
   
 

ABSTRACT 
 

Principal Component and Neural Network Calibration of a Microwave Frequency 
Composition Measurement Sensor 

 
Charles Stephen Maule, M.S.E.C.E. 

 
Mentor: Robert J. Marks II, Ph.D.

 
 

Microwave sensors are becoming more prevalent throughout a variety of 

industries.  While providing an effective form of measurement, microwave sensors are 

difficult to calibrate and provide results which can be difficult to interpret. An improved 

method for calibrating microwave sensors has been developed which transforms the 

waveform of a microwave spectrometer using principal component analysis and the 

results are used to train an artificial neural network to analyze a subject material.  

Broadband microwave spectrum calibration (BBMSC) is demonstrated using waveforms 

captured by a microwave spectrometer in a circular waveguide containing pulp stock 

slurry.   

This thesis provides a review of the general applications of microwave sensors, 

details state-of-the-art calibration methods, as well as providing an introduction to 

principal component analysis and neural networks.  The thesis continues by presenting 

the BBMSC method in detail, as well as how this method is applied to a set of waveforms 

of pulp-stock data and concludes with a discussion of the potency of BBMSC and 

recommendations for the future.   
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CHAPTER ONE 
 

Introduction 
 
 
 Increased automation in many industries has led to the need for sensors which 

provide effective and accurate measurement [1].  Microwave sensors provide a non-

destructive and non-invasive method for measuring materials, without any of the health 

hazards that other methods may involve.  These sensors are used for determining the 

dimensions, movement, moisture content and composition of a variety of materials.  As 

microwave sensor components have continued to shrink, microwave sensors have 

become an even more attractive solution.  Microwave sensors are have historically been 

used in determining moisture content but also are highly applicable to variety of 

industries including the forest industry and processing of wood and paper, the chemical 

industry and processing of chemicals and plastics, and the food industry, including 

processing of tobacco, butter and other food products [2].  These microwave sensors are 

used to determine the composition, dielectric, physical and other properties of the various 

materials.

Unfortunately, despite their growing success, microwave sensors “have not 

received the kind of acceptance for composition-measurement applications that, for 

instance, near-infrared instruments have seen” [3].  One reason for this lack of popularity 

of microwave sensors is that the calibration methods required for industrial use of these 

sensors are rigorous.  Calibration requires that great care be taken when measuring the 

product with the sensor and the results are often difficult to interpret.  The very design of 

the sensor often has a greater impact on the resulting waveform than does the makeup of 



2 

the material under measurement.  These difficulties in actual use of microwave sensors 

has led to a number of novel solutions for microwave sensors, as well as a variety of 

calibration methods for those sensors. 

 
Microwave sensors in the Pulp and Paper Industry 

 
In the paper and pulp industry, microwave sensors, for many years, have been an 

attractive, although expensive, method for solving an increasingly difficult problem, the 

determination of pulp-stock consistency [4].  The opportunity exists for the introduction 

of an inline, low-cost microwave sensor and also for a lab-based microwave system that 

can be used to keep sensors of other types calibrated.  Many of these sensors require 

routine recalibration to keep them operating properly.  The recalibration operation 

currently used is both time consuming and expensive. 

The determination of the consistency of the solution has been a difficult 

measurement for decades.  Mechanical shear force sensors have dominated the market 

since the 1910’s.  In recent years, research has begun on electrical methods for 

determining consistency, including optical and γ-ray methods.  Unfortunately both of 

these methods have some serious drawbacks.  For optical sensors, applications are limited 

to conditions that have low consistency values, no mixture of pulp grades, or when 

pigments are not used [5].  Problems with γ-ray sensors include slow response, 

inaccuracy, and that they are limited to applications without pigment.   

The increased need for accurate consistency measurement arises from the 

increased use of recycled fibers.  This has increased the need for accurate measurements 

because mechanical shear force sensors are very sensitive to a number of variables 

including pulp grade, wood species, fiber length distribution, and freeness, which are 
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unknown factors when working with recycled fibers [5].  Another recent problem has 

been an increased use of mineral pigments, which disturb optical and radioactive sensors 

and are ignored by mechanical sensors.  A third reason for the need for accurate 

consistency measurement is the increase in the variety of paper grades being used in the 

paper and pulp industry.  With this increase comes the need to be able to accurately 

measure each grade as mills may require frequent changes from one grade to the next.   

The need for a simple and straightforward calibration method was the motivation 

for this research.  The goal was to achieve a methodology that provided accurate results 

for the microwave sensors and revealed how well the instrument had been calibrated.  

The method presented in the rest of the thesis is a simple and accurate method, which 

requires no expert knowledge of the waveform captured by the sensor. 
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CHAPTER TWO 

Introduction to Microwave Engineering 
 
 

The electromagnetic spectrum is the range of electromagnetic radiation, waves 

with electrical and magnetic components, which are subdivided based upon frequency, 

ranging from DC (zero frequency) to cosmic rays.   Microwaves are a subsection of the 

electromagnetic spectrum, consisting of alternating current signals with frequencies 

between 300 MHz (3 x 108 Hz) and 300 GHz (3 x 1011), with wavelengths ranging 

between λ = 1 m and λ = 1 mm, respectively, as shown in Figure 1 [2].  The IEEE 

standard 100 and IEC standard 60050 modify that definition slightly by starting 

microwave frequencies at 1 GHz.  Microwave frequencies are unique in the spectrum for 

a number of reasons including line-of-sight communications and higher possible 

bandwidth than other RF signals which is ideal for information transfer.  Microwaves are 

also capable of interacting with materials on a molecular, atomic and nuclear level, which 

is ideal for a variety of applications, including remote sensing and medical diagnostics 

and treatment [2].  The latter fundamental property of microwaves is what makes this 

particular portion of the spectrum particularly useful in sensor devices. 

   
Waveguides 

 
Waveguides have been used for the transmission of microwave power since 1936.  

Lord Walter Raleigh proved that electromagnetic transmission was possible within a 

waveguide in 1897.  Unfortunately, he never made an experimental verification of his 

theory, which also included the modes of TE and TM types and the cutoff frequency.  
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Waveguides come in a variety of sizes and shapes: rectangular, circular, coaxial lines, as 

well as several planar forms such as stripline, microstrip, slotline, and coplanar 

waveguides.  Typically waveguides are used for transferring power or transmitting 

communication signals.  However, while this is their primary application, waveguides 

can also be exploited by examining the attenuation and distortion characteristics for 

frequencies below the cutoff frequency and through the passband region of the 

waveguide [3].   

 

 

Fig. 1: The electromagnetic spectrum [6].  Microwaves are defined as electromagnetic waves with 
frequencies ranging form 300MHz to 300GHz. 
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The scenario considered here can be modeled as a waveguide filled with a lossy 

dielectric material.  The propagation constant of a circular waveguide for the TEnm mode 

is given by 

2 2
2 2 2nm nm

z
p pk k j
a a

ω με ω με
′ ′⎛ ⎞ ⎛ ⎞′ ′′= − = − −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

where ω is the radian frequency, ε ′  and ε ′′  are the real and imaginary parts of the 

complex permittivity, µ is the magnetic permeability, and a is the radius of the 

waveguide.  Several values for nmp  for the first few TE and TM modes are shown in 

tables 1 and 2.  For a lossy dielectric, the real part of nmβ , which is the phase constant of 

the microwave, will never go to zero, thus the cutoff frequency for the waveguide is not 

realized.  The imaginary part of nmβ is the attenuation constant for the propagating 

microwave.  A dramatic decrease in the amplitude of the signal below a certain frequency 

still reveals the cutoff frequency (see Fig. 3).   

 

 

Fig. 2: An example of the geometry of a circular waveguide [6]. 
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Fig. 3: A log-magnitude plot of a waveform captured from a circular waveguide.  Notice the attenuation 
below the 40th frequency index (the cutoff frequency for this chamber), where the microwave does not 
propagate. 

 
 

The prepared samples were contained within a circular pipe measuring approximately 

7.62 cm in diameter by 30.38 cm in length.  This piping acts as a circular waveguide, for  

transmitting the microwaves, which are distorted based upon the electrical properties of 

the slurry solution.  Based upon the dimensions of the waveguide, the cutoff frequencies 

of the various modes can be determined using the permittivity of the material filling the 

chamber (here, mostly water) and the roots of the Bessel functions.  For the TE11 with 

water with dielectric constant 76, the cutoff frequency would be around 265 MHz.  An 

example of log magnitude of the waveform collected by the microwave spectrometer, is 

revealing the cutoff frequencies for several modes, is shown in Fig. 3.  Circular 

waveguides, which are made up of a single conductor are only able to support TE and 

TM modes.  The first few modes for both TE and TM modes of the device follow in 
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Tables 1 and 2 and Table 3 contains the first 10 cutoff frequencies for the waveguide and 

their mode.  Table 3 contains the cutoff frequencies and modes of the first 10 cutoff 

frequencies of the circular waveguide.  For TE modes, the cutoff frequency can be 

determined using: 

2 2 2
nm nm

c
r

p p ckf c
a aπ με π με π ε
′ ′

= = = . 

For TM modes, the cutoff frequency can be determined using: 

2 2 2
nm nm

c
r

p p ckf c
a aπ με π με π ε

= = = . 

 
 

Table 1: Values of nmp′  for TE Modes of a Circular Waveguide [6]. 

n 1np′  2np′  3np′  

0 3.832 7.016 10.174 
1 1.841 5.331 8.536 
2 3.054 6.706 9.970 

 
Table 2: Values of nmp  for TM Modes of a Circular Waveguide [6]. 

n 1np′  2np′  3np′  

0 2.405 5.520 8.654 
1 3.832 7.016 10.174 
2 5.135 8.417 11.620 
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Table 3: Cutoff Frequencies for a circular waveguide with radius 3.81cm (a = .0381) and filled with water 
with dielectric constant 76. 

Mode Cutoff Frequency (MHz)

TE11 264.5 
TM01 345.7 
TE21 439.0 
TE01 550.9 
TM11 550.9 
TE31 603.9 
TM21 738.2 
TE41 764.2 
TE12 766.3 
TM02 793.5 
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Fig. 4: Cutoff frequencies for the circular waveguide with radius of 3.81cm (adapted from [6]).  
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CHAPTER THREE 

Microwave Sensors and Calibration 
 
 

Composition determination is a typical application for microwave sensors.  In 

these applications, the sensor is used to determine the relative concentration of the known 

contents of a solution based upon changes in the permittivity [3].  In theory, a microwave 

sensor is used to determine the permittivity of the material but, in practice, the 

permittivity is neither computed or a desired result of the measurement.  The calibration 

of microwave sensors is often done using something more that is more easily determined, 

such as the amplitude or phase of the waveform at one or multiple frequencies [3].   

A variety of methods for calibrating microwave sensors exist.  The direct 

approach works well for simple situations, where the electrical properties of the material 

are known.  Another method involves determining the lumped-element equivalent of the 

sensor.  Once this is known, the theoretical output of the sensor is compared with the 

measured output and corrections are made to the sensor.  This method produces accurate 

results; unfortunately it is also a complex, time-consuming and expensive process.  

An earlier method for increasing efficiency by decreasing data dimensionality 

when determining consistency can be found in [3].  This method exploits the changing 

properties of the waveform, such as attenuation and distortion, above and below the 

cutoff frequency of the waveguide chamber.  Microwave spectral data from selected 

regions of the waveform are reduced to line segments.  The captured waveform is 

visually inspected for regions where significant shift occurs.  These shifts ideally 

correspond with known changes in the properties of the substance.  The selected regions 
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are then reduced to line segments (slopes and offsets) for characterization.  The slope and 

offset parameters are determined by fitting a best-fit (least squares) line segment to 

specific regions of the waveform, including the region below the cutoff frequency and 

several regions within the passband of the circular waveguide [3].  These parameters are 

simple to determine and provide useful information about the shape of the waveform.   

 

 

Fig. 5: A visually selected region of a microwave spectrometry waveform.  Such regions are selected for 
the variation in the signals, which ideally corresponds with a known change in the properties of the solution 
[7]. 
 
 

In theory, the frequency response of a material’s permittivity is a relatively 

smooth curve, and various regions of the response characteristic of the waveguide will be 

indicative of such smooth changes.  However, like the waveform shown in Fig. 3, a 

variety of practical issues, such as impedance mismatch of cables, coupling loops and 

connectors, unintended resonances and errors in the electronic measurement devices, 

interfere with the signal to produce the more chaotic curve.  Thus it would seem that the 

desired information is stored in the general curve of the signal.  The line segments 
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provide a general shape for the curve and thus also contain the information inherent in the 

waveform.  An algorithm was also developed to attempt to fit the waveform data to an 

ideal curve, as an alternative to simple line-segments, but this proved to be a problem for 

the limited processing power of the equipment used.  The strength of this line segment 

method over the curve fitting algorithm is in the speed at which the line segments are 

determined, as well as providing more efficient data capture and processing.  

 

0 100 200 300 400 500
-60

-50

-40

-30

-20

-10

0

10

Frequency Index Number  

Fig. 6:  A sample waveform from the microwave spectrometer, with 512 frequency indices.  Data was 
collected from a circular waveguide, as shown by signal increases in magnitude at the cutoff frequency, 
around the 25th frequency index.  Also note the frequency response is not a smooth curve. 

 
 

The line-segment method is demonstrated in a variety of scenarios including 

determining the temperature of tap water, predicting the amount of fat, protein and water 

in ground meat, and predicting the percentage of diphenyl oxide in a solution.  One thing 

that these examples reveal is that in samples where water is a significant percentage, it is 
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often necessary to determine the temperature of the solution, due to the changing 

dielectric properties of water with temperature.  A final example of the line-segment 

method is the determination of consistency and conductivity of pulp-stock mixture.  This 

example shows that the sensor was able to accurately determine the consistency of the 

solution, when the conductivity was known.  This phenomenon requires that the 

determination of consistency be a two-step calibration process, but produces good results. 

 

 

Fig. 7: Frequency response of tap water [3].  This figure shows the type of waveform that is captured by a 
microwave spectrometer and the line segments used by Jean[3] to characterize the waveform as it changes 
with water temperature. 

 
 

While the line-segment calibration method provided efficient data capture and 

data processing, it also has several drawbacks.  This method requires that the waveform 

be inspected for specific regions for variation due to the changing properties of the 

solution.  This requires a personal judgment call about what sections appeared most 

varied and also discards regions of the waveform.  By discarding sections of the 

waveform, useful information may also be discarded.  Another problem with this method 

is that it is possible for no specific region of the waveform to exhibit clear variations that 

correlated with the change in the material’s properties.   
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Another solution to the on the pulp-stock problem makes use of neural network 

for determining the pertinent information from the waveform [7].  Rather than reducing 

the complexity of the waveform through line-fitting techniques, Green, et al. introduce a 

neural network, a mathematical structure which is efficient at determining complex 

patterns in data sets.  The first 100 frequency points are used as inputs for the neural 

network.  This contrasts with the line-segment method in that there are no selected 

regions used in determination, but that the whole waveform is used as information to 

inform the neural network.  Two separate networks determine the solution’s 

characteristics: one neural network to determine the conductivity and the other to 

determine the consistency.  The two networks use the same waveform as the input and 

also have the same architecture, using three hidden layers, with 101, 10 and 2 nodes in 

the three hidden layers, with logistic functions for the hidden layers and a linear function 

for the final output layer.  They achieve excellent and accurate results with both of their 

neural networks, improving significantly on Jean’s line segment technique.   

The method presented by [7] improves on the line-segment method in several 

ways.  By using the entire waveform as an input to the neural network, there is no need 

for a judgment call about which portions of the waveform appear to exhibit variations 

based upon changing properties.  The neural network also is capable of determining 

complex patterns from large data sets and thus should extract a pattern between the 

changing waveform and the properties of the pulp-stock solution.  Another advantage of 

the neural network approach is that this method is able to determine the consistency of 

the solution without prior knowledge of the conductivity, which was a limitation for the 

line-segment approach. 
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Broadband microwave spectrometry attempts to retain the strengths of the line-

segment and the neural network approach.  The line-segment method provides efficient 

data capture and data analysis by reducing the waveform to a few simple line segments 

and is able to produce accurate results for both consistency and conductivity, albeit in a 

two-step process.  A reduced portion of the original waveform is used without line-fitting 

by [7], but includes the use of a neural network to extract the useful information from the 

signal.  The goal of BBMSC is to provide the efficiency of the line-segment approach, 

while combining the pattern recognition abilities of a neural network to extract the 

important parts of the waveform.  Another goal is to achieve those results in a straight-

forward and simple manner in order to provide an efficient calibration method for 

microwave sensors.  The next chapter details the methods used to achieve that efficiency 

and how BBMSC incorporates the neural network.   



16 

CHAPTER FOUR 

Principal Component Analysis and Artificial Neural Networks 
 
 

Principal Component Analysis 
 
 Broadband microwave spectrometry calibration is the improved method for 

microwave sensor calibration.  This section details the most important parts of the 

technique, principal component analysis and artificial neural networks, and explains how 

they function and the strengths of these analysis methods. 

Principal component analysis (PCA) is a statistical analysis technique which 

reduces the complexity of a multi-dimensional data set to fewer dimensions, while 

retaining the most important information [8].  PCA involves the computation of the 

eigenvalue decomposition, or the singular value decomposition, after mean centering the 

data for each attribute.  A key feature of PCA algorithms is that the user is able to specify 

the amount of information that is retained: to be more efficient by retaining less 

information or less efficient to retain as much information as possible.  PCA retains the 

aspects of the data set that contribute most to the variance, which is ideally the most 

important part of the data set.  In doing so the amount of redundant information in the 

signal is reduced as well as reducing the dimensions of the data set significantly.  

 More specifically, PCA is an orthogonal linear transformation which transfers the 

data to a new coordinate system.  In doing so, the greatest variance in the data is placed 

on the first coordinate (also called the first principal component), the second greatest 

variance is placed on the second coordinate, etc.  In least square terms, PCA is the 
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optimum transform for a data set.  PCA is also considered an excellent tool in pattern 

recognition.

PCA is used extensively in feature reduction problems and in analyzing multi-

dimensional data sets.  Lam et al. have shown PCA to be the most effective of four 

feature reduction methods available for text characterization, and make use of both PCA 

and neural networks in their comparisons [8].    PCA and neural networks are also used in 

conjunction in a variety of situations including online fuel tracking and classification of 

fuzzy data [10][11].   

Additionally, PCA has been used in a variety of microwave sensing applications.  

Applications include the determination of food properties such as water content, the 

amount of water added to food products and the percentages of constituents [12].  PCA 

has also been used as an optimization tool when collecting data over large frequency 

regions and with cheaper and less accurate equipment [13].  Development of a low-cost 

composition measurement microwave instrument using a set of discrete frequencies has 

also been reported, which uses PCA in reducing the spectra captured by the device [14]. 

 
Artificial Neural Networks 

Artificial neural networks are the second significant component of the BBMSC 

technique.  Artificial neural networks were inspired by the biological central nervous 

system and the manner in which neurons function.  An artificial neural network is  

an interconnected group of artificial neurons that uses a mathematical or 
computational model for information processing based on a connectionist 
approach to computation. . . In more practical terms neural networks are non-
linear statistical data modeling or decision making tools. They can be used to 
model complex relationships between inputs and outputs or to find patterns in 
data. [15].   
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Fig. 8: An example of a biological neuron (a) which collects information from nearby neurons, the cell 
body which processes the information, and the axon which transmits the signal to other neurons; An 
artificial neuron model (b), which parallels the design of a biological neuron [16].  
 
 

Layered perceptron neural networks are made up of a series of layers, typically 

three or more [17].  The input layer is the input data for the network and is typically not 

included when counting the number of layers within the network.  The output layer is the 

output data from the network.  Between the input and output layer are the hidden layers.  

The number of hidden layers varies based upon the application for which the network is 

being trained.  Fewer hidden layers results in reduced training times, but may also limit 

the ability of the network to replicate the desired function.  Each hidden layer is made up 

of an arbitrary number of nodes.  The output of a node is dependant upon the information 

received from other nodes and the weight associated by the connection to those nodes.  
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The weighted information is then passed to the next layer of nodes, and so on, until it 

reaches the output layer.  A single node is capable of generating only a scalar output, but 

many nodes in combination are capable of generating complex and non-linear functions. 

 

 

Fig. 9: A layered feed-forward artificial neural network.  Includes input layers, one or more hidden layers 
(H1) and an output layer [16]. 

 
 

There are several learning paradigms associated with neural network training: 

supervised learning, unsupervised learning and reinforcement learning.  For this 

application, supervised learning was most appropriate.  In a supervised learning situation, 

data is presented to the network in an effort to determine a relationship between the 

inputs and outputs.  The desire with this form of learning is to minimize the amount of 

error between the network mapping and the data.  Typically a mean-squared error is used 

to minimize the average error between the neural network output and the target data.  

This form of learning is typically used for pattern recognition and regression (or function 

approximation) [15]. 
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To achieve the best results, the network generates an arbitrary weight and 

connection for each node in the hidden layers of the network.  The network is trained by 

varying the weights and the connections between nodes, through a series of iterations, 

until the network is able to achieve more accurate results.  These results are determined 

by comparing the neural network outputs with the target values.  The longer the network 

trains, the more accurate the results for the training data.  The network can also be 

exposed to test data.  The test data is not used to change the weights and connections of 

the network but allows the user to observe the error margins for a second set of data.  The 

test data, if it is similar to the training data, should also experience diminishing error 

values between the target values and the neural network outputs.  Extended training times 

can lead the network to reproduce the function of the training data too closely and thus 

produce less accurate results for the test data.  Ideally the network architecture, both 

weights and connections, should be retained when the training data has achieved 

acceptable results and before overexposure to the training data.   

The number of hidden layers and nodes in each layer requires some 

experimentation [18].  With too few layers and nodes, the network may have trouble 

approximating the desired function, while with too many parameters the ANN may 

perform well on the training set and still generate errors on other sets of data.  This 

reinforces the need to test the network with both testing and validation data.  Testing data 

provides a glimpse of how the network will perform on other data and the verification 

data, which is used after an architecture has been determined, shows the actual 

performance of the network on new data.  This process of using information that the 
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network has not seen before is known as cross validation and is a standard test technique 

for evaluating a network’s performance [16]. 

In this situation, the data available included both the input (the waveform 

captured by the microwave spectrometer) and the desired outputs (the conductivity and 

the consistency of the material inside the waveguide).  The goal was also to determine an 

accurate mapping between the input data and the output data, which became a pattern 

recognition problem, making the problem ideal for a supervised learning situation.   

The strength of neural networks lies in their ability to infer a complex and non-

linear functions based on a set of observations.  More specifically, a neural networks’ 

ability for feature recognition has laid the ground work for their introduction as tools in 

the detection of dielectric objects or determining dielectric properties of an object [19].  

Neural networks have also been proposed as tools to determine sample properties in the 

papermaking industry by classifying samples more quickly than by standard methods 

[20].  Instrument response time is an important factor in improving efficiency.   

ANNs have also been used in several microwave applications.  ANNs are being 

used in computer-aided design (CAD) programs for modeling passive and active 

microwave components as well as microwave circuit designs [21].  They are being used 

to simulate a variety of different microwave components based upon measured values.  

Neural networks are also being used for simulation and optimization of a variety of 

different structures, because they are more efficient and accurate than other models, allow 

for more dimensions than traditional lookup tables and are easy to develop for new 

technologies.  ANNs are being used in vector network analysis (VNA) [22], as well as to 

model several calibrations and to determine the permittivity of liquids and the moisture 
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content of wheat.  Neural networks provide several advantages over other methods, 

which include numerical modeling, analytical methods and empirical modeling [23].  

Neural networks provide quicker results, are easier to develop and are only limited by the 

data provided to them. 

 
QwikNet 

 
QwikNet, a commercial software package for artificial neural network 

development, was used to generate and test the neural network for this thesis [16].  

QwikNet implements a feed-forward multi-layer perceptron, meaning data is passed 

forward through the network from the inputs to the outputs. QwikNet allows for the 

specification of up to 5 hidden layers, with several options on the layer’s activation 

function: logistic, tanh, linear and Gaussian.  Each layer has an arbitrary number of 

nodes, which can be specified by the user.  Associated with each node is a weight, which 

can be positive or negative, and varies through the training process to determine what set 

of weights which produces the lowest RMS error between the output data and the target 

data.  When an ideal set of weights is determined (a set where the training and testing 

average RMS error is minimized), the set of weights can be saved for future use.  A 

number of other options are available to the user as well to further customize the neural 

network, including the training algorithm, weight minimum and maximum, stopping 

criteria for training and training properties.   
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Fig. 10: A screenshot of the QwikNet neural network software [16]. 
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CHAPTER FIVE 

Broadband Microwave Spectrometry Calibration 
 
 

Data used to illustrate neural network microwave sensor calibration are from 

prepared samples of pulp stock typically used in paper production.  Samples were 

prepared at several discrete values across a range of consistencies and conductivities and 

spectrometry measurements were obtained using a prototype lab-based microwave 

sensor.  The microwave signal is transmitted to the pulp sample by coupling loops 

arranged on one side of the chamber, mounted in ceramic dielectric seals, and spaced 

about 10 cm apart.  Data consists of samples of the log magnitude spectrum from the 

microwave sensor at 512 frequencies indices.  The temperature of each data sample was 

also recorded at the time of microwave sensor reading.  While the log magnitude is 

recorded for 512 frequencies, only the first 150 samples are used for calibration due to a 

decrease in the signal to noise ratio beyond the 150th frequency index. 

The microwave signal is produced by ultra wideband pulses having an effective 

bandwidth of approximately 850 MHz and a pulse repetition of approximately 4 MHz.  

The dispersed output pulses are sampled with an extended time-sampling system and 

Fourier transformed to produce the output spectra. 

 
Data Processing 

The microwave sensor waveforms are stored in a proprietary format, which 

requires that they be exported to Excel and, from there, read into MATLAB, where they 

are stored in an m-file for further manipulation.  MATLAB is a high-level language 
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development environment that is capable of executing computationally intensive tasks 

more efficiently than other languages, such as C or C++ [24].  Further manipulation of 

the data was done using algorithms developed for repeated use in MATLAB.   
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Fig. 11: An example of the information used to train the network.  The first 150 frequency indices of a 
microwave spectrometry data for a solution with conductivity of 700 µS/cm and consistency of 1.25%, at 
22.817°C. 

 
 

The microwave data are stored in an array, where each column is a single 

captured waveform and each row contains a frequency index for all of the captured 

waveforms.  The original array was 150 x 2170, with 150 frequency index points and 

2170 total waveforms.  The PCA algorithm is then used to reduce the data set, from the 

first 150 frequency indices down to the first 11 principal components (see Appendix A 

for the algorithm used and Appendix B for the MATLAB implementation of that 

algorithm).  The PCA algorithm was specified to retain 99% of the information, while 
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also reducing the number of index points per observation by 92.67%.  The 11 principal 

components, along with the temperature of the solution when the waveform was 

captured, are the inputs to the neural network.   

In order to format the information for the neural network, another MATLAB 

algorithm was developed for quick and efficient creation of the input files for QwikNet 

(see Appendix C).  This segment of code parses the data into the neural network inputs 

(the microwave spectra) and target information (the known consistency and conductivity 

values of that waveform).  It also produces three separate files, which are used for the 

training, testing and validation of the neural network.  The necessity for three separate 

files was already discussed in Chapter 4.  The QwikNet file creation algorithm also 

ensures that each document contains all possible combinations of consistency and 

conductivity values, in order to guarantee that the neural network is exposed to the full 

spectrum of input principal components in each phase of the training process.  The 

training file contains the 1st, 4th, 7th, etc. sensor observations, the testing file contain the 

2nd, 5th, 8th, etc. observations and the verification file contains the 3rd, 6th, 9th, etc. 

observations from each set of consistency and conductivity pairings.  The separation of 

observations in a non-sequential fashion is done in order to provide a wide range of 

possible temperature values for each document, in the case that the waveforms were 

captured consecutively.  By separating waveforms with similar temperature into each of 

the three files, the neural network is exposed to a greater range of temperature values in 

training and results in more accurate results in the verification process.     
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Neural Network Training 
 

The neural network training process involved experimenting with the architecture 

of the neural network.  Each architecture was replicated in several windows of QwikNet.  

The QwikNet software provides the average RMS error, the maximum RMS error, the 

maximum error, the number of correct outputs and the percent of outputs that are correct 

for each epoch (an epoch is a single pass through the training information).  The best set 

of weights and connections from each ANN structure was selected by comparing the 

average RMS and max RMS at the 10,000th epoch across a variety of structures.  After 

extensive experimentation, a structure emerged as most accurate.  Once this structure was 

determined, it was replicated in several instances of QwikNet for further training.  Small 

variations in the training weights led to some neural network weights providing better 

results.  The best results at each step were kept and trained further.  This series of 

iterations led to the final network weights and connections.    

The final architecture for the ANN contains three hidden layers with 22, 15, and 8 

nodes respectively.  The activation function for the hidden layers and the output layer is 

logistic.  The range of weights is from -200 to 200.  The network was allowed to train for 

up to 100,000 epochs for best results.  The QuickProp training algorithm was used 

throughout the training process (for further information on QuickProp, see [17]).  

Cross validation of the neural network is completed by examining the correlation 

of the target data with the neural network outputs.  Cross validation uses the third set of 

data to determine how the network would perform on new data.  This requires that the 

saved neural network makes estimates about the solution properties based only on the 

new input waveforms.  In order to export the neural network estimates, a new QwikNet 
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neural network is created and loaded with the previously determined weights and with the 

unexposed third data set. The neural network produces a document with the target values 

and the neural network estimates for the third data set.  A MATLAB algorithm was 

developed to compare these two values and determine how successful the ANN was in 

actually determining the conductivity and consistency from the spectral data.  The next 

chapter evaluates the performance of the selected network by comparing the target values 

and the neural network outputs.   
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CHAPTER SIX 

Results and Discussion 
 
 

The results of the cross validation of the network appear in Figs. 11 and 12.  

Linear regression analysis on the output of the neural network for conductivity has an 

adjusted R-squared of .9957 with a standard deviation of 17.51 (span of the conductivity 

is 100 to 1000 µS).  Linear regression analysis on the output of the neural network for 

consistency has an adjusted R-squared of .8944 with a standard deviation of .0750% 

(span of consistency is 0.00% to 1.25%). 
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Fig. 12: Plot of the target data vs. neural network conductivity output. 
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The network gives excellent results on conductivity data.  It is able to accurately 

determine the conductivity of the solution across the entire range of inputs.  Minimal 

variation in the predicted-versus-known plot also indicates the network was accurate and 

indicates that the microwave sensor is well-calibrated.  The results here are similar to 

those achieved by Green, et al. when using separate networks for determining 

conductivity and consistency.  Results are also an improvement on the line-segment 

method detailed by [3].       
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Fig. 13: Plot of the target data vs. neural network consistency output. 

 
 
The results for consistency do not show an improvement over the method used in 

[7].  The lack of improvement indicates that combining the determination of consistency 

and conductivity into a single network results in less accurate outputs than when using a 

single network, or perhaps that no patterns became apparent to the network in the training 
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process.  However, after training the network it became known that the data used to test 

the network contained samples which had been incorrectly prepared or presented to the 

instrument.  Low consistency samples appear to have contained more paper pulp and high 

consistency samples contained less paper pulp.  If so, then the network had been trained 

using data with incorrect target values.  While it would seem that this would render the 

results invalid, it is interesting to note the output of the network with regards to 

consistency.  The neural network has difficulty accurately predicting any of the 

consistency values.  This shift shows that the network indicates that the network had 

trouble determining any patterns in the data set and thus is returning incorrect values.  

Due to the problems with the network recognizing patterns and returning accurate 

predicted values, a new set of data should be captured, that is carefully prepared and 

presented, in order to train an accurate network. 

An interesting property of BBMSC is that this method presents an opportunity to 

determine whether inputs other than the captured microwave spectra represent an 

independent variable.  In the process of training the neural network, an important 

question arose about whether the temperature of the sample was a necessary input or 

whether the information contained in the temperature was already contained within the 

principal components.  In order to examine this, a series of plots were generated.  For 

each plot, 2 of the 11 principal components were plotted against one another, while 

sorting (coloring) each point based upon temperature.  The results showed that many of 

the plots showed strong patterns dependent on temperature (see Figs. 13 and 14).  Where 
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Temp < 17.08
17.08 < Temp < 18.9
18.9 < Temp < 20.72
20.72 < Temp < 22.54
22.54 < Temp < 24.36
Temp > 24.36

 
Fig 13: Example of how temperature affects microwave spectrometry data, which in turn affects principal 
components.  Figures are of 2 of the 11 PCA values plotted on x- and y-axes.  Each color represents a range 
of temperatures, from the warmest (red, ~26 °C) to the coolest (black, ~15 °C).   
 
 
plotting any number of the pairs from the first 150 frequency indices, plotting all of the 

possible combinations of the 11 principal components resulted in only 55 separate plots.  

Thus by examining these plots and the general pattern of patterns dependant on 

temperature, it is possible to determine that temperature was acting as an independent 

variable and thus was a necessary inclusion in the neural network training process.  

Similarly, due to the reduction properties of PCA, it is possible that this could also be 
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used to determine the independence of other measured values when attempting to 

calibrate microwave sensors. 
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Temp < 17.08
17.08 < Temp < 18.9
18.9 < Temp < 20.72
20.72 < Temp < 22.54
22.54 < Temp < 24.36
Temp > 24.36

 
Fig 14: Example of how temperature affects microwave spectrometry data, which in turn affects principal 
components.  Figures are of 2 of the 11 PCA values plotted on x- and y-axes.  Each color represents a range 
of temperatures, from the warmest (red, ~26 °C) to the coolest (black, ~15 °C).   
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CHAPTER SEVEN 
 

Conclusion 
 
 

Microwave spectrometry has been shown to be a powerful tool for determining 

the properties of a subject material.  Microwave sensors often produce vast sets of data, 

which require processing and interpretation of less than obvious trends to produce 

meaningful information.  Principal component analysis is a powerful tool for minimizing 

the complexity of a data set and retaining information, while artificial neural networks are 

able to determine non-obvious and non-linear relationships within a data set.  By using 

principal component analysis as a preprocessing step, the dimensionality of the data can 

be significantly reduced.  This reduction allows for simpler processing including shorter 

training times for the neural network development process.  The use of a neural network 

eliminates the need for expert knowledge of the waveform or the medium, by being able 

to examine the errors between target values and neural network outputs.  As shown in the 

previous examples, both well- and poorly-calibrated data can be used to inform the 

network.  The output of the network reveals where further calibration is required, simply 

by plotting the mean and standard error of the solution properties.  The introduction of 

PCA also simplifies the process of determining the independence of other properties of 

the solution to the microwave spectrum data and whether their addition as neural network 

inputs is valid. 

BBMSC achieves results which are comparable to earlier methods for 

determination of conductivity.  It has yet to be tested on well-calibrated consistency data.  

However, it appears that BBMSC is capable of replicating any incorrect measurements or 
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poorly calibrated samples, thus revealing where further calibration is required.  It also 

achieves a straight-forward approach for calibrating a microwave sensor.  Instead of 

reducing select regions of the waveform to a characterization values, PCA is capable of 

reducing a large portion of the waveform to a few principal components, while retaining 

nearly all of the important information.  Furthermore, BBMSC is also capable of 

retaining more information from the microwave spectral data as input to the ANN (150 

frequency indices compared with 100 indices used by [7]), due to the reduction of PCA, 

while also reducing the training time required for the network to achieve accurate results.  

BBMSC also further simplifies the development process by using a single neural 

network.   

Further development of BBMSC would include repeat testing with a new set of 

carefully prepared consistency samples.  By implementing the neural network in 

MATLAB, the BBMSC process could be streamlined, by eliminating the need to 

generate the separate training, testing and validation files, as well as streamlining the 

validation process.  Another test of BBMSC might include testing the process on other 

solutions or a wider range of target values.  For more accurate results, it would be 

possible to develop separate networks for determining each property of future solutions 

as well, such as separate networks for the prediction of consistency and conductivity. 
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APPENDIX A 

Principal Component Algorithm 
 
 

Before beginning the data should be in column form, where a single observation 

of the microwave spectra is in each column, and the log magnitude of the signals at a 

specific frequency index is stored in each row.  For example, with 100 observations and 

150 frequency indices, the data should be formatted with 150 rows and 100 columns.

 

Determine the empirical mean at each point in the observation.   

[ ] [ ]
1

1 N

n
u m X m,n

N =

= ∑  

The data is normalized by the empirical mean: 

B X u h= − ⋅  

where h is a 1x150 row rector of ones: 

 [ ] 1h n =   for n = 1, 2,… N 

The covariance matrix is produced by taking the outer product of B with itself. 

1C B B
N

∗= ⋅  

The matrix of eigenvectors and eigenvalues are then computed: 

 1V CV D− =  

D is an MxM diagonal matrix where  

 [ ] mD p,q = λ   for p = q = m  

is the mth eigenvalue of the covariance matrix C, and 
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 [ ] 0D p,q =   for p ≠ q. 

The matrix V contains eigenvalues that are paired with the eigenvectors in matrix D.  The 

values in V are sorted in descending order, from greatest to least, while maintaining the 

pairing between V and C.  In order to determine the most important dimensions of the 

data, the energy of the eigenvalues are summed to determine the total energy of the data.  

Some percentage of the energy is then kept, based upon the desired amount of 

information retention.  Typical cutoff percentages are 90% or higher (a value of 99% was 

used).  After determining the amount of energy desired to be retained, a subset of the 

eigenvectors, W, is selected as the new basis vectors, where   

 [ ] [ ]W p,q V p,q=  for p = 1…M,  q = 1…L 

Create an M x 1 standard deviation vector S from the square root of each element along 

the diagonal of the covariance matrix C: 

 [ ]s C p,q=   for p = q = m = 1…M 

Calculate the M x N z-score matrix. 

 BZ
s h

=
⋅

  (divide element by element) 

Finally project the z-scores of the data onto the new basis set to produce the new lower-

dimension data. 

 Y W Z∗= ⋅  

where Y is the new data. 
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APPENDIX B 

MATLAB Implementation of the PCA Algorithm 
 
 

% u is a column vector with the mean of X 
u = mean(X,2); 
size(u) 
  
h = ones(1,N); 
B = X - u*h; 
size(B) 
  
C = 1/N * (B*B'); 
  
[V D] = eig(C); 
% largest eigenvalues are last in the V matrix 
for j = 1:size(D,1) 
    for i = 1:size(D,2) 
        Ddot(i,j) = D(end+1-i,end+1-j); 
        Vdot(i,j) = V(end+1-i,end+1-j); 
    end 
end 
V = Vdot; 
D = Ddot; 
  
% save the first L columns of V in new matrix W 
% choose L based upon energy G (say 99% of G) 
for m = 1:M 
    G(m) = D(m,m); 
end 
energy = sum(G) % = 12801 
  
L = 1; 
while (sum(G(1:L)/energy)) < .99 
    L = L+1; 
end 
 
W = V(:,1:L); 
  
% these steps are not necessary 
% but are intended to normalize data with respect to its variance 
for i = 1:M 
    s(i) = sqrt(C(i,i)); 
end 
s = s'; 
  
Z = B./(s*h); 
  
Y = W' * Z; 
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APPENDIX C 

MATLAB Code for Writing the QwikNet Inputs 
 
 

% write to text for qwiknet to process
 
  
load('pulp_stock_freq.mat') 
  
% writes the training file 
fid = fopen('pulpstock_freq.trn','w'); 
fprintf(fid,'[inputs] %3.0f\r',size(Y,1)+1); 
fprintf(fid,'[outputs] 2\r\r'); 
  
start = 1; 
stop = size(Y,1); % 5 
count = 0; 
  
  
%%%%%%%%%%%%%%%% 100uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq100us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 100',temp(j+count)); 
end 
count = count+size(freq100us000Cs,2); 
  
for j=1:3:size(freq100us040Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  040 100',freq100us040Cs(1,j)); 
end 
count = count+size(freq100us040Cs,2); 
  
for j=1:3:size(freq100us085Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  085 100',freq100us085Cs(1,j)); 
end 
count = count+size(freq100us085Cs,2); 
  
for j=1:3:size(freq100us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
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        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 100',freq100us125Cs(1,j)); 
end 
count = count+size(freq100us125Cs,2); 
  
%%%%%%%%%%%%%%%% 200uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq200us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 200',freq200us000Cs(1,j)); 
  
end 
count = count+size(freq200us000Cs,2); 
  
for j=1:3:size(freq200us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 200',freq200us125Cs(1,j)); 
end 
count = count+size(freq200us125Cs,2); 
  
%%%%%%%%%%%%%%%% 300uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq300us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 300',freq300us000Cs(1,j)); 
end 
count = count+size(freq300us000Cs,2); 
  
for j=1:3:size(freq300us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 300',freq300us125Cs(1,j)); 
end 
count = count+size(freq300us125Cs,2); 
  
%%%%%%%%%%%%%%%% 367uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq367us085Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  085 367',freq367us085Cs(1,j)); 
end 
count = count+size(freq367us085Cs,2); 
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%%%%%%%%%%%%%%%% 400uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq400us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 400',freq400us000Cs(1,j)); 
end 
count = count+size(freq400us000Cs,2); 
  
for j=1:3:size(freq400us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 400',freq400us125Cs(1,j)); 
end 
count = count+size(freq400us125Cs,2); 
  
%%%%%%%%%%%%%%%% 500uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq500us000Cs,2) 
    fprintf(fid,'\r');     
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 500',freq500us000Cs(1,j)); 
end 
count = count+size(freq500us000Cs,2); 
  
for j=1:3:size(freq500us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 500',freq500us125Cs(1,j)); 
end 
count = count+size(freq500us125Cs,2); 
  
%%%%%%%%%%%%%%%% 600uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq600us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 600',freq600us000Cs(1,j)); 
end 
count = count+size(freq600us000Cs,2); 
  
for j=1:3:size(freq600us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 600',freq600us125Cs(1,j)); 
end 
count = count+size(freq600us125Cs,2); 
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%%%%%%%%%%%%%%%% 700uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq700us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 700',freq700us000Cs(1,j)); 
end 
count = count+size(freq700us000Cs,2); 
  
for j=1:3:size(freq700us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 700',freq700us125Cs(1,j)); 
end 
count = count+size(freq700us125Cs,2); 
  
  
%%%%%%%%%%%%%%%% 800uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq800us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 800',freq800us000Cs(1,j)); 
end 
count = count+size(freq800us000Cs,2); 
  
for j=1:3:size(freq800us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 800',freq800us125Cs(1,j)); 
end 
count = count+size(freq800us125Cs,2); 
  
%%%%%%%%%%%%%%%% 900uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq900us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 900',freq900us000Cs(1,j)); 
end 
count = count+size(freq900us000Cs,2); 
  
for j=1:3:size(freq900us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 900',freq900us125Cs(1,j)); 
end 
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count = count+size(freq900us125Cs,2); 
  
%%%%%%%%%%%%%%%% 1000uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=1:3:size(freq1000us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 1000',freq1000us000Cs(1,j)); 
end 
count = count+size(freq1000us000Cs,2); 
  
for j=1:3:size(freq1000us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 1000',freq1000us125Cs(1,j)); 
end 
count = count+size(freq1000us125Cs,2); 
  
status = fclose(fid); 
  
%% 
  
% write to text for qwiknet to process 
  
load('pulp_stock_freq.mat') 
  
% writes the test file 
fid = fopen('pulpstock_freq.tst','w'); 
fprintf(fid,'[inputs] %3.0f\r',size(Y,1)+1); 
fprintf(fid,'[outputs] 2\r\r'); 
  
start = 1; 
stop = size(Y,1); % 5= 5; 
count = 0; 
  
  
%%%%%%%%%%%%%%%% 100uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq100us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 100',freq100us000Cs(1,j)); 
end 
count = count+size(freq100us000Cs,2); 
  
for j=2:3:size(freq100us040Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  040 100',freq100us040Cs(1,j)); 
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end 
count = count+size(freq100us040Cs,2); 
  
for j=2:3:size(freq100us085Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  085 100',freq100us085Cs(1,j)); 
end 
count = count+size(freq100us085Cs,2); 
  
for j=2:3:size(freq100us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 100',freq100us125Cs(1,j)); 
end 
count = count+size(freq100us125Cs,2); 
  
%%%%%%%%%%%%%%%% 200uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq200us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 200',freq200us000Cs(1,j)); 
  
end 
count = count+size(freq200us000Cs,2); 
  
for j=2:3:size(freq200us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 200',freq200us125Cs(1,j)); 
end 
count = count+size(freq200us125Cs,2); 
  
%%%%%%%%%%%%%%%% 300uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq300us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 300',freq300us000Cs(1,j)); 
end 
count = count+size(freq300us000Cs,2); 
  
for j=2:3:size(freq300us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
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    end 
    fprintf(fid,' %2.3f  125 300',freq300us125Cs(1,j)); 
end 
count = count+size(freq300us125Cs,2); 
  
%%%%%%%%%%%%%%%% 367uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq367us085Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  085 367',freq367us085Cs(1,j)); 
end 
count = count+size(freq367us085Cs,2); 
  
%%%%%%%%%%%%%%%% 400uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq400us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 400',freq400us000Cs(1,j)); 
end 
count = count+size(freq400us000Cs,2); 
  
for j=2:3:size(freq400us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 400',freq400us125Cs(1,j)); 
end 
count = count+size(freq400us125Cs,2); 
  
%%%%%%%%%%%%%%%% 500uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq500us000Cs,2) 
    fprintf(fid,'\r');     
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 500',freq500us000Cs(1,j)); 
end 
count = count+size(freq500us000Cs,2); 
  
for j=2:3:size(freq500us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 500',freq500us125Cs(1,j)); 
end 
count = count+size(freq500us125Cs,2); 
  
%%%%%%%%%%%%%%%% 600uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq600us000Cs,2) 
    fprintf(fid,'\r'); 
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    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 600',freq600us000Cs(1,j)); 
end 
count = count+size(freq600us000Cs,2); 
  
for j=2:3:size(freq600us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 600',freq600us125Cs(1,j)); 
end 
count = count+size(freq600us125Cs,2); 
  
%%%%%%%%%%%%%%%% 700uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq700us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 700',freq700us000Cs(1,j)); 
end 
count = count+size(freq700us000Cs,2); 
  
for j=2:3:size(freq700us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 700',freq700us125Cs(1,j)); 
end 
count = count+size(freq700us125Cs,2); 
  
  
%%%%%%%%%%%%%%%% 800uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq800us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 800',freq800us000Cs(1,j)); 
end 
count = count+size(freq800us000Cs,2); 
  
for j=2:3:size(freq800us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 800',freq800us125Cs(1,j)); 
end 
count = count+size(freq800us125Cs,2); 
  



48 

%%%%%%%%%%%%%%%% 900uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq900us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 900',freq900us000Cs(1,j)); 
end 
count = count+size(freq900us000Cs,2); 
  
for j=2:3:size(freq900us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 900',freq900us125Cs(1,j)); 
end 
count = count+size(freq900us125Cs,2); 
  
%%%%%%%%%%%%%%%% 1000uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=2:3:size(freq1000us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 1000',freq1000us000Cs(1,j)); 
end 
count = count+size(freq1000us000Cs,2); 
  
for j=2:3:size(freq1000us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 1000',freq1000us125Cs(1,j)); 
end 
count = count+size(freq1000us125Cs,2); 
  
status = fclose(fid); 
  
%% 
  
% write to text for qwiknet to process 
  
load('pulp_stock_freq.mat') 
  
% writes the 2nd test file, used for verification 
fid = fopen('pulpstock_freq_verify.tst','w'); 
fprintf(fid,'[inputs] %3.0f\r',size(Y,1)+1); 
fprintf(fid,'[outputs] 2\r\r'); 
  
start = 1; 
stop = size(Y,1); % 5= 5; 
count = 0; 
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%%%%%%%%%%%%%%%% 100uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq100us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 100',freq100us000Cs(1,j)); 
end 
count = count+size(freq100us000Cs,2); 
  
for j=3:3:size(freq100us040Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  040 100',freq100us040Cs(1,j)); 
end 
count = count+size(freq100us040Cs,2); 
  
for j=3:3:size(freq100us085Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  085 100',freq100us085Cs(1,j)); 
end 
count = count+size(freq100us085Cs,2); 
  
for j=3:3:size(freq100us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 100',freq100us125Cs(1,j)); 
end 
count = count+size(freq100us125Cs,2); 
  
%%%%%%%%%%%%%%%% 200uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq200us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 200',freq200us000Cs(1,j)); 
  
end 
count = count+size(freq200us000Cs,2); 
  
for j=3:3:size(freq200us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 200',freq200us125Cs(1,j)); 
end 
count = count+size(freq200us125Cs,2); 
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%%%%%%%%%%%%%%%% 300uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq300us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 300',freq300us000Cs(1,j)); 
end 
count = count+size(freq300us000Cs,2); 
  
for j=3:3:size(freq300us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 300',freq300us125Cs(1,j)); 
end 
count = count+size(freq300us125Cs,2); 
  
%%%%%%%%%%%%%%%% 367uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq367us085Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  085 367',freq367us085Cs(1,j)); 
end 
count = count+size(freq367us085Cs,2); 
  
%%%%%%%%%%%%%%%% 400uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq400us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 400',freq400us000Cs(1,j)); 
end 
count = count+size(freq400us000Cs,2); 
  
for j=3:3:size(freq400us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 400',freq400us125Cs(1,j)); 
end 
count = count+size(freq400us125Cs,2); 
  
%%%%%%%%%%%%%%%% 500uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq500us000Cs,2) 
    fprintf(fid,'\r');     
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 500',freq500us000Cs(1,j)); 
end 
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count = count+size(freq500us000Cs,2); 
  
for j=3:3:size(freq500us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 500',freq500us125Cs(1,j)); 
end 
count = count+size(freq500us125Cs,2); 
  
%%%%%%%%%%%%%%%% 600uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq600us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 600',freq600us000Cs(1,j)); 
end 
count = count+size(freq600us000Cs,2); 
  
for j=3:3:size(freq600us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 600',freq600us125Cs(1,j)); 
end 
count = count+size(freq600us125Cs,2); 
  
%%%%%%%%%%%%%%%% 700uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq700us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 700',freq700us000Cs(1,j)); 
end 
count = count+size(freq700us000Cs,2); 
  
for j=3:3:size(freq700us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 700',freq700us125Cs(1,j)); 
end 
count = count+size(freq700us125Cs,2); 
  
  
%%%%%%%%%%%%%%%% 800uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq800us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
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    end 
    fprintf(fid,' %2.3f  000 800',freq800us000Cs(1,j)); 
end 
count = count+size(freq800us000Cs,2); 
  
for j=3:3:size(freq800us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 800',freq800us125Cs(1,j)); 
end 
count = count+size(freq800us125Cs,2); 
  
%%%%%%%%%%%%%%%% 900uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq900us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 900',freq900us000Cs(1,j)); 
end 
count = count+size(freq900us000Cs,2); 
  
for j=3:3:size(freq900us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 900',freq900us125Cs(1,j)); 
end 
count = count+size(freq900us125Cs,2); 
  
%%%%%%%%%%%%%%%% 1000uS %%%%%%%%%%%%%%%%%%%%%%%%%%%% 
for j=3:3:size(freq1000us000Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  000 1000',freq1000us000Cs(1,j)); 
end 
count = count+size(freq1000us000Cs,2); 
  
for j=3:3:size(freq1000us125Cs,2) 
    fprintf(fid,'\r'); 
    for k = start:stop 
        fprintf(fid,'%4.0f',Y(k,j+count)); 
    end 
    fprintf(fid,' %2.3f  125 1000',freq1000us125Cs(1,j)); 
end 
count = count+size(freq1000us125Cs,2); 
  
status = fclose(fid);
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APPENDIX D 

MATLAB Algorithm for Comparing Neural Network Outputs with Target Values 
 
 

load('pulp_stock_freq.mat') 
  
numpoints = 4; 
start = 1; 
  
fid = fopen('original150-12.out','r'); 
actual = fscanf(fid,'%f',[numpoints inf]); 
fclose(fid); 
  
consist = 0; 
permit = 0; 
conRight = 0; 
permRight = 0; 
for j=1:size(actual,2) 
    newCon = sum(abs(actual(1,j)-actual(2,j))); 
    newPerm = sum(abs(actual(3,j)-actual(4,j))); 
    consist = newCon + consist; 
    permit = newPerm + permit; 
  
    if abs(newCon) < .01*max(actual(4,:)) 
        conRight = conRight + 1; 
    end 
    if abs(newPerm) < .01*max(actual(2,:)) 
        permRight = permRight + 1; 
    end 
end 
avgConsistancyError = consist/size(actual,2) 
fullScaleConsistancyError = avgConsistancyError/125; 
avgConductivityError = permit/size(actual,2) 
fullScaleConductivityError = avgConductivityError/1000; 
  
fullScaleConsistancyPercent = fullScaleConsistancyError*100 
fullScaleConductivityPercent = fullScaleConductivityError*100 
  
  
[consistancyR2 p] = corrcoef(actual(1,:),actual(2,:)); 
consistancyR2 = consistancyR2(2,1) 
[conductivityR2 p] = corrcoef(actual(3,:),actual(4,:)); 
conductivityR2 = conductivityR2(2,1) 
 
  
%%%%%%%% plots the data for consistancyto show how the neural 
%%%%%%%% network estimations are distributed 
actual(1,:) = round(actual(1,:)); 
val1 = [0,40,85,125]; 
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z1=zeros(size(val1,2),140); 
err1 = zeros(size(val1)); 
avg1 = zeros(size(val1)); 
stdev1 = zeros(size(val1)); 
for k=1:4 
    ind = find(actual(2,:) == val1(k)); 
    for j=ind 
        z1(k,actual(1,j)+1) = z1(k,actual(1,j)+1)+1; 
        err1(k) = err1(k) + abs(actual(2,j)-actual(1,j)); 
        avg1(k) = avg1(k) + actual(1,j); 
    end    
    err1(k) = err1(k)/size(ind,2); 
    avg1(k) = avg1(k)/size(ind,2); 
     
    for j=ind 
        stdev1(k) = stdev1(k) + abs(actual(1,j) - avg1(k)); 
    end 
    stdev1(k) = (1/size(ind,2))*stdev1(k); 
end 
  
figure(1) 
clf 
hold on 
  
%plot based upon the standard deviations 
for k=1:size(z1,1) 
    b=plot([val1(k)/100 val1(k)/100],val1(k)/100,'ro','LineWidth',3); 
    a=plot([avg1(k)/100-stdev1(k)/200 
avg1(k)/100+stdev1(k)/200],val1(k)/100,'b+','LineWidth',2); 
    c=plot([avg1(k)/100-
stdev1(k)/200:.001:avg1(k)/100+stdev1(k)/200],val1(k)/100,'b','LineWidt
h',.5); 
end 
title('Consistency Output ') 
ylabel('Recorded Consistency') 
xlabel('Neural Network Estimated Consistency') 
legend([a(1);b],'NN Mean ± Standard Deviation','Measured 
Results','Location','SouthOutside') 
grid on 
axis([-0.1, 1.4, -0.1, 1.401]) 
  
  
%%%%%%%% plots the data for conductivity to show how the neural 
%%%%%%%% network estimations are distributed 
actual(3,:) = round(actual(3,:)); 
val2 = [100:100:300 367 400:100:1000]; 
  
z2=zeros(size(val2,2),1000); 
err2 = zeros(size(val2)); 
avg2 = zeros(size(val2)); 
stdev2 = zeros(size(val2)); 
for k=1:size(val2,2) 
    ind = find(actual(4,:) == val2(k)); 
    for j=ind 
        z2(k,actual(3,j)+1) = z2(k,actual(3,j)+1)+1; 
        err2(k) = err2(k) + abs(actual(4,j)-actual(3,j)); 
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        avg2(k) = avg2(k) + actual(3,j); 
    end    
    err2(k) = err2(k)/size(ind,2); 
    avg2(k) = avg2(k)/size(ind,2);    
     
    for j=ind 
        stdev2(k) = stdev2(k) + abs(actual(3,j) - avg2(k)); 
    end 
    stdev2(k) = (1/size(ind,2))*stdev2(k); 
end 
  
figure(2) 
clf 
hold on 
  
for k=1:size(val2,2) 
    b=plot(val2(k),val2(k),'ro','LineWidth',3); 
    a=plot([avg2(k)-stdev2(k)/2 
avg2(k)+stdev2(k)/2],val2(k),'b+','LineWidth',2); 
    plot([avg2(k)-
stdev2(k)/2:.1:avg2(k)+stdev2(k)/2],val2(k),'LineWidth',.5); 
end 
title('Conductivity Output ') 
ylabel('Recorded Conductivity') 
xlabel('Neural Network Estimated Conductivity') 
legend([a(1);b],'NN Mean ± Standard Deviation','Measured 
Results','Location','SouthOutside','Orientation','Horizontal') 
grid on 
axis([0, 1100, 0, 1100]) 
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