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Abstract – A water wall system is one of the most important components of a boiler in a thermal 
power plant, and it is a nonlinear Multi-Input and Multi-Output (MIMO) system, with 6 inputs and 3 
outputs. Three models are developed and compared for the controller design, including a linear model, 
a multilayer feed-forward neural network (MFNN) model and an Echo State Network (ESN) model. 
First, the linear model is developed by linearizing a given nonlinear model and is analyzed as a 
function of the operating point. Second, the MFNN and the ESN are developed by using training data 
from the nonlinear model. The three models are validated using Matlab with nonlinear input-output 
data that was not used during training. 
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1. Introduction 
 
Thermal power plants supply approximately 65% of the 

world’s electric power [1], and a water wall system 
consists of a collection of metal tubes in the furnace of a 
thermal power plant. Recirculating water in the water wall 
is heated by combustion energy, and its phase changes 
from water to steam. Therefore, it is very important to 
properly model, control and analyze the water wall system 
in order to manage the entire boiler-turbine system [2]. 

Several principles, including the energy balance, mass 
balance and thermal equilibrium, can be used to explain 
the dynamics of the water wall system [3]. As a result, the 
water wall system is modeled as a dynamic nonlinear 
multi-input multi-output (MIMO) system. However, the 
controller for a nonlinear system is usually designed 
using a linear model based on a particular operating point. 
Therefore, the degree of nonlinearity of a water wall 
system needs to be investigated to adequately apply a 
linear control system. 

If the object system has a severe nonlinearity or a wide 
operating range, the linear model will have a limitation in 
its ability to describe the dynamics of the object system 
[4]. An alternative for this kind of nonlinear control 
problem involves implementing a neural network for the 
modeling and controller design [5]. Since it is difficult to 
develop a reliable mathematical model of the nonlinear 
dynamics in practice, the neural network is typically 
trained according to the measured input-output data. 

Therefore, a mathematical nonlinear dynamic model is not 
necessary for this approach. 

The multilayer feedforward neural network (MFNN) 
has been successfully applied to model static nonlinear 
systems [6]. However, it requires a number of tapped delays 
of the output neurons as input signals for dynamic systems, 
resulting in an increased number of input neurons and an 
extensive training time. Recurrent neural networks (RNN) 
with feedback connections are potential approaches that 
better represent dynamic systems, including Elman networks 
[7] and diagonal recurrent neural networks (DRNN) [8]. 
However, training for recurrent neural networks is relatively 
more complex than that for MFNN [9]. 

Recently, eco state network (ESN), a special kind of 
three layer RNN, was proposed by Jaeger [10]. The basic 
idea is to use a large “dynamic reservoir” to supply 
interesting dynamics from which the desired output is 
combined. One of the most interesting things of ESN is 
that it can be trained in a one-shot fashion without 
repetitively passing through the training set that is usually 
required to train other RNN [11]. 

In [12], Jaeger and others used the ESN to optimize 
problems and demonstrated simple applications. Lin and 
others used ESN to predict the stock price and to suggest 
stock trades [13]. Ishii and others used ESN to identify the 
yawing acceleration of an underwater robot [14]. Dai and 
others used ESN to predict the harmonic current from 
nonlinear loads [15]. Pan and Wang proposed a model for 
predictive control based on recurrent neural network, 
where they used ESN to identify an unknown nonlinear 
dynamic system [16].  

In this paper, three models, including a linearized model, 
a MFNN model and a nonlinear ESN model, are developed 
and compared from the point of view of controller design 
for a practical water wall system in a 600 MW oil drum 
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boiler-turbine system. The three models are developed and 
compared using Matlab on a personal computer 
environment. First, we introduce the nonlinear water wall 
model with the energy balance, mass balance and thermal 
equilibrium equation. Then, the linear model is developed 
with a Taylor series expansion. The changes in the pole and 
steady state gain according to the change in the operating 
point are introduced. To train the MFNN and the ESN, 
Pseudo Random Binary Noise Signal (PRBNS) inputs are 
applied to the nonlinear water wall model. After training 
the MFNN and ESN, the performance of the linear model, 
MFNN and ESN is evaluated, presented and discussed. 

 
 

2. A Water Wall Modeling 
 

2.1 A nonlinear water wall model 
 
In this paper, we consider a water wall model in a 

600MW oil drum boiler-turbine system [3]. The water wall 
is located between the recirculating pump and the drum in 
the boiler. The circulating water in the water wall is heated 
by combustion in the furnace, and its phase changes from 
water to steam, and then it is poured into the drum. 

We assume that the water wall system is a nonlinear 
model, as used by Usoro [3]. The mass balance equation, 
energy equilibrium equation, and thermal equilibrium 
equation can be defined according to the boiler structure 
and physical principles. The description of the water wall 
system is as follows: 

Mass balance equation is given by:  
 

 wrpsrwwwo KWW +=   (1) 
 

where, Wwwo : Mass flow of water wall outlet, 
 Wrw : Mass flow of recirculating water,  
 Kwrps : Mass flow of recirculating pump. 
 
According to [3], Kwrps accounts for recirculating pump 

leakages and seal injection. It is small and may be 
neglected. 

Energy equilibrium equation is given by: 
 

 ( )wwme swwm wwm wwgm wwmw
dM K T Q Q
dt

× × = −  (2) 

 
where, Mwwme : Effective mass of water wall metal, 

 Kswwm : Specific heat of water wall metal,  
 Twwm : Temperature of water wall metal, 
 Qwwgm : Heat transfer rate of gas to metal,  
 Qwwmw : Heat transfer rate of metal to water. 
 

 
wwmswwm

drwdrwvww
mwwmwwme TK

HRK+=KM
×
××

 (3) 

 
where, Kmwwm : Mass of water wall metal, 

 Kvww : Volume of water wall, 
 Rdrw : Density of drum water,  
 Hdrw : Enthalpy of drum water, 
 

( )3drswwmuwwmwwwmw TT=KQ −×  (4) 
 

where, Kuwwmw : Constant with dimension of [W/K3 ], 
 Tdrs : Temperature of drum steam, 
 
Thermal equilibrium equation of circulating water is 

given by: 
 

 wwmwrpowwowwo  )=QH(HW −×   (5) 
 

where, Hrpo : Enthalpy of recirculating pump outlet, 
 Hwwo : Enthalpy of water wall outlet, 
 
The following constant values are used:  
Kmwwm=1063000, Kvww=2318.61, Kswwm=0.11, Kuwwmw= 

173.5205 
For (1)-(5), we define the inputs, the outputs, and the 

states as follows, 
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Then, the nonlinear model of water wall system is 

represented in the following equation,  
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 xy =3  (12) 
 
From the above equations, we notice that y2 and y3 of the 

water wall system have severe nonlinearity, while y1 is u1, 
which is a simple linear output. 

 
2.2 Effect of operating point to linear model 

 
The nonlinear model, given by (9)-(12), is linearized 

using the first-order Taylor approximation at an operating 
point. We generalized the operating points as follows: 

Operating point=[u10, u20, u30, u40, u50, u60, x0, y10, y20, y30] 
As an example, the operating point at a power output of 

400 MW is shown in Table 1, where steady state values of 
6 inputs, 3 outputs, and a state can be observed. When all 
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the variables are defined as deviations from the operation 
values in Table 1, the linear model at 400 MW is given as, 

 

 
xuu

uux

Δ−Δ×+Δ+

Δ×−Δ×−=Δ
−

−−

4129.0109474.54129.0

108803.3102535.8

6
6
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 (13) 

 11 uy Δ=Δ  (14) 
 xuuuy Δ+Δ−Δ+Δ−=Δ 7070.147070.14012.0 5212  (15) 
 xy Δ=Δ 3  (16) 

 
We notice that (13) is a simple first order system with a 

pole at s = -0.4129, and the overall system is stable without 
an oscillation mode. The transfer function matrix, )(sG , 
of (13)-(16) for the 6-input 3-output system is given by  
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where Gij is a transfer function of the i-th output from j-th 
input. According to (13) and (17), the linear model at 400 
MW is a first order system with a pole on the left half s-
plane.  

To analyze the nonlinear model, the above linearization 
is performed as a function of the electrical power output. 
Then, the linear models that are generated at each operating 
point are compared from the point of view of the pole and 
the steady-state gain. Fig. 1 shows the movement of the 
pole with the operating points. The pole at 100 MW is at -
0.2335 and moves to the left as the power increases. The 
pole at 600MW is at -0.6084. This means that the transient 
is becoming shorter by several times as the load demand 
increases. 

Fig. 2 shows the steady-state gain changes of y2 and y3 as 

a function of the operating points from 300 [MW] to 600 
[MW], which are normalized with a gain at 300 [MW]. The 
gain for y1 is not represented because it has no dynamics. 
In Fig. 2, the steady-state gain changes significantly. For 
example, the amplitude of the steady-state gain for G21 at 
600 [MW] negatively increases to three times that of 300 
[MW]. From Figs. 1 and 2, even with a good nonlinear 
water wall model, suitable performance is hard to achieve 
for wide range operation using a conventional linear 
control technique. 

 
 

3. Two Neural Network Models 
 

3.1 PRBNS training data 
 
As an alternative to conventional linear modeling and 

control, neural networks have been extensively applied to 
nonlinear modeling and controller design [5]. Due to its 

Table 1. The operating of water wall 

Variables Operating value 
u1 (Wrw) 4716.7199 
u2 (Hrpo) 721.4824 
u3 (Rdrw) 34.4693 
u4 (Hdrw) 733.1763 
u5 (Tdrs) 1132.6393 

u6 (Qwwgm) 267289.8666 
y1 (Wwwo) 4716.7199 
y2 (Hwwo) 778.0994 

y3 (=x, Twwm) 1144.1883 
 

 

[Real axis]

[Imaginary axis] 

100MW 600MW 350MW 

 

Fig. 1. Movement of the pole according to operating point
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Fig. 2. The change in the steady-state gain for y2 and y3

with the operating point 
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ability to learn nonlinear functions, neural networks do not 
need a mathematical model of the object system. Instead, 
the model is developed with the given input-output data. 
Therefore, it is very important to make a suitable selection 
of the training data.  

To identify the dynamic system, a Pseudo Random 
Binary Noise Signal (PRBNS) is a popular input signal that 
is used to excite the system over a wide frequency range 
[17]. In order to obtain training data for the nonlinear water 
wall system considered in this paper, the PRBNS for six 
inputs is generated for 4000 [sec] with 0.1 [sec] sampling 
time.  

Fig. 3 shows generated PRBNS input, and Fig. 4 shows 
the corresponding output using a nonlinear water wall 
system in (9)-(12). In these figures, the first 3000 [sec] data 
are used to train the neural network, and the latter 1000 
[sec] data are left for validation. That is, the data between 
3000 [sec] and 4000 [sec] is not used for training and is 
instead used to evaluate the trained neural network model. 

 
3.2 Multilayer feed-forward neural network model 

 
The multilayer feed-forward neural network (MFNN) is 

a standard neural network [6]. It has been extensively 
applied with the “error back-propagation” training algorithm 

to various nonlinear modeling and control problems [5].  
In this paper, MFNN is first used to model a nonlinear 

water wall system. To train the MFNN, the training data is 
rearranged to reflect the water wall system of (9)-(12) as 
follows, 

 
 )}(),({)1( nYnUfnY =+   (18) 

 
where, n is the discrete time step. And, U (n)=[u1(n), ···, 
u6(n)], Y (n)=[y1(n), y2(n), y3(n)] and Y (n+1)=[y1(n+1), 
y2(n+1), y3(n+1)]. The MFNN used in this paper has a 
three-layer feed-forward neural network, including an input 
layer, a hidden layer and an output layer. The input of 
MFNN is U (n) and Y (n), and the number of the input node 
is 9. The output of the MFNN is Y (n+1), the number of 
output node is 3. 

The purpose of the training is to minimize the total 
square error between the training output data and the 
MFNN output data. This is actually an unconstraint 
optimal problem where the error function is defined as 
follows, 

 

 ∑ −=
N

n
MFNNMFNNW

nYnYE 2))()((min  (19) 

 
where W represents all the weights. YMFNN represents the 
output from the MFNN, Y represents the output for the 
training data, N represents the number for the training data, 
which is 30,000 and n is the discrete time step. To consider 
the different range of each output, each output is 
normalized in Eq. (19). The optimal problem, (19) is 
solved using the back propagation algorithm [18]. The 
Matlab toolbox is used to train the MFNN in this paper. 

One of the most important parameters for the MFNN is 
the number of hidden neurons. Usually, a larger number of 
hidden neurons decreases the error but increases the 
training time of the MFNN. Therefore, some kind of 

u2 (Hrpo) 

u3 (Rdrw) 

u1 (Wrw) 

u4 (Hdrw) 

u5 (Tdrs) 

u6 (Qwwgm) 

[sec]

Training Validation
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Fig. 3. PRBNS input for nonlinear water wall system 
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Fig. 4. Output of PRBNS input for nonlinear water wall

system 
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compromise is necessary. In this paper, different numbers 
of hidden neurons are independently tested. Fig. 5 shows 
the EMFNN and the corresponding training time for 10 
different numbers of hidden neurons, from 10 to 100. From 
Fig. 5, considering the increase in training time, hidden 
neurons by more than 50 are redundant to decrease the 
error. Therefore, in this paper, the number of hidden 
neurons of the MFNN is selected to be 50 for the nonlinear 
water wall model, which has 3.00×10-6 of EMFNN and 
3853.6 [sec] of training time. 

 
3.3 Echo state network model 

 
The ESN is a special form of RNN with three layers: an 

input layer, a hidden layer and an output layer. The 
significant characteristic of the ESN is a hidden layer with 
a large number of neurons that are sparsely and randomly 
inter-connected and/or self-connected. This is meant to 
imitate a biological human brain system. The node is 
commonly referred to as a “dynamic reservoir” that can 
be excited by connecting it with the input unit and/or the 
feedback output unit. A more detailed explanation of the 
ESN was described by Jaeger [10]. Such ESNs have been 
recently applied successfully for dynamic system 
identification and control [11, 19-21]. 

In this paper, the ESN is used as a second neural 
network model to describe the nonlinear dynamics of the 
water wall system. Fig. 6 shows the structure of the ESN 
used in this paper. In the figure, the ESN has 6 inputs and 3 
outputs that are the same as those of a water wall system. 
The connection weights are divided into 4 categories, Win, 
Wdr, Wfb and Wout, which are the input weight matrix, 
internal weight matrix, output feedback weight matrix and 
output weight matrix, respectively.  

In this figure, Win is represented with solid lines from the 
input nodes to the reservoirs; Wdr is represented with solid 
lines among reservoirs; Wfb is represented with solid lines 
from the output nodes to the reservoirs; and Wout is 
represented with dotted lines from the input, reservoirs 
and output nodes to the output nodes. When the number 

of reservoirs is Ndr, the dimensions of Win, Wdr, Wfb and 
Wout are (Ndr×6), (Ndr×Ndr), (Ndr×3) and (3×(Ndr+9)), 
respectively. 

The state of the reservoir and output from input in Fig. 6 
are computed as follows:  

 
 ( ))()()()1( nYWnSWnUWfnS fbdrin ++=+  (20) 
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⎟
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where S(n)=[s1(n), ···, sNdr(n)]T is the state of the dynamic 
reservoir, U(n)=[u1(n), ···, u6(n)]T is the input, Y(n)=[y1(n), 
y2(n), y3(n)]T is the output, f(·) is the hyperbolic tangent 
function and n is a discrete time step. 

In the ESN, W in, W dr and W fb are fixed with random 
numbers that were initially generated while W out is trained 
with the given input-output data. This is a significant 
difference between ESN and other RNNs, which enable 
ESN training through a simple linear regression [10, 22]. 
Randomly generated (W in, W dr, W fb) determine the “echo 
state properties” which means that “if the network has been 
run for a long time, the current network state is uniquely 
determined by the history of the input and the teacher 
forced output.” [12]. A more detailed analysis of the 
sufficient conditions and necessary conditions for the echo 
state property are presented by Zhang et al. [23]. 

To guarantee the echo state properties, Wdr is usually 
generated as follows [16, 19]: 

 

 
max

0

λ
α

dr
dr WW =  (22) 

 
where, W0

dr is the initial internal weight matrix with a 
sparse connectivity of 5% over the range [-0.5, 0.5], and its 
mean value is about zero, λmax is the highest eigenvalue of 
W0

dr, and α is a constant of less than one, which is referred 
to as a spectral radius. Also, W in and W fb are randomly 
chosen in the range [-1, 1].  

The training of the ESN is an off-line calculation of the 
output weight W out to minimize the error square as follows: 

 
[sec] 
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EMFNN
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Fig. 5. Training time of MFNN and EMFNN as a function of

hidden neuron number 
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Fig. 6. The architecture of an ESN for a water wall system
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 ∑ −=
N

n
ESNESN

W
nYnYE

out

2))()((min  (23) 

 
where YESN represents the output of the ESN and Y 
represents the normalized output of the training data. In 
(23), initial part of the training data is not considered into 
the EESN since the initial dynamic reservoir, S(0), is initially 
set with an arbitrary value that affects the output. This part 
is referred to as the “initial washout time” and is usually 
selected empirically [10, 15, 16, 19, 22]. In this paper, this 
time is selected as 500 [sec], and therefore, the number of 
training data N is 25,000 [step] for ESN. 

To minimize the EESN, the training input U (n), the 
internal states S(n+1) and the training output Y(n+1) are 
collected together into a new row of a matrix M. That is, M 
is the concatenated matrix of U, S and Y, and its size is 
N×(Ndr+9). At the same time, the training outputs Y(n) are 
collected into another new matrix T with size (N×3). Then, 
the desired Wout, which minimize the EESN, are obtained by 
multiplying the pseudo-inverse of M with T as follows [15, 
19, 22]. 

 
 TTTTout TMTMMMW )(})({ 1 +− ==  (24) 

 
where, M + denotes the pseudo-inverse of the M matrix. 
Since training in the ESN is simply performed with (24), 
the training time for the ESN is mainly determined as the 
time to calculate the pseudo-inverse. In this paper, the 
Matlab function pinv( ) is used to calculate the pseudo-
inverse using singular value decomposition. This simple 
training is a major benefit of the ESN over other neural 
networks.  

In practice, the number of reservoirs (Ndr) and the value 
of the spectral radius (α) are important parameters for the 
performance of the ESN. Usually, a large Ndr supplies 
various dynamics to decrease the error while increasing 
the redundancy for the ESN. A small α decreases the 
inter-connected weights and the self-connected weights 
of the dynamic reservoirs. Therefore, a small α might be 
sufficient to describe the dynamics with a small time 
constant while a large α is required to describe the 

necessary dynamics with a large time constant [24]. 
In this paper, different values of Ndr and α are tested 

independently. Fig. 7 shows the EESN as a function of Ndr, 
and α when Ndr is 100, 200, …, 1000 and α is 0.1, 0.2, …, 
1. Since the EESN is dependent on a randomly generated 
initial weight set (W in, W dr, W fb), the EESN of each point in 
Fig. 7 is selected with the best value of ten initial weight 
sets. From Fig. 7, the ESN shows a small error with a large 
Ndr and small α. From a comparison with the MFNN, an 
ESN with more than 700 reservoirs and less than 0.2 of α 
shows a smaller error than that of MFNN. In this paper, the 
final parameters of the ESN model used to describe the 
water wall system are selected with 600 for Ndr and 0.2 for 
α, which has a 2.73×10-6 EESN. 

Fig. 8 shows the training time of the ESN with respect to 
Ndr. Since α does not affect the calculation time with (24), 
the training time is represented with Ndr at 0.2 of α in this 
figure. Naturally, a large Ndr requires a large training time. 
In Figs. 5 and 8, the training time for the ESN is noted to 
be of less than 10 [sec] while that of MFNN is of several 
thousand [sec]. This is one of the important benefits of 
ESN, which can be trained in a one-shot manner with (24) 
to minimize (23). The training time for the selected ESN 
model is of 3.5 [sec] in this paper. 

 
 

4. Comparison Results 
 
The performance of the three models, i.e., the linear, 

MFNN and ESN models, is tested using PRBNS data that 
were not used during training. To evaluate the performance, 
the PRBNS input data in Fig. 3 are independently applied 
to the three models. Then, nonlinear outputs between 3000 
[sec] and 4000 [sec] in Fig. 4, which is not used during 
training, are compared with the three outputs of the MFNN, 
ESN and linear models. 

Fig. 9 shows the comparison of y1 for the linear, MFNN 
and ESN models. Since y1 is a linear output, the linear 
model is identical to the nonlinear model. In this case, both 
MFNN and ESN show almost the same response as that of 
the nonlinear model.  

 

[the number of reservoir (Ndr)] 

[spectral 
radius (α)]

EESN 

[Selected point] × 10-5 

 
Fig. 7. EESN as a function of the reservoir number and

spectral radius 
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Fig. 8. Training time of the ESN and EESN as a function of

the reservoir number 
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Nonlinear, Linearized, MFFN, ESN 

[sec]
Nonlinear :      Linearized :       MFNN :      ESN:  

Fig. 9. Comparison of y1 for validation data 
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Fig. 10. Comparison of y2 for validation data 
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Fig. 11. An enlargement of Fig. 10 
 
Fig. 10 shows the validation results for y2, and Fig. 11 is 

an enlargement of Fig. 10. Since y2 is a nonlinear output, 
the linear model shows some mismatch. This mismatch is 
expected from the analysis in Section 2.2. In this case, the 
MFNN and ESN show almost the same results as the 
nonlinear system. These validation results show that 
MFNN and ESN have the capability to describe the y2 of 
the nonlinear water wall model properly. Fig. 12 shows the 
validation results of y3, and Fig. 13 is an enlargement of 

Fig. 12. Since y3 is a nonlinear output, the linear model 
shows some mismatch. The MFNN and ESN show almost 
the same results as the nonlinear system in the figure. 
These validation results show that MFNN and ESN have 
the capability to properly describe the entire dynamics of 
the nonlinear water wall model. 

A quantitative comparison with the mean square error is 
listed in Table 2. Although both MFNN and ESN exhibit 
better results than the linear model, ESN shows slightly 
better results than the MFNN in this case. Table 3 shows 
the training time for the MFNN model and the ESN model. 
The simple and fast learning time of ESN is one of the 
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Fig. 12. Comparison of y3 for validation data 
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Fig. 13. An enlargement of Fig. 12 

 
Table 2. Comparison of MSE for three models 

 Linear Model MFNN Model ESN Model 
y1 0.0000 4.8583e-13 2.3554e-26 
y2 1.5637e-04 4.1642e-06 1.1530e-06 
y3 2.1470e-03 1.4864e-05 5.3108e-06 

 
Table 3. Comparison of the training time between MFNN 

and ESN 

 MFNN Model ESN Model 
Training time [sec] 3853.6 3.5 
 



A Comparison Study of MIMO Water Wall Model with Linear, MFNN and ESN Models 

 716 │ J Electr Eng Technol.2016; 11(1): 709-718 

most important benefits over other neural network models. 
 
 

5. Conclusion 
 
In this paper, we present a comparison among linear 

model, multilayer feed-forward neural network (MFNN) 
model and echo state neural network (ESN) model for a 
practical water wall system in a 600 [MW] thermal power 
plant, which is a MIMO nonlinear system.  

First, we present an analysis of the results of the 
linearization of a mathematical water wall model. The 
change in the pole and steady-state gain is presented as a 
function of the electric power output. As a result, the 
system shows quite severe nonlinearity in the design of a 
linear controller.  

Second, we developed an MFNN model and an ESN 
model without using a mathematical water wall model. 
Though ESN shows slightly better performance, the results 
show that both neural network models can provide a 
satisfactory description of the nonlinear water wall model. 
Meanwhile, the ESN shows significantly faster training 
than the MFNN.  

From the point of view of control system design, the 
change in the pole and steady-state gain in this paper can 
be applied. Though the use of ESN for control and analysis 
remains to be further developed in future research, we 
identify the ability of the ESN as a good neural network 
model for practical nonlinear MIMO identification 
problems. 
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