforts 
[72], [73]. In the future, we will train 
K–12 science teachers to incorporate the 
activities in their curricula.

The activities are continuously 
reviewed and adapted according to 
state-standardized curricula and feed-
back from teachers and students. Fig-
ure 4 displays students engaged during 
the 2015 offerings. We briefly describe 
three activities as examples of our 
efforts: persistence of vision clock, dis-
covering the radio, and a night-light. 
We note that, due to the time con-
straints at each school visit, one activi-
ty is usually spread out across more 
than one day.

Persistence of vision clock
In this activity, students learn how our 
vision is somewhat deceptive, and many 
types of visual displays take advantage 

FIGURE 3. The 2013 Engineering Summer Camp for high school students at SBU. Students partici-
pate in the engineering exhibition and competition at the closing ceremony.
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of these optical illusions. The offering is 
motivated with real-world examples, 
and students learn that our perception of 
a rapidly flickering light source being 
constantly illuminated is called the per-
sistence of vision. We take advantage of 
this property to display the time and 
other text using a single row of LEDs.
■ The foundation of the project is a 

small microcontroller that we custom 
program in assembly language. This 
microcontroller is capable of execut-
ing millions of instructions each sec-
ond and is responsible for flashing 
the LEDs at the required speed. The 
LEDs are moved across our field of 
vision leaving a trail of flashes that 
appear as text floating in space.

■ The project is based on a custom 
printed circuit board and requires 
soldering skills in its assembly. Most 
of the computer code is prewritten, 
and the student makes changes to 
customize the unit to display the 
desired text.

Experiment 1–Understanding persistence of vision
Students use function generators and 
LEDs to demonstrate the phenomenon 
of persistence. We detect the lowest 
flashing rate that appears constant to 
each student, we move the LED and 
observe the “trail” that the flickering 
LED leaves, and we observe the effect 
of duty cycle on apparent brightness.

Experiment 2–Building the project and coding
Students solder to assemble the project 
and test the board. They learn enough 
assembly language programming to 
make simple changes to the microcon-
troller program. This enables the unit 
to display an arbitrary string of text that 
the student chooses [see Figure 4(a)]. 
In addition, the unit is capable of dis-
playing the time of day.

Experiment 3–Strobe effects
The project has a mode that flashes the 
LEDs at an adjustable rate. Students use 
this feature to observe rotating objects 
and measure their corresponding rota-
tional speeds. They also demonstrate 
effects related to sampling at speeds 
greater than the Nyquist frequency.

Discovering the radio
In this laboratory exercise, students 
learn the basic theory of amplitude 
modulation and detection as used in the 
transmission and reception of AM radio 
signals. They build a tuned-radio-fre-
quency (TRF) one-chip AM radio from 
a dedicated kit.
■ In the process of building the radio 

kit, students become familiar with 
circuit components such as variable 
capacitors, air-wound inductors, 
electrolytic capacitors, resistors, 
and, of course, the single integrated 
circuit chip used for detection. They 

also learn about transistor audio 
amplifier stages and become acquaint-
ed with the notion that the job of 
engineers is to design and build 
properly functioning circuits. Students 
learn the processes of AM tuning, 
detection, and audio amplification as 
they complete the various stages of 
the kit.

■ Familiarity with small hand tools is 
useful but not required, as the skill 
can be rapidly acquired in this ex  peri-
ment. Soldering is re  quired; however, 
students quickly learn the necessary 
techniques even with limited prior 
experience [see Figure 4(b)].

A night-light
This is a simple project that allows 
novice engineers to apply basic elec-
trical engineering concepts to daily 
life. The students are given materials to 
create an optical switch-activated LED 
module or, in layman’s terms, a night-
light. Concepts related to voltage divid-
ers, photo-resistors, transistor functioning, 
and the handling of a prototype bread-
board are introduced. With the com-
pletion of this project, the students 
have the introductory skills necessary 
to design their own electrical engineer-
ing projects.
■ This project uses a straightforward 

dc-analog design. A single 9-V bat-
tery powers the circuit. The voltage 

(a) (b)

FIGURE 4. Activities from the 2015 After-School Engineering Program for students in grades 9–11: (a) persistence of vision clock and (b) discovering 
the radio.
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divider uses a photoresistor, which 
can vary from 27,000 X to 200,000 X,
a sufficient range to function as a 
switch. Following the voltage divider, 
a simple positive-negative-positive
bipolar junction transistor is imple-
mented in common collector mode 
to increase current flow. Finally, the 
output consists of an array of LEDs 
connected in a series to serve as a 
light source.

■ For those students who wish to work 
on more advanced designs, addition-
al modules are available.

Experiment 1–On/Off toggle switch 
An additional toggle switch can be 
added to break the connection from the 
battery source to the rest of the circuit. 
This can help tremendously in saving 
battery life.

Experiment 2–Fine-tuning with a potentiometer
A potentiometer is used to replace the 
100,000 resistor in the circuit. Varying 
the impedance on this potentiometer 
adjusts the sensitivity of the light 
switch. Students get a schematic, the 
materials for the project, and a short 
lesson on how the electronic circuit 
works. Figure 5(a) displays the stu-
dents working in the lab to build the 
night-light and (b) shows the schematic 
of the project.

On-going endeavors
Our ongoing work builds upon what we 
have learned from past outreach ef -
forts as well as the research base in 

engineering education. These projects 
are to be implemented in the coming 
year with a pilot design phase and 
accompanying research components to 
measure impacts empirically. This 
allows us to make formative changes 
and maximize programmatic effective-
ness for scaling the following year. Our 
projects are designed to attract, retain, 
and support precollege students in engi-
neering. We plan to educate school 
counselors and science teachers on the 
diversity of engineering career path-
ways as well as engineering disciplin-
ary knowledge and process skills. By 
targeting these two groups, we will 
build capacity and competence for 
studying engineering, a profession that 
contributes to global technological 
advancement. The overarching goals 
are twofold. Engineering should not be 
viewed as a separate discipline but rath-
er an essential component of students 
scientific literacy, complementing tradi-
tional science content with structured 
opportunities to design solutions to sci-
entific problems. Furthermore, the field 
of engineering will be diversified with 
students from an untapped talent pool 
to contribute to the global competitive-
ness of the United States.

Counselors and teachers
Our work with science teachers and 
school counselors began in 2017, with 
our previous work developing engineer-
ing activities for students as the starting 
point for professional development. We 
will train science teachers to incorporate 

engineering design in their instruction, 
and we will work with school counsel-
ors on their efforts to advise students on 
pre-engineering coursework and the 
diversity of engineering careers. The 
professional development workshops 
will be modeled upon previous similar 
offerings at SBU. With external sup-
port, summer STEM education work-
shops have been offered for elementary 
teachers, middle school mathematics 
and science teachers, and high school 
chemistry and physics teachers [74]. 
Our theoretical model reinforces our 
emphasis on professional development 
in authentic settings for both science 
teachers and school counselors. In 
addition, the teacher workshops will 
incorporate ASEE’s Standards for 
Preparation and Development for 
Teachers of Engineering [75], which 
include literacies in engineering 
design, engineering careers, and engi-
neering and society.

The science teacher workshops will 
educate teachers to incorporate engi-
neering aspects of the NGSS in their 
New York State-standardized science 
curricula. Twenty-four participants will 
attend each four-part workshop, with 
each teacher impacting approximately 
150 students per academic year. We 
expect to recruit four cohorts during the 
first year with expansion in subsequent 
years. Participants will build their engi-
neering skills by applying design princi-
ples while teaching science content and 
process. Each cohort will be immersed 
in a program of mutually reinforcing 
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FIGURE 5. The night-light activity at the 2015 After-School Engineering Program: (a) students soldering the circuit and (b) the schematic of the project.
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components: 1) introductory work in 
engineering related to their curricula in 
living environment, physics, chemistry, 
and earth science; 2) classroom-based 
action research that builds teachers’ abili-
ty to use data as a formative assessment 
to inform instruction; and 3) collabora-
tions with engineers and STEM research-
ers to learn about engineering pathways 
and careers. Teachers will learn activities 
that we have previously piloted and have 
the flexibility to modify them for their 
students. Each activity will include a 
detailed explanation of science content 
and how it relates to state standards and 
the NGSS, followed by instruction in 
engineering pedagogical content knowl-
edge. The teachers will learn a variety 
of assessment strategies for informing 
their instruction, for example, rapid, 
response systems, performance tasks, 
and questioning techniques. They will 
be encouraged to participate in profes-
sional learning communities to share their 
knowledge with other teachers in their 
districts and strengthen their commitment 
to engineering integration.

School counselors will participate in 
workshops to build their knowledge base 
in advising students about appropriate 
precollege engineering coursework and 
engineering career pathways. Once 
again, our prior work with students pro-
vided data to inform the content and 
structure of this professional develop-
ment. The counselors will be immersed 
in a one-day training including diversity 
training; introductory work in engineer-
ing related to supporting competencies in 
science and mathematics curricula; and 
informative talks with engineers, STEM 
researchers, and university staff to 
learn about the diversity of engineering 
employment opportunities. The profes-
sional development workshops will be 
held at different off-campus sites and led 
by engineering and science education 
faculty and university staff. Discussions 
about science content and how it relates 
to New York State Standards and the 
NGSS will also be part of the training. 
The workshops will involve industrial 
engineers and staff from the Admissions 
Office and Career Center at SBU, so 
counselors will learn about qualifications 
for schools of engineering and specific 

disciplinary skill sets. The counselors 
will be recruited from the 125 school 
districts in the region, and the broader 
impact will be considerable since they 
interact with 175–300 students per aca-
demic year.

Engineering teaching laboratories
This outreach component has been 
modeled upon existing teaching labs 
in biotechnology and chemistry that 
have been offered at SBU since 1992, 
where students in grades 6–12 partici-
pate in inquiry-based experiences not 
readily available in their schools. More 
than 5,000 students have participated 
each year, and data have shown immedi-
ate increased student motivation to pur-
sue STEM [76]. However, the initial 
offerings were a one-day-only experience 
for students and long-term impacts were 
not measured. This initiative expands and 
builds upon the models success, with the 
ultimate goal that teachers will adapt 
these OST engineering teaching labora-
tories into their classroom science in -
struction. In doing so, the project may 
be scaled to impact more students. The 
evaluation of prior pilot activities sup-
ports the age-appropriateness of this and 
other proposed activities for students in 
grades 9–11.

Students will come to campus during 
the school day and spend six hours work-
ing on a proposed hands-on activity that 
is aligned with the NGSS. Here we 
describe two activities that are in the pilot 
stage with full implementation scheduled 
for the coming year.

Linking fiber optics 
The goal of this activity is to teach basic 
engineering concepts related to commu-
nications with an emphasis on fiber op-
tics. The activity involves engineering 
theory related to transmitters and receiv-
ers; physics content knowledge related to 
Snell’s law, refractive indices, Ohm’s 
law, and electrical components of a cir-
cuit board (aligned with New York 
State’s Physical Setting Standards [77]); 
and engineering skills such as soldering, 
testing functionality, debugging systems 
by detecting and isolating malfunctions, 
and minimizing signal distortion. Re-
quired materials include basic electronic 

components that will be purchased so 
students can build their own prototypes. 
Students discuss and debate the advan-
tages and limitations of fiber-optic com-
munication, optimal designs based on 
their own evidence, societal impacts of 
this technology, and potential future de-
velopments in communication. 

Competitions are also part of the 
activity. For example, students receive an 
arbitrary length of fiber link, and they test 
the maximum distance for which reliable 
communication is maintained. They then 
increase this distance by using their 
knowledge and creativity. Solutions 
involve increasing the input power of the 
LED or the amplifier gain by using a dif-
ferent resistor.

Learning images through apps
Students learn about images through app 
programming. The activity involves the 
introduction to computer science-related 
concepts such as pixels, digital images, 
and movies; science content knowledge 
related to optics and communication 
(aligned with New York State’s Physical 
Setting Standards [77]); and program-
ming skills such coding, debugging, and 
code optimization. Required materials in-
clude a laptop with the appropriate soft-
ware (we will use the open-source web 
application App Inventor for Android) 
and an Android tablet to download and 
test the product (we had most of the de-
vices in place as part of previous out-
reach offerings, and we will renew 
existing materials as the project progress-
es). Most regional school districts indi-
cated that these materials are available in 
their schools. Students will first learn im-
age-related topics (pixel, RGB color 
model, or intensity) and programming 
concepts (for example, control flow in-
structions) using the open-source com-
puting environment Octave. They then 
will learn how to develop mobile apps 
using App Inventor. Differences between 
Octave and App Inventor will be dis-
cussed, especially on issues related to 
their capabilities when dealing with im-
ages. Students will be instructed to create 
an app step by step, to troubleshoot and 
download the apps to Android devices 
and, finally, test them. Later, engineering 
teams will have an app competition. 
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Some prototype apps will be provided, 
and each group will decide to either add 
innovative elements to the existing proto-
types or create a completely new one. At 
the end of the activity, each group will 
give a brief presentation.

Concluding remarks
Engineering education is at a crossroads 
with recent efforts to create inspiring 
engineering experiences for K–12 stu-
dents. There is a persistent need to attract 
and retain students in engineering post-
secondary study and careers, and educa-
tors and policy makers have responded 
with widespread adoption of the NGSS 
to incorporate engineering knowledge 
and skills in science instruction. We aim 
to advance engineering education by 
creating and refining programs that 
improve STEM teaching and learning 
by building passion, preparation, and 
confidence for engineering study among 
secondary students. 

Our programs involve several stake-
holders—students, teachers, and counsel-
ors—in a multifaceted effort to address 
weaknesses in precollege engineering 
accessibility. More students will be 
exposed to engineering as a means to 
solve problems by applying scientific 
knowledge, and their teachers and coun-
selors will have the skills to communi-
cate these processes and advise students 
on academic trajectories that lead to engi-
neering careers. We will continue lever-
aging the expertise of engineering and 
science education faculty to designing 
innovative experiences that ultimately 
diversify the engineering talent pool. 
Although our previous and current stu-
dent offerings focus on electrical and 
computer engineering with signal and 
information processing, we plan to 
expand to other engineering disciplines 
to offer students a broader vision of engi-
neering careers. In doing so, we hope to 
contribute to the knowledge base in engi-
neering education so effective outreach 
strategies might be incorporated in class-
room teaching and advisement.
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The CNN as a Guided Multilayer RECOS Transform

T here is a resurging interest in develop-
ing a neural-network-based solution 
to the supervised machine-learning 

problem. The convolutional neural net-
work (CNN) will be studied in this lecture 
note. We introduce a rectified-correlations 
on a sphere (RECOS) [1] transform as a 
basic building block of CNNs. It consists 
of two main concepts: 1) data clustering 
on a sphere and 2) rectification. We then 
interpret a CNN as a network that imple-
ments the guided multilayer RECOS 
transform with two highlights. First, we 
compare the traditional single-layer and 
modern multilayer signal-analysis ap-
proaches, point out key areas that enable 
the multilayer approach, and provide a 
full explanation to the operating principle 
of CNNs. Second, we discuss how guid-
ance is provided by labels through back-
propagation (BP) in the training. 

Relevance
CNNs are widely used in the computer 
vision field today. They offer state-of-
the-art solutions to many challenging 
vision and image processing problems 
such as object detection, scene classifi-
cation, room layout estimation, semantic 
segmentation, image superresolution, 
image restoration, and object track-
ing, to name a few. They are the main-
stream machine-learning tool for big 
visual data analytics. A great amount 
of effort has been devoted to the inter-

pretability of CNNs based on various 
disciplines and tools, such as approxi-
mation theory, optimization theory, and 
visualization techniques. We explain 
the CNN operating principle using data 
clustering, rectification, and transform, 
which are familiar to researchers and 
engineers in the signal processing and 
pattern recognition community. As com-
pared with other studies, this approach 
appears to be more direct and insight-
ful. It is expected to contribute to further 
research advancement on CNNs.

Prerequisites
The prerequisites consist of basic calcu-
lus, probability, and linear algebra. Statis-
tics and approximation techniques could 
also be useful but are not necessary.

Problem statement
We will study the following three prob-
lems in this note.
1) Neural networks architecture evolu-

tion. We provide a survey on the 
architecture evolution of neural net-
works, including computational neu-
rons, multilayer perceptrons (MLPs), 
and CNNs.

2) Signal analysis via multilayer RECOS 
transform. We point out the differenc-
es between the single- and multilayer 
signal-analysis approaches and 
explain the working principle of the 
multilayer RECOS transform.

3) Network initialization and guided 
anchor vector update. We carefully 
examine the CNN initialization scheme 

since it can be viewed as an unsuper-
vised clustering and the CNN self-
organization property can be explained. 
The supervised learning is achieved 
by BP using data labels in the training 
stage. It will be interpreted as guided 
anchor vector update.

Solution

CNN architecture evolution
We divide the architectural evolution of 
CNNs into three stages and provide a 
brief survey.

Computational neuron
A computational neuron (or simply neu-
ron) is the basic operational unit in neu-
ral networks. It was first proposed by 
McCulloch and Pitts in [2] to model the 
“all-or-none” character of nervous activi-
ties. It conducts two operations in cas-
cade: an affine transform of input vector 
x  followed by a nonlinear activation func-
tion. Mathematically, we can express it as

,

( ),
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a x a x
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b T

a x a
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output, the N-dimensional input and model 
parameter vectors, respectively; a0n is 
a bias term with N x1 nn

N

1
n =

=
^ h/

(i.e., the mean of all input elements), (.)f
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denotes a nonlinear activation function, 
and b is the intermediate result between 
the two operations.

The function, (.)f , was chosen to 
be a delayed step function in form of 

( ) ( )f b u b z= -  in [2], where ( )f b 1=
if b $ z and 0 if .b 1 z  A neuron is on 
(in the one state) if the stimulus, ,b is larg-
er than threshold .z  Otherwise, it is off 
(in the zero state). Multiple neurons can 
be flexibly connected into logic networks 
as models in theoretical neurophysiology.

For the vision problem, input x
denotes an image (or image patch). The 
neuron should not generate a response 
for a flat patch since it does not carry 
any visual pattern information. Thus, we 
set b 0= if all of its elements are equal 
to a nonzero constant. It is then straight-
forward to derive a a 0nn

N

1 0+ =
=

/
or a ann

N
0 1
=-

=
/  is a dependent vari-

able. We can form augmented vectors 
( , , , )x x x RN

T N
1

1f !n= +l  and a =l
( , , , )a a a RN

T N
0 1

1f ! +  for x  and ,a
respectively. Without loss of generality, 
we assume 0n=  in the following dis-
cussion. If ,0!n  we can either consider 
the augmented vector space of xl or nor-
malize input x  to be a zero-mean vector 
before the processing and add the mean 
back after the processing.

Multilayer perceptrons
The perceptron was introduced by Rosen-
blatt in [3]. One can stack multiple per-
ceptrons side by side to form a perceptron 
layer and cascade multiple perceptron 
layers into one network. It is called the 

MLP or the feedforward neural network.
An exemplary MLP is shown in Fig-
ure 1. In general, it consists of a layer 
of input nodes (the input layer), several 
layers of intermediate nodes (the hidden 
layers), and a layer of output nodes (the 
output layer). These layers are indexed 
from l 0= to ,L  where the input and 
output layers are indexed with 0 and ,L
and the hidden layers are indexed from 
l L1 1g= - , respectively. Suppose that 
there are Nl nodes at the lth layer. Each 
node at the lth layer takes all nodes in the 
( )i 1- th layer as its input. For this rea-
son, it is called the fully connected layer.
Clearly, the MLP is end-to-end fully con-
nected. A modern CNN often contains an 
MLP as its building module.

MLPs were studied intensively in the 
1980s and 1990s as decision networks 
for pattern recognition applications. The 
input and output nodes represent selected 
features and classification types, respec-
tively. There are two major advances 
from simple neuron-based logic networks 
to MLPs. First, there was no training 
mechanism in the former since they were 
not designed for the machine-learning 
purpose. The BP technique was intro-
duced in MLPs as a training mechanism 
for supervised learning. Since differen-
tiation is needed in the BP yet the step 
function is not differentiable, other non-
linear activation functions are adopted 
in MLPs. Examples include the sigmoid 
function, the rectified linear unit (ReLU) 
and the parameterized ReLU (PReLU). 
Second, MLPs have a modularized struc-

ture (i.e., perceptron layers) suitable for 
parallel processing.

As compared with traditional pat-
tern recognition techniques based on 
simple linear analysis (e.g., linear dis-
criminant analysis, principal component 
analysis, etc.), MLPs provide a more 
flexible mapping from the feature space 
to the decision space, where the distribu-
tion of feature points of one class can be 
nonconvex and irregular. It is built upon 
a solid theoretical foundation proved by 
Cybenko [4] and Hornik et al. [5]. That is, 
a network with only one hidden layer can 
be a universal approximator if there are 
“enough” neurons.

Convolutional neural networks 
Fukushima’s neocognitron [6] can be 
viewed as an early form of a CNN. The 
architecture introduced by LeCun et al. in 
[7] serves as the basis of modern CNNs. 
The main difference between MLPs 
and CNNs lies in their input space—the 
former are features while the latter are 
source data such as image, video, speech, 
etc. This is not a trivial difference. Let us 
use the LeNet-5 shown in Figure 2 as an 
example, whose input is an image of size 

.32 32#  Each pixel is an input node. It 
would be very challenging for an MLP 
to handle this input since the dimension 
of the input vector is , .32 32 1 024# =

The diversity of possible visual patterns is 
huge. As explained later, the nodes in the 
first hidden layer should provide a good 
representation for the input signal. Thus, 
it implies a large number of nodes in hid-
den layers. The number of links (or filter 
weights) between the input and the first 
hidden layers is N N0 1#  due to full con-
nection. This number can easily go to the 
order of millions. If the image dimension 
is in the order of millions such as those 
captured by today’s smartphones, the 
solution is clearly unrealistic.

Instead of considering interactions of 
all pixels in one step as done in the MLP, 
the CNN decomposes an input image 
into smaller patches, known as recep-
tive fields, for nodes at certain layers. It 
gradually enlarges the receptive field to 
cover a larger portion of the image. For 
example, the filter size of the first two 
convolutional layers of LeNet-5 is 5 × 5. 
The first convolutional layer considers 

Input
Hidden 1

Output

Hidden 2

FIGURE 1. An exemplary MLP with one input layer, two hidden layers, and one output layer.
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interactions of pixels in the short range. 
Since the patch size is small, the diversity 
is less. One can use six filters to provide a 
good approximation to the 5 5#  source 
patches, and all source patches share the 
same six filters regardless of their spatial 
location. After subsampling, the second 
convolutional layer examines interaction 
of pixels in the midrange. After another 
subsampling, the whole spatial domain 
shrinks to a size 5 5#  so that it can take 
global interaction into account using full 
connection. Typically, the interaction 
contains not only spatial but also spectral 
elements (e.g., the RGB three channels 
and multiple filter responses at the same 
spatial location) and all interactions are 
modeled by computational neurons as 
given in (1).

It is typical to decompose a CNN into 
two subnetworks: the feature extraction 
(FE) subnet and the decision-making 
(DM) subnet. The FE subnet consists 
of multiple convolutional layers while 
the DM subnet is composed of a couple 
of fully connected layers. Roughly speak-
ing, the FE subnet conducts clustering 
aiming at a new representation through 
a sequence of RECOS transforms. The 
DM subnet links data representations to 
decision labels, which is similar to the 
classification role of MLPs. The exact 
boundary between the FE subnet and 
the DM subnet is actually blurred in the 
LeNet-5. It can be either S4 or C5. If we 
view S4 as the boundary, then C5 and F6 
are two hidden layers of the DM subnet. 
On the other hand, if we choose C5 as the 
boundary, then there is only one hidden 
layer (i.e., F6) in the DM subnet. Actual-

ly, since these two subnets are connected 
side by side, the transition from the rep-
resentation to the classification happens 
gradually and smoothly.

One main advantage of CNNs over 
the support vector machine and the ran-
dom forest classifiers is that the FE task is 
automatically done through the BP from 
the last layer to the first layer. Generally 
speaking, discriminant features are diffi-
cult to find for traditional classifiers such 
as the MLP, support vector machine, and 
random forest. Such tasks, called feature 
engineering, demand the domain knowl-
edge. Furthermore, it is difficult to argue 
that ad hoc features found empirically 
are optimal in any sense. This explains 
why the traditional computer vision 
field is fragmented by different applica-
tions. After the emergence of CNNs, the 
domain knowledge is no longer important 
in FE, yet it plays a critical role in data 
labeling (known as label engineering). 
To give an example, anaconda, vipers, 
titanoboa, cobras, rattlesnake, etc. are 
finer classifications of snakes. It requires 
expert knowledge to collect and label 
their images. The CNN provides a pow-
erful tool in data-driven supervised learn-
ing, where the emphasis is shifted from 
“extracting features from the source data” 
to “constructing data sets by pairing care-
fully selected data and their labels.”

Single-layer RECOS transform
Our discussion applies to x  and a  if 

0n = or augmented vectors xl and al if 
.0!n  For convenience, we only consid-

er the case with .0n = The generaliza-
tion to 0!n  is straightforward.

Clustering on sphere’s surface
There is a modern interpretation to the 
function of a single perceptron layer 
based on the clustering notion. Since 
data clustering is a well-understood dis-
cipline, one can understand the operation 
of CNNs better if a connection between 
the operation of a perceptron layer and 
data clustering can be established. This 
link was built in [1]. It will be repeated 
below. Let

 .S 1x x= =" ,
be an N-dimensional unit hypersphere (or 
simply sphere). We consider clustering of 
points in S using the geodesic distance. 
For an arbitrary vector x  to be a member 
in S, we need to normalize it by its magni-
tude .xg =  If x  is an image patch, the 
magnitude normalization after its mean 
removal has a physical meaning: contrast 
adjustment. When g  is smaller than a 
threshold, the patch is nearly flat. A flat 
patch carries little visual information yet 
its normalization does amplify noise. In 
this case, it is better to treat it as a zero 
vector. When g is larger than the thresh-
old, vector x  does represent a visual pat-
tern, and humans perceive little difference 
between the original and normalized 
patches since the contrast has little effect 
on visual patterns. Although this normal-
ization procedure is not implemented in 
today’s CNNs, the following mathemati-
cal analysis can be significantly simpli-
fied while the essence of CNNs can still 
be well captured.

The geodesic distance of two points, 
xi and x j in ,S is proportional to the 

Input
32 × 32

C1: Feature Maps
6 at 28 × 28

C3: f. Maps 16 at 10 × 10

S2: f. Maps
6 at 14 × 14

S4: f. Maps 16 at 5 × 5
C5: Layer
120 F6: Layer

84
Output
10

Convolutions Subsampling Subsampling
Full Connection

Full Connection
Gaussian Connections

Convolutions

FIGURE 2. The LeNet-5 architecture [7] as an exemplary CNN.
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magnitude of their angle, which can be 
computed by

( , ) ( ) .x x x xcosi j i
T

j
1i = -

Since cosi  is a monotonically decreasing 
function for | | ,0 180c c# #i  we can use 
the correlation, ,x x cos0 1i

T
j# #i=

as another distance measure between 
them, and cluster vectors in S accord-
ingly. Note that, when ,| |90 180cc # #i

the correlation, x x cosi
T

j i= , is a nega-
tive value.

For MLPs and CNNs, a set of neurons 
is used to operate on a set of input nodes. 
For example, nodes in each hidden layer 
and the output layer in Figure 1 take the 
weighted sum of values of nodes in the 
preceding layer as their outputs. These 
outputs are treated as one inseparable unit 
that becomes the input to the next layer. 
Each neuron has a filter weight vector de-
noted by , , , .a k K1k f=  In signal pro-
cessing terminology, the set of neurons 
forms a filter bank. The RECOS model 
[1] describes the relationship between 
nodes of the ( )l 1 th-  and lth layers, 

, , ,l 1 2 f=  where the input layer is the 
0th layer. There are three RECOS units 

in cascade for the MLP in Figure 1. One 
corresponds to a filter bank. The filter 
weight vector is called an anchor vector
since it serves as a reference pattern as-
sociated with a neuron unit.

Need of rectification
A neuron computes the correlation 
between an input vector and its anchor 
vector to measure their similarity. There 
are K  neurons in one RECOS unit. The 
projection of x  onto all anchor vectors, 

,ak  can be written in form of

, [ ],y Ax A a a aT
k K1g g= =

where ( , , , ) ,y yy y y R kk K
T K

1 f f != =

,a xk
T  and .A RK N! #  For input vectors xi

and ,x j  their corresponding outputs are 
iy  and .yj  If the geodesic distance of xi

and x j  in S is close, we expect the dis-
tance of iy  and yj  in the K-dimensional 
output space to be close as well.

To show the necessity of rectifica-
tion, a two-dimensional (2-D) example is 
illustrated in Figure 3, where x  and ak

( , , )k 1 2 3= denote an input and three 
anchor vectors on the unit circle, respec-
tively, and ii is their respective angle. 
Since 1i  and 2i  are lower than ,90c a xT

1

and a xT
2  are positive. The angle, ,3i is 

larger than 90c and correlation a xT
3  is 

negative. The two vectors, x  and ,a3

are far apart in terms of the geodesic 
distance. Since cosi  is monotonically 
decreasing for | | ,0 180c c# #i  it can be 
used to reflect the order of the geodesic 
distance in one layer.

However, when two RECOS units are 
in cascade, the filter weights of the second 
RECOS unit can take positive or negative 
values. If the response of the first RECOS 
unit is negative, the product of a negative 

response and a negative filter weight will 
produce a positive value. On the other 
hand, the product of a positive response 
and a positive filter weight will also pro-
duce a positive value. If the nonlinear 
activation unit did not exist, the cascaded 
system would not be able to differentiate 
them. For example, the geodesic distance 
of x  and x-  should be farthest. However, 
they yield the same result, and their origi-
nal patches become indistinguishable 
under this scenario. Similarly, a system 
without rectification cannot differenti-
ate the following two cases: 1) a positive 
response at the first layer followed by a 
negative filter weight at the second layer 
and 2) a negative response at the first 
layer followed by a positive filter weight 
at the second layer.

Rectifier design
Since a nonlinear activation unit is used 
to rectify correlations, it is called a recti-
fier here. To avoid the above-mentioned 
confusion cases, we impose the following 
two requirements on a rectifier.
1) The output a xk

T  should be rectified to 
be a nonnegative value.

2) The rectification function should be 
monotonically increasing so as to 
preserve the order of the geodesic 
distance.

Three rectifiers are often used in MLPs 
and CNNs. They are the sigmoid func-
tion, the ReLU, and the PReLU as shown 
in Figure 4(a)–(c). The PReLU is also 
known as the leaky ReLU. Both the sig-
moid and ReLU satisfy the aforemen-
tioned two requirements. Although the 
PReLU does not strictly satisfy the first 
requirement, it does not have a severe 
negative impact on spherical surface 
clustering. This is because a negative 

a1

a2

a3

X

θ1 θ2

θ3

FIGURE 3. Illustrating the need of rectification [1].

(a)

1 1 1

(b) (c) (d)

0.0

0.5

1.0

–6 –4 –2 –1 10 –1 10 –1 100 2 4 6

FIGURE 4. An illustration of four rectifiers: (a) the sigmoid function, (b) the ReLU (middle), (c) the leaky ReLU, and (d) the TReLU.
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correlation is rectified to a significantly 
smaller negative value.

Based on the two requirements, one 
can design different rectifiers. One 
example is shown in Figure 4(d). It is 
called the threshold ReLU (TReLU). 
The rectification function can be 
defined as ( ) ,x 0TReLU =  if x 1 z
and ( )x x 1TReLU z z= - -^ ^h h  if 

.x $ z  When ,0z =  TReLU is reduced 
to ReLU. For the LeNet-5 applied to 
the MNIST data set, we observe better 
performance as z  increases from 0 to 
0.5 and then decreases. One advantage 
of ( )TReLU z  with 02z  is that we 
can block the influence of more anchor 
vectors. When ,0z =  we block the 
influence of anchor vectors that have an 
angle larger than 90c with respect to the 
input vector. When . ,0 5z =  we block 
the influence of anchor vectors that have 
an angle larger than 06 c. The design of 
an optimal rectifier for target applica-
tions remains to be an open problem.

Multilayer RECOS transform

Single-layer signal analysis 
via representation
Signal modeling and representation is 
commonly used in the signal processing 
field for signal analysis. Typically, we 
have a linear model in form of

,x Ac= (2)

where x RN!  denotes the signal of in-
terest, A RN M! #  is a representation 
matrix, and c RM!  is the coefficient 
vector. If M N=  and the column vectors 
of A form a set of basis functions, (2) de-
fines a transform from one basis to anoth-
er. The task is in selecting powerful basis 
functions to represent signals of interest. 
Fourier and wavelet transforms are well-
known examples. Then, a subset of coef-
ficient vector c can be used as the feature 
vector. If ,M N> there exist infinitely 
many solutions in c. We can impose con-
straints on c, leading to the linear least-
squares solution, sparse coding, among 
others. For the sparse representation, the 
task is in finding a good dictionary, A, to 
represent the underlying signal effective-
ly. Again, a subset of coefficient vector c
can be chosen as features.

Multilayer signal analysis via 
cascaded transforms
The CNN approach provides a brand-new 
framework for signal analysis. Instead of 
finding a representation for signal analy-
sis, it relies on a sequence of cascaded 
transforms that builds a link between the 
input signal space and the output decision 
space. The operation at each layer is to 
conduct a spherical surface’s clustering of 
input samples with a rectified output (i.e., 
the RECOS transform).

For MLPs, each network corresponds 
to a simple cascade of multiple RECOS 
transforms. Mathematically, we have

,d B B B xL l 1g g= (3)

where  x  i s  a n  input  s igna l ,  d =
( , , , , )d d dc C1 f f  is an output vector in 
the decision space indicating the likeli-
hood in class c with , , ,c C1 f=  and Bl

is the lth layer RECOS transform matrix 
with , , .l L1 f=  The input and output 
to the lth layer RECOS transform Bl

are denoted by xl 1-  and ,xl  respectively. 
Thus, we get

, ,x B x B R Awherel l l l l1 %= =- (4)

and where R  is the element-wise recti-
fication function operating on the output 
of .A xl l 1-  Clearly, we have x x0 =  and 
x dL = .

The ground truth d  is that d 1i = if 
i  is the target class while d 0j = if j  is 
not the target class. It is called the one-
hot vector. The training samples have 
both input x  and its label .d  The testing 
samples have only input ,x  and we need 
to predict its output d and convert it to its 
nearest one-hot vector. The task is in find-
ing good ,Bl , , ,l L1 f=  so as to mini-
mize the classification error.

For CNNs, we have two types of Bl

in the form of

, ,B P R A B R Aand,l
C

s
l s l

F
l% %= =

!X

'
(5)

where A ,l s  denotes a convolutional filter 
at layer l with spatial index s,

s
'  is the 

union of outputs from a neighborhood, Ω, 
and P  denotes a pooling operation. The 
union of outputs from a set of parallel con-
volutional filters serve as the input to the 

filter at the next layer. The two RECOS 
transforms, Bl

C  and ,Bl
F  are called the 

convolutional layer and the fully con-
nected layer, respectively, in the modern 
CNN literature. Clearly, B Bl l

F=  in (4).
It is inspiring to compare the two 

signal-analysis approaches as given in 
(2) and (3). The one in (2) is a single-layer 
approach where no rectification is need-
ed. The one in (3) is a multilayer approach 
and rectification is essential. The single-
layer approach seeks for a better signal 
representation. For example, a multiple-
scale signal representation was developed 
using the wavelet transform. A sparse sig-
nal representation was proposed using a 
trained dictionary. The objective is to find 
an “optimal” representation to separate 
critical components in desired signals 
from others.

In contrast, the CNN approach does 
not intend to decompose underlying 
signals. Instead, it adopts a sequence of 
RECOS transforms to cluster input data 
based on their similarity layer by layer 
until the output layer is reached. The 
output layer predicts the likelihood of all 
possible decisions (e.g., object classes). 
The training samples provide a relation-
ship between an image and its decision 
label. The CNN can predict results even 
without any supervision, although the 
prediction accuracy would be low. The 
training samples guide the CNN to form 
more suitable anchor vectors (thus, bet-
ter clusters) and connect clustered data 
with decision labels. To summarize, 
we can express the multilayer RECOS 
transform as

:

,

x x x

x x d
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B B

B B
L L
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The output from the lth layer, ,xl  serves 
as the input to the ( )l 1+ th layer. It is 
called the intermediate representation at 
the lth layer or the lth intermediate repre-
sentation, in short.

It is important to have a deeper under-
standing on the compound effect of two 
RECOS transforms in cascade. This was 
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thoroughly studied in [1], and the main 
result is summarized below. A represen-
tative 2-D input and its corresponding 
anchor vectors are shown in Figure 5. Let 

na  be a K-dimensional vector formed by 
the same position (or element) of .ak  It is 
called the anchor-position vector since 
it captures the position information of 
anchor vectors. Although anchor vectors 
ak  capture global representative patterns 
of x, they are weak in capturing position 
sensitive information. This shortcoming 
can be compensated for by modulating 
outputs with elements of the anchor-posi-
tion vector na  in the next layer.

Let us use layers S4, C5, and F6 in 
LeNet-5 as an example. There are 120 
anchor vectors of dimension 400 from 
S4 to C5. We collect 400 anchor-position 
vectors of dimension 120, multiply the 
output at C5 by them to form a set of 
modulated outputs, and then compute 84 
anchor vectors of dimension 120 from C5 
to F6. Note that the output at C5 contains 
primarily the spectral information but 
not the position information. If a position 
in the input vectors has less consistent 
information, the variance of its associated 
anchor position vector will be larger and 
the modulated output will be more ran-
dom. As a result, its impact on the forma-
tion of the 84 anchor vectors is reduced. 
For more details, we refer to the discus-
sion in [1].

New clustering representation
We have a one-to-one association between 
a data sample and its cluster in traditional 
clustering schemes. However, this is not 
the case in the RECOS transform. A new 
clustering representation is adopted by 
MLPs and CNNs. That is, for an input 
vector ,x  the RECOS transform gener-
ates a set of K  nonnegative correlation 

values as the output vector of dimension 
.K  This representation enables repeti-

tive clustering layer by layer as given in 
(4). For an input, one can determine the 
significance of clusters according to the 
magnitude of the rectified output value. If 
its magnitude for a cluster is zero, x is not 
associated with that cluster. A cluster is 
called a relevant or irrelevant one depend-
ing on whether it has an association with 

.x  Among all relevant ones, we call clus-
ter i the primary cluster for input x  if

k
.a xarg maxi k

T=

The remaining relevant ones are auxil-
iary clusters.

The FE subnet uses anchor vectors to 
capture local, midrange, and long-range 
spatial patterns. It is difficult to predict 
the clustering structure since new infor-
mation is introduced at a new layer. The 
DM subnet attempts to reduce the dimen-
sion of intermediate representations until 
it reaches the dimension of the decision 
space. We observe that the clustering 
structure becomes more obvious as the 
layer of the DM subnet goes deeper. That 
is, the output value from the primary clus-
ter is closer to unity while the number of 
auxiliary clusters is fewer and their output 
values become smaller. When this hap-
pens, an anchor vector provides a good 
approximation to the centroid for the cor-
responding cluster.

The choice of anchor vector numbers, 
,Kl at the lth layer is an important problem 

in the network design. If input data xl 1-

has a clear clustering structure (say, with 
h clusters), we can set .K hl = However, 
this is often not the case. If Kl is set to a 
value too small, we are not able to capture 
the clustering structure of xl 1-  well, and 
it will demand more layers to split them. 
If Kl is set to a value too large, there are 
more anchor vectors than needed, and a 
stronger overlap between rectified output 
vectors will be observed. As a result, we 
still need more layers to separate them. 
Another way to control the cluster-
ing process is the choice of the thresh-
old value, ,z  of the TReLU. A higher 
threshold value can reduce the negative 
impact of a larger Kl  value. The trad-
eoff between z  and Kl  is an interesting 
future research topic.

Network initialization and guided 
anchor vector update
Data clustering plays a critical role in the 
understanding of the underlying structure 
of data. The k-means algorithm, which is 
probably the most well-known clustering 
method, has been widely used in pattern 
recognition and supervised/unsupervised 
learning. As discussed previously, each 
CNN layer conducts data clustering on 
the surface of a high-dimensional sphere 
based on a rectified geodesic distance. 
Here, we would like to understand the 
effect of multiple layers in cascade from 
the input data source to the output deci-
sion label. For unsupervised learning such 
as image segmentation, several challenges 
exist in data clustering [8]. Questions such 
as “What is a cluster?” “How many clus-
ters are present in the data?” and “Are the 
discovered clusters and partition valid?” 
remain open. These questions expose 
the limit of unsupervised data cluster-
ing methods.

In the context of supervised learning, 
traditional feature-based methods extract 
features from data, conduct clustering 
in the feature space, and, finally, build a 
connection between clusters and decision 
labels. Although it is relatively easy to 
build a connection between the data and 
labels through features, it is challenging to 
find effective features. In this setting, the 
dimension of the feature space is usually 
significantly smaller than that of the data 
space. As a consequence, it is unavoidable 
to sacrifice rich diversity of input data. 
Furthermore, the feature selection pro-
cess is guided by humans based on their 
domain knowledge (i.e., the most discrim-
inant properties of different objects). This 
process is heuristic. It can become overfit 
easily. Human efforts are needed in both 
data labeling and feature design.

CNNs offer an effective supervised 
learning solution, where supervision is 
conducted by a training process using 
data labels. This supervision closes the 
semantic gap between low-level repre-
sentations (e.g., the pixel representation) 
and high-level semantics. Furthermore, 
the CNN self-organization capabil-
ity was well discussed in the 1980s and 
1990s, e.g., [6]. By self-organization, the 
network can learn with little supervision. 
To put the above two together, we expect 

. . .

αn

Xn

a1 a2 akX . . .

FIGURE 5. The visualization of the anchor-posi-
tion vector na  [1].
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that CNNs can provide a wide range of 
learning paradigms—from the unsu-
pervised, weakly supervised, to heav-
ily supervised learning. This intuition 
can be justified by considering a proper 
anchor vector initialization scheme (for 
self-organization) and providing proper 
“guidance” to the proposed multilayer 
RECOS transform in anchor vector 
update (for supervised learning).

Network initialization
The CNN conducts a sequence of rep-
resentation transforms using cascaded 
RECOS units. The dimension of trans -
formed representations gradually de-
creases until it reaches the number of 
output classes. Since labels of output 
classes are provided by humans with a 
semantic meaning, the whole end-to-end 
process is called the guided (or super-
vised) transform.

Before examining the effect of label 
guidance, we first compare two network 
initialization schemes: 1) the random 
initialization and 2) the k-means ini-
tialization. For the latter, we perform 
k-means at each layer based on its corre-
sponding input data samples (with zero-
mean and unit-length normalization), 
and we repeat this process from the input 
to the output layer after layer. Today, ran-
dom initialization is commonly adopted. 
Based on the previous discussion, we 
expect the k-means initialization to be 
a better choice. This is verified by our 
experiments in the LeNet-5 applied to 
the MNIST data set.

Once the network is initialized, we 
can feed the test data to the network and 
observe the output, which corresponds 
to unsupervised learning. The com-
parison of unsupervised classification 
results with the random and k-means 
initializations is given in Figure 6, where 
we show images that are closest to the 
anchor vectors (or centroids) of the ten 
output nodes. We see that the k-means 
initialization provides ten anchor vec-
tors pointing to ten different digits while 
the random initialization cannot do the 
same. Different random initialization 
schemes will lead to different results, 
yet the one given in Figure 6 is represen-
tative. That is, multiple anchor vectors 
will point to the same digit.

Guided anchor vector update
We apply the BP for network train-
ing with a varying number of training 
samples. For a fixed number of training 
samples, we train the network until its 

performance converges and plot the cor-
rect classification rate in Figure 7. The 
two points along the y-axis indicate the 
correct classification rates without any 
labeled training sample. The rates are 
around 32 and 14% for the k-means and 
random initializations, respectively. Note 
that the 14% is slightly better than the ran-
dom guess on the outcome, which is 10%. 
Then, both performance curves increase 
as the number of labeled training samples 
grows. The k-means can reach a correct 
classification rate of 90% when the num-
ber of labeled training samples is around 
250, which is only 0.41% of the entire 
MNIST training data set (i.e., 60,000 sam-
ples). This shows the power of the LeNet-5 
even under extremely low supervision.

To further understand the role played 
by label guidance, we examine the impact 
of the BP on the orientation of anchor 
vectors in various layers. We show in 
Table 1 the averaged orientation changes 
of anchor vectors in terms of radian (or 

(a)

(b)

Random Initialization

K-Means Initialization

FIGURE 6. The comparison of MNIST unsuper-
vised classification results of the LeNet-5 ar-
chitecture with the (a) random and (b) k-means
initializations, where the images that are closest 
to centroids of ten output nodes are shown.

100

90

80

70

60

50

40

30

20

10

A
cc

ur
ac

y 
(%

)

0 200 400 600
Number of Samples

800 1,000

Random
k-Means

Accuracy Versus Train Sample Count

FIGURE 7. The comparison of MNIST weakly supervised classification results of the LeNet-5 architec-
ture with the random and k-means initializations, where the correct classification rate is plotted as a 
function of training sample numbers.

Table 1. The averaged orientation changes of anchor vectors in terms of the radian (or degree) 
for the k-means and the random initialization schemes.

In/Out Layers k-Means Random 

Input/S2 0.155 (or 8.881°) 1.715 (or 98.262°)

S2/S4 0.169 (or 9.683°) 1.589 (or 91.043°)

S4/C5 0.204 (or 11.688°) 1.567 (or 89.783°)

C5/F6 0.099 (or 5.672°) 1.579 (or 90.470°)

F6/output 0.300 (or 17.189°) 1.591 (or 91.158°)
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degree) for the two cases in Figure 6. They 
are obtained after the convergence of the 
network with all 60,000 MNIST training 
samples. This orientation change is the 
result due to label guidance through the 
BP. It is clear from the table that a good 
network initialization (corresponding to 
unsupervised learning) leads to a faster 
convergence rate in supervised learning.

Classes and subclasses
We use another example to gain further 
insights to the guided clustering process. 
We can zoom in on the horned rattlesnake 
class obtained by the AlexNet and con-
duct the unsupervised k-means on feature 
vectors in the last layer associated with 
this class to further split it into multiple 
subclasses. Images of two subclasses are 
shown in Figure 8. Images in the same 
subclasses are visually similar. However, 
they are not alike across subclasses. The 
two subclasses are grouped together under 
the horned rattlesnake class because they 
share the same class label (despite strong 
visual dissimilarity). That shows the 
power of label guidance. However, the 
feature distance is shorter for images in 
the same subclass and longer for images 
in different subclasses. This is due to the 
inherent clustering capability of CNNs.

Discussion and open issues

Discussion
A CNN was viewed as a guided multilayer 
RECOS transform in this article. The fol-
lowing known facts can also be explained 
using this interpretation.

■ Robustness to wrong labels. Humans 
do clustering first, and then the CNN 
mimics humans based on the statistics 
of all labeled samples. It can tolerate 
small percentages of erroneous labels 
since these wrongly labeled data do 
not have a major impact on cluster-
ing results.

■ Overfitting. Overfitting occurs when 
a statistic model describes noise 
instead of the underlying input/output 
relationship. For a given number of 
observations, this could happen for an 
excessively complex model that has 
too many model parameters. Such a 
model has poor prediction perfor-
mance since it overreacts to minor 
fluctuations in the training data. 
Although a CNN has a large number 
of parameters (specifically, filter 
weights), it does not suffer much from 
overfitting for the following reason. 
When there are only input and output 
layers without any hidden layers in 
between, the CNN is degenerated to a 
linear system that solves a linear least-
squared regression problem (where 
no rectification is needed.) It is well 
known the linear regression is robust 
to noisy data. When there are hidden 
layers, the filter weight determination 
is a cascaded optimization problem, 
which has to be solved iteratively. In 
the BP process, we update the filter 
weights layer by layer in a backward 
direction. Fundamentally, it still at -
tempts to solve a regression problem 
at each layer. Although a rectifier con-
ducts rectification on the output, it 

does not change the regression nature 
of MLPs and CNNs.

■ Data augmentation. A low-cost way 
to generate more samples is data aug-
mentation. This is feasible since minor 
perturbations in the image pixel 
domain do not change their class types.

■ Data set bias. A CNN can be biased 
due to the inherent bias in the low level 
representation existing in training sam-
ples. Thus, the performance of a CNN 
can degrade significantly from one data 
set to the other in the same application 
domain due to this reason.

Open issues
There are many interesting open prob-
lems remaining for further exploration.
■ Network Architecture Design. It is 

interesting to be able to specify the 
layer number and the filter number 
per layer for given applications 
automatically.

■ Decoder network analysis. The clas-
sification network maps an image to a 
label. There are image processing net-
works that accept an image as the 
input and another image as the output. 
Examples include superresolution 
networks, semantic segmentation net-
works, etc. These networks can be 
decomposed into an encoder-decoder 
architecture. The analysis in this lec-
ture note focuses on the encoder part. 
It is interesting to generalize the anal-
ysis to the decoder part as well.

■ Localization and attention. Region 
proposals have been used in object 
detection to handle the object local-
ization problem. Learning the object 
location and human visual attention 
from the network automatically with-
out the use of proposals is desirable. 
The design and analysis of networks 
to achieve this goal is interesting.

■ Transfer learning. It is often possible 
to fine-tune a CNN for a new applica-
tion based on an existing CNN model 
trained by another data set in another 
application. This is because the low-
level image representation corre-
sponding to the beginning CNN 
layers can be very flexible and equal-
ly powerful.

■ Weakly supervised learning. 
Unsupervised and heavily supervised 

FIGURE 8. Two subclasses obtained from the horned rattlesnake class using unsupervised clustering.
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learning are two extremes. Weakly 
supervised learning occurs most fre-
quently in our daily applications. The 
design and analysis of a weakly super-
vised learning mechanism based on 
CNNs is interesting and practical.
The interpretation of a CNN as a 

guided multilayer RECOS transform 
should be valuable to the investigation of 
these topics.

Summary
The operating principle of CNNs was 
explained as a guided multilayer RECOS 
transform in this note. A couple of illus-
trative examples were provided to sup-
port this claim. Several known facts were 
interpreted accordingly, and some open 
issues were pointed out at the end. 
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Rodrigo Capobianco Guido

Effectively Interpreting Discrete Wavelet Transformed Signals

F ollowing two decades of research 
focusing on the discrete wavelet trans-
form (DWT) and driven by students’ 

high level of questioning, I decided to 
write this essay on one of the most sig-
nificant tools for time-frequency signal 
analysis. As it is widely applicable in a 
variety of fields, I invite readers to follow 
this lecture note, which is specially dedi-
cated to show a practical strategy for the 
interpretation of DWT-based transformed 
signals while extracting useful informa-
tion from them. The particular focus 
resides on the procedure used to find the 
time support of frequencies and how it is 

influenced by the wavelet family and the 
support size of corresponding filters.

Relevance
Frequently, DWT computation is much 
faster than that of the discrete Fourier 
transform (DFT) and even the fast Fou-
rier transform (FFT), encouraging its 
usage. Furthermore and opposite to the 
DFT, to the FFT, and even to the short-
time Fourier transform, the DWT reveals 
the time support of frequencies efficient-
ly, as described in [1]. Thus, its study is of 
paramount importance.

Prerequisites
On one hand, essential knowledge of 
digital filters and wavelet families is only 

desirable. On the other hand, the basic 
aspects involving the procedures used to 
calculate DWTs from discrete-time sig-
nals are imperative for the full comprehen-
sion of this lecture note. If readers are not 
comfortable with the topic, I encourage 
you to consult [1]–[3], written in a friendly 
manner, before proceeding any further.

Problem statement and solution

Problem statement
Given the pair of signals [·]s  and [·]y ,
both of size M  equal to a power of two 
and indexed from 0 to ,M 1- being 
the former and the latter the discrete-
time input and its DWT, respectively, 
the problem is to extract and interpret 
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relevant information the latter contains 
about the former, particularly allowing 
the time support of frequencies to be 
accurately found.

Solution
Differently from the DFT, which con-
verts a signal from the time to the fre-
quency domain, the DWT filters it. Thus, 
significant amplitudes in [·]y  come 
from frequencies that originally exist in 

[·]s  and were not removed by the filters. 
Based on this process, our solution con-
sists of a DWT-based filtering applied 
to [·]s  followed by an inspection of the 
dominant amplitudes contained in the 
transformed signal [·]y .

The practical procedure used to 
obtain [·]y  from [·]s  has already been 
described in detail in [2]; thus, it is not 
repeated at this time. Nevertheless, there 
are two main issues to be addressed to 
solve the stated problem: the ideal level of 
transformation, i.e., ,j  and the appropri-
ate analysis filter pair, i.e., the low-pass 
filter [·]h  and the high-pass mirrored 
finite impulse response half-band filter 

[·]g  [4]. Once j  is defined, the general-
ized and well-known DWT decompo-
sition tree [4] will be more or less 
accurate depending on the order N 1-
of those filters, N  being their length, 
and on the family they belong to, such as 
Haar, Daubechies, Coiflets, Symmlets, 
and so on [4].

Notably, spectral description and tem-
poral localization hold distinct require-
ments for ideality. On one hand, the 
former offers the finest resolution, when-
ever j  and N  are maximized and the 
associated filters exhibit linear-phase and 
maximally flat responses at their pass and 
stop bands. On the other hand, the latter 
is foolproof whenever j  and N  are mini-
mized because each sample of [·]y  refers 
just to a small part of [·] .s  Furthermore, 
according to Heisenberg’s uncertainty 
principle [4], time and frequency informa-
tion are antagonistic. The better that is, 
the worse this is, and vice versa. Consid-
ering the limits imposed by the real con-
ditions, we may either balance time and 
frequency information or prioritize one of 
them based on our specific needs.

Disregarding temporal information, 
the finest spectral resolution is guaran-

teed whenever the deepest decomposi-
tion level is adopted, i.e., ( ) .logj M2=

Additionally, the maximum possible 
length for ,N  for which there is no upper 
bound, is required. In practice, it usually 
implies filters for which .N 40$  Maxi-
mally flat responses at their pass and 
stop bands, such as those provided by 
Daubechies’ filters, may be used to avoid 
improper floatations in [·]y  due to a re-
duced or an excessive gain at some sub-
bands [4], causing inaccurate frequency 
magnitudes. Furthermore, distinct delays 
for different frequency bands are also 
present, whenever the phase responses of 
the filters are not linear; thus, Symmlets 
and Coiflets [4], which exhibit almost 
linear responses, are also interesting 
choices. Contrary to this, the best tempo-
ral resolution, which causes the poorest 
spectral description, requires the low-
est decomposition level, i.e., ,j 1= and 
the smallest support size of filters, i.e., 

,N 2= directly implying in the adoption 
of Haar’s filters [4].

Opposed to an extreme time or fre-
quency resolution, equilibrium is reached 
whenever the intermediary decomposition 
level is chosen, i.e., the situation in which 
j  is the mean between the minimum, 
one, and the maximum, ( ) .log M2  This 
results in ( ( )) / ,log Mj 1 22= +6 @  where 

·6 @ is the floor operator, and implies that 
the corresponding frequency resolution 
is / /r T T2 2 ( ( ))/logj M1 22= = +^ h6 @  Hz, where 

T2  is the sampling rate at which [·]s
was digitalized and, according to Ny-
quist’s theorem [4], T  is its maximum 
frequency content. Complementarily, 
a balanced time and frequency accu-
racy also requires an intermediary 
value for ,N  for which two is the lower 
bound and there exists no upper bound. 
To circumvent the missing bound, a 
careful inspection of the procedure used 
to calculate DWTs, as described in [2], 
is useful. It allows the statement that at 
the jth-level transformation based on a 
filter of support size ,N  information 
from ( )( )N 1 2 1 1j- - +  subsequent 
samples of [·]s  is grouped together, 
directly influencing the accurate time 
support of frequencies.

The final issue to be solved, before for-
mulating a solution to the stated problem, 
involves the specific map to be adopted: 

the regular DWT map or the DWT-packet 
map. On one hand, the former only pro-
vides the finest resolution for the lowest 
frequencies, which are usually those that 
carry most of the useful information. 
On the other hand, the latter provides a 
uniform and equally distributed time-fre-
quency resolution for all subbands, once 

,j ,N  and the wavelet family are defined. 
At each decomposition level of the former 
map, the transformation produces two 
half-size and half-band signals—trend 
and fluctuation, respectively—contain-
ing the low and high frequencies of the 
input signal that are subsequently concate-
nated to establish the transformed signal. 
Contrastingly, the latter map contains 
2 j  subband signals of size ( / )M 2 j  at the 
jth decomposition level, as detailed in [5]. 
Figure 1 helps to recall these schemes.

Based both on the previous notes 
and Mallat’s algorithm [2], the use of a 
regular DWT map, as exemplified in 
Figure 1(a), requires strategy STG_A-(i) 
and (ii) to solve our problem, assuming an 
ideal situation:
i) The energy of the ith sample of the 

jth-level trend contains the ampli-
tude of frequencies between 0 and 
( / )T 2 j  Hz, which are located within 
the range { , }s s( )i i2 1 2 1j j+ - , for i =
{ , , , ..., ( / ) } .M0 1 2 2 1j -

ii) The energy of the ith  sample of the 
jth -level fluctuation contains the 
amplitude of frequencies between 
( / )T 2 j  and /T 2 j 1-^ h Hz, which are 
located within the range { ,si2 j

}s( )i 1 2 1j+ - .
Accordingly, the DWT-packet map built 
considering the natural frequency order-
ing (NFO) [5, p. 111], which is exempli-
fied in Figure 1(b), is associated with the 
strategy STG_B:

The energy of the ith sample of the 
bth subband at the jth-level con-
tains the amplitude of frequencies 
between ( / )bT 2 j  and (( ) )/b T1 2 j+

Hz, which are located within 
the range { , },s s( )i i2 1 2 1j j+ -  for 

{ , , , ..., }b 0 1 2 2 1j= -  a nd  i =
{ , ,0 1 , ..., }/M2 2 1j -^ h .
To lessen the imprecise temporal 

localization caused by the influence of 
,N correction COR is required right after 

calculating the DWT but prior to using 
those strategies:
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Apply individually, for each leaf 
subband contained in the wavelet 
decomposition tree at the level ,j
regardless of coming from the regu-
lar DWT map or the DWT-packet 
map, a circular right-sided shift of 
( ) /N 2 2-  samples.
COR comes from the fact that the 

convolution between [·]s  and a wave-
let filter produces a signal for which 
the length corresponds to ,M N 1+ -

primarily. Then, once the downsampling 

by two is applied [2], this length is reduced 
to ( ) / ( ) ( ) / ./M N M N1 2 2 1 2+ - = + -

Finally, the wraparound procedure [2]
vanishes the effect of the term ( ) / ,N 1 2-

remaining only a ( / )M 2 -sample-long 
resulting signal. Thus, even though N
has no inf luence over the length of 
the transformed signal, it does cause 
shifts. Particularly, due to the fact that 
N  is usually even and half-shifts are 
not defined in discrete wavelet sys-
tems, ( ) /N 1 2-  can be treated as being 

( ) / ,N 2 2-  implying that all the filters 
but Haar’s cause a shifting. Therefore, 
COR consists of a circular right-sided 
shift of ( ) /N 2 2-  samples, regardless 
of .j  Notably, COR does not correct 
delays originated from nonlinear phase 
responses of the filters, which can be 
attenuated with the use of specific wave-
let families, as aforementioned.

Finally, a refined time-frequency 
description based on the previously  
defined strategies requires the use of 
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FIGURE 1. (a) The traditional DWT decomposition tree, exemplified for ,j 3= where the / / / /M M M M M8 8 4 2+ + =+^ ^ ^ ^h h h h -sample long signal [·]y
corresponds to the concatenation of all the leafs, considering a left-to-right and bottom-up procedure. (b) The corresponding DWT-packet tree, built 
based on the NFO. 
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Teager’s energy operator [6], instead of 
the ordinary energy [7], to convert all 
the samples of each leaf subband into 
their instantaneous potentials, accord-
ing to the TEG procedure:

For the subband , , ...,b 0 1 2 1j= -

of the deepest level ,j  do:
■ ( )y y, ,b b0 0

2
!u

■ ( ) ( ) · ( ),y y y y, , , ,i b i b i b i b
2

1 1! - - +u  for 
/ ,Mi1 2 2j# # -^ ^ h h  whenever the 

length of b  is at least four
■ ( ) ,y y( / ) , ( / ) ,M Mb b2 1 2 1

2j j!- -u  whenever 
the length of b  is at least two

where the left arrows mean attribution. 
Summarizing, the ideal time-frequen-
cy analysis of [·]s  based on the DWT 
requires four steps:
■ Step 1: Select the most appropriate 

wavelet family and the support size 
of filters, i.e., .N Then, calculate the 
M-sample-long transformed signal 

[·]y  from [·]s  based either on the 
regular DWT map or the DWT-
packet map.

■ Step 2: Apply COR, shifting [·]y
accordingly.

■ Step 3: Apply TEG, creating [·]yu
from shifted [·]y .

■ Step 4: Interpret [·]yu  based either 
on STG_A or STG_B, depending on 
which map was chosen to carry out 
Step 1.

Numerical example

Problem statement
Let .s 1 2i= · / )sin i e2 44 4095 .

i
409 6

2
r -^^ ^h h h

{ , }, ,i s0 1 024 0for i1# =  for { ,1 024#  
, }, / , )((sin ii s2 048 and 85 4 0952 ·i1 r=

for { , , }i2 048 4 0961#  to be the 1-s 
long signal under analysis, sampled 
at ,T2 4 096=  samples/s, as shown in 
Figure 2(a). The problem is to find out 
the time support of its frequencies with 

a balance between temporal and spec-
tral accuracies.

Solution
A balanced time-frequency analysis 
of [·],s  which contains frequencies 
up to ,T 2 048= Hz, requires j =   

( ) /log M1 22+ =^ h6 @ 6(1 + log2(4,096))/2@
.6=  Correspondingly, /r T 2 j= =^ h

, /2 048 2 32 Hz6 =^ h  is the frequency 
resolution for this decomposition, which 
is based on the DWT-packet map to allow 
a uniform analysis, i.e., to keep r  intact 
for all the subbands. Symmlets of size 
N 16= were chosen to perform the anal-
ysis because of their almost linear phase 
responses, practically avoiding frequency 
components to become misaligned.

Proceeding with the calculations and 
applying COR and TEG, we get [·],yu  for 
which only the first four subbands appear 
in Figure 2(b) to allow magnification. Its 
inspection reveals two main elements: 
spk and unf. The former is a spike decay-
ing from samples 64 to 79, and the latter 
consists of a uniform step from samples 
160 to 191. Observing that each one of 
the 2 2 64j 6= =  subbands contains 

/ /M 2 4096 2 64j 6= =^ ^h h  samples, in -
dexed from 0 to 63, we conclude that 
spk occurs within the interval { ,i i0= =

}15  of the second subband, i.e., ,b 1=
and unf occurs within the interval 
{ , }i i32 63= =  of the third subband, 
i.e., .b 2= Thus, according to STG_B:
■ For spk, the energy of the sample i 0=

of the subband b 1=  at the level 
j 6=  contains the amplitude of 
frequencies between , /1 2 048 2· 6 =^ h
32 and ( ) · , /1 1 2 048 26+ =^ h  64 Hz, 
located within the range { ,s0 2· 6

}s( )0 1 2 16+ - , i.e., { , }s s0 63 . According-
ly, the energy of the sample i 15=

of that subband contains the ampli-

tude of those frequencies, which 
are  located within the range 
{ , },s s( )15 2 15 1 2 1· 6 6+ -  i.e., { , }.s s960 1023

It means that a frequency between 32 
and 64 Hz exists in [·]s , starting and 
ending somewhere between { , }s s0 63

and { , },s s960 1023  respectively. In fact, 
the frequency of 44 Hz was defined in 

[·]s  within the interval { , }s s0 1023 .
Furthermore, the decay starting from 
sample 64 of Figure 2(b) shows the 
corresponding power reduction clearly 
seen within the corresponding interval 
of Figure 2(a).

■ For unf, the energy of the sample 
i 32=  of the subband b 2=  at the 
level j 6=  contains the amplitude of 
frequencies between /2 2048 2 646$ =

and ( ) · /2 1 2048 2 966+ =^ h  Hz , 
located within the range { ,s32 2· 6

}s( )32 1 2 16+ - , i.e., { , }s s2048 2111 . Com-
plementarily, the energy of the sample 
i 63=  of that subband contains the 
amplitude of those frequencies, 
which were placed within the range 
{ , },s s( )63 2 63 1 2 1· 6 6+ -  i.e., { , }.s s4032 4095

It means that a frequency between 
64 and 96 Hz exists in [·]s , starting 
and ending somewhere between 
{ , }s s2048 2111  and { , }s s4032 4095 , respec-
tively. In fact, the frequency of 85 Hz 
was uniformly defined in [·]s  within 
the interval { , }.s s2048 4095

What we have learned
Based on this article, readers could 
have learned how to efficiently inter-
pret discrete wavelet-transformed sig-
nals, while extracting from them the 
time support of frequencies contained 
in the original signal under analysis. 
Supplementary to this, the criteria used 

0 1,024 2,048 3,072 4,096
−1

1

Sample

A
m

pl
itu

de spk unf

0 32 64 96 128 160 192 224 255
0

100

Sample

(a) (b)

A
m
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itu

de

FIGURE 2. The original and transformed data for the example in the section “Numerical Example.” (a) The original signal under analysis ( [·])s  and (b) the 
first four subbands of the corresponding DWT-packet map, modified and converted based on COR and TEG, respectively ( [·])yu .

(continued on page 100)
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ICASSP2018
The 43rd IEEE International Conference on Acoustics, Speech and Signal Processing

April 22 - 27, 2018, Seoul, Korea

http://2018.ieeeicassp.org

Signal Processing and Artificial Intelligence: Changing the World

Important Dates

August 4, 2017  
Special Session Proposals Due

August 11, 2017  
Tutorial Proposals Due

September 8, 2017  
Notification of Special Session Acceptance

September 15, 2017 
Notification of Tutorial Acceptance

October 27, 2017 
Paper Submissions Due

January 12, 2018 
Signal Processing Letters Due

January 26, 2018 
Notification of Paper Acceptance

February 9, 2018 
Revised Paper Upload Deadline 

February 16, 2018 
Author Registration Deadline

General Chairs
Monson Hayes
Hanseok Ko

Technical Program Chairs
Dan Schonfeld
Pascale Fung
Nam Ik Cho

Sponsored by

Submission of Papers
Authors are invited to submit papers of not more than four pages of technical content including figures 
and references, with an optional fifth page containing only references. Submission instructions, paper 
format templates, and other important information will be made available on the ICASSP 2018 website, 
http://2018.ieeeicassp.org. 

Conference Topics
The conference will feature world-class international speakers, tutorials, exhibits, lectures and poster 
sessions from around the world. Topics include but are not limited to:

Call for Tutorials 
Tutorials at ICASSP form an important part of the program, giving attendees the opportunity to learn 
about current research areas that are of growing interest to the signal processing community. Those 
who are interested in presenting a tutorial may want to contact one of the tutorial chairs before 
preparing a formal proposal. It is important to keep in mind, for any tutorial, that it should be tutorial in 
nature, and within the grasp of a wide audience. 

Call for Special Sessions 
The program for ICASSP 2018 will include Special Sessions that complement the traditional program 
with new and emerging topics of significant interest to the signal-processing community, particularly 
those that are in line with the theme of the conference. Please refer to the conference webpage for 
information about Special Session proposals. 

Call for Exhibitors and Sponsors 
ICASSP 2018 offers exhibitors and sponsors an opportunity to showcase their company's products and 
innovative solutions at the Signal Processing Society's flagship conference that will be held for the first 
time in the Korean Peninsula. Please refer to the conference webpage for information about signing up 
to become an exhibitor or sponsor at ICASSP. 

Signal Processing Letters
Authors of IEEE Signal Processing Letters (SPL) papers will be given the opportunity to present their 
work at ICASSP 2018, subject to space availability and approval by the Technical Program Chairs. SPL 
papers published between January 1, 2017 and December 31, 2017 are eligible for presentation at 

2018 will neither be reviewed nor included in the proceedings. 
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LIFE SCIENCES

1053-5888/17©2017IEEE

LIFE SCIENCES
Jørgen Arendt Jensen, Carlos Armando Villagómez Hoyos, 

Simon Holbek, and Kristoffer Lindskov Hansen

Velocity Estimation in Medical Ultrasound

T his article describes the application 
of signal processing in medical ultra-
sound velocity estimation. Special 

emphasis is on the relation among
acquisition methods, signal processing, 
and estimators employed. The descrip-
tion spans from current clinical systems 
for one- and two-dimensional (1-D and 
2-D) velocity estimation to the experi-
mental systems for three-dimensional 
(3-D) estimation and advanced imaging 
sequences, which can yield thousands 
of images or volumes per second with 
fully quantitative flow estimates. Here, 
spherical and plane wave emissions are 
employed to insonify the whole region 
of interest, and full images are recon-
structed after each pulse emission for 
use in velocity estimation.

Ultrasound velocity estimation is 
widely used for diagnosing circulatory 
and cardiac problems in the human body. 
The investigations are conducted in real 
time and can directly reveal quantitative 
data about blood velocity, turbulence, 
volume flow, resistive index, and other 
haemodynamic quantities. Ultrasound 
velocity estimation can provide instanta-
neous images of the spatial velocity distri-
bution as well as single site measurements 
of velocity distribution and its evolution 
over time. Conventional ultrasound veloc-
ity estimation is widely used due to the 
widespread ability, its inexpensive nature, 
no preparation of the patients, and safety, 
since nonionizing radiation is used. The 

underlying estimation schemes involve a 
combination of ultrasound physics, image 
acquisition, and velocity estimation. This 
article touches on all three aspects and 
spans from the currently available com-
mercial systems using sequential data 
acquisition to the latest research tech-
niques using parallel acquisition yielding 
thousand of images per second. They are 
capable of showing complex pulsating 
flow with vortices in two and three dimen-
sions. The signal processing is tightly 
integrated with the underlying physics. 

Physics of velocity estimation
Conventional ultrasound systems are 
often called Doppler systems, indicat-
ing that the instantaneous frequency 
shift of the emitted spectrum is esti-
mated. This would indicate that a single 
pulse-echo measurement is sufficient 
to find the velocity. However, this is not 
done in practice as scattering and atten-
uation contribute to significant shifts in 
the received signal’s mean frequency. 
Unless the unknown factors from atten-
uation and scattering are compensated 
for, a frequency estimation would be 
highly inaccurate. Thus, a more precise 
understanding is needed.

In basic blood ultrasound imag-
ing, a single blood scatterer traverses 
the ultrasound beam. The position is 
denoted as r1v  at the first measurement 
and r2v  for the second measurement 
acquired Tprf  s after. The interpulse 
motion and, thereby positional shift, 
gives rise to a delay ts in the sec-
ond received signal corresponding to

| |

| |
,

cos

cos

t
c

r r

c
v T

c
v T

2

2 2pr
pr

s

z
f

f

1 2 i

i

=
-

= =

v v

v
(1)

where i  is the angle between the ultra-
sound beam and the blood motion 
direction, and c  is the speed of sound, 
usually 1,540 m/s. The axial velocity 
component is | | .cosv vz i= v  Motion 
away from the transducer gives rise 
to a signal arriving with an increasing 
delay, while a scatterer moving toward 
the transducer will decrease the time from 
pulse emission to reception.

The emitted pulse ( )p t in ultrasound 
is sinusoidal, and for velocity estimation 
often consists of four to eight cycles. The 
received signal can be written as

( ) sinx t ba f t
c
d i t2 2 ·i s0r= - - ,` ` jj

(2)

where a  is the pulse amplitude, f0 is 
the emitted frequency, d  is the depth 
of the scatterer, and b  is its amplitude. 
Making a measurement at one fixed 
time instance t n fd d s=  for sample 
index ,nd  corresponding to a fixed depth, 
then gives a sampled signal as

( , )

,

/ ,

sinx n i ba
c
v

f T i

f n f
c
d

2 2

2 2

pr

s d
z

f d

d d s

0

0

#

r

r

H

H

=-

-

= -c

c
m
m (3)

where fs  is the sampling frequency and i
is the pulse emission number. This data 
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acquisition over several pulse emis-
sions gives a signal sample with a rate 
of T f1 pr prf f= , which has a frequency of

,f
c
v f v2 2

p
z z

0
m

= = (4)

directly proportional to the axial blood 
velocity. Here c f0m =  is the wavelength 
of the transmitted pulse. The frequency 
content in the transmitted pulse is scaled 
by the factor v c2 z  and also reduces the 
influence of scattering and attenuation by 
this factor. Velocity estimation, thus, relies 
on acquiring the flow signal over sev-
eral pulse emissions and determining the 
motion between pulse emissions for esti-
mating the axial velocity.

Axial velocity estimation
Several methods for finding the axial 
velocity have been introduced [1].
Spectral systems use short-time Fouri-
er transform to determine the frequen-
cy content of ( , )x n is d  for the sample 
depth ,nd  and these systems show the 
velocity distribution over time for a 
single position in the blood vessel as 
a spectral display [2]. An example of 
such a display is shown in the left part 
of Figure 1(a). The gray tone B-mode 
image displays the anatomy, and the 

broken yellow lines indicate the place 
for finding the velocity distribution. In 
this spectrogram, the brightness indi-
cates the relative number of scatterers 
moving at a given speed. The yellow 
“wings” indicate the beam-to-f low 
angle, which has to be compensated for 
to yield the correct velocity magnitude. It 
is therefore preferred to keep this angle 
below 60c if possible to avoid large er-
rors in the compensated velocities. This 
display gives a quantitative measure of 
velocity and is widely used in the clinic 
to evaluate peak velocities, volume flow, 
and resistive index for indicating resis-
tance to flow in the vessel.

The velocity can also be directly 
estimated by cross-correlating two con-
secutive signals and then determining 
the time shift [3]:

( , ) ( , )

( , )

( , )

( , )

( , ),

( )
( )

,

R n k x n n i x

n n k i

x n n i x

n n n k i

R n k n

n n
c

v n
T f

1

2
pr

d s
n

d s

d

s
n

d s
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d s

s d
z d

f s

12
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#

#

= +

+ + +

= +

+ - +

= -

=

/

/

(5)

where n  is the sample index. Here 
( , )R n kd12  is the cross-correlation func-

tion and R11  is the autocorrelation of 
the received signal, which has a unique 
peak found at the lag .k ns=  The velocity 
is then

( )
( )

.v n
f T

n n
c

2 pr
z d

s f

s d
= (6)

For roughly monochromatic signals 
(long pulse emissions with four to eight 
cycles), the phase shift between the two 
signals can be determined using the lag 
one autocorrelation of the signals [4].
Here it is needed to perform a Hilbert 
transform, ( , ) { ( , )}y n i x n iHs s= , on the 
received signal to find the direction of the 
motion. This phase shift is directly pro-
portional to the velocity and is found by

( )

( , ) ( , )

( , ) ( , )

( , ) ( , )

( , ) ( , )
,arctan
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where Nc  is the number of emissions to 
average over.

The velocity can then be found as a 
function of depth, when using eight to 

(a) (b)

FIGURE 1. (a) A duplex ultrasound scan shows,  at the left, the anatomic B-mode image. The yellow broken line indicates the position for velocity estimation and, at the 
right, shows the spectral display of the velocity distribution as a function of time. The brightness indicates the relative number of scatterers moving at a certain speed. 
(b) A color flow map where the gray tones indicate the anatomy and the red color indicates velocity toward the transducer and blue away from it. The images were 
acquired from the carotid artery and jugular vein in the neck of a human volunteer.
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16 pulse emissions in the same direc-
tion. This is performed in a number of 
directions, and an image of the axial 
velocity distribution is acquired and 
displayed as shown in Figure 1(b).
The image is acquired from the neck 
and shows the carotid artery supply-
ing blood to the brain and the returning 
blood via the jugular vein with flow in 
the opposite direction. The underly-
ing gray-level image shows the anato-
my. The red color indicates velocities 
toward the probe, which is placed at 
the top of the image, and blue represents 
velocities away. Such color flow map 
(CFM) images can be acquired at a rate of 
10–60 Hz, depending on the depth and 
the number of directions for perform-
ing velocity imaging. The images give 
a real-time visualization of flow in the 
arteries and an indication of the axial 
velocity direction and magnitude. CFM 
images are not quantitative due to the 
angle dependence of the estimates, and 
the standard deviation is usually high 
due to the few emissions employed in 
the velocity estimation. They are, how-
ever, very helpful in diagnosing many 
haemodynamic problems like stenosis 
and cardiac function, and widely used 
for detection of vascularization in, e.g., 
infection, inflammation, and cancer.

Challenges
The scattering from blood is weak, 
and the vessels in an ultrasound image 
appear black. It is, thus, vital to make a pro-
cessing for reducing the noise influence. 
Matched filters are employed on the data, 
and averaging is performed in the veloc-
ity estimators over both a number of pulse 
emissions Nc and along the depth direction. 
This improves the variance of the veloc-
ity estimates proportionally to the number 
of independent lines and samples. Often 
eight to 16 emissions in the same direc-
tion are averaged at the penalty of a reduc-
tion in the frame rate. For triplex images 
that show the anatomic B-mode image, 
the spectrum, and a CFM image of the 
velocity, a frame rate down to 5 Hz is often 
attained. This is not sufficient to visualize 
the dynamics of the heart, where a frame 
rate above 20 Hz up to 60 Hz is preferred.

A further complication is in separa-
tion of tissue and blood. The tissue signal 

amplitude is often 20–40 dB larger than 
that of the blood and the tissue signal has 
to be removed to avoid bias in the blood 
velocity estimation. It is assumed that 
the tissue is roughly stationary, and a fil-
tration along the emissions is made by, 
e.g., subtracting the mean signal for all 
emissions from the signals. Other more 
advanced methods are found, and this 
filtration is often the most challenging 
part of velocity estimation, as there is a 
limited amount of data available, and 
the filtration inevitable introduces noise 
especially for low velocities.

Estimating the velocity vector
The estimation schemes in the “Axial 
Velocity Estimation” section only find 
the axial velocity component, but most 
vessels run parallel to the skin surface, 
so the least important component is the 
axial velocity. This is often sought, com-
pensated for by tilting the ultrasound 
beam, but it can be difficult to maintain 
a beam-to-flow angle below 60c needed 
for achieving an acceptable 10% preci-
sion of the velocity estimate. Also, flow 
in the human circulation is pulsating and 
complex with disturbed and turbulent 
flow patterns, and transitory vortices, 
which appear in short time periods, are 
often found. A single angle correction, 
thus, cannot be performed, and the angle 
should be estimated for all positions in 
each individual image.

Several methods for finding the veloc-
ity vector have been developed and inves-
tigated. The first methods were based on 
dual beam systems, where the velocities 
were estimated for two beams at two dif-
ferent angles [5]. The axial and lateral 
velocity components could then be found 
from the sum and difference of the two 
estimates. Other methods include track-
ing the speckle pattern in the ultrasound 
image [6], and various forms of beam-
forming transverse to the ultrasound 
beam or along the flow direction.

A commercially introduced approach 
is transverse oscillation (TO) [7] for 
which advanced beamforming is used 
to introduce an oscillation in the ultra-
sound field transverse to the propagation 
direction. The feature that enables axial 
velocity estimation is the sinusoidal oscil-
lation of the emitted pulse. This makes 

it possible to find the frequency, time, or 
phase shift. Introducing a lateral oscilla-
tion enables the estimation of the lateral 
velocity component.

In the focal region of an ultrasound 
probe, there is a Fourier relation between 
the amplitude weighting (apodization) of 
the individual elements and the lateral 
beam pattern. Generating a sinusoidal 
oscillation is, thus, possible by having two 
separated peaks in the apodization func-
tion. Shaping the peaks with a window 
function limits the width of the oscilla-
tion. Commonly, two peaks with a von 
Hann or Gauss window shape are used 
during processing the receive signals, 
and the lateral oscillation period or wave-
length xm is given by [7]

,
P

d
N P

d2 2
x

d d i
m

m m= = (7)

where d is the depth and Pd  is the dis-
tance between the two peaks in the apo-
dization function. The transducer pitch is 

,Pi  and the number of elements between 
the peaks is .Nd  A fairly broad transmit 
field with a focus beneath the region of 
interest is used, and the apodization is 
applied during the receive processing 
making it possible to dynamically adapt 
the lateral wavelength. Two beams sepa-
rated by a lateral distance of 4xm  are 
focused in parallel to make it possible to 
find the sign of the velocity. The beams 
are roughly 90c phase shifted compared 
to each other, and a complex signal is 
attained like for the axial velocity esti-
mator. Each pulse emission, thus, gives 
four samples: two for each beam from the 
axial Hilbert transform. The measured 
signals are given by

( , ) ( , ) ( , )r n i x n i jy n isq l r= +

( , ) ( , ) ( , ) ,r n i x n i j y n iHHsqh l r= +" ", ,
(8)

where ( , )x n il  is the left beam signal 
and ( , )y n ir  the right. The received sig-
nals from the transducer are then Hilbert 
transformed in the temporal direction n
to yield ( , , )r n k isqh . Two new signals are 
then formed from

( , , ) ( , , ) ( , , ),

( , , ) ( , , ) ( , , ),

r n k i r n k i jr n k i

r n k i r n k i jr n k i

sq sqh

sq sqh

1

2

= +

= -

(9)
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for reducing the influence of the axial 
oscillation on the lateral oscillation. A 
fourth-order estimator has been derived 
to separately estimate the axial and lat-
eral velocity components as

{ ( )} { ( )}
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and similarly for ,vz  where ( )R 11  is the 
complex lag-one autocorrelation value for 

( )r i1  and ( )R 12  is the complex lag-one 
autocorrelation value for ( ) .r i2 1 denotes 
the imaginary part and 0  denotes the 
real part of the argument.

This approach has been implemented 
on scanners from BK Ultrasound (Herlev, 
Denmark), and an example from the aorta 
(main artery from the heart) in a short 
axis view is shown in Figure 2. During 
the contraction of the heart, a rotational 
motion of the blood is often found in the 
aorta in addition to the main flow direc-
tion downward in the body. This rotation 
is shown in the figure, where the arrows 
indicate direction and magnitude. The 
color coding also indicates direction, and 
a full 036 c rotation is found at the late sys-
tolic phase in the cardiac cycle. This dem-
onstrates the spatial variation in angle 
throughout the image, precluding the use 
of a single angle correction factor.

Vector flow challenges
The predominate direction of the flow 
in Figure 2 however, is, out of the imag-
ing plane, and a full visualization of the 
flow in the human circulation neces-
sitates a complete estimation of the 3-D 
velocity vector. The TO approach has 
been extended to full 3-D imaging by 
employing a 2-D matrix probe with N × N
elements. The ultrasound beam can then 
be controlled in both directions. A broad 
beam is again emitted, and two apodiza-
tion patterns are applied to generate four 
beams in parallel with two apodization 
peaks in both the lateral and orthogo-
nal elevation direction. From these four 
beams and eight samples per emission 
the axial, lateral, and elevation veloc-
ity components can be determined. This 

measurement makes the velocity deter-
mination completely independent of the 
angle between the ultrasound beam and 
the flow direction. Quantification of peak 
velocities, volume flow, and other param-
eters potentially becomes more reliable 
and the system also becomes operator 
independent.

The 3-MHz probe employed has 32 × 
32 = 1,024 elements each generating 
around 40 MB of data/s for a combined 
data flow of 40 GB/s, which must be pro-
cessed in real time. Connection to the 
probe through 1,024 coaxial cables is 
also a challenge, as such a cable has a 
diameter of 3 cm, which makes working 
with it cumbersome for clinicians. 

Advanced imaging and 
continuous data
What currently limits the accuracy and 
frame rate of velocity imaging is the 
sequential data acquisition. The pulses 
are emitted in one direction at a time, 
and eight to 16 emissions are needed for 
a sufficient velocity accuracy. Imaging 
down to 15 cm takes 200 sn /pulse, and 
making flow estimation in 32 directions 
with eight emissions, combined with an 
anatomic image with 128 lines results 
in a frame rate of 13 Hz, barely accept-

able for cardiac imaging. There is, thus, 
a link between imaging depth, estima-
tion accuracy, and frame rate, which is 
currently a major obstacle for fast and 
quantitative flow imaging.

This complex problem can be solved 
by employing fast imaging schemes 
using spherical [8] or plane wave emis-
sions [9], [10]. The full imaging region 
is insonified using a spherical or plane 
wave, which covers the full imaging 
region as shown in Figure 3. The scat-
tered signal is then received by all 
the elements and dynamically focused 
during receive processing. Such imag-
ing has no transmit focusing, but the 
receive focusing can be synthesized by 
sending out spherical waves from other 
parts of the probe and combine all the 
measurements. This is called synthetic
transmit aperture (STA) imaging or 
ultrafast imaging for plane waves [11], 
[12]. The emitted energy for STA is low, 
but this can be compensated for by com-
bining a number of elements and using 
long chirp excitation. The scheme gives 
dynamic focusing throughout the image 
with a frame rate of thousands of frames 
per second, if emission sequences 
with few emissions are used. Continu-
ous data everywhere in the image are, 
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FIGURE 2. (a) The color wheel used for indicating direction and magnitude. (b) The vector flow image 
displays the velocities estimated at the late systolic phase in the ascending aorta in a short axis view. 
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thus, available, and the data for veloc-
ity estimation can be averaged over as 
many emissions as the blood velocity is 
roughly stationary [11].

There is, however, one complication 
to this imaging scheme, as the scatterers 
move between emissions. This is illus-
trated in Figure 3. Figure 3(a) shows 
the probe and from where the spherical 
emission emanates. The sequence only 
consists of two emissions from the first 
and last elements of the probe. In (b),  the 
elliptically shaped point spread function 
(PSF) beamformed from one emission 
is shown, and (c) shows the summa-
tion of several emissions. For each 
emission a low-resolution image (not 
focused in transmit) can be generated 
for the whole region. This is combined 
with the other emissions in (c) to yield a 
high-resolution image (HRI), but these 
are not fully in phase due to the motion. 
The PSF for different HRIs H( )n  are 
slightly different. The HRI PSFs are, 
however, the same, if the emissions 
sequence is the same, so the pair H( )n 3-

and H( )n 1- , and the pair H( )n 2-  and 
H( )n  have the same PSF, apart from a 
translation due to the motion. There is, 

thus, full correlation between the pairs 
H Hand( ) ( )n n3 1- -  and .H Hand( ) ( )n n2-

This might seem like a small detail, but 
it has a widespread impact on veloc-
ity imaging. The correlation of HRI 
data for time-shift estimation using (5) 
will yield the same correlation functions 
as long as the blood velocity is constant, 
and these correlation functions can 
be averaged to improve the velocity es-
timate. The continuous data, therefore, 
makes it possible to correlate the data 
over the time period the blood veloc-
ity can be considered constant, so it is 
the acceleration that limits observation 
time. The imaging can be conducted 
using either spherical [11] or plane 
waves [12].

The continuous data also decouples 
the number of imaging directions and 
accuracy, as any arbitrary number of 
directions can be beamformed from the 
acquired data. The standard deviation 
on the velocity estimates can be kept 
low by the averaging of a long period of 
time. The received data can be beam-
formed everywhere, and frame rates of 
hundreds to thousands of images per 
second with fully quantitative flow can 

be attained. The availability of data 
everywhere also makes it possible to 
introduce new advanced focusing meth-
ods. The TO method can be employed, 
and it is also possible to focus along the 
flow direction. This makes it possible 
to track the blood scatterers along their 
motion path and avoid decorrelation 
from motion in or out of the ultrasound 
beam to further increase the veloc-
ity accuracy. Another important aspect 
from continuously available data is the 
ability to use any echo canceling filter 
without being affected by initialization 
effects. This makes the suppression of 
the strong tissue signal much more effi-
cient. These factors reduce the standard 
deviation (SD) by roughly a factor of ten 
to yield very accurate estimates with a 
relative SD lower than 1%.

An example of STA flow imaging 
is seen in Figure 4 and is taken at the 
carotid bifurcation in the neck. The 
sequence generates 2,500 images/s 
with fully quantitative magnitudes and 
directions. Experiments in a flow rig 
indicated an angle determination pre-
cision lower than . ,1 4c  and the relative 
SD for the magnitude was between 
1.9 and 4.7% for this imaging method. 
The image is taken at the peak systole 
(maximum contraction of the heart). 
Flow with a magnitude around 1 m/s
is seen in both vessel branches and the 
lower branch corresponding to the inter-
nal carotid artery also contains a vortex. 
It is formed upstream in the beginning 
of the heart contraction near the bifur-
cation and moves downstream along 
the outer vessel wall during the systolic 
phase. Such a vortex is found in nearly all 
healthy people, and it appears for roughly 
100 ms, whereafter the flow again usu-
ally becomes laminar in both branches. 
During the diastolic phase, when the 
heart relaxes, the velocity decreases 
to below 0.2–0.1 m/s depending on the 
spatial position. The synthetic aperture 
(SA) flow imaging method can capture 
the high as well as low velocities due to 
both the fast image acquisition rate and 
the continuous available data. Fast flow 
can be tracked over a short period of time 
and low velocity flow, which is difficult 
to detect, can be observed over a longer 
period of time making removal of the 
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H(n−3) H(n−2) H(n−1) H(n)

L(n−2) L(n−1) L(n)
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FIGURE 3. An STA imaging sequence with two emissions that are repeated: (a) the probe and from 
where the spherical emission emanates, (b) the PSF for each emission is indicated, and (c) the 
combination from several emissions is shown. (Figure used courtesy of [8].) 
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tissue signal easier. This has especially 
been demonstrated for plane wave flow 
imaging [12].

Discussion and conclusions
Velocity imaging in ultrasound has,  
since the 1980s, been used for easily 
accessible diagnosis of the human cir-
culation for both peripheral and deep 
vessels as well as the heart. There has 
been a steady increase in the accuracy 
of the investigations. Two-dimensional 
vector flow imaging has been commer-
cially introduced recently. The develop-
ment is spurred by advances in signal 
processing combined with novel and 
precise digital beamforming methods. 
The field is very broad and spans more 
than 50 years of development reported 
in more than 1,000 articles. Space con-
straints in this article do not allow us to 
include more references, but consulting 
recent reviews can give a broader intro-
duction to the literature.

Entirely new acquisition methods 
are being developed by researchers for 
clinical implementations. The fast SA 
spherical and plane wave images can 
easily reveal vortices and fast transitory 
events in the human circulation without 
preparation of the patient or injection 
of contrast agents [9]. The quantitative 
results also make it possible to derive 

diagnostic measures from the data. Peak 
velocities and velocity ratios before and 
after a constriction or stenosis can be 
used for grading the severity.

The continuous data make it possible 
to have very long echo-canceling filters 
to remove the signal from the tissue. 
Essentially, any filter can be used, and the 
effects of filter initialization are avoided. 
In this case, many emissions can be com-
bined to reduce noise, and the SA and 
plane wave flow images are more sensi-
tive to low velocity flow. This was used 
to map out the vasculature of the rat brain 
for, e.g., detecting the brain activity, when 
stimulating a single whisker, mapping 
out an epileptic seizure, and revealing the 
influence of odors on the brain [12].

There are still many challenges in 
ultrasound flow estimation, but the 
integrated approach by combining sig-
nal processing, estimator development 
with advanced acoustics, and new digi-
tal beamforming seems promising to 
yield full 3-D volumetric vector flow 
imaging in real time for both low and 
high velocity flows at many hundred 
volumes per second.
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the main emphasis on cardiac vector 
velocity estimation.
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to choose the wavelet family, the transfor-
mation level, and the corresponding sup-
port size of the filters were brought to light.
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F requency-domain sampling rate con-
version (SRC) can be conveniently 
implemented by manipulating the 

discrete Fourier transform (DFT) of the 
input signal. This method has achieved 
the advantages of using less computation 
to obtain more accurate converted output. 
Conversion errors are mainly produced 
from the formulation process of the 
DFT of the output signal. This article 
presents a sparsity-based scheme to ap-
propriately and automatically calibrate 
the conversion errors to make further 
improvement on the conversion accu-
racy at the cost of more computational 
complexity. The experimental results 
demonstrate that the proposed scheme 
can significantly decrease the mean-
square errors (MSEs) and is particularly 
effective on minimizing the MSEs of 
phase spectrum.

Introduction
SRC has been an indispensable opera-
tion in various digital signal processing 
applications to achieve acceptable per-
formance at affordable processing costs 
[1]. In the literature, various approaches 
have been reported to carry out the SRC 
either in the time or frequency domain, 
as illustrated in Figure 1. The time-
domain SRC requires processing opera-
tions including up-sampling, low-pass 
filtering, and down-sampling as shown 
in Figure 1(a). Although various meth-
ods have been reported to implement the 

SRC, the success largely depends on care-
fully rearranging the up-/down-samplers 
and subfiltering functions to collectively 
perform the desired conversion process 
[1]. In contrast, the frequency-domain 
SRC directly manipulates the DFT of the 
input signal, as shown in Figure 1(b) [2],
[3]. In this method, the output of the SRC 
is obtained by the inverse DFT (IDFT) of 
the manipulated DFT of the input signal 
[2], [4]. Although useful rules of manip-
ulating the DFT have been given for 
achieving better conversion accuracy [2],
[3], the optimal selection criteria for mini-
mizing the conversion errors remains an 
open problem.

In spite of careful design efforts on 
various methods of implementing the 
SRC, there always exist conversion 
errors that are defined as the differenc-
es between the obtained and the ideal 
SRC outputs. In various applications 
including digital audio, communica-
tion, and multimedia systems, SRC with 
high accuracy is often desired. There-
fore, it is of significant importance to 
investigate the possibilities of further 

increasing the conversion accuracy on 
the outputs of the SRC. Because these 
errors are relatively small and randomly 
distributed, we may consider them as 
perturbations. Inspired by the recent 
success of the sparse representation 
(SR) technique, let us develop a simple 
sparsity-based method in this article 
to autocalibrate the perturbations pro-
duced by the frequency-domain SRC 
method [3] to improve the conversion 
accuracy. This autocalibration method 
can be used as an additional measure for 
accuracy improvement after all of the 
possible wisdoms have been exhausted 
for implementing the frequency-domain 
SRC. Our formulation is different from 
the autocalibration problem in other SR 
problems [5] because sparsity assump-
tion of the DFT coefficients is gener-
ally not valid in SRC applications. To 
properly facilitate error estimation in 
the frequency domain, sparsity in time-
domain errors, which is a unique char-
acteristic of frequency-domain SRC, is 
properly exploited. Simulated experimen-
tal results demonstrate that the conversion 
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Autocalibrated Sampling Rate Conversion 
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FIGURE 1. The steps of SRC: (a) the time-domain method and (b) the frequency-domain method.
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accuracy can be significantly increased 
by the proposed calibration method based 
on sparsity constrained optimization.

Notations
All of the small letters represent time-
domain signal, and all of the capital letters 
represent Fourier domain coefficients. 
Vectors and matrices are in bold case. The 
set of natural numbers is denoted by .N

Preliminary of
frequency-domain SRC
Let us denote an Nx -point input se-
quence as ( ), , ,x n n N0 1xf= - that is 
obtained by sampling the given analog 
signal ( )x t at a sampling frequency ,Fx

and its DFT as ( ), , , .X k k N0 1xf= -

Similarly, we also define the ideal 
Ny -point output sequence as ( ),y m

, ,m N0 1yf= - that can be obtained 
by sampling the analog signal ( )x t  at 
a sampling frequency ,Fy  and its DFT 
as ( ), , , .Y k k N0 1yf= -  In general, 
the sequence ( )y m  is considered as the 
ideal SRC output signal that is used as a 
reference to evaluate the accuracy of the 
output sequence produced by the SRC 
method. The factor of the sampling fre-
quency conversion is defined as / ,F Fy x

which can be easily proved to be equal 
to /N Ny x  and / ,DI  respectively, where I
and D are the factors of up-sampling and 
down-sampling, respectively, as shown in 
Figure 1. Without loss of generality, it is 
assumed that the ratio, / ,DI  is irreducible. 
In practice, the SRC produces an output 
sequence, ( ),y nt  i.e., the approximation 
of ( )y m for , , .m N0 1yf= - With the 
frequency-domain method in [4], its cor-
responding DFT, ( ), , ..., ,Y k k N0 1y= -t

is obtained by manipulating the DFT, 
( ),X k  of the input sequence ( )x n  accord-

ing to [2] and [3].
■ Decimation ( ) .D I2  In the case of 

,F Fy x1
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■ Interpolation ( ) .D I1  In the case of 
,F Fy x2
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In both (1) and (2), some values of ( )Y kt

are replaced by the values of ( )X k  scaled 
by / .I D For decimation, according to 
(1), the values of ( )X k  for /k N 2y=

to /N N 2x y-  are ignored in realizing 
( ).Y kt  The value of ( / )X N 2y  is set to be 
,C1  and ( )X k  for /k N N 2 1x y= - +  to 

N 1x-  are relocated to become ( )Y kt

for /k N 2 1y= +  to .N 1y-  For inter-
polation, (2) shows that a small value 
of C2 is used to be the values of ( )Y kt

for /k N 2x=  to / ,N N 2y x-  and the 
values of scaled ( )X k  for /k N 2 1x= +

to N 1x-  are used to approximate the 
values of ( )Y kt  for /k N N 2 1y x= - +  to 

.N 1y-  It should be fully understood 
that the formulation of ( )Y kt  is based 
on the spectrum distribution of input 
sequence. Therefore, the estimated out-
put spectrum ( )Y kt  always deviates from 
the true spectrum ( ).kY

In summary, the operations specified 
in (1) and (2) are ignoring or inserting 
some frequency components of small 
values. The other frequency components 
may also have some small differences 
from those of the expected ones. All of 
these variations contribute to the conver-
sion errors that may be considered as per-
turbations. Now the question is, given the 
input signal sequence ( )x n  and the esti-
mated ( ),Y kt  how the conversion errors 
can be minimized. This article presents a 
positive answer to this question by intro-
ducing the SR concept into the design of 
frequency-domain SRC.

Calibrated SRC in frequency domain
Let us denote the DFT in (1) or (2) as the per -
turbed DFT and assume that the error 
calibrated DFT, ( ),Y kl  is obtained by sub-
tracting perturbation ( )Y ku  from ( ),Y kt  i.e.,

( ) ( ) ( ),Y k Y k Y k= -l t u (3)

where ( )Y kt  is obtained from (1) or (2). In 
particular, the DFT perturbation ( )Y ku  can 
be obtained by our proposed calibration 
method to be presented and subsequently 

the calibrated DFT ( )Y kl  can be obtained. 
The corresponding calibrated time-
domain signal, ( ),y nl  can be obtained 
from ( )Y kl  by an IDFT. In a vector form, 
it is expressed as

( ),y Y Y YF F1 1= = -- -l l t u (4)

where CF N N1 y y! #-  represents the 
IDFT matrix. Since the perturbed DFT, 

,Yt  is already obtained from (1) or (2), 
our task becomes properly estimating 
the perturbation Yu  to obtain improve-
ment in accuracy.

Loss function
An intuitive strategy to reduce the 
conversion errors in the time domain 
is to minimize the loss function that 
is defined to measure the difference 
between the ideal and estimated outputs. 
Because the ideal output, i.e., ( )y n in our 
case, is unavailable, we use the acces-
sible input sequence, ( ),x n  to define the 
loss function. In particular, the Euclid-
ean distance is employed to measure the 
differences between the samples select-
ed from the original input ( )x n  and the 
error-calibrated output samples ( ).y ml
Let us denote the indices selected from 
original input as nx and the indices 
selected from error calibrated output as 

,ny  where the condition / /n F n Fx x y y=

should be satisfied. In other words, these 
selected samples of ( )y nyl  should be as 
close to the input samples ( )x nx  as pos-
sible. Using the equality ,n I n Dx y=  the 
following loss functions for decimation 
and interpolation can be obtained.
■ For decimation ( ),I D1  the loss 

function can be expressed as

( ) .x
I

n D
y n

, /

y
y

n n I

N 2

1

1

Ny y

y

-
!=

-

lc m; E/ (5)

■ For interpolation ( ),I D2  the loss 
function can be expressed as

( ) .x n y
D

n I

, /
x

x

n n D

N 2

1

1

Nx x

x

-
!=

-

lc m; E/ (6)

Substituting (4) into (5) and (6), the loss 
functions for decimation and interpola-
tion can be respectively obtained. For 
brevity, a vector form of the loss func-
tions can be expressed as

( ) ,x Y YF 1
2
2

- --u t u (7)
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where x  represents the vector form of 
the selected input sequence ,x  and F 1-u

represents the row sampled IDFT matrix. 
In particular, the row-sampled IDFT 
matrix F 1-u  is different for decimation 
and interpolation, where the rules for 
performing row sampling can be easily 
obtained in (5) and (6). For brevity, the 
full expressions are omitted here. Based 
on (5) and (6), the number of summation 
terms in (7) should be equal to

, ,

,

min min

min

D
N

I
N

D
N

I D
IN

D
N

1x y x x

x

=

=

c cm m; ;
;
; ;E E
E
E E

(8)

where x6 @ represents the nearest integer 
less than or equal to .x  However, in (7), 
the number of parameters N IN Dy x=

is larger than the number of summation 
terms N Dx  given that the up-sampling 
factor I  is larger than one, which is often 
satisfied in arbitrary fractional-factor 
SRC. In other words, this problem is ill-
posed because the number of parameters 
is larger than the number of observations. 
The SR technique can desirably solve the 
ill-posed problem by proper exploitation 
of sparsity. In our problem, however, the 
SR technique cannot be directly applied 
since sparsity assumption of Yu  is not 
satisfied. Therefore, careful design and 
proper modification should be carried out 
to utilize the SR technique.

Parameter regularization
The key ingredient in the SR technique 
is the proper utilization of sparsity, where 
an appropriate sparsity domain should 
be identified. In the frequency-domain 
SRC, the following observations and for-
mulations can be made.
1) As discussed in [2], manipulating 

( )X k  in the frequency-domain SRC 
induces errors. These errors are mainly 
located at both ends of the time-
domain sequence ( ).y nt  More specif-
ically, most of the errors locate only 
in both ends of the converted signal. 
An important observation is that the 
number of error locations is often 
much smaller than the length of the 
sequence, which can be considered 
to be sparse or compressible. To 
obtain a reasonable solution of ,Yu

the sparsity regularization is used 

and the following constraint can be 
naturally obtained:

.YF 1
1 1# f-u u (9)

As a matter of fact, the sparsity level 
depends on the input length and the 
fraction / .I D  It would be difficult to 
express it with a closed-form expres-
sion. Moreover, the choice of 1e  not 
only depends on the sparsity level 
but also on the average amplitude 
of the errors. Similar to all other SR 
problems, the value of 1e  should be 
properly chosen. However, in our 
experiment, it is found that the per-
formance of the optimization is 
not very sensitive to the value of 1e

for various input lengths and values 
of / .I D  As we commented previous-
ly, this sparsity pattern is unique for 
frequency-domain SRC technique, 
which is rather different from the 
sparsity pattern exploited in SR-based 
calibration problems [5].

2) In many applications, such as audio 
and speech signal processing systems, 
the signal is often real valued and 
its DFT is conjugate symmetric. 
Similarly, we can conveniently 
assume that the perturbation parame-
ter Yu  is also conjugate symmetric. 
This symmetrical relationship can be 
explicitly exploited as

( ) ( ) ,

, ..., / .

Y k Y N k

k N1 2 1

*
y

y

= -

= -

u u6 @
(10)

The use of this property effectively 
decreases the number of parameters 
to be optimized. For complex input 
sequences, this conjugate symmetric 
constraint is not valid and should be 
removed from the optimization.
Of course, more constraints can be 

imposed on the perturbation parameter 
Yu  to limit the solution space for different 
application purposes. However, these two 
above-described constraints are effective 
enough to obtain desirable performance 
improvement compared with the uncali-
brated frequency-domain SRC.

Optimization formulation
By combining the loss function and con-
straint terms, the optimization problem 
can be formulated as

( )

.

7minimize ss function in

subject to constraints in (9) and in (10)

lo
Yu

(11)

The objective of the optimization prob-
lem (11) is to search for the perturba-
tion parameter Yu  in a feasible region 
constructed by the constraints, which can 
minimize the loss function. In our meth-
od, the sparsity is properly exploited to 
obtain a robust estimate of the parameter. 
One additional advantage is that the 
optimization scheme is able to calibrate 
the phase perturbations of the manipu-
lated DFT as well, which will be shown 
in detail in the section “Experimental 
Results.” It is noted that the phase informa-
tion in the DFT is extremely important 
in some signal processing applica-
tions, such as multimedia watermarking 
[6]. Therefore, the frequency-domain 
SRC-based methods can be applied to 
reduce performance degradation due to 
phase perturbation.

In summary, our proposed frequency-
domain-based SRC method can be car-
ried out by the following steps:
■ Step 1: Compute the Nx -point DFT 

of input sequence.
■ Step 2: Manipulate the DFT accord-

ing to (1) for decimation or (2) for 
interpolation.

■ Step 3: Estimate perturbation param-
eters by solving (11) and calculate 
the calibrated DFT by (3).

■ Step 4: Compute the Ny-point IDFT 
of the calibrated DFT obtained in the 
last step.
Compared with the uncalibrated 

approach in [2], the proposed scheme 
can substantially reduce the conversion 
errors but requires additional compu-
tational costs due to the optimization 
in (11). For the optimization method, 
it is inevitable that the computational 
complexity becomes high if the input 
sequence is long. For real-time imple-
mentation, it is possible to segment the 
long input sequence into many short 
segments, where the optimization can 
be performed for each segment consec-
utively. Moreover, the optimization can 
be more conveniently and efficiently 
carried out by resorting to other com-
putationally efficient methods, such as 
fast iterative soft-thresholding [7] and 
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alternating direction method of multi-
pliers [8], which will not be discussed 
further for brevity. 

Experimental results
In this section, we evaluate the accuracy 
performance of the proposed optimiza-
tion scheme in terms of the MSE. The 
amplitude MSE is defined as

log
N

10MSE
y YF

y

2
21

a =
- - l

(12)

and the phase MSE of the spectrum is 
defined as

( ) ( )
.log

N
10MSE

angle angleY Y
y

2
2

=
-

z

l

(13)

In the following experiments, CVX 
package [9] is used for the optimization. 
In our experiments, the 1e  can all be set 
to the value within 3–4 for various cases. 
Figure 2 presents an example to demon-
strate the outputs of the SRC before and 

after the calibration process in the time 
and frequency domains. As seen from this 
figure, the proposed calibration process 
can obtain a more accurate estimation 
for both the time-domain amplitude and 
frequency-domain phase. In particular, 
the calibration method can reconstruct 
the DFT phase of the calibrated output. In 
the last row of Figure 2, the phase of the 
calibrated DFT, ( ),Y k+ l  is much similar 
to the ideal one, ( ),Y k+  compared to that 
of the uncalibrated DFT, ( ).Y k+ t

The quantitative performance evalua-
tion is presented in Figures 3 and 4 for 
decimation and interpolation, respec-
tively. For both decimation and interpo-
lation, the MSE of amplitude decreases 
as input signal length increases. This is 
because the number of available samples 
used for calibration in (7) increases with 
the sequence length to enhance the cali-
bration effects. The MSE of the phase, 
however, remains about the same level for 
different input signal lengths. Since the 

number of the manipulated frequency-
domain parameters increases with 
the increase of signal length by a simi-
lar amount, the MSE of the phase is not 
decreased with the increase of sequence 
length. In general, the proposed calibra-
tion method can consistently obtain sig-
nificant reduction of conversion errors 
in both the time-domain amplitude and 
frequency-domain phase, which vali-
dates its robustness of conversion accu-
racy performance.

The accuracy is degraded when the 
SRC factor decreases from 3/4 to 3/8. This 
can be explained by considering the num-
ber of samples that are ignored or inserted 
according to (1) or (2) has increased. For 
example, the number of points being 
truncated by (1) or being inserted with 
a value of C2 in (2) is doubled so that 
the errors produced by ( )y kt  are accord-
ingly increased. Because the calibration 
process has to cope with more errors 
produced by the ignoring or inserting 
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FIGURE 2. An example of the uncalibrated and calibrated SRC performance ( , / ) .N 64 3 4I/Dx = =  (a) The time-domain ideal output sequence ( ),y n  the 
amplitude, and the phase of its corresponding DFT; (b) the uncalibrated time-domain output sequence ( ),y nt  the amplitude, and the phase of its correspond-
ing DFT; and (c) the calibrated time-domain output sequence ( ),y nl  the amplitude, and the phase of its corresponding DFT.
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operations, the overall effectiveness of the 
calibration process is decreased.

Similarly, in the interpolation case, 
the MSE of amplitude decreases with the 
increase of input signal length. In con-
trast, with the increase of signal length, 
the phase errors produced by the uncali-
brated approach remain around a con-
stant level and the one with calibration 
still achieves significant improvement on 
the estimation accuracy. The accuracy 
obtained by both the frequency-domain-
based SRC and the calibrated one is 
decreased when the SRC ratio changes 
from 3/4 to 3/8 in Figure 3, or from 4/3 to 
8/3 in Figure 4.

Let us compare the performance of 
the proposed SRC with the time-domain 
SRC methods. In our experiments, the 
filter used in the time-domain SRC is 
a poly-phase finite impulse response 
filter, whose coefficients are calculated 
by the Parks–McClellan algorithm. 
In the experiments, it is found that the 
performance of the time-domain SRC 
cannot be substantially improved when 
the order of the filter is higher than 
500. Therefore, we compare the time-
domain methods with the filter orders 

of 100, 300, and 500, respectively. Since 
the performances of interpolation and 
decimation are similar, the results of 
decimation / /I D 3 4=^ h are presented in 
Table 1 for brevity. The time-domain 
methods can decrease the MSE with 
an increase in the length of the filter. 
When the length of 500 is used, it can 
achieve comparable accuracy with the 
uncalibrated frequency-domain SRC. 
Among all of the compared methods, 
the calibrated frequency-domain SRC 
can significantly improve the conver-
sion accuracies of amplitude and phase.

The computational complexities need-
ed by the time-domain method is linearly 
proportional to the data length for a given 

order of a low-pass filter. For a length of 
N data, the uncalibrated and calibrated 
frequency-domain methods require the 
computational complexities in the orders 
of N Nlog and ,N3 respectively. Fig-
ure 5 shows the required computation 
time by the time-domain method and the 
uncalibrated and calibrated frequency-
domain methods. The measurements are 
made from the simulations by using the 
SRC function and fast Fourier transform 
function given by the MATLAB software 
running on a PC with 3.4-GHz central 
processing unit. In addition, the calibrated 
frequency-domain method also uses the 
CVX MATLAB tool box [9] for calibra-
tion. The calibrated frequency-domain 

Table 1. The performance comparison of different algorithms for decimation.

Length (Nx)
Time-Domain SRC Frequency-Domain SRC

100 300 500 Uncalibrated Calibrated 

64 
( )aMSE dB
( )MSE dBz

–6.33 
3.36 

–19.24 
–26.90 

–22.69
–31.9 

−23.61 
−30.44 

−43.84
−45.97

256 
( )aMSE dB
( )MSE dBz

–7.01 
–8.13 

–35.53 
–21.02 

–36.75
–22.05

−39.20 
−29.37 

−56.54
−44.51

1,024 
( )aMSE dB
( )MSE dBz

–6.74 
–1.92 

–36.73 
–18.17 

–43.31
–21.73

−53.53 
−28.81 

−71.68
−45.42
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FIGURE 3. The MSE performances of decimation in terms of input 
signal length.
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FIGURE 4. The MSE performances of interpolation in terms of input 
signal length.
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method requires significantly more com-
putation time than the other two methods. 
It should be noted that utilizing other 
optimization techniques can speed up the 
optimization, which is out of the scope 
of this article. Remarkably, the proposed 
method is particularly useful for applica-
tions where higher conversion accuracies 
are most desirable.

Conclusions
In this article, we present a method for 
calibrating frequency-domain SRC to 
significantly minimize conversion errors. 
This method can be formulated as a spar-
sity regularized problem whose solution 
has been widely available in the literature. 
In addition, to effectively decrease the 
amplitude MSE of the time-domain SCR 
output, the proposed method also desir-
ably reduces the phase error of the SRC 
output in the DFT domain.
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approval decisions. One operating point 
of the decision rule we developed could 
have reduced delayed payments by 
almost one-third while still accepting 
around 70% of the total customer pool.

This project is a prime example of the 
“data for social good” movement: uplift-
ing humanity by harnessing skills-based 
volunteering of data scientists (of which I 
would argue signal processing engineers 
and scientists are a subset) in combination 
with the subject matter expertise of non-
governmental organizations (NGOs), 
social enterprises, and other similar orga-
nizations. At IBM Research, I codirect 
(with Saška Mojsilović ) a program that 
pairs student fellows with a team of 
researchers and an NGO partner to con-
duct social good projects. Through this 
program—the first of its kind in a corpo-
rate setting—we have evaluated the effec-
tiveness of programs fighting childhood 

diarrhea, found causal factors on the inno-
vativeness of countries, and created a 
recommender system on the attributes of 
large philanthropic projects. Additionally, 
we’ve predicted species of primates likely 
to be reservoirs of the Zika virus, built 
tools to automatically retrieve and classify 
news articles on humanitarian crises, and 
developed cognitive technologies to 
accelerate open scientific discovery such 
as cures for multiple sclerosis—all using 
signal processing and related techniques.

The University of Chicago pioneered 
the concept of the Data Science for Social 
Good Summer Fellowship, which contin-
ues to spread in the academic setting with 
similar programs now offered at Georgia 
Tech and the University of Washington. 
Corporations and research organizations, 
like Two Sigma and Draper Laboratory, 
are following suit. Bloomberg hosts an 
annual conference on the topic. DataKind 

is a nonprofit that connects NGOs with 
volunteer teams to conduct projects in 
their spare time—this is how I worked on 
the Simpa project and another project 
using satellite image analysis of Kenyan 
households’ roofs to estimate poverty. 
DrivenData conducts online competitions 
to solve social good problems.

Fundamental signal processing theo-
ry and methods, when applied to non-
traditional application areas, can change 
the world for the better. We have a 
unique opportunity to talk with NGOs, 
understand their most pressing needs, 
and use signal and information process-
ing tools to create appropriate solutions. 
This is not a pipe dream but a reality.
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The IEEE Signal Processing Society launched an online blog to provide an 
accessible briefing to a more general audience and complement the usually 
highly technical signal processing topics. Blog entries include the following:

“Sensors and Sensibility” by Vladimir Pavlovic (30 January 2017)
“How Biometric Authentication Poses New Challenges to Our Security 
and Privacy” by Nasir Memon (5 January 2017)
“Audio and Acoustic Signal Processing’s Major Impact on Smartphones” 
by Heinz Teutsch (28 October 2016)
“E.T. Still Can’t Phone Home, but Signal Processing Solves Many 
Technology Challenges” by Pete Wyckoff (27 July 2016)
“Modern Communications: Signal Processing’s Vital Role in Connecting 
Communities” by Waheed U. Bajwa and Hamid Krim (12 May 2016)
… and more!

Visit https://signalprocessingsociety.org/publications-resources/blog to read 
blog articles on a variety of topics. 
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CAMSAP17/

2018

APRIL

43rd International Conference on Acoustic, 
Speech, and Signal Processing (ICASSP)
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The main theme of ICME 2017 is “The New 
Media Experience.” Approximately 400 par-
ticipants, mainly from Asia, Europe, and North 
America, will gather in Hong Kong 10–14 July 
to discuss the latest development in multime-
dia technologies and related fields.  
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Kush R. Varshney

Signal Processing for Social Good

Communication, speech processing, 
seismology, and radar are well-
known applications of signal pro-

cessing that contribute to the betterment 
of humanity. But is there a more direct 
way that signal and information process-
ing can reduce poverty, hunger, inequali-
ty, injustice, ill health, and other causes 
of human suffering? The member states 
of the United Nations ratified 17 sustain-
able development goals in 2015, which, 
if achieved by the targeted year 2030, 
will end or greatly curtail these prob-
lems. Achieving the global goals, how-
ever, will require cooperation from all, 
including the signal processing commu-
nity. Let me tell you how.

In December 2016, I visited Barauli, a 
small village in District Aligarh, India 
(Figure 1), where I had tea at the well-lit 
home of a Simpa Networks customer. A 
social enterprise, Simpa provides pay-as-
you-go solar panel systems to households 
with inadequate access to power from the 
grid. The company installs a solar panel 
with lights and a fan—an alternative to 
unhealthy and unsafe kerosene lamps—
for a very small down payment. Through 
a simple financing plan, customers can 
fully repay the cost of the system in 
monthly installments over two or three 
years. As a result, clean, reliable energy 
(and the well-being and economic oppor-
tunity that comes with it) is now within 
reach of people at the bottom of the pyra-
mid—like the customer I visited, a driver 
and smallholder farmer.

Signal processing is the science 
behind Simpa’s sustainability. Two years 
ago, I led a team on a pro bono project to 
develop a predictive model of customer 
repayment behaviors based on signals 
captured in an application form. 

Specifically, we wanted to assess the risk 
of an applicant’s system being eventually 
repossessed due to payment delinquency, 
thus allowing Simpa to make better 

©
 A

D
O

B
E

 S
TO

C
K

Digital Object Identifier 10.1109/MSP.2017.2673878
Date of publication: 26 April 2017

FIGURE 1. Kush R. Varshney visits Barauli, a small village in District Aligarh, India.

(continued on page 108)
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You can simulate, prototype, 
and verify wireless systems 
right in MATLAB. Learn how 
today’s MATLAB supports RF, 
LTE, WLAN and 5G development 
and SDR hardware.

mathworks.com/wireless
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General Chairs:
John R. Hershey,  MERL
 Tomohiro Nakatani,  NTT

Important Dates: 
Paper Submission:  

June 29, 2017

Paper Notification: 
August 31, 2017

Early Registration Period: 
August 31 - Oct 5, 2017 

Camera Ready Deadline:  
Sept 21, 2017

More Information: 

info@asru2017.org

IEEE Automatic Speech Recognition and Understanding Workshop  

The biennial IEEE ASRU workshop has a tradition of bringing 
together researchers from academia and industry in an
intimate and collegial setting to discuss problems of common 
interest in automatic speech recognition, understanding, and 
related fields of research. The workshop includes keynotes, 
invited talks, poster sessions and will also feature challenge 
tasks, panel discussions, and demo sessions. 

Automatic speech recognition 
ASR in adverse environments 
New applications of ASR
Speech-to-speech translation 
Spoken document retrieval 
Multilingual language processing 
Spoken language understanding 
Spoken dialog systems 
Text-to-speech systems 

Okinawa, Japan,  
December 16-20, 2017

ASRU 2017 IEEE 
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present the most recent and exciting advances in machine learning 
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research in emerging or interdisciplinary areas of particular    
interest, not covered already by traditional MLSP sessions.

The MLSP Best Student Paper Award will be granted to the best 
paper for which a student is the principal author and presenter.

Prospective authors are invited to submit a double column 
paper of up to six pages using the electronic submission procedure 
at http://mlsp2017.conwiz.dk. Accepted papers will be published 
on a password-protected website that will be available during the 
workshop. The presented papers will be published in and indexed 
by IEEE Xplore.
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IEEE TRANSACTIONS ON

The IEEE Transactions on Computational Imaging 
publishes research results where computation plays 
an integral role in the image formation process. All areas 
of computational imaging are appropriate, ranging from 
the principles and theory of computational imaging, to mod-
eling paradigms for computational imaging, to image for-
mation methods, to the latest innovative computational imaging system 
designs. Topics of interest include, but are not limited to the following:

Computational Imaging Methods and  
Models

Coded image sensing
Compressed sensing
Sparse and low-rank models
Learning-based models, dictionary methods
Graphical image models
Perceptual models

Computational Image Formation

Sparsity-based reconstruction
Statistically-based inversion methods
Multi-image and sensor fusion
Optimization-based methods; proximal itera-
tive methods, ADMM

Computational Photography

Non-classical image capture
Generalized illumination
Time-of-flight imaging
High dynamic range imaging
Plenoptic imaging

Computational Consumer 
Imaging

Mobile imaging, cell phone imaging
Camera-array systems
Depth cameras, multi-focus imaging
Pervasive imaging, camera networks

Computational Acoustic Imaging

Multi-static ultrasound imaging
Photo-acoustic imaging
Acoustic tomography

Computational Microscopy

Holographic microscopy
Quantitative phase imaging
Multi-illumination microscopy
Lensless microscopy
Light field microscopy

Imaging Hardware and Software

Embedded computing systems
Big data computational imaging
Integrated hardware/digital design

Tomographic Imaging

X-ray CT
PET
SPECT

Magnetic Resonance Imaging

Diffusion tensor imaging
Fast acquisition

Radar Imaging

Synthetic aperture imaging
Inverse synthetic aperture imaging

Geophysical Imaging

Multi-spectral imaging
Ground penetrating radar
Seismic tomography

Multi-spectral Imaging

Multi-spectral imaging
Hyper-spectral imaging
Spectroscopic imaging

For more information on the IEEE Transactions on Computational Imaging see

W. Clem Karl
Boston University
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Call for Papers
The 5th IEEE Global Conference on Signal and Information Processing (GlobalSIP) will be held in 
Montreal, Quebec, Canada on November 14-16, 2017. GlobalSIP, as a new flagship IEEE Signal 
Processing Society conference, focuses on signal and information processing with an emphasis on 
up-and-coming signal processing themes. The conference features world-class plenary speeches, 
distinguished Symposium talks, tutorials, exhibits, oral and poster sessions, and panels. GlobalSIP 
is comprised of co-located General Symposium and symposia selected based on responses to the 
call-for-symposia proposals. Featured symposia include:

General symposium
Sparse SP and deep learning
Graph signal processing
Distributed optimization and resource 
management over networks
Control & information theoretic approaches 
to privacy and security
SP for interference cancellation and full-
duplex communication systems
SP for Accelerating Deep Learning
SP for Smart Cities & IoTs
SP & ML in large medical datasets 

Big Data Analytics for IoT Healthcare
Advanced Bio-SP for Rehabilitation and 
Assistive Systems
Deep Learning for Intelligent Multimedia
Knowledge-based Multimedia Computing
Stochastic & approximate computing for 
signal processing and machine learning 
Signal and information processing (SIP) for 
smart grid infrastructure
SIP for Healthcare Engineering
SIP for Finance and Business

May 15, 2017 : Paper submission due
June 30, 2017 : Final acceptance decisions notifications sent to all authors
July 22, 2017 : Camera-ready papers due

Prospective authors are invited to submit full-length papers (up to 4 pages for technical content, an 
optional 5th page containing only references) and extended abstracts (up to 2 pages, for paper-
less industry presentations and Ongoing Work presentations). Manuscripts should be original 
and written in accordance with the standard IEEE 2-column paper template. Accepted full-length 
papers will be indexed on IEEE Xplore. Accepted abstracts will not be indexed in IEEE Xplore, 
however the abstracts and/or the presentations will be included in the IEEE SPS SigPort. Accepted 
papers and abstracts will be scheduled in lecture and poster sessions. 

Conference Highlights
Plenary Talks within the general symposium and Distinguished Symposium Presentations/Talks within the 16 thematic symposia 

surveying  emerging topics in SIP
Panel discussions on funding opportunities, trends and targeted topics
Enhanced industry program: paperless industry presentations, panels, demos and exhibitions 
Exciting student program: Ongoing Work tracks, Student-Industry Luncheon, 3MT competition
Great venue with vibrant cultural, educational, and scientific identity, combining the modern buzz of a North American city and a 

specific European charm

Important
Dates:

http://2017.ieeeglobalsip.org/

5th IEEE Global Conference on Signal 
and Information Processing
November 14–16, 2017, Montreal, Canada
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CALL FOR PAPERS

While machine learning is achieving ground breaking success in speech recognition, computer vision, natural language processing and business 

analytics, its impact on radio communications, and on the associated problem area in signal processing, has been less pronounced mainly due to 

the lack of ‘big data’ and big applications. However, in the era of the Fifth Generation (5G) cellular systems and Internet-of-Things (IoT), some 

significant changes are under way. For example, as 5G cellular systems demand huge capacity, massive connectivity, high reliability and low 

latency, acquiring adequate resources to operate such systems is difficult and novel models and algorithms are needed to help improve spectrum 

utilization by leveraging large-scale databases, full of context and information. These databases can be sourced from handheld devices, network 

infrastructure, and the environment, such as typical user trajectories provided by vehicular traffic management systems. In addition, government 

agencies are now willing to share their spectrum with commercial users. The 3550-3650 MHz band is identified for spectrum sharing between 

military radars and communication systems.  This requires cognition both in communication systems and radars. There is also a general trend 

toward cognitive radars as the next generation of environment-adaptive radars with unprecedented spectral and behavioral agility. A natural 

approach to handling all this is the development of efficient machine learning algorithms, which, combined with traditional signal processing 

methods, will allow for the automation of cognitive functionality both in radars and radio communication networks. There are nontrivial challenges 

and open questions in the application of machine learning to RF environments starting with the fact that, as opposed to speech recognition and 

computer vision where the output of machine cognition can be readily compared and verified against human auditory and visual perception, no 

such option is available for radio signals. The main goal of this Special Issue is to raise awareness of this emerging interdisciplinary research area, 

and to showcase the existing state-of-the-art and its current and future challenges. Topics of interest include (but are not limited to): 

Prospective authors should follow the instructions given on the IEEE JSTSP webpages:
and submit their 

manuscript with the web submission system at: https://mc.manuscriptcentral.com/jstsp-ieee.

Dates: Guest Editors (ge.ml.crcr@gmail.com):

Manuscript submission: June 30, 2017 Maria Sabrina Greco, University of Pisa

First review completed: August 15, 2017 Silvija Kokalj-Filipovic, U.S. Naval Research Laboratory

Revised Manuscript Due: September 15, 2017 H. Vincent Poor, Princeton University

Second Review Completed: October 31, 2017 George Stantchev, U. S. Naval Research Laboratory

Final Manuscript Due: December 15, 2017 

February 2018

Liang Xiao, Xiamen University

- Machine learning for blind channel and signal
characterization 

- Joint optimization and learning of spectrum usage dynamics and 
spectrum access control

- Machine learning for source separation - Privacy-preserving machine learning for cognitive radio
- Deep learning for RF signal classification - Machine learning for cognitive technologies in 5G cellular networks
- Machine learning for channel decoding - Non-parametric Bayesian machine learning for temporal clustering 

of spectral activity
- Machine learning for RF-based geolocation and signal
association 

- Machine learning for activity recognition of  partially observable 
wireless network nodes

- Distributed multi-agent learning in collaborative radio
networks

- Machine learning in cognitive radars for spectrum sharing with 
communication devices

- Machine learning-based antenna selection - Machine learning for passive radars

- Reinforcement Learning in wireless networks - Machine learning for Bayesian target characterization
- Machine learning of the topology and structural 
properties of radio networks

- Machine learning for cognitive radar characterization and for radar
waveform design
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The IEEE International Workshop on Information Forensics and Security (WIFS) is the 
primary annual event organized by the IEEE Information Forensics and Security (IFS) Technical 
Committee with the technical sponsorship of the IEEE Biometrics Council. Its major objective is to 
bring together researchers from relevant disciplines to exchange new ideas and the latest results and to 
discuss emerging challenges in different areas of information security. The 9th edition of WIFS will be 
held in Rennes, France, from December 4 to December 7, 2017. WIFS 2017 will feature keynote 
lectures, tutorials, technical & special sessions, and also demo and on-going work sessions.

Topics of interest include, but are not limited to:
Forensics: Multimedia forensics | Counter Forensics | Acquisition Device Identification| Evidence 
Validation | Benchmarking
Biometrics: Single or Multi-Modalities Systems | Security and Privacy | Spoofing | Performance 
Evaluation
Security and Communication: Covert Channels | Physical Layer Security | Steganography | Secret 
Key Extraction | Digital Watermarking
Multimedia Security: Cryptography for multimedia | Near duplicate detection | Data Hiding | 
Authentication | Forensics
Information theoretic security: Differential Privacy | Adversarial Machine Learning | Game theory | 
Communication with Side Information
Cybersecurity: Model and validation | Cloud Computing | Distributed Systems with 
Byzantines |Social Networks | Rumors and Alternative Facts
Hardware security: New primitives |Physical Unclonable Functions | Anti-Counterfeiting | Side 
Channels Attacks | Forensics
Surveillance: Tracking | Object / Person Detection | Behavior Analysis| Anti-Surveillance and De-
identification | Privacy
Network Security: Intrusion Detection | Protocols | Traffic Analysis | Anonymity | Mobile Ad-hoc 
Networks | Internet of Things
Applied cryptography: Processing in the encrypted domain | Multiparty computation | traitor 
tracing | property preserving encryption

Submission of papers: Prospective authors are invited to submit six-page papers, including figures 
and references. All submitted papers will go through double-blinded peer review process. The WIFS 
Technical Program Committee will select papers for the formal proceedings based on technical quality, 
relevance to the workshop, and ability to inspire new research. Accepted papers will be presented in 
either lecture tracks or poster sessions. Authors of the accepted papers are required to present their 
papers at the conference. For all questions contact WIFS’17 Technical Program Chairs at 
tpc@wifs2017.org.

Warning: Papers are reviewed on the basis that they do not contain plagiarized material and have not been submitted to any 
other conference at the same time (double submission). These matters are taken very seriously. IEEE takes action against any 
author who has engaged in either practice. http://www.ieee.org/web/publications/rights/Plagiarism_Guidelines_Intro.html
http://www.ieee.org/web/publications/rights/Multi_Sub_Guidelines_Intro.html

(continued on next page)
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Tutorial Proposals: Up to four tutorials are scheduled on Monday December 4, 2017. Prospective 
tutorial contributors are encouraged to submit a tutorial proposal with a brief CV of the presenters and
the detailed structure of the tutorial to the Tutorials Chair at tutorials@wifs2017.org.

Demo and Ongoing Works Proposal: This session enables both academic researchers and industrial 
exhibitors to showcase innovative technologies demonstrating new ideas in the field. We encourage the 
submission of early research prototypes and interesting mature systems. Proposals must be accompanied 
by a description of the demo. Please contact the Demo Session Chair at demo@wifs2017.org.

Submission of SPL and TIFS papers: Authors of IEEE Signal Processing Letters (SPL) and IEEE 
Transactions on Information Forensics and Security (TIFS) papers are given the opportunity to present 
their work at WIFS 2017, subject to space availability and approval by the WIFS Technical Program 
Chairs. Proposals have to be submitted to the Technical Program Chairs at tpc@wifs2017.org.

Organizing committee:
General chairs: Teddy Furon (Inria, France) & Carmela Troncoso (IMDEA Soft. Institute, Spain)
Program chairs: Zekeriya Erkin (TU Delft, The Netherlands) & Patrick Bas (CNRS, France)
Publicity chair: Bin Li (Shenzhen University, China) & Wei Fan (Dartmouth College, USA)
Tutorial chair: Luisa Verdoliva (University di Napoli, Italy)
Industrial liaison and demo session chair: Gwenaël Doërr (ContentArmor, France)

Area Chairs:
Biometry and Authentication: Jean-Luc Dugelay (Eurecom Institut, France)
Computer Network Security & Forensics: Jiankun Hu (University of New South Wales, Australia)
Data hiding: Andrew Ker (University of Oxford, United Kingdom)
Forensics: Hany Farid (Dartmouth College, USA)
Physical Layer Security and Cryptography: Matthieu Bloch (Georgia Institute of Technology, USA)
Privacy-Enhancing Technologies: Andreas Peter (University of Twente, The Netherlands)

Important deadlines:
Paper submission June 19, 2017
Notification of paper acceptance September 18, 2017
Camera-ready paper submission October 2, 2017

Special Session proposals April 1, 2017
Notification of Special Session acceptance April 15, 2017
Tutorial proposals May 15, 2017
Notification of tutorial acceptance June 12, 2017

Demo/on-going work proposals September 25, 2017
Notification of demo/on-going work October 9, 2017

Early registration deadline October 22, 2017

Workshop December 4-7, 2017
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Bashar I. Ahmad, James K. Murphy, 
Simon J. Godsill, Patrick M. 
Langdon, and Robert W. Hardy

FEATURE
95 PERFECTING PROTECTION 

FOR INTERACTIVE MULTIMEDIA
Ahmed Badr, Ashish Khisti, 
Wai-Tian Tan, and John Apostolopoulos
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7 Society News

SPS Fellows and Award Winners Recognized

12 Reader’s Choice
Top Downloads in IEEE Xplore

14 Special Reports
   Stepping Up Security with Signal Processing

John Edwards

114 Life Sciences
   Computational Neuromodulation: Future 

Challenges for Deep Brain Stimulation
Konstantinos P. Michmizos,  
Blerta Lindqvist, Stephen Wong,  
Eric L. Hargreaves, Konstantinos Psychas, 
Georgios D. Mitsis, Shabbar F. Danish, 
and Konstantina S. Nikita

124 In the Spotlight
   No Need for Speed: More Signal 

Processing Innovation Is Required 
Before Adopting Automated Vehicles
Wade Trappe
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JOIN NOW FOR 2017
The IEEE Signal Processing Society is the world’s premier association for 

signal processing engineers and industry professionals, servings its nearly 
17,000 members with highly-ranked publications, world class conferences, 

professional development resources, job opportunities, and more.

Access members-only discounts on SPS publications and conferences. 
Gain eligibility to apply for travel grants to our flagship conferences 
ICASSP, ICIP, and GlobalSIP.

SAVE

CONNECT
Network with other professionals through SPS conferences, workshops, 
Technical Committees, Special Interest Groups, and local events curated 
by more than 180 worldwide SPS Chapters.

ADVANCE
Further your career with world-class educational resources, including the 
new SPS Resource Center, opportunities for awards and recognition, and 
volunteer opportunities across society activities.

SCAN TO JOIN

@ieeeSPS

/ieeeSPS
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