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Smart Grid: A Cyber-Physical System
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Advanced Grid Sensors Improve Smart Grid Operations
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Advanced Grid Sensors Improve Smart Grid Operations
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Data Quality in Future Grid
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o Big data explosion!
» Big data analytics

@ Data quality analysis

» Pre-processing for big data
analytic

@ Transmission sensors
» SCADA/PMU data



Data Integrity in SCADA System

Stuxnet Worm, 2010

Nuclear power plant attacked via SCADA systems

CC[W %]\]%g &he New York Eimes

Stuxnet: Malware more Stuxnet: Computer worm A Silent Attack,
complex, targeted and opens new era of warfare but Not a Subtle One
dangerous than ever

* SCADA (Supervisory Control And Data Acquisition)

SmartGrid Update Report*

“Even small changes in the data could affect the stability of the grid and
even jeopardize human safety”

SCADA Weak Cybersecurity+Data Integrity Violation = Grid Malfunction

* http://www.smartgridupdate.com/dataforutilities/pdf/DataManagementWhitePaper.pdf



Motivation
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o Data quality/integrity violation = blackouts & financial losses



Background: Power System State Estimation

Three-bus system Base case power flow solution

~

/Measurement model Weighted least squares method

P _ .Tp-1

7 = h(X) +e minimize J(X) =r"R™'r
st r=Z—-h(X

Z =(Z1,2y,23,24,Zs) ( )

e = (ey,€z,€3,€4,65)

X = (01,02,03,V1,V5,V3)

State estimation solution
X =(01,0,05V,,V,V53)



Background: Electricity Mar

ket Operations

State Estimation

Base Case Power
Flow Solution

St
7

{

Real-time economic dispatch
Min YC(P;)
Balance constraint of supply and demand
Operational system constraints

Day-ahead

Ex-post
real-time

Ex-ante

real-time |Present

I I I I L .7
Day(k-1) Hour(j) Day(k) 5-min(i) Time
Static dispatch
| e | | | | | I I I S
>
| I I Time
Look-ahead dispatch (5-min)

[0 : Forecasted load for static dispatch

I : Forecasted load for look-ahead dispatch
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Problem Statement

Normal Condition

Control/Computation Layer
(Control Center)

Dispatch
Estimation

g ‘ SCADA Network )

(Sensor Network)

) \f -------- —

Physical Layer
(Power Network)

Measurement Layer --_ /
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Problem Statement

Normal Condition After Data Corruption

Control/Computation Layer Control/Computation Layer

(Control Center)

Economic
DIS patch

‘ SCADA Nelwork

Measurement Layer -.
(Sensur Network)

Physical Layer

Physical Layer e
(Power Network)

(Power Network)

@ What are the impacts of data integrity/quality on real-time market prices,
namely locational marginal price (LMP), via state estimation?

@ What are analytical tools for quantifying such impacts?
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Previous and Missing Work

|. Data Integrity Attack on Physical and Economical Grid Operations

@ Attack modeling & analysis based on continuous data manipulation:
[1, Liu et al., 2009], [2, Kosut et al., 2010], [3, Kim et al., 2011]

@ Attack modeling & analysis based on discrete data manipulation:
[4, Kim et al., 2013]

@ Data attack on static economic dispatch: [5, Xie et al., 2011]

@ Data attack on look-ahead economic dispatch: ?

[I. LMP Sensitivity Analysis Subject to Power System Condition

@ Impact of physical system conditions (e.g., load variations) on LMP
sensitivity: [6, Conejo et al., 2005], [7, Li et al., 2007]

@ Impact of sensor data quality on LMP sensitivity: ?
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Research Goals

» A Market Participant’s Perspective

Part I: Data Integrity Attack on Look-Ahead Economic Dispatch
@ Ramp-induced data (RID) attack [Choi, Xie, TSG2013]
@ Undetectable and profitable RID attack strategy
@ Economic impact of RID attack

» A System Operator’s Perspective

Part Il: Sensitivity Analysis of LMP to Data Corruption

@ Impact of continuous data quality on real-time LMP
[Choi, Xie, TPS2014]

@ Impact of discrete data quality on real-time LMP
[Choi, Xie, SmartGridComm2013]

13/51



Part I: Malicious Ramp-Induced Data (RID) Attack

» A Market Participant’s Perspective

RID Attack on Look-Ahead Dispatch in Real-Time Market

O Attack Modeling
- Generation capacity withholding
- Covert change of generators’ inter-temporal ramp constraints

© Performance Evaluation
- Undetectability
- Profitability

fm————mpm————
(!
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State Estimation Model

» Measurement Model = z=Sx + e

[ ) @ z: measurements vector, e ~ A'(0,R)
| .
0 S= . system factor matrix
Hq
@ x: (nodal power injection) states vector

State '
: | Estimation |
S“:uon » Weighted Least Squares Estimate

%(z) = (STR7!S)"!STR"'z =Bz

) » Bad Data Detection (Chi-squares test)

* b

= ] P
Ho

where r = z — Sk(z)
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Economic Dispatch Model

» Look-Ahead Dispatch Model

......................

Economic

Dispatch min Z Z Ci(Pg[k])
f Pei K] k=1i€G
PE'(Z)E

> .

S
s.t.

)i N
. > Pkl =D Dilk] Vk=1,....K

i G i€eG n=1
|Pg [k]-Pg[k—1]|<RAT VYk=1,....K
....... *......... Pgm SPg,[k] S Pg\ax Vk — 17 e K
Frin <F k] < F™ VYk=1,...,K
Vi=1,...,L

Attack Target: P,[0] is updated with Pg.(z) at every dispatch interval!
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Data Attack Model

......................

¥ » Attack Measurement Model

: ",;gi(h)g = z,=Sx+e+a
@ z,: corrupted measurement vector
P*gi(za) : f 22 @ a: injected attack vector

A(za)

| ). » A Domino Effect of Data Attack
f 0z, = Po(z)) = Aza)
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Two Main Features of RID Attack: (1) Undetectability

» After data attack, we have
o New estimator: X(z,) = Bz, = %X(z) + Ba
@ New residual:
IF[l2=|lr+ (1 =SB)al2 < [Irll2  +]|(1-SB)all

~—~— —_————
Without attack With attack

» For undetectability, the attacker’s goal is to

@ Construct a such that the contribution of ||(I — SB)al|, still makes
the following healthy detection condition hold true:

IFl[2 <n
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Two Main Features of RID Attack: (2) Profitability

Without Attack With Attack
Pgi,max Pgi,max
I
]
Y Pelll P*g[1]
X -3 P*gia[1
RiaT| gial1]
*gi[0]=’P\gi[0] RiAT P*el0] 1
)
— Pgia[0]
'gi,min 'gi,min
ﬂ]]]]]]]]]: RiAT-AL 77:(Excess  Power)

(Shortage Power)

o Capacity withholding condition: —Cp(a) > RIAT — AL
» increasing LMP and profit
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Attack Strategy: Compute the Attack Vector a

max o
a€span(A)
s.t.
[|(I — SB)al|> < € = Undetectable Condition
aCy(a) + BCg(a) < AL — RiAT — § = Profitable Condition
0>0
where

Cm(a) = E[Pg,,[0] - P;[0]] = Bia
Cs(a) = Y E[P [0l + RAT — P>[0]] = > [Bja+ R/AT]
JjEGS, JEGS,
» o« =1, § =0: Marginal unit attack (Case I)
» o =0, § = 1: Binding unit attack (Case Il)

» o =1, §=1: Coordinated attack (Case Ill)
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Simulation Setup

)j;( : Compromised Injection Sensor

& e

Figure : IEEE 14-Bus System.

[ Unit Type | Pmin | Pmax | Ramp Rate | Marginal Cost |
Coal(1) OMW | 200MW | 10MW/5min 305/MWh
Wind(2) oMw 300MW 150MW /5min 20$/MWh

Nuclear(3) | OMW | 300MW | _8MW/5min 405/MWh
Coal(6) | 50MW | 250MW | 15 MW/5min | 555/MWh
0iI(8) 60MW | 150MW | 60 MW/5min | 605/MWh

Table : Generator Parameters.
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Attack Performance

| Case | Static (PE(3)%) | Look-ahead (PE(3)%) [ J (7,=37.6) |

I 131.9 148.9 28.2
[l 101.2 102.6 355
" 108.9 113.8 315

» Case |: P3 injection sensor compromised
» Case Il: Py injection sensor compromised
» Case Ill: Py, P5 injection sensors compromised

Observation 1

o Attack profitability (PE(3) > 100%)
o Attack undetectability (J < 7,=37.6)
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Ramp-Induced Data Attack Increases LMPs

LMP increase ($\MWh)

Time interval (5 min)

Figure : LMP Increase of Look-ahead Dispatch with Case 1 Attack.
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Attack Relative Magnitude vs Attack Performance

Attack Relative Magnitude (ARM) (%%)
0.25 0.5 0.75 1
Static (PE(3)) | 111.8 | 120.8 | 1264 126.9
Look-ahead (PE(3)) | 112.2 | 125.8 | 127.6 137.7
J 21.1 | 254 | 29.2 33.1

Observation 2

@ Increasing ARM = increasing attack profit at the expense of
increasing J
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Ramp Rate & Data Accuracy vs Attack Profit

Ramp Rate (MW /5min) Variance (0?)

8 10 12 14 0.0005 | 0.005 | 0.05 0.5
Static (PE(3)) | 131.0 | 119.7 | 106.4 | 100.5 | 123.2 | 129.1 | 130.3 | 136.9

Look-ahead (PE(3)) | 148.9 | 123.5 | 108.5 | 103.1 1435 | 14475 | 146.1 | 152.8

Observation 3
o A slower ramp rate unit targeted = increasing attack profit

Observation 4
o A less accurate sensor compromised = increasing attack profit
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Part |: Remarks

Main Contributions

© Problem formulation of a novel ramp-induced data attack
» covert generation capacity withholding

@ An optimization-based undetectable/profitable attack strategy

© Economic impacts on real-time electricity market operations
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Part II: Sensitivity Analysis of LMP to Data Corruption

» A System Operator’s Perspective

_i Topology |
Processor :

1

]

»(Observabiit i
Analysis |

H 1

]

1

( 1
I -

SCADA
Telemet

SCED

SCADA /% EMS A _Mms

= Impact flow of continuous data === Impact flow of discrete data
* Data corruption (a): Power Flow Estimate (b): Network Topology Estimate

o Part Il-A: impact of undetectable error in (a) on LMP
o Part II-B: impact of undetectable error in (b) on LMP
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Research Goal

» Develop analysis tools to study the impact of data quality on LMP

] S

W : Injection sensor @ : Flow sensor M : “On” circuit breaker [J: “Off” circuit breaker
A :Voltage magnitude sensor  §: LMP change ~ ~— e : Line exclusion  §: LMP change

(a) Continuous data corruption (Part 1I-A) (b) Discrete data corruption (Part 1I-B)
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Part lI-A: LMP Sensitivity to Continuous Data Corruption

» Composite function of the Ex-ante and
Ex-post LMP vectors:

LMP = = (x(2))

» Proposed sensitivity matrix:

A_@_ﬂ'_aﬂ' ox
T 0z 0% 0z
Ay Mg

® A, : Sensitivity matrix of LMPs to state estimates (Economic Impact)
@ Ap : Sensitivity matrix of state estimates to sensor data (Cyber Impact)

= A unified closed-form LMP sensitivity matrix A
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Continuous Data Corruption Manipulates LMP

Ny
min Ci(Pg,
i (P

s.t.

Np Ny
Nza): Y Pe=) Ly
i=1 i=1

7(za) : ﬁzi“(za) < Pg, < ﬁgax(za) Vi=1,...,Np
. Nb
w(za) s FM™ <> Si(Pg — La) < ™ Vi=1,...,N

i=1

» Domino effect: z, = {ﬁgi"(za), /Sg;aX(za)} = {\(za), u(22)} = LMP(z,)

LMP(z2) = A(za)1n, = ST [Bmax(Za) = Kiin(2a)]
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Derivation of As: KKT Condition Perturbation Approach

» KKT equations

B, B,
_9Gi(Pg;) € f
0} # XD A+ D S =0
&i Jj=1 =1
vi=1,...
Np Np
(i) Z Pg; = Z Lg;
i=1 i=1
Np
(ii)y D AP =G Vji=1,...
i=1
Np
() > SilPg; — Lal = Dy

i=1

For example,

vi=1,...

» Perturbed KKT equations

B,
o (8C(Pg) 4
(i) <7 dPg; — dX\+ > AjidT;
OPg; \ OPg; ' =
—_— ——
, Np M;
Bf
+> Sjduy =0 Vi=1,..
1=1
Np Np
s Bg (i) D dPg; = dLg,
i=1 i=1
Np
» B (iii) > AjidPg; = d&; Vi=1,...,
i=1
Np Np
(iv) > SidPg; = SyidLg, vi=1,...
i=1 i=1

(i) SN, Py = SN Ly, = o dPy, = 321 dLy,
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Derivation of As: KKT Condition Perturbation Approach

» Perturbed KKT equations in matrix form

M -1y, 17| P

]-K/— 0 0 dA _ [ U1T UzT ] [ dl:d ]

Tf 0 0 ZTS N————— dcs
s ®

» Sensitivity of lagrangian multipliers to estimated capacity limit

oP, | OPg

dPg o | %

dA -1 dLg Ly | e,

== A =>/\p:[/\|_d|l\A ]: d | 9Cs

C, ors | O7s

drs —— L dCs oLy | oc.

dpg P Oms | O

oLy | OC,
. . . O\ %
Finally, A4 is constructed with e, and e,
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Derivation of Ag: Iterative State Estimation Equation

» Gauss-Newton iterative equation for state estimation

d£k+1 _ [G(ﬁk)]—lHT(ﬁk)R—l dzk

Ak+1 o
dé _ [e®) 1,
dVkH vy (%)
i
» Sensitivity of linearized real power estimates to sensor data
BS, ] [ B
dir = Bpg do = Bpg \Ilédz
Bro Bro
» Desired sensitivity matrix
B,
Ag= | Bpg | W,
Bro
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Simulation Setup

e
(‘5 m : Injection sensor @ : Flow sensor
A : Voltage magnitude sensor

Figure : IEEE 14-bus system with a given measurement configuration.

Table : Generator parameters in the IEEE 14-bus system.

[Bus [ PZ(MW) | Ppo<(MW) | 2:(5/MWh) | B:(5/(MW)*h) |
1 0 324 20 0.043
2 0 140 20 0.25
3 0 100 20 001
6 0 100 20 001
3 0 100 40 0.01
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Simulation Results

Using a closed-form LMP sensitivity matrix A = A, - A,

£ -
£
<)
\S:
5 -2

The most vulnerable bus 3

-3

The most impacting measurement § ‘

8 9 10 11 12 12 3 6 7 8 9 10 11 12
Reactive Power Flow Measurement

-4
1 2 3 4 5 6 7

Real Power Flow Measurement

(a) (b)
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Key Observations

O Sensitivity grouping property
» Identical positive or negative sensitivity bus group to data corruption

@ Economically sensitive physical and cyber assets

» Buses with LMP highly sensitive to data corruption.
» Significantly influential sensors on LMP change.

© Impact of different types of sensor data on LMP
» A more significant impact of real power sensor data on LMP sensitivity
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Part |I-B: LMP Sensitivity to Network Topology Error

» Two types of topology error

Line Exclusion/ Bus Split/
Inclusion Merging

M closed [J open
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Part |I-B: LMP Sensitivity to Network Topology Error

» Two types of topology error

Bus Split/
Merging

Line Exclusion/
Inclusion

L -

&)

M closed [J open

» Attack scenario [, Kim et al., 2013]

@

Py Py

CBy Fip Fy1 CB,

(a) Without attack

Py =l

(b) With attack (line exclusion)

[Continuous data sensor] [Discrete data sensor]
4@ Injection sensor

@ Flow sensor

B Circuit breaker sensor (“Closed=0")
O Circuit breaker sensor (“Open=1")
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Topology Data Attack Manipulates LMP

n;iinZCrpi

i€eG
s.t.
Ny Ny
Mza): > Pe, =) La,
n=1 n=1
7(za) : P < pi < P VieG

Ny
m(za) s FM™ <> Hin(za)(Pe, — La,) < ™ VI=1,...,N,
n=1

» Domino effect: z, = H (z.) = {\za), t(za)} = LMP(z,)

LMP(z.) = Aza)1n, — H(Z) | [tax(Za) — Fhin(Za)]
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LMP Sensitivity Analysis to Topology Error

Proposition 1 (A Closed-Form Shadow Price Expression)
The shadow price p; for the congested transmission line /:
ACG. i)
K= 577~
AH/(I’J)
where

AC(j,i) = G — G :Marginal Unit Energy Costs Difference
AH,(i,j) = Hi; — H;j : Distribution Factors Difference
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LMP Sensitivity Analysis to Topology Error (cont'd)

Corollary 2 (A Closed-Form LMP Sensitivity Index to Topology Error)
LMP sensitivity index with respect to the line k status error (k # /):

ALMPF = AC(j, i)v¥
where

.
ALMPf = |ALMPfy, ..., ALMPfy,

V/k _ NHIlfn . Hl,n
TOAHKL)) AHIG))

k k k
V) = [V/,1a Sy VI,Nb]T’

v

» Benefit: less computational time than exhaustive numerical simulations
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LMP Sensitivity Analysis to Topology Error (cont'd)

Corollary 3

(a) v,kn > 0 = decreasing LMP at bus n with topology error
» A quick prediction of post-LMP direction by topology error

(b) ]v,’fn\ > ]v,’fm\ = LMP sensitivity at bus n is higher than at bus m
» A quick comparison of LMP sensitivity magnitude

(c) Increasing AC(j,i) = increasing LMP sensitivity at any bus
» Guidelines for a bidding strategy of generation company
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Simulation Setup

Table : Generator parameters of
the IEEE 14-bus system.

[ Bus T Pmin | Pmax | Marginal Cost |
T | OMW | 330MW 308/MWh
2 oMw 140MW 20$/MWh
3 | OMW | 100MW | 405/MWh
6 oMw 100MW 55%/MWh
8 oMw 100MW 60%/MWh

@ Line 5-6 is congested

LIS o Line 4-5 is excluded due
e : cOngested line 5-6 {.Fopen: line 4-5 exclusion to data COorru ption

Figure : IEEE 14-bus system including
bus-breaker model.
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Topology Errors Significantly Change LMPs

LMP($/MWh)

140

120

[
15)
=]

@
S

60

40

=%~ Without Topology Change
=~ With Topology Change

6 7 8 9 10 11 12 13 14
Bus Location

(a)

LMP Sensitivity($/MWh)

SCED Result
-1or B —>— Analytical Result ||

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bus Location

(b)
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LMP Sensitivities Under the Same Line 5-6 Congestion

6 —
The most impacting =B 1-2 exclusion
line/CBs
5 —©— 1-5 exclusion
al —¥— 2-4 exclusion |
+ 6-12 exclusion
3l ,
oL

/
/)

LMP Sensitivity($/MWh)

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Bus Location

@ The highest sensitivity at bus 6 to line 1-2, 1-5 and 2-4 exclusions

o Line 1-2 exclusion (blue plot) changes sensitivities the most
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Part |l: Remarks

Main Contributions

O New analytical frameworks to study real-time LMP sensitivity
with respect to data corruption

@ Derivation of closed-form LMP sensitivity analysis tools

» economically sensitive buses to data corruption
» influential sensors and transmission lines on LMP change

@ Easily integrated with the existing EMS/MMS
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Conclusions

» Impact of Data Integrity/Quality on Economic Dispatch

Bad/Malicious :> State :> Economic i>
Data Estimation Dispatch

Part | Part 11
» Data Attack on Look-Ahead Dispatch » LMP Sensitivity to Data Corruption

@ A market participant’s perspective @ A system operator’s perspective
@ Feasible ramp-induced data (RID) @ Analytical tools for LMP sensitivity
attack strategy for: quantification with respect to:
» Undetectability » Continuous Data Corruption
» Profitability » Discrete Data Corruption
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The Bigger Picture

Data Quality, Integrity, Privacy-Aware Multi-Scale Decision Making Tool

A A

MMS
{] Current

A H
Transmission : | Research
Level - Data quality
3 : |- Data integrity
EMS (‘I’) Sensor
Y ;

pms | &)
I Future

R ch
- Data quality

[weems | [ sems | [ wems |1 cope
- Data privacy

(‘I)) (‘I’) ((I)) N7

Distribution
Level

DMS: Distribution Management System, ©GEMS: Microgrid Energy Management System
BEMS: Building Energy Management System, HEMS: Home Energy Management System
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Multidisciplinary Approach to Future Work

» A Unified System-Wide Monitoring Tool for Multi-Scale Spatial
Data Quality Analysis

@ & ©

Smart Meter Solar Power Electric Vehicle Energy Storage

@ Design of interface between EMS and DMS
@ Performance index for the impact analysis of distribution data quality
@ Power system engineering, operations research/optimization

» Smart Grid Cyber Security and Privacy
o Data integrity attack modeling and countermeasures
@ Smart meter data privacy-preserving algorithm
o Power system engineering, computer networking, cyber security,
statistical signal processing
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