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Research ExperienceResearch ExperienceResearch ExperienceResearch Experience

•• Electronic systemElectronic system--level design (level design (SoCSoC/embedded system)/embedded system)

–– Electronic systemElectronic system--level model verification methodologylevel model verification methodology

•• HardwareHardware--based load balancing (computer architecture)based load balancing (computer architecture)

•• NetworksNetworks--onon--Chip (computer architecture)Chip (computer architecture)

–– RingRing--based onbased on--chip router architecturechip router architecture

–– Control and data packet segregationControl and data packet segregation
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–– Control and data packet segregationControl and data packet segregation

•• Programmable hardware accelerator (heterogeneous Programmable hardware accelerator (heterogeneous 
computer architecture)computer architecture)

•• SolidSolid--state drives (embedded system)state drives (embedded system)

–– Preemptive garbage collectionPreemptive garbage collection

–– Write cache design for an array of solidWrite cache design for an array of solid--state drivesstate drives

•• HardwareHardware--assisted security (security)assisted security (security)
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IntroductionIntroductionIntroductionIntroduction
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MPPA as Hardware AcceleratorMPPA as Hardware AcceleratorMPPA as Hardware AcceleratorMPPA as Hardware Accelerator
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Related WorksRelated WorksRelated WorksRelated Works

Expressiveness Debugging Memory

GPGPU
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Multiple debuggers

Event graph
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Multi-threading Multiple debuggers Coherent cache
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Kahn process 
network
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Execution ModelExecution ModelExecution ModelExecution Model

Von Neuman Model

Assembly

Structural

Object-oriented

Von Neuman Model

Multi-thread
MPI

SIMD
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Von Neuman Model
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Von Neuman Model

x86 MIPS ARM
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RequirementsRequirementsRequirementsRequirements

•• DecouplingDecoupling

–– The execution model should decouple the programming The execution model should decouple the programming 
model and the execution model of the parallel hardwaremodel and the execution model of the parallel hardware

•• Hardware perspectiveHardware perspective

–– Low implementation overheadLow implementation overhead
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–– HeterogeneityHeterogeneity

–– ScalabilityScalability

•• Software perspectiveSoftware perspective

–– Easy to programEasy to program

–– Easy to debugEasy to debug

–– PerformancePerformance
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EventEvent--driven Execution Modeldriven Execution ModelEventEvent--driven Execution Modeldriven Execution Model

•• SpecificationSpecification

–– Module = Module = (b, P(b, Pii, P, Poo, C, F), C, F)
•• bb = Behavior of module= Behavior of module

•• PPii = Input ports= Input ports

•• PPoo = Output ports= Output ports

•• CC = Sensitivity list= Sensitivity list

•• SemanticsSemantics

–– A module is triggered A module is triggered 
when any signal when any signal 
connected to connected to CC changeschanges

–– Function calls and Function calls and 
memory accesses are memory accesses are 

11

•• CC = Sensitivity list= Sensitivity list

–– SignalSignal

–– Net = Net = (d, K)(d, K)
•• dd = Driver port= Driver port

•• KK = A set of sink ports= A set of sink ports

memory accesses are memory accesses are 
limited to within a limited to within a 
modulemodule

–– NonNon--blocking write and blocking write and 
block readblock read

–– The specification can be The specification can be 
modified during runmodified during run--timetime
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MPPA MPPA MicroarhitectureMicroarhitectureMPPA MPPA MicroarhitectureMicroarhitecture

Core

Tile
H

o
s
t 

C
P

U
 I

n
te

rf
a
c
e

D
e
v
ic

e
 M

e
m

o
ry

Core
Tile

Core

Core

Tile

Core
Tile

Core

Core

Tile

Core
Tile

Core

Core

Tile

Core
Tile

Core

Core

Tile

Core
Tile

CoreE

• Identical core tiles
• Consists of uCPU, scratch-pad memory, and 

peripherals that support the execution model
• One core tile is designated to an execution 
engine
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• Software running on a core tile

• Consists of scheduler, signal storage and 
interconnect directory

• Supports the execution model

• If necessary, it is split into multiple instances 
running on different core tiles
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Core Tile ArchitectureCore Tile ArchitectureCore Tile ArchitectureCore Tile Architecture

Scratch Pad Memory

For

Current
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For

Next

Module

uCPU Prefetcher

• Software-managed on-
chip SRAM
• Double buffering where 

one is for the current 
module and the other is 

for the next module to be 

prefetched

• Prefetches the code and 

data of the next module 

• Switches the context 

when the current module 
finishes and the next 

module is ready

• Stores information 

• Stores the input data

• The actual data is stored 
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Context Manager

Input Signal Queue

Output Signal Queue

Message Queue

Network Interface

Message

Handler

• Generic small processor
• Treated as a black box

data of the next module 

while the current module 
is running on uCPU

• Counter-part of the 
prefetcher

• Sends data to the 

requester

• Stores information 
about the modules

• The actual data is stored 

in the SPM while its 
information is managed 

by this module

• Stores the output data
• Notifies the update event 

to the interconnect 

directory when the output 
is updated

• Handles the system 

messages

• NoC router
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Execution EngineExecution EngineExecution EngineExecution Engine

•• Most of its functionality is implemented in Most of its functionality is implemented in softwaresoftware
while the hardware facilitates communicationwhile the hardware facilitates communication
�� Software implementation gives us flexibility in the Software implementation gives us flexibility in the 
number and location of the execution enginenumber and location of the execution engine

•• One way to visualize our MPPA is to regard the One way to visualize our MPPA is to regard the 
execution engine as an execution engine as an eventevent--driven simulation kerneldriven simulation kernel

•• The execution engine interacts with modules running on The execution engine interacts with modules running on 

15

•• The execution engine interacts with modules running on The execution engine interacts with modules running on 
other core tiles through other core tiles through messagesmessages

Type From To Payload

REQ_FETCH_MODULE Prefetcher Scheduler Request a new module

RES_FETCH_MODULE Scheduler Prefetcher Module ID and list of input ports

MODULE_INSTANCE Scheduler Prefetcher Code of the module

REQ_SIGNAL Prefetcher Interconnect Port ID

RES_SIGNAL Signal storage 

or a node

Prefetcher Data
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Components of Execution EngineComponents of Execution EngineComponents of Execution EngineComponents of Execution Engine

•• SchedulerScheduler

–– Keeps track of the status and location of modulesKeeps track of the status and location of modules

–– Maintains three queues: wait, ready and run queueMaintains three queues: wait, ready and run queue

•• Signal storageSignal storage

–– Stores signal values in the device memoryStores signal values in the device memory

16

–– If a signal is updated but its value is still stored in the If a signal is updated but its value is still stored in the 
node, the signal storage invalidates its value and node, the signal storage invalidates its value and 
keeps the location of the latest valuekeeps the location of the latest value

•• Interconnect directoryInterconnect directory

–– Keeps track of connectivity of signals and portsKeeps track of connectivity of signals and ports

–– Maintains the sensitivity listMaintains the sensitivity list
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ModuleModule--Level Level PrefetchingPrefetchingModuleModule--Level Level PrefetchingPrefetching

•• Hides the overhead of the dynamic schedulingHides the overhead of the dynamic scheduling
•• PrefetchesPrefetches the next module while the current module is runningthe next module while the current module is running

uCPU Prefetcher Scheduler
Interconn.

Directory

Signal 

Storage
Other Node
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BenchmarkBenchmarkBenchmarkBenchmark

•• Recognition, Synthesis and Mining (RMS) benchmarkRecognition, Synthesis and Mining (RMS) benchmark
•• FineFine--grained parallelism: dominated by short tasksgrained parallelism: dominated by short tasks

–– Small memory foot printSmall memory foot print
–– High runHigh run--time scheduling overheadtime scheduling overhead

•• TaskTask--level parallelism: exhibits dependencylevel parallelism: exhibits dependency
–– Hard to be implemented with GPGPUHard to be implemented with GPGPU

Benchmark Min Max Average

19

Benchmark Min Max Average

Forward Solve (FS) 26 646 336.00

Backward Solve (BS) 42 569 305.50

Cholesky Factorization (CF) 151 11800 789.35

Canny Edge Detection (CED) 330 5011 669.68

Binomial Tree (BT) 117 4506 462.71

Octree Partitioning (OP) 1441 6679 2678.70

Quick Sort (QS) 88 47027 683.70
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SimulatorSimulatorSimulatorSimulator

•• InIn--house cyclehouse cycle--level simulatorlevel simulator

•• ParametersParameters

Parameter Value

Number of core tiles 32

Memory access time 1 cycle for scratch-pad memory

20

100 cycles for device memory

Memory size 8 KB scratch-pad memory

32 MB device memory

Communication Delay 4 cycles per hop
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ConclusionConclusionConclusionConclusion

•• A novel MPPA architecture is proposed that employs A novel MPPA architecture is proposed that employs 
an an eventevent--driven execution modeldriven execution model

–– Handles dependencies by Handles dependencies by dynamic schedulingdynamic scheduling

–– Hides dynamic scheduling overhead by Hides dynamic scheduling overhead by modulemodule--level level 
prefetchingprefetching

22

prefetchingprefetching

•• Future worksFuture works

–– Supports applications that require larger memory Supports applications that require larger memory 
footprintfootprint

–– Adjusts the number of execution engines dynamicallyAdjusts the number of execution engines dynamically

–– Supports interSupports inter--module debuggingmodule debugging
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High Performance Storage SystemsHigh Performance Storage SystemsHigh Performance Storage SystemsHigh Performance Storage Systems

•• Server centric servicesServer centric services

–– File, web & media servers, transaction processing serversFile, web & media servers, transaction processing servers

•• EnterpriseEnterprise--scale Storage Systemsscale Storage Systems

–– Information technology focusing on storage, protection, Information technology focusing on storage, protection, 
retrieval of data in largeretrieval of data in large--scale environmentsscale environments

24

Google's massive server farms 
High Performance

Storage Systems 

Storage Unit
Hard Disk Drive
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Emergence of NAND Flash based SSDEmergence of NAND Flash based SSDEmergence of NAND Flash based SSDEmergence of NAND Flash based SSD

•• NAND Flash vs. Hard Disk DrivesNAND Flash vs. Hard Disk Drives

–– Pros:Pros:

•• SemiSemi--conductor technology, no mechanical partsconductor technology, no mechanical parts

•• Offer Offer lower lower access access latencieslatencies

–– µµss for for SSDs vs. SSDs vs. msms for for HDDsHDDs

•• Lower power consumptionLower power consumption

•• Higher robustness to vibrations and Higher robustness to vibrations and temperaturetemperature

25

•• Higher robustness to vibrations and Higher robustness to vibrations and temperaturetemperature

–– Cons:Cons:

•• Limited lifetimeLimited lifetime

–– 10K 10K -- 1M erases per block1M erases per block

•• High costHigh cost

–– About 8X more expensive than current hard disksAbout 8X more expensive than current hard disks

•• Performance variability Performance variability 
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NAND Flash based SSDNAND Flash based SSDNAND Flash based SSDNAND Flash based SSD

fwrite

(file, data)

Block write
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Application

OS

Process Process

File System (FAT, Ext2, NTFS …)

Block Device Driver
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Page write

(bank, block, page)
Device

Block Device Driver

Block Interface (SATA, SCSI, etc)

Memory
CPU
(FTL)

Flash Flash Flash Flash

SSD
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NAND Flash OrganizationNAND Flash OrganizationNAND Flash OrganizationNAND Flash Organization
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OutOut--OfOf--Place WritePlace WriteOutOut--OfOf--Place WritePlace Write

LPN0

LPN1

LPN2

Logical-to-Physical 
Address Mapping Table

PPN1

PPN4

PPN2

Physical Blocks

P0 I
P1 V
P2 V
P3 E

P4 V

I
P3 V

PPN3
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LPN2

LPN3

PPN2

PPN5

P4 V
P5 V
P6 E
P7 E

Write to 

LPN2

PPN3

Invalidate 

PPN2

Write to 

PPN3

Update 

table
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Garbage CollectionGarbage CollectionGarbage CollectionGarbage Collection

Physical Blocks

P0 I
P1 I
P2 I
P3 I

P4 V

Select Victim Block

Move Valid Pages

P1 V

P3 V

P0 E
P1 E
P2 E
P3 E
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P4 V
P5 V
P6 E
P7 E

Erase Victim Block
P6 V
P7 V

2 reads + 2 writes + 1 erase= 2*0.025 + 2*0.200 + 1.5 = 1.950(ms) !! 
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Technique #1: SemiTechnique #1: Semi--PreemptionPreemptionTechnique #1: SemiTechnique #1: Semi--PreemptionPreemption

RxRx WxWx EERyRy WyWy
Time

GC

WzWz Request
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Write page x

Erase a block
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Preemptive GC
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Technique #2: MergeTechnique #2: MergeTechnique #2: MergeTechnique #2: Merge

RxRx
Time
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RyRy Request

WxWx RyRy WyWy EE
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Read page x

Write page x
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Data transfer
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Technique #3: PipelineTechnique #3: PipelineTechnique #3: PipelineTechnique #3: Pipeline

RxRx WxWx EERyRy WyWy
Time
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RzRz Request

RR
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Level of Allowed PreemptionLevel of Allowed PreemptionLevel of Allowed PreemptionLevel of Allowed Preemption

•• Drawback of PGCDrawback of PGC
: The completion time of GC is delayed: The completion time of GC is delayed
�� May incur lack of free blocksMay incur lack of free blocks
�� Sometimes need to prohibit preemptionSometimes need to prohibit preemption

•• States of PGCStates of PGC

35
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SetupSetupSetupSetup

•• SimulatorSimulator

–– MSR’s SSD simulator based on MSR’s SSD simulator based on DiskSimDiskSim

•• WorkloadsWorkloads

Workloads
Average request

size (KB)
Read ratio 

(%)
Arrival rate 

(IOP/s)

37

size (KB) (%) (IOP/s)

Financial 7.09 18.92 47.19

Cello 7.06 19.63 74.24

TPC-H 31.62 91.80 172.73

OpenMail 9.49 63.30 846.62

Write 
dominant

Read 
dominant
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Performance Improvement for Performance Improvement for 
Realistic WorkloadsRealistic Workloads
Performance Improvement for Performance Improvement for 
Realistic WorkloadsRealistic Workloads
•• Average Response TimeAverage Response Time
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Improvement of average 
response time by 6.5% and 
66.6% for Financial and Cello.
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ConclusionsConclusionsConclusionsConclusions

•• Solid state drivesSolid state drives
–– Fast access speedFast access speed
–– Performance variation Performance variation  garbage garbage 
collectioncollection

•• SemiSemi--preemptive garbage collectionpreemptive garbage collection
–– Service incoming requests during GCService incoming requests during GC

•• Average response time and Average response time and 

39

•• Average response time and Average response time and 
performance variation are reduced by performance variation are reduced by 
up to 66.6% and 83.3%up to 66.6% and 83.3%
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SecuritySecuritySecuritySecurity

•• IntroductionIntroduction

•• AppendAppend--only Storageonly Storage
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•• ConclusionConclusion
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Evolutionary Digital Systems AdvanceEvolutionary Digital Systems AdvanceEvolutionary Digital Systems AdvanceEvolutionary Digital Systems Advance

•• IoTIoT (Internet of Things)  (Internet of Things)  
–– By 2015, By 2015, 5 billion 5 billion individuals will be individuals will be 

connected to the Internet (source: GKP)connected to the Internet (source: GKP)
–– 100 billion uniquely identifiable objects will 100 billion uniquely identifiable objects will 

be connected to the Internet by 2020be connected to the Internet by 2020

•• Big Data VisualizationBig Data Visualization
–– Digital data is doubling every other yearDigital data is doubling every other year

Information 
from 

Network

41

•• Cloud Computing and Mobile ComputingCloud Computing and Mobile Computing

•• CybersecurityCybersecurity
–– New business models based on innovative New business models based on innovative 

thinking will be neededthinking will be needed

41/54
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Financial ImpactFinancial ImpactFinancial ImpactFinancial Impact

•• Computer Computer crimes cost firms who detect and crimes cost firms who detect and verify incidents verify incidents 
between $145 million and $730 between $145 million and $730 million each year million each year (NCSA (NCSA 
Annual Worry Report)Annual Worry Report)

•• A A company that experiences a computer company that experiences a computer outage lasting outage lasting more more 
than 10 days will never fully than 10 days will never fully recover financiallyrecover financially. 50 percent . 50 percent 
will be out of business will be out of business within five years within five years ("Disaster Recovery ("Disaster Recovery 
Planning: Planning: Managing Risk Managing Risk & Catastrophe in Information & Catastrophe in Information 

42

Planning: Planning: Managing Risk Managing Risk & Catastrophe in Information & Catastrophe in Information 
Systems" by Systems" by Jon Jon ToigoToigo))

•• 43% of lost or stolen data is valued at $5 million or more43% of lost or stolen data is valued at $5 million or more

•• 43% of companies experiencing data disasters never reopen, 43% of companies experiencing data disasters never reopen, 
and 29 percent close within two years (and 29 percent close within two years (McGladreyMcGladrey and and 
Pullen)Pullen)

•• It is estimated that 1 out of 500 data centers will have a It is estimated that 1 out of 500 data centers will have a 
severe disaster each year (severe disaster each year (McGladreyMcGladrey and Pullen)and Pullen)
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ScopeScopeScopeScope

•• Network SecurityNetwork Security
–– Efficient Efficient 

•• It can protect numerous hosts by It can protect numerous hosts by 
securing only the perimetersecuring only the perimeter

–– But not perfectBut not perfect
•• Although data centers are equipped Although data centers are equipped 
with various network security with various network security 
techniques, it is estimated 1 out of 500 techniques, it is estimated 1 out of 500 
data centers will have a severe disaster data centers will have a severe disaster 
each year (each year (McGladreyMcGladrey and Pullen)and Pullen)

43

each year (each year (McGladreyMcGladrey and Pullen)and Pullen)

–– The ultimate goal is protecting hostsThe ultimate goal is protecting hosts

•• Host SecurityHost Security
–– Protect hosts directlyProtect hosts directly
–– Compatibility issueCompatibility issue

•• Heterogeneity of the hosts (different Heterogeneity of the hosts (different 
version and types of OS and different  version and types of OS and different  
hardware)hardware)

–– Performance overheadPerformance overhead

HostsHosts

Network

Security
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HardwareHardware--assisted Securityassisted SecurityHardwareHardware--assisted Securityassisted Security

•• Trusted Platform Module (TPM)Trusted Platform Module (TPM)

–– Key burnt in hardwareKey burnt in hardware

•• Intel Intel vProvPro

–– Trusted Execution TechnologyTrusted Execution Technology

•• Virtualization (Virtualization (TrustZoneTrustZone of ARM)of ARM)

44

•• Virtualization (Virtualization (TrustZoneTrustZone of ARM)of ARM)

–– Identity Protection TechnologyIdentity Protection Technology

•• OneOne--time passwordtime password

•• MonitoringMonitoring

–– Copilot, RKRD, KICopilot, RKRD, KI--MonMon

•• CoprocessorCoprocessor--basedbased
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Elevator PitchElevator PitchElevator PitchElevator Pitch

Protect Protect reference data reference data from from 
unauthorized modification unauthorized modification 

by using by using AAppendppend--only Storage only Storage 
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•• WriteWrite--only read many (WORM) devices: CD or DVDonly read many (WORM) devices: CD or DVD

by using by using AAppendppend--only Storage only Storage 
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SoteriaSoteria Security Card (SSC)Security Card (SSC)SoteriaSoteria Security Card (SSC)Security Card (SSC)

ARM7-based controller

SATA interface
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NAND flash memories
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SSC FirmwareSSC FirmwareSSC FirmwareSSC Firmware

HostHost

Host Interface Layer (HIL)

SATA Device Driver

SSC Device Driver
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SSCSSC

Host Interface Layer (HIL)

Flash Translation Layer (FTL)

Flash Interface Layer (FIL)

Log Management Layer (LML)
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SecuritySecuritySecuritySecurity

•• IntroductionIntroduction

•• AppendAppend--only Storageonly Storage

•• Use CasesUse Cases

•• ConclusionConclusion
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•• Using SSCUsing SSC

–– Logs are stored in both the Logs are stored in both the 
hard disk and SSChard disk and SSC

–– Log integrity checker checks Log integrity checker checks 
if the logs are contaminated if the logs are contaminated 
by comparing those in the by comparing those in the 
hard disk against those in hard disk against those in 

Use Case #1: Log ProtectionUse Case #1: Log ProtectionUse Case #1: Log ProtectionUse Case #1: Log Protection

Server

File System

Block Device 

SSC Device 
Driver

SATA/PCI 

50

hard disk against those in hard disk against those in 
SSCSSC

•• PerformancePerformance

–– Performance degradation of Performance degradation of 
the response time of the the response time of the 
Apache web server is 0.88% Apache web server is 0.88% 
employing a separate employing a separate 
process to store logsprocess to store logs

Block Device 
Driver

Hard Disk

SATA/PCI 
Device Driver

SSC

Log Integrity Checker
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Current PracticeCurrent PracticeCurrent PracticeCurrent Practice

•• Log protection techniquesLog protection techniques
–– Logging serverLogging server

•• Vulnerabilities involved in collecting and transferring logsVulnerabilities involved in collecting and transferring logs

–– EncryptionEncryption
•• Encryption is secure only if the key is not revealedEncryption is secure only if the key is not revealed
•• According to According to 2012 Verizon Data Breach2012 Verizon Data Breach report, report, 76%76% of data of data 
breaches exploited weak or stolen credentialsbreaches exploited weak or stolen credentials

–– HypervisorHypervisor

51

–– HypervisorHypervisor
•• Who protects hypervisor itself?Who protects hypervisor itself?

•• Does this really happen?Does this really happen?
–– According to a police officer in charge of cyber crime According to a police officer in charge of cyber crime 
investigation, investigation, 
-- some attackers some attackers delete their traces from logsdelete their traces from logs, and , and 
-- some attackers some attackers delete everything from the hard diskdelete everything from the hard disk, which , which 
includes logsincludes logs
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•• File integrityFile integrity
–– File modification is usually (if not always) a prerequisite File modification is usually (if not always) a prerequisite 
or a result of malwareor a result of malware

–– Therefore, file integrity checking is a powerful tool to find Therefore, file integrity checking is a powerful tool to find 
out the cause of attacks and malwareout the cause of attacks and malware

•• Using SSCUsing SSC
–– The integrity information of files is stored in the hardwareThe integrity information of files is stored in the hardware

Use Case #2: File Integrity CheckUse Case #2: File Integrity CheckUse Case #2: File Integrity CheckUse Case #2: File Integrity Check
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–– The integrity information of files is stored in the hardwareThe integrity information of files is stored in the hardware
–– By comparing against the stored integrity information, By comparing against the stored integrity information, 
unauthorized modifications can be detectedunauthorized modifications can be detected

•• PerformancePerformance
–– Since the file integrity checker is an offSince the file integrity checker is an off--line utility, the line utility, the 
performance impact can be minimized by assigning a low performance impact can be minimized by assigning a low 
prioritypriority

–– Malware Malware detectors and integrity checkers detect malicious detectors and integrity checkers detect malicious 
activities by comparing against some reference activities by comparing against some reference datadata
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ConclusionConclusionConclusionConclusion

•• SoteriaSoteria Security Card:Security Card:

–– Prevents reference data from unauthorized Prevents reference data from unauthorized 
modificationmodification

–– Stored data cannot be modified or erasedStored data cannot be modified or erased

•• Use casesUse cases

–– Log protectionLog protection

53

–– Log protectionLog protection

–– File integrity checkingFile integrity checking

–– File access monitoringFile access monitoring

–– NonNon--repudiationrepudiation

–– Medical recordMedical record

–– Financial transactionFinancial transaction
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Thank you!Thank you!Thank you!Thank you!
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A Programmable Processing Array A Programmable Processing Array 
Architecture Supporting Dynamic Architecture Supporting Dynamic 
Task Scheduling and ModuleTask Scheduling and Module--Level Level 

PrefetchingPrefetching
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ExampleExampleExampleExample

•• Quick sortQuick sort
–– Pivot is selectedPivot is selected
–– The given array is partitioned so thatThe given array is partitioned so that

•• The left segment should contain The left segment should contain 
smaller elements than the pivotsmaller elements than the pivot

•• The right segment should contain The right segment should contain 
larger elements than the pivotlarger elements than the pivot

–– Recursively partition the left and right Recursively partition the left and right 
segmentssegments
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–– Recursively partition the left and right Recursively partition the left and right 
segmentssegments

•• Specifying quick sortSpecifying quick sort
–– MultiMulti--threadingthreading

•• OK but hard to debugOK but hard to debug

–– SIMDSIMD
•• Inefficient due to input dependencyInefficient due to input dependency

–– Kahn process networkKahn process network
•• Impossible due to the dynamic Impossible due to the dynamic 
naturenature



Specify Quick Sort with EventSpecify Quick Sort with Event--driven driven 
ModelModel
Specify Quick Sort with EventSpecify Quick Sort with Event--driven driven 
ModelModel
•• Partition modulePartition module

–– bb (behavior): select a pivot, partition the input (behavior): select a pivot, partition the input 
array, instantiate another partition module if array, instantiate another partition module if 
necessarynecessary

–– PPii (input port): input array and its position(input port): input array and its position
–– PPoo (output port): left and right segments and (output port): left and right segments and 

their positiontheir position
–– CC (sensitivity list): input array(sensitivity list): input array
–– PP ((prefetchprefetch list): input arraylist): input array

Partition

Partition

Input array
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–– PP ((prefetchprefetch list): input arraylist): input array

•• Collection moduleCollection module
–– bb (behavior): collect segments(behavior): collect segments
–– PPii (input port): sorted segments and (input port): sorted segments and 

intermediate resultintermediate result
–– PPoo (output port): final result and intermediate (output port): final result and intermediate 

resultresult
–– CC (sensitivity list): sorted segments(sensitivity list): sorted segments
–– PP ((prefetchprefetch list): sorted segments and list): sorted segments and 

intermediate resultintermediate result

Partition

Collection

…

Final 
result

Intermediate 
result



Illustrative ExampleIllustrative ExampleIllustrative ExampleIllustrative Example

uCPU

Prefetcher

Out Sig Q

Msg Handler

uCPU

Prefetcher

Out Sig Q

Msg Handler

uCPU

Prefetcher

Out Sig Q

Msg Handler

Partition 0 Partition 2

Partition 3 Partition 4 Partition 5

Partition 4Partition 1
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Msg Handler Msg Handler Msg Handler

Interconnect Directory

Signal Storage

Scheduler

Wait Q

Ready Q

Run Q

Collection

Collection

Collection



ScalabilityScalabilityScalabilityScalability

0.6

0.8

1.0

C
o

re
 u

ti
li
z
a

ti
o

n

14000

16000

20000

E
x

e
c

u
ti

o
n

 t
im

e
 (

c
y
c

le
s

)

18000

60
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A SemiA Semi--Preemptive Garbage Preemptive Garbage 
Collector for Solid State Collector for Solid State 

DrivesDrives
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Spider: A LargeSpider: A Large--scale Storage System scale Storage System Spider: A LargeSpider: A Large--scale Storage System scale Storage System 

•• Jaguar Jaguar 
–– PetaPeta--scale computing scale computing 
machinemachine

–– 25,000 nodes with 250,000 25,000 nodes with 250,000 
cores and over 300 TB cores and over 300 TB 
memorymemory

•• Spider storage systemSpider storage system
–– The largest centerThe largest center--wide wide 
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–– The largest centerThe largest center--wide wide 
LustreLustre--based file systembased file system

–– Over Over 10.7 PB of RAID 6 10.7 PB of RAID 6 
formatted capacityformatted capacity
•• 13,400 x 1 TB HDDs13,400 x 1 TB HDDs

–– 192 192 LustreLustre I/O serversI/O servers
•• Over 3TB of memory (on Over 3TB of memory (on 
LustreLustre I/O servers)I/O servers)



Pathological Behavior of SSDsPathological Behavior of SSDsPathological Behavior of SSDsPathological Behavior of SSDs

•• Does GC have an impact on the foreground operations?Does GC have an impact on the foreground operations?

–– If so, we can observe sudden bandwidth dropIf so, we can observe sudden bandwidth drop

–– More drop with more write requestsMore drop with more write requests

–– More drop with more More drop with more burstybursty workloadsworkloads

63

•• Experimental SetupExperimental Setup

–– SSD devicesSSD devices

•• Intel (SLC) 64GB SSDIntel (SLC) 64GB SSD

•• SuperTalentSuperTalent (MLC) 120GB SSD(MLC) 120GB SSD

–– I/O generatorI/O generator

•• Used Used libaiolibaio asynchronous I/O library for blockasynchronous I/O library for block--level testinglevel testing



Bandwidth Drop for WriteBandwidth Drop for Write--Dominant Dominant 
WorkloadsWorkloads
Bandwidth Drop for WriteBandwidth Drop for Write--Dominant Dominant 
WorkloadsWorkloads

•• ExperimentsExperiments

–– Measured bandwidth for 1MB by varying readMeasured bandwidth for 1MB by varying read--write write 
ratioratio
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Performance variability increases as we increase 
write-percentage of workloads. 



Performance Variability for Performance Variability for BurstyBursty
WorkloadsWorkloads
Performance Variability for Performance Variability for BurstyBursty
WorkloadsWorkloads

•• ExperimentsExperiments

–– Measured SSD write bandwidth for Measured SSD write bandwidth for queue depth (queue depth (qdqd) ) 
is 8 is 8 and and 6464

–– Normalized I/O bandwidth with a  Z distributionNormalized I/O bandwidth with a  Z distributionIntel SLC (SSD) SuperTalent MLC (SSD)
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Performance variability increases as we increase the arrival-
rate of requests (bursty workloads).



Lessons LearnedLessons LearnedLessons LearnedLessons Learned

•• From the empirical study, we learned:From the empirical study, we learned:

–– Performance Performance variability increases as the percentage variability increases as the percentage 
of writes in workloads increases. of writes in workloads increases. 

–– Performance variability increases with respect to the Performance variability increases with respect to the 
arrival rate of write requestsarrival rate of write requests..
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•• This is because:This is because:

–– Any Any incoming requests during the GC should wait incoming requests during the GC should wait 
until the onuntil the on--going GC ends. going GC ends. 

–– GC is not preemptiveGC is not preemptive



Performance Improvements for Performance Improvements for 
Synthetic WorkloadsSynthetic Workloads
Performance Improvements for Performance Improvements for 
Synthetic WorkloadsSynthetic Workloads
•• Varied four parameters: request size, interVaried four parameters: request size, inter--arrival time, arrival time, 

sequentialitysequentiality and read/write ratioand read/write ratio
•• Varied one at a time fixing othersVaried one at a time fixing others
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Performance Improvement for Performance Improvement for 
Synthetic Workloads (Synthetic Workloads (con’tcon’t))
Performance Improvement for Performance Improvement for 
Synthetic Workloads (Synthetic Workloads (con’tcon’t))

Bursty Random dominant Write dominant
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HardwareHardware--assisted assisted 
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Information IntegrityInformation Integrity
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