Synthesis of ZnO Nano/Microspheres and Development of Organic Solar Cells

Gon Namkoong ARC-Old Dominion University

Outline

Synthesis of ZnO nano/microspheres

- ✓ Control of ZnO morphologies
- ✓ Effect of structure direct agents on ZnO morphologies
- ✓ Control of uniformity, distribution, and size of ZnO spheres

Organic solar cells

- ✓ Recombination process of organic solar cells
- \checkmark Degradation mechanisms of organic solar cells
- ✓ Simulation of 3D organic morphologies
- Power of Words

Outline

Synthesis of ZnO nano/microspheres

- ✓ Control of ZnO morphologies
- ✓ Effect of structure direct agents on ZnO morphologies
- ✓ Control of uniformity, distribution, and size of ZnO spheres

Organic solar cells

- ✓ Recombination process of organic solar cells
- Degradation mechanisms of organic solar cells
- ✓ Simulation of 3D organic morphologies
- Power of His Words

ZnO morphologies

Unique optical, electrical, and structural properties ⇒ Many applications

Missing morphology \Rightarrow ZnO sphere

Materialtoday, Vol 7, p 26 (2004)

ZnO structures

Nuclear Instruments and Methods in Physics Research Section B. Vol. 281, pp 77 (2012)

ZnO structures (Cont.)

ZnO has a noncentrosymmetric crystal structure

Scientific reports, Vol 2, pp 587

ZnO structures (Cont.)

ZnO has a noncentrosymmetric crystal structure

Strong spontaneous polarization

Scientific reports, Vol 2, pp 587

ZnO structures (Cont.)

Hydrothermal synthesis of ZnO

Autoclave reactor

Zinc acetate $Zn((CH_3COO)_2 \cdot 2H_2O)$ Ammonia hydroxide NH_4OH

Hydrothermal synthesis of ZnO

Stainless steel lid

Zn cation $Zn(NH_3)_4^{2+}$ Zn anion $Zn(OH_3)_4^{2-}$

Hydrothermal synthesis of ZnO

Preferred growth of ZnO

Nature nanotechnology, Vol. 6, pp 103 (2011)

Novel approach for ZnO spheres 1. Control of cation species adjustment of pH

ZnO with different pH values

Effect of SDA on ZnO morphologies

Temporal evolution of ZnO

Temporal evolution of ZnO

Temporal evolution of ZnO

Control of size and distribution of ZnO spheres

Urea (1):Ethanol (1)

Urea (1):Ethanol (1.25)

Xray diffraction measurement

Confocal PL of ZnO spheres

Confocal PL

No defects are observed

Summary

- ✓ZnO polar surface was responsible for preferential growth
- ✓ Structure directing agents (SDA) effectively passivated the ZnO polar surface, leading to balanced vertical and lateral growth rate
- Careful combination of SDA allowed for the control of both size and size distribution of ZnO spheres

Outline

Synthesis of ZnO nano/microspheres

- Control of ZnO morphologies
- Effect of structure direct agents on ZnO morphologies
- Control of uniformity, distribution, and size of ZnO spheres
- Synthesis of ZnO nano/microspheres

Organic solar cells

- Recombination process of organic solar cells
- ✓ Degradation mechanisms of organic solar cells
- ✓ Simulation of 3D organic morphologies

Current state-of-the art solar cells

Organic solar cells

Fabrication of organic solar cell

PCDTBT:PCBM solar cells

Heeger et al, Nature photonics, Vol 3, pp 297 (2009)

Top electrode polymer Langevin recombination $R = k_r(np - n_i^2)$ Fullerene $k_r = \frac{q}{\epsilon} (\mu_n + \mu_p)$ Transparent electrode Light **bound e/h** exciton free electron photons n-contact p-contact

Namkoong et al, Organic electronics, Vol. 14, pp 74 (2013)

Degradation of organic solar cells

Lifetime > 20 years

Lifetime < 6 years

Degradation mechanisms of organic solar cells

Degradation processes of PPV(polyphenylene vinylene) polymer

Degradation of organic solar cells

Polymers

PTB7

Degradation of organic solar cells

Role of TiO₂ for organic solar cells

Effect of sealing of organic solar cells on degradation

Comparison of UV-VIS absorption

Absorption of PTB7 and PCBM

Not sealed PTB7/PCBM in air

Degradation mechanism for organic solar cells

Degradation mechanism for organic solar cells

Summary

- Degradation of organic solar cells is due to chemical degradation in the presence of oxygen
- ✓ Longer exposure to oxygen will create many defects and trap centers that will force organic solar cells to reduce lifetime
- The degradation of organic solar cells is governed by the degradation of PCBM rather than organic polymer

Simulation of organic morphologies

Simulation of organic morphologies

AFM image of organic surface Semiconductor surface

Simulation of organic morphologies

Polymer: Fullerene

1: 1

P3HT

PC₇₁BM

7 days mixing

Effect of uniform morphologes

Phase separation of organics

Phase separation

$$dG = dH - TdS$$

G: Gibbs free energy H: Enthalpy S: Entropy Spontaneous process

Enthalpy (H) defines system energy.

Entropy (S) measures disorders of systems

dG = dH - TdS < 0

Phase separation

Polymer: Fullerene

dG = dH - TdS

G: Gibbs free energy H: Enthalpy S: Entropy dS>0

 $dG \! < \! 0$ Spontaneous process

dG > 0 nonspontaneous process

Flory-Huggins/Allen-Cahn

Flory-Huggins type of free energy

$$f = \frac{RT}{v_{site}} \left(\frac{C_A}{m_A} \ln C_A + \frac{C_B}{m_B} \ln C_B + \chi_{AB} C_A C_B\right)$$

Allen-Cahn Equation

$$\frac{\partial C}{\partial t} = \nabla^2 \left(M \frac{\partial f}{\partial C} - k^2 \nabla^2 C \right)$$

C: concentration a: solution parameter M: diffusivity of the phase k: gradient energy coefficient

Numerical simulation of partial differential equations

Finite different method

$$\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2}$$

$$\left(\frac{\partial^2 f}{\partial x^2} \approx \frac{f_{i-1} - 2f_i + f_{i+1}}{\Delta^2} + O(\Delta^2)\right)$$

Not suitable for higher order differential equation ⇒Memory issues ⇒Large truncated errors ⇒Convergence issues

Finite different vs. Spectral method

Finite different method

Spectral method

M. Mehra *et al*, Comparison between different numerical methods for discretization of PDEs.

Spectral methods

ID Allen-Cahn equation

$$\begin{array}{c}
\frac{\partial u}{\partial t} = \varepsilon \frac{\partial^2 u}{\partial x} + u - u^3 \\
\hline FFT(u_j) \equiv \hat{u}_k \\
\frac{\partial \hat{u}_k}{\partial t} = \varepsilon(ik)^2 \hat{u}_k + \hat{u}_k - \hat{u}_k^3 \\
\hline \underbrace{u = iFFT(\hat{u})}_{k} \\
\hline \underbrace{u = iFFT(\hat{u})}_$$

3D Allen-Cahn Equations

Flory-Huggins type of free energy

$$f = \frac{RT}{v_{site}} \left(\frac{C_A}{m_A} \ln C_A + \frac{C_B}{m_B} \ln C_B + \chi_{AB} C_A C_B\right)$$

$$\lambda = \frac{2\sum \cos(2\pi k_i) - \sum 2}{(\Delta x)^2}$$

Simulated organic morphologies

Summary

- Spectral method has been used to numerically solve higher order differential equations
- ✓ Flory-Huggins and Allen-Cahn equations were used to simulate 3D organic morphologies

Outline

Synthesis of ZnO nano/microspheres

- Control of ZnO morphologies
- Effect of structure direct agents on ZnO morphologies
- ✓ Control of uniformity, distribution, and size of ZnO spheres
- ✓ Synthesis of ZnO nano/microspheres

Organic solar cells

- Recombination process of organic solar cells
- ✓ Degradation mechanisms of organic solar cells
- ✓ Simulation of 3D organic morphologies

Power of Words

Experiment of the power of words

Words

¹ In the beginning was the Word, and the Word was with God, and the Word was God. John 1:1

¹In the beginning God created the heavens and the earth. ³ And <u>God said, "Let there be light," and there was light</u>. Genesis 1:1,3.

¹² For the word of God is <u>alive and active</u>. Sharper than any double-edged sword. Hebrew 4:12

Idiom and proverb

Korean proverb

Birds hear what is said by day, and rats hear what is said by night

Prove

Warmer

Birds hear what is said by day

Rats hear what is said by night

Conclusion

Research History

Conclusion

Re-search His story