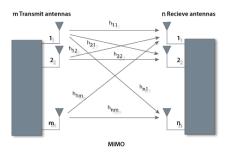

ELC 4350: Principles of Communication


Spatial Diversity and Spatial Multiplexing

Prof. Liang Dong

Multiple Antennas for Communication Systems

- Multiple antennas at the transmitter and at the receiver Multi-Input Multi-Output (MIMO) Communication System
- Spatial Diversity
- Spatial Multiplexing

Spatial Diversity – Beamforming

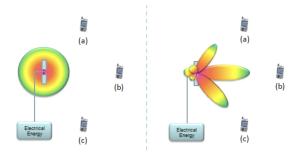


Figure: Beamforming. We consider a downlink to multiple mobile users. Each user has a single antenna.

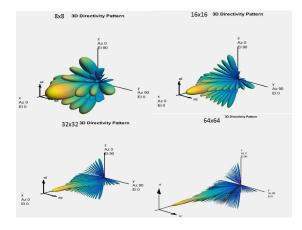


Figure: 3D Directivity Pattern.

Downlink Beamforming

Transmitted signal at the BS

$$\mathbf{x} = \mathbf{w}_1 s_1 + \mathbf{w}_2 s_2$$

where w₁ and w₂ are the beamforming weights for user 1 signal s₁ and user 2 signal s₂, respectively. Usually, ||w_i|| = 1.
▶ User 1 received signal

$$y_1 = \mathbf{h}_1^H \mathbf{x} + n_1$$

= $\mathbf{h}_1^H (\mathbf{w}_1 s_1 + \mathbf{w}_2 s_2) + n_1$
= $\underbrace{\mathbf{h}_1^H \mathbf{w}_1 s_1}_{\text{signal}} + \underbrace{\mathbf{h}_1^H \mathbf{w}_2 s_2}_{\text{interference}} + n_1$

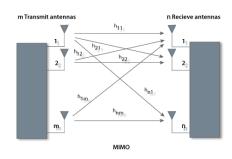
Signal-to-interference-plus-noise ratio (SINR) at User 1

$$\mathsf{SINR}_1 = \frac{|\mathbf{h}_1^H \mathbf{w}_1|^2}{|\mathbf{h}_1^H \mathbf{w}_2|^2 + \sigma_n^2}$$

Downlink Beamforming

Similarly, User 2 received signal

$$y_2 = \underbrace{\mathbf{h}_2^H \mathbf{w}_2 s_2}_{\text{signal}} + \underbrace{\mathbf{h}_2^H \mathbf{w}_1 s_1}_{\text{interference}} + n_2$$


Signal-to-interference-plus-noise ratio (SINR) at User 2

$$\mathsf{SINR}_2 = \frac{|\mathbf{h}_2^H \mathbf{w}_2|^2}{|\mathbf{h}_2^H \mathbf{w}_1|^2 + \sigma_n^2}$$

Beamforming weights design:

$$\mathbf{w}_1 = \frac{\mathbf{h}_1}{\|\mathbf{h}_1\|}, \quad \mathbf{w}_2 = \frac{\mathbf{h}_2}{\|\mathbf{h}_2\|}$$

> Zero-forcing beamforming: $\mathbf{w}_1 \perp \mathbf{h}_2$, $\mathbf{w}_2 \perp \mathbf{h}_1$.

Transmitted signal at the BS is

$$\mathbf{x} = \mathbf{W}\mathbf{s}, \text{ where } \mathbf{s} = [s_1, s_2, \dots, s_{M_t}]^T$$

▶ The receiver has multiple antennas. The received signal is

 $\mathbf{y} = \mathbf{H}\mathbf{x} + \mathbf{n} = \mathbf{H}\mathbf{W}\mathbf{s} + \mathbf{n}$

MIMO Multiplexing

$$\mathbf{H} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^H$$

▶ U is an $M_r \times M_r$ complex unitary matrix, Σ is an $M_r \times M_t$ rectangular diagonal matrix with non-negative real numbers on the diagonal, and V is an $M_t \times M_t$ complex unitary matrix.

$$\mathbf{U}^H \mathbf{U} = \mathbf{U} \mathbf{U}^H = \mathbf{I}_{M_r}, \quad \mathbf{V}^H \mathbf{V} = \mathbf{V} \mathbf{V}^H = \mathbf{I}_{M_t}$$

The SVD can be written as

$$\mathbf{H} = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^H$$

where σ_i is the *i*th diagonal element of Σ , \mathbf{u}_i is the *i*th column of \mathbf{U} , and \mathbf{v}_i is the *i*th column of \mathbf{V} . $r \leq \min\{M_r, M_t\}$ is the rank of \mathbf{H} .

MIMO Multiplexing

(Spatial) filtering on the received signal

$$\mathbf{U}^{H}\mathbf{y} = \mathbf{U}^{H}\mathbf{H}\mathbf{x} + \mathbf{U}^{H}\mathbf{n}$$
$$= \mathbf{U}^{H}\mathbf{U}\mathbf{\Sigma}\mathbf{V}^{H}\mathbf{x} + \mathbf{U}^{H}\mathbf{n}$$
$$= \mathbf{\Sigma}\mathbf{V}^{H}\mathbf{x} + \mathbf{U}^{H}\mathbf{n}$$

▶ Let $\mathbf{x} = \mathbf{W}\mathbf{s} = \mathbf{V}\mathbf{s}$, $\mathbf{y}' = \mathbf{U}^H\mathbf{y}$, and $\mathbf{n}' = \mathbf{U}^H\mathbf{n}$, (rotation of vectors), we have

$$\mathbf{y}' = \mathbf{\Sigma}\mathbf{s} + \mathbf{n}'$$

Example:

$$\begin{bmatrix} y_1' \\ y_2' \end{bmatrix} = \begin{bmatrix} \sigma_1 & 0 & 0 \\ 0 & \sigma_2 & 0 \end{bmatrix} \begin{bmatrix} s_1 \\ s_2 \\ s_3 \end{bmatrix} + \begin{bmatrix} n_1' \\ n_2' \end{bmatrix}$$
$$y_1' = \sigma_1 s_1 + n_1'$$
$$y_2' = \sigma_2 s_2 + n_2'$$