ELC 4350: Principles of Communication

Orthogonal Frequency-Division Multiplexing (OFDM)

Prof. Liang Dong

Baylor University

ELC 4350 Principles of Communication

Prof. Liang Dong

System Standards using OFDM

<u>Wireless</u>

- IEEE 802.11a, g, j, n (WiFi) Wireless LANs
- IEEE 802.15.3a Ultra Wideband (UWB) Wireless PAN
- IEEE 802.16d, e (WiMAX), WiBro, and HiperMAN Wireless MANs
- IEEE 802.20 Mobile Broadband Wireless Access (MBWA)
- DVB (Digital Video Broadcast) terrestrial TV systems: DVB-T, DVB-H, T-DMB and ISDB-T
- DAB (Digital Audio Broadcast) systems: EUREKA 147, Digital Radio Mondiale, HD Radio, T-DMB and ISDB-TSB
- Flash-OFDM cellular systems
- 3GPP UMTS & 3GPP@ LTE (Long-Term Evolution), and 4G

<u>Wireline</u>

- ADSL and VDSL broadband access via POTS copper wiring
- MoCA (Multi-media over Coax Alliance) home networking
- PLC (Power Line Communication)

Motivation

- Signal over wireless channel
 - ▶ y[n] = Hx[n]
- Work only for narrow-band channels, but not for wide-band channels

Basic Concept of OFDM

Wide-band channel Multiple narrow-band channels

Send a sample using the entire band

Send samples concurrently using multiple **orthogonal sub-channels**

Why Multi-Carrier is Better?

- Multiple sub-channels (sub-carriers) carry samples sent at a lower rate
 - Almost same bandwidth with wide-band channel
- Only some of the sub-channels are affected by interferers or multi-path effect

Multiple Sub-Carriers

Figure: (a) Squared frequency response of channel. (b) Transmission power spectral density of single-carrier signal. (c) Transmission power spectral density of multi-carrier signal. (d) Received power spectral density of multi-carrier signal.

Importance of Orthogonality

Why not just use FDM (frequency division multiplexing)

 Need guard bands between adjacent frequency bands → extra overhead and lower throughput

Difference between FDM and OFDM

Orthogonal Frequency Division Modulation

OFDM Symbol

▶ Let there be N subcarriers with frequencies $\{f_n\}$ and information-carrying bits $\{b_n\}$. The *n*th subcarrier signal is

$$s_n(t) = b_n \exp(j2\pi f_n t), \quad 0 \le t \le T$$

The multi-carrier signal over one OFDM symbol period can be represented by the sum over all subcarriers.

$$s(t) = \sum_{n=0}^{N-1} s_n(t) = \sum_{n=0}^{N-1} b_n \exp(j2\pi f_n t), \quad 0 \le t \le T$$

ELC 4350 Principles of Communication

Prof. Liang Dong

OFDM Symbol

- > Sample the multi-carrier signal at intervals of T_s where $T_s = \frac{T}{N}$.
- ► Choose subcarrier frequency spacing $\Delta f = \frac{1}{T}$, therefore N discrete frequency bins $\{f_n\}$ with the nth frequency $f_n = \frac{n}{T}$.
- The multi-carrier signal is

$$s(kT_s) = \sum_{n=0}^{N-1} b_k \exp\left(j2\pi \frac{kn}{N}\right)$$

Inverse discrete Fourier transform (IDFT) of the data steam $\{b_n\}!$

Sub Carrier Spacing

- The sub-carriers are spaced at regular intervals called the sub-carrier frequency spacing (ΔF).
- The sub-carrier frequency relative to the center frequency is k ∆F where k is the subcarrier number.

26

-26

OFDM Transmitter and Receiver

Figure: Block diagram of OFDM system.

ELC 4350 Principles of Communication

Prof. Liang Dong

Symbol to Waveform Traditional – Serial Symbol Transmissions

Symbol to Waveform OFDM – Parallel Symbol Transmissions

Orthogonality of Sub-Carriers

The subcarriers are orthogonal over a symbol period T. That is

$$\sum_{n=0}^{N-1} \exp\left(j2\pi \frac{kn}{N}\right) \exp\left(-j2\pi \frac{ln}{N}\right) = 0, \quad k \neq l$$

Consequently, there is no interference between the subcarriers even though they overlap significantly.

Orthogonality of Sub-carriers

Encode: frequency-domain samples \rightarrow time-domain sample

$$x(t) = \sum_{k=-N/2}^{N/2-1} X[k]e^{j2\pi kt/N}$$
Time-domain
Frequency-domain
$$X[k] = \frac{1}{N} \sum_{t=N/2}^{N/2-1} x(t)e^{-j2\pi kt/N}$$
FFT

Decode: time-domain samples \rightarrow frequency-domain sample

Orthogonality of any two bins :

$$\sum_{t=N/2}^{N/2-1} e^{j2\pi kt/N} e^{-j2\pi pt/N} = 0, \forall p \neq k$$

OFDM Example

• Say we use BPSK and 4 sub-carriers to transmit a stream of samples

• Serial to parallel conversion of samples

Frequency-domain signal

Time-domain signal

	<u>c1</u>	c2	c3	<u>c4</u>	IFFT				
symbol1	1	1	-1	-1	\rightarrow	0	2 - 2i	0	2 + 2i
symbol2	1	1	1	-1		2	0 - 2i	2	0 + 2i
symbol3	1	-1	-1	-1		-2	2	2	2
symbol4	-1	1	-1	-1		-2	0 - 2i	-2	0 + 2i
symbol5	-1	1	1	-1		0	-2 - 2i	0	-2 + 2i
symbol6	-1	-1	1	1		0	-2 + 2i	0	-2 - 2i

• Parallel to serial conversion, and transmit timedomain samples

0, 2 - 2i, 0, 2 + 2i, 2, 0 - 2i, 2, 0 + 2i, -2, 2, 2, 2, -2, 0 - 2i, -2, 0 + 2i, 0, -2 - 2i, 0, -2 + 2i, 0, -2 + 2i, 0, -2 - 2i, ...

symbol1	1	1	-1	-1
symbol2	1	1	1	-1
symbol3	1	-1	-1	-1
symbol4	-1	1	-1	-1
symbol5	-1	1	1	-1
symbol6	-1	-1	1	1

Multi-Path Effect

$$y(t) = h(0)x(t) + h(1)x(t-1) + h(2)x(t-2) + \cdots$$

= $\sum_{\Delta} h(\Delta)x(t-\Delta) = h(t) \otimes x(t)$
time-domain
$$\Leftrightarrow \quad Y(f) = H(f)X(f)$$

frequency-domain

Current symbol + delayed-version symbol → Signals are deconstructive in only certain frequencies

Frequency Selective Fading

Frequency selective fading: Only some sub-carriers get affected

Inter Symbol Interference (ISI)

 The delayed version of a symbol overlaps with the adjacent symbol

• One simple solution to avoid this is to introduce a guard-band

Guard band

Cyclic Prefix (CP)

- However, we don't know the delay spread exactly
 - The hardware doesn't allow blank space because it needs to send out signals continuously
- Solution: Cyclic Prefix
 - Make the symbol period longer by copying the tail and glue it in the front

• Because of the usage of FFT, the signal is periodic

$$FFT(f) = exp(-2j\pi_{\Delta}f)*FFT(f)$$
delayed version original signal

- Delay in the time domain corresponds to rotation in the frequency domain
 - Can still obtain the correct signal in the frequency domain by compensating this rotation

Cyclic Prefix (CP)

w/o multipath y(t)
$$\rightarrow$$
 FFT() \rightarrow Y[k] = H[k]X[k]
w multipath y(t) \rightarrow FFT() \rightarrow Y[k] = $\alpha(1+\exp(-2j\pi_{\Delta}k))^*X[k]$
= H'[k]X[k]

original signal + delayed-version signal

Lump the phase shift in H

OFDM Diagram

Unoccupied Subcarriers

- Edge sub-carriers are more vulnerable to errors under discrete FFT
 - Frequency might be shifted due to noise or multi-path
- Leave them unused
 - ▶ In 802.11, only 48 of 64 bins are occupied bins
- Is it really worth to use OFDM when it costs so many overheads (CP, unoccupied bins)?

Why Orthogonal Frequency Division Multiplex?

- High spectral efficiency provides more data services.
- Resiliency to RF interference good performance in unregulated and regulated frequency bands
- Lower multi-path distortion works in complex indoor environments as well as at speed in vehicles.

- DAC (at Tx) and ADC (at Rx) never have exactly the sampling period
 - A slow shift of the symbol timing point, which rotates subcarriers
 - Intercarrier interference (ICI), which causes loss of the orthogonality of the subcarriers

- The oscillators of Tx and Rx are not typically tuned to identical frequencies
 - Up-convert baseband signal s_n to passband signal y_n=s_n*e^{j2πf_{tx}nT_s}
 - ► Down-convert passband signal y_n back to r_n=s_n*e^{j2πf_{tx}nT_s*e^{-j2πf_{rx}nT_s=s_n*e^{j2πf_ΔnT_s}}}
 - Error accumulates

Correct CFO in Time Domain

Sampling Frequency Offset (SFO) DAC (Tx) ADC (Rx) $\overleftarrow{t}_{\Lambda}$

- The transmitter and receiver may sample the signal at slightly different offset
 - Rotate the signal
- $Y_i = H_i X_i * e^{j2\pi t_{\Delta} i N_s / N_{fft}}$
- All subcarriers experience the same sampling delay, but have different frequencies

Sample Rotation due to SFO

Ideal BPSK signals (No rotation)

Signals keep rotating

Correct SFO in Frequency Domain

Change in phase between Tx and Rx after CFO correction

• SFO: slop; residual CFO: intersection of y-axis

Data-aided Phase Tracking

Change in phase between Tx and Rx after CFO correction

- Using pilot bits (known samples) to compute H_i*e<sup>j2πtΔiN_s/N_{fft=}Y_iX_i
 </sup>
- Find the phase change experienced by the pilot bits using regression
- Update $H_{I} = H_i^* e^{j2\pi t \Delta i N_s / N_{fft}}$ for every symbol

After Phase Tracking

Nondata-aided Phase Tracking

OFDM Diagram

