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a b s t r a c t

This paper develops a novel data-driven fuzzy modeling strategy and predictive controller for boiler–
turbine unit using fuzzy clustering and subspace identification (SID) methods. To deal with the nonlinear
behavior of boiler–turbine unit, fuzzy clustering is used to provide an appropriate division of the
operation region and develop the structure of the fuzzy model. Then by combining the input data with
the corresponding fuzzy membership functions, the SID method is extended to extract the local state-
space model parameters. Owing to the advantages of the both methods, the resulting fuzzy model can
represent the boiler–turbine unit very closely, and a fuzzy model predictive controller is designed based
on this model. As an alternative approach, a direct data-driven fuzzy predictive control is also developed
following the same clustering and subspace methods, where intermediate subspace matrices developed
during the identification procedure are utilized directly as the predictor. Simulation results show the
advantages and effectiveness of the proposed approach.

& 2014 ISA. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Boiler–turbine unit is an essential device in modern fossil-fuel-
fired power plants which converts the chemical energy in fuel into
mechanical energy and then into electrical energy. The central task
of a typical boiler–turbine control system is to regulate the power
output to meet the demand of the grid while maintaining the
pressure and water level in drum within given tolerances.

As the power plants increase in size and participate in grid power
regulation more frequently, the control of boiler–turbine unit has
been shown to be a challenge, due to the severe nonlinearity in
multitude of variables over a wide operation range, tight operating
constraints and large inertia behavior. Therefore, it is necessary to
design advanced controllers to improve the performance of the
boiler–turbine control system for economic and safe plant operation.

As a direct approach to improve the conventional PI/PID
controller, auto-tuning of the PID parameters is studied in [1–3]
utilizing the fuzzy logic, particle swarm optimization (PSO) and
iterative feedback tuning (IFT). In [4,5], H1 controllers are
proposed to enhance the robustness of boiler–turbine control
system. To overcome the nonlinearity of the boiler–turbine unit,

various artificial intelligence techniques have also been applied.
In [6], a fuzzy auto-regressive moving average (FARMA) controller
was applied to the boiler–turbine system with rules generated by
using the history of input–output data. In [7], a linear quadratic
regulator (LQR) controller is designed for a boiler–turbine through
genetic algorithm. However, none of these controllers have dealt
with the input constraints in the controller design stage; therefore,
predictive controllers have been employed in recent years [8–16].

Under traditional design frameworks, predictive controller is
known as the model predictive controller (MPC), where modeling is
the first and foremost important step, and the controller0s perfor-
mance is greatly relying on the structure, accuracy and complexity of
the model. In [8], a dynamic matrix controller (DMC) is employed for
the boiler–turbine. It shows that the step-response model based on
the test data is better than the linearized model, but the performance
of the proposed linear controller is degraded for a wide-range opera-
tion. In [9,10], nonlinear predictive controllers are designed based on
neural network model, neuro-fuzzy network and input–output feed-
back linearization. Although the control performance is improved,
nonlinear optimization is time consuming and lacks robustness.

To overcome these issues the fuzzy modeling technique [17],
which uses a fuzzy combination of several linear models to
approximate the nonlinear behavior of the plant, has been used
in the MPC design for boiler–turbine unit [11–14]. This showed
better performance than the conventional predictive methods for
a wide-range operation.
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Although different kinds of objective functions and computational
tools such as quadratic programming [11], linear matrix inequalities
[12], genetic algorithm [13,14] are adopted in these papers, it is
common that, linear state-space models are used as local models in
all these fuzzy MPCs because of the advances in multi-variable
systems and control theory for linear systems. In these works, an
approximation or transformation of the nonlinear system has been
used to obtain the linear state-space model. However, for complex
systems such as boiler–turbine unit, it is difficult to develop an
accurate mathematical model without the knowledge of thermo-
dynamics and design specifications of many components, which has
become one of the main limitations for designing controllers for real
power plants. Furthermore, except the reference [13], the structure of
the fuzzy model is designed by simply dividing the operation range
evenly, which would not guarantee the accuracy of the model.

Given these reasons, the first objective of this paper is to
develop a fuzzy model for the nonlinear boiler–turbine unit when
only the input–output data are available as opposed to mathema-
tical model. Unlike the ordinary approach, we propose a novel
method using fuzzy clustering [18] and subspace identification
(SID) [19–21]. The clustering is used to develop the structure of the
fuzzy system, and then by combining the data with the member-
ship functions, the standard SID is extended to develop all local
state-space models together at once. The resulting fuzzy model is
shown to represent the boiler–turbine unit very closely, and thus
used in designing the fuzzy MPC.

In spite of the effectiveness of the MPC in general, both the
control performance and computational burden of the MPC
heavily depend on the prediction model, which has become the
“Achilles heel” of the MPC. To alleviate this problem, data-driven
predictive controllers are proposed in [22] based on the SID.
However, due to the fact that the SID works only for linear system
identification, its application has been limited to linear systems or
to a small operating region of a plant.

In the context of the fuzzy clustering and subspace identifica-
tion, a new approach, data-driven fuzzy predictive controller
(DDFPC), is developed in this paper. The input–output data of
the plant, which would contain much richer information than the
mathematical model, are directly used to build the fuzzy predictor.
This also avoids the intermediate modeling procedure and elim-
inates the effect of modeling mismatch.

This paper is an extension of a previous work [15], in which the
whole operating region is first divided by using a nonlinear analysis
tool (Vinnicombe gap metric, to be specific [23]), and the corre-
sponding data for each region are collected to identify the local
model or its predictor. Compared with the method in [15], the
proposed method has the following advantages (1) the fuzzy model
structure and local model/predictor identification are strongly linked,
thus, the integral fuzzy modeling procedure is simple and direct;
(2) division of the whole operation range is determined by the
clustering, thus less human intervention is needed; (3) it is more
efficient since all local models can be identified together at once;
(4) the resulting fuzzy controller has smooth transition between local
predictors, thus provides bumpless control.

The remainder of this paper is organized as follows: Section 2
describes the boiler–turbine unit. Section 3 establishes the
TS-fuzzy model of the boiler–turbine unit using fuzzy clustering
and subspace identification. The DDFPC is developed in Section 4
and simulation results are given in Section 5. Finally, some
conclusions are drawn in Section 6.

2. System description

The boiler–turbine system used in this paper represents the
behavior of a 160 MW drum-type oil-fired power plant. The

dynamics of this particular power plant were recorded and
formulated into mathematical model by Bell and Åström [24]
using both physical and empirical methods as shown below

dP
dt

¼ 0:9u1�0:0018u2P
9=8�0:15u3 ð1Þ

dE
dt

¼ ðð0:73u2�0:16ÞP9=8�EÞ=10 ð2Þ

dρf
dt

¼ ð141u3�ð1:1u2�0:19ÞPÞ=85 ð3Þ

where P denotes drum steam pressure (kg/cm2), E denotes power
output (MW), and ρf denotes steam-water density (kg/cm3). Manipu-
lated (input) variables of the system are valve actuator positions that
control the mass flow of fuel, represented as u1; steam to the turbine,
u2; and feedwater to the drum, u3. The three control inputs are
subject to magnitude and rate constraints as follows:

0ru1;u2;u3r1
�0:007r _u1r0:007
�2r _u2r0:02
�0:05r _u3r0:05

ð4Þ

which represent the physical limitations of the actuators.
The output variables of the system is the drum pressure P (kg/

cm2), power output E (MW) and drum water level L (m). Using the
solution for ρf, the drum water level L can be calculated using the
following equations:

qe ¼ ð0:854u2�0:147ÞPþ45:59u1�2:514u3�2:096 ð5Þ

αs ¼
ð1�0:001538ρf Þð0:8P�25:6Þ
ρf ð1:0394�0:0012304PÞ ð6Þ

L¼ 0:05ð0:13073ρf þ100αsþqe=9�67:975Þ ð7Þ
where αs is the steam quality and qe is the evaporation rate in kg/s.

Typical operating points of the boiler–turbine unit are tabu-
lated in Table 1.

The boiler–turbine model has been investigated by many
researchers for modeling and control [5–8,10–16,25], and has
shown to exhibit severe nonlinearity along the whole operation
range, especially in the high power region [13,5,25]. Therefore,
fuzzy technique is proposed in this paper to address the non-
linearity for the modeling and control problems.

3. Data-driven fuzzy modeling of boiler-turbine unit

The following discrete fuzzy model can be used to present the
boiler-turbine unit with both fuzzy inference rules and local state-
space models:

Ri : IFφkAMi; THEN :

xkþ1 ¼ AixkþBiukþKiek
yk ¼ CixkþDiukþek; i¼ 1;2:::L

(
ð8Þ

where Ri denotes the i-th fuzzy inference rule, L the number of
fuzzy rules, Mi the fuzzy sets, xkAℜn the state vector, ukAℜm the

Table 1
Typical operating points of the boiler–turbine unit.

#1 #2 #3 #4 #5 #6 #7

P 75.6 86.4 97.2 108 118.8 129.6 135.4
E 15.27 36.65 50.52 66.65 85.06 105.8 127
L 0 0 0 0 0 0 0
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control input vector, ykAℜp the output vector, ekAℜp the zero
meanwhite innovation vector. The matrices Ai;Bi;Ci;Di;Ki are local
systems and observer matrices, and φk is the antecedent vector of
the fuzzy model, which is also the clustering input, composed by
current and past measurable variables of the plant.

Let ωi
k be the normalized membership function of the fuzzy set

Mi, then the fuzzy model (8) can be expressed in the global form

xkþ1 ¼ AωxkþBωukþKωek
yk ¼ CωxkþDωukþek

(
ð9Þ

where Aω ¼∑L
i ¼ 1ω

i
kAi; ω

i
kA ½0;1�; ∑L

i ¼ 1ω
i
k ¼ 1, and all other

matrices are defined in the same way.
Modeling of fuzzy system consists of two parts: the premise

(structure) design and the consequence (local model parameters)
design. In this section, we first use the fuzzy clustering to
determine the structure of the fuzzy model, i.e., the number of
the local models L, and the membership functions ωi, and then the
SID is used to determine the model parameters fAi;Bi;Ci;Di;Kig
through the input/output data of the plant and the corresponding
membership functions.

3.1. Premise design using fuzzy clustering

Clustering has been widely accepted as an effective method for
designing the premise part of the fuzzy model. It classifies the data
according to similarities and organizes the data into groups or
clusters. The number of clusters is corresponding to the number of
local models and the clustering centers can be used to calculate
the membership functions. A satisfactory clustering can provide an
appropriate structure design for the fuzzy model without much
experience on, or nonlinear analysis of, the plant.

Before performing the clustering, it is important to select the
clustering input vector φk. For the boiler-turbine unit, because the
dynamics are greatly relying on the power level, drum pressure
and water level as well as the valve positions, the clustering input
is chosen as: φk ¼ ½Pk�1; Ek�1; Lk�1;u1;k�1;u2;k�1;u3;k�1� in this
paper. Thus, the data set for clustering, X, can be constructed as:
X ¼ fXkjk¼ 1;2; :::;Ng with the k-th sample Xk ¼ ½φk; Pk; Ek; Lk�T ,
where N is the number of the samples. The goal of clustering is
then to find L clustering centers Vi, i¼1, 2,…, L, such that some
measure of the distance between all samples Xk and the cluster
centers Vi is minimum.

Among various clustering method, the Gaustafson–Kessel
(G–K) clustering algorithm has been widely used recently. Based
on the “covariance matrix weighted distance”, the G–K clustering
can perform the clustering for both the ellipsoidal and linear
distributed data, thus, it is consistent with the “local linearization”
idea of fuzzy modeling and provide a better modeling result
compared with other clustering methods. Considering its distinct
features, such as local adaptation of the distance metric to the
shape of the cluster and relative insensitivity to the data scaling
and initialization of the partition matrix, a modified G–K cluster-
ing algorithm [18] is employed in this paper.

The G–K clustering algorithm is an objective function-based
clustering, which tries to find L clustering centers Vi, i¼1, 2,…, L,
and the partition matrix U ¼ ½μik�A ½0;1�L�N from the data set X,
such that the following objective function is minimal:

JðX;U;V ;AÞ ¼ ∑
L

i ¼ 1
∑
N

k ¼ 1
ðμikÞmD2

ikAi
ð10Þ

where μik is the value of the membership function of the k-th
sample for the i-th fuzzy set in the data set X,m A [1,1] is a scalar
parameter which determines the fuzziness of the resulting clus-
ters, generally set to m¼2, and DikAi

denotes the distance between
a sample Xk and a cluster center Vi, which also determines the

geometrical shapes of the clustering:

D2
ikAi

¼ ðXk�ViÞTAiðXk�ViÞ ð11Þ

in which the positive definite matrix Ai is obtained by

Ai ¼ ½ρidetðFiÞ�1=NF �1
i

Fi ¼
∑N

k ¼ 1ðμikÞmðXk�ViÞðXk�ViÞT
∑N

k ¼ 1ðμikÞm
ð12Þ

As a nonlinear optimization problem, the analytic solutions of
the G–K clustering is difficult to obtain; thus an iterative method is
widely used to minimize the objective function, which calculates
the cluster centers at the l-th iteration by

V ðlÞ
i ¼∑N

k ¼ 1ðμ
ðl�1Þ
ik ÞmXk

∑N
k ¼ 1ðμ

ðl�1Þ
ik Þm

ð13Þ

Then the fuzzy covariance matrix Fi and the distance value DikAi

can be updated through (12) and (11), and the partition matrix can
be determined by

μðlÞik ¼ 1
∑L

j ¼ 1ðDikAi
=DjkAj

Þ2=ðm�1Þ ð14Þ

until ∥UðlÞ �Uðl�1Þ∥rε, which is the termination tolerance. The
detailed algorithm can be found in [18].

Once the L clustering centers Vi, i¼1, 2,…, L are obtained, we
extract the input centers Vφ

i from them, which are set as the
centers of the fuzzy set Mi. Then, for a given input vector φk, a
Gaussian-type membership function can be calculated through Vφ

i :

wi
k ¼ exp � ∥φk�Vφ

i ∥
si

� �2
" #

ð15Þ

where si is the width of the membership function:

si ¼ 1
β

1
j
∑
j

l ¼ 1
∥Vi�Vl∥

" #
ð16Þ

with Vl, l¼1,2,…, j, being the j closest centers to the center Vi. We
set j¼1 and β¼4 in this paper and the normalized membership
function can be calculated by

ωi
k ¼

wi
k

∑L
i ¼ 1w

i
k

ð17Þ

Therefore, we have now successfully developed the premise part
of the fuzzy model.

3.2. Consequence design using subspace identification

Considering the global fuzzy model (9), the problem left can
now be formulated as: given the input sequence uk, output
sequence yk and their corresponding membership functions ωk

over a time k¼1,2,…,N, find the state-space and the observer
matrices Ai, Bi, Ci, Di, and Ki.

Subspace identification (SID) method provides an effective way
to develop the state-space model directly from the input–output
data of the plant [19–21]. Based on computational tools such as QR
factorization and singular value decomposition (SVD), the SID
extracts the model from the subspaces of data Hankel matrices.
Comparing with the conventional identification methods, the SID
has several distinct advantages, such as (1) computationally
efficient, especially for multivariable systems; (2) avoid local
minima and convergence problems; (3) no requirement for initial
conditions; and (4) the system order can be easily chosen.
However, since the SID is only for linear system modeling, most
of its applications have been on linear systems or on a small
operating region of the plant, and few papers can be found on its
application to highly nonlinear boiler–turbine unit.

X. Wu et al. / ISA Transactions 53 (2014) 699–708 701



In the previous section, although the nonlinear modeling has
been handled by the fuzzy clustering, the resulting model (9) is
dependent on the fuzzy membership functions, which means the
global systemmatrices will be different for different operating point
at each time step. This will make the data matrices involved in the
SID grow exponentially with the size of the prediction time and the
number of local models [26,27], and make it difficult to implement.
To handle this problem, a simplifying assumption is made that only
the input matrices Bi and Di are dependent on the membership
functions, and all other matrices except these two, i.e., A, C, K, are
assumed to be independent of the membership functions (e.g.,
Ai¼Aj¼A, i, j¼1, 2,…, L). Under this assumption, the input data can
be combined with the membership functions, before using the SID.
An approximate fuzzy model is then defined as following:

xkþ1 ¼ AxkþBωukþKek
yk ¼ CxkþDωukþek

(
ð18Þ

Here that Bωuk ¼∑L
i ¼ 1ω

i
kBiuk ¼ B½ωk � uk� and Dωuk ¼∑L

i ¼ 1ω
i
k

Diuk ¼D½ωk � uk�, where B¼ ½B1B2⋯BL� and D¼ ½D1D2⋯DL�, the
membership function vector ωk ¼ ½ω1

kω
2
k…ωL

k�T , and � presents
the Kronecker product. Model (18) can be rewritten as

xkþ1 ¼ AxkþBukþKek
yk ¼ CxkþDukþek

(
ð19Þ

where uk �ωk � uk is the mixed input resulting from the fuzzy
membership functions.

Therefore, by combining the input data with their correspond-
ing membership functions, the SID can be extended to find the
consequence of the fuzzy model. The resulting fuzzy model can be
used for approximating the behavior of nonlinear system and for
controller design. The algorithm of the SID is summarized in the
next section.

Remark 3.1. This simplification brings a significant advantage for
utilizing the SID although the nonlinear approximation ability of
the fuzzy model is not fully utilized. However, since (i) the
matrices Bω and Dω are still dependent on the fuzzy membership
functions, and through which the input is coupled to the local
models, and (ii) if necessary, the accuracy of the model can be
improved by further adjusting the number and position of the
clustering centers and membership functions, this simplification is
reasonable and the resulting model can still attain a satisfactory
accuracy.

3.3. Algorithm for subspace identification

The first step of SID is to construct the input and output data
Hankel Matrices:

U¼ Up

Uf

� �
¼

u0 u1 … uj�1

u1 u2 … uj

… … … …
uN�1 uN … uNþ j�2

uN uNþ1 … uNþ j�1

uNþ1 uNþ2 … uNþ j

… … … …
u2N�1 u2N … u2Nþ j�2

2
666666666666664

3
777777777777775

Here, the input data Hankel matrices U is partitioned into the past
(Up) and the future (Uf) block matrices and is composed of all
mixed input data ðu0;u1;⋯;u2Nþ j�2Þ which is combined by mem-
bership functions, where N and j are respectively the row and
column block numbers of Up and Uf. We should choose N larger
than the order of the system n and j should be sufficiently large
(typically j⪢max (mLN, lN)), to reduce noise sensitivity [19], where

m, l, and L are dimensions of input, output variables and the
number of local models.

The output and noise Hankel matrices Y and E can be constructed
in the similar format. Then by stacking up the model (19) with input–
output data for a number of steps, these Hankel matrices can be used
to develop the following subspace matrix equations [21]:

Yf ¼ ΓNX
f þHNdU

f þHNsE
f ð20Þ

Yp ¼ ΓNX
pþHNdU

pþHNsE
p ð21Þ

Xf ¼ΨYY
pþΨUU

pþðAÞNXp ð22Þ
where

ΓN ¼ ½CT ðCAÞT ðCAN�1ÞT �T ;

HNd ¼

D 0 0 ⋯ 0
CB D 0 ⋯ 0
CAB CB D ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯

CAN�2B CAN�3B CAN�4B ⋯ D

2
6666664

3
7777775
;

HNs ¼

I 0 0 ⋯ 0
CK I 0 ⋯ 0
CAK CK I ⋯ 0
⋯ ⋯ ⋯ ⋯ ⋯

CAN�2K CAN�3K CAN�4K ⋯ I

2
6666664

3
7777775
;

ΨY ¼ ½ðAÞN�1K ðAÞN�2K ⋯ AK K�;
ΨU ¼ ½ðAÞN�1B ðAÞN�2B ⋯ AB B�
in which A¼ ðA�KCÞ, B¼ ðB�KDÞ.

Similarly, the state matrix X is defined as:

X ¼ Xp

Xf

� �
¼

x0 x1 ⋯ xj�1

xN xNþ1 ⋯ xNþ j�1

" #

Owing to the stability of the Kalman filter, ðAÞN ¼ ðA�KCÞN-0
as N-1; thus for a large N, (22) converges to [21]:

Xf ¼ LNW
p ð23Þ

where subspace matrices LN and past data matrices Wp are defined
as: LN ¼ ½Ψ Y ΨU � and Wp ¼ ½ðYpÞT ðUpÞT �T .

Substituting (23) into (20), we have:

Yf ¼ LwWpþLuUf þLeEf ð24Þ
with the subspace matrices defined by Lw ¼ ΓNLN , Lu ¼HNd and
Le ¼HNs.

With the conditions that (i) uk is uncorrelated with ek, (ii) uk is
persistently exciting in the order of 2N, and (iii) the number of
measurements is sufficiently large, i.e., j-1, the data Hankel
matrices can be decomposed by the QR-factorization as follows
[19]:

Wp

Uf

Yf

2
64

3
75¼

R11 0 0
R21 R22 0
R31 R32 R33

2
64

3
75

Q1

Q2

Q3

2
64

3
75 ð25Þ

By expanding this equation and comparing it with (24), the
subspace matrices L¼ ½Lw Lu� can be calculated as:

L¼ ½R31 R32�
R11 0
R21 R22

" #†

ð26Þ

where † represents the Moore–Penrose pseudo-inverse. The block
matrices are identified as Lw ¼ Lð:;1 : NðLmþ lÞÞ and Lu ¼ Lð:;N
ðLmþ lÞþ1 : endÞ in MATLAB expression, representing the first
NðLmþ lÞ columns and the remaining columns in L, respectively.

X. Wu et al. / ISA Transactions 53 (2014) 699–708702



The next step is to extract the system matrices from the
subspace matrices. We first perform the singular value decom-
position (SVD) on the subspace matrix Lw [19,21]:

Lw ¼ ½U1 U2�
S1 0
0 S2

" #
V1

V2

" #
�U1S1V1 ð27Þ

where S1 is chosen to contain the n most significant singular
values with n as the order of the model. Since Lw ¼ ΓNLN as defined
in (24), ΓN can be estimated by:

ΓN ¼ U1S1
1=2 ð28Þ

From ΓN , as was defined in (20) and (21), the system matrices
C and A can be directly extracted.

Next, by multiplying (20) with the orthogonal complement
ðΓNÞ? from the left-hand side and with ðUf Þ† from the right-hand
side, we have:

ðΓNÞ?Yf ðUf Þ† ¼ ðΓNÞ?HNd ð29Þ
Considering the structure of HNd, as was defined in (20) and (21),
(29) can be written in equations that are linear in B and D, so that
they can be extracted.

Finally, from (24) and (25), we conclude

R33Q3 ¼ LeEf ð30Þ
Thus, with the assumptions on the innovation term, we can get Le
which equals HNs, as was defined in (20) and (21), and from which
the Kalman filter gains K can be obtained [21].

The whole procedure of the modeling can be summarized as
Fig. 1.

3.4. Fuzzy model predictive control

Based on the fuzzy model developed for the boiler-turbine unit
with the clustering and subspace approach, a fuzzy model pre-
dictive controller (FMPC_S) can be designed using the standard
MPC technique, with the working principle shown as following:

Step 1. Calculate the next instant fuzzy membership function
ωkþ1 from the antecedent vector φkþ1 ¼ ½Pk; Ek; Lk;u1;k;u2;k;u3;k�
using (15),(17);
Step 2. Calculate the global model parameters Bω ¼∑L

i ¼ 1ω
i
kBi,

Dω ¼∑L
i ¼ 1ω

i
kDi, and form the predictor using matrices fA;Bω;

C;Dω;Kg;

Step 3. Minimize the objective function considering input magni-
tude and rate constraints to obtain the optimal input sequence;
Step 4. Implement the first input in the input sequence to
the plant;
Step 5. Estimate the new state vector using the Kalman filter K,
and go back to Step 1.

The FMPC_S is tested and compared with an alternative
approach in the next section, namely the data-driven fuzzy
predictive controller (DDFPC), which is a model-free controller.

4. Data-driven fuzzy predictive control of boiler–turbine unit

With the fuzzy model obtained in the previous section, various
advanced controllers can be designed for boiler–turbine control.
However, Eq. (24) has a potential to be used as a predictor in designing
a predictive controller, because the future output is expressed as a
function of future input. Furthermore, with the three conditions
mentioned in Section 3.3, a predictive expression can be written as:

Ŷ
f ¼ LwWpþLuUf ð31Þ

where Wp ¼ ½ðYpÞT ðUpÞT �T is the past input–output data Hankel
matrix, U f is the future input data Hankel matrix, and Ŷ

f
is the

prediction of the future data Hankel matrix. This implies that by
identifying the subspace matrices Lw and Lu from the input–output
data and corresponding membership functions (i.e., from the mixed
input–output data), fuzzy predictor can be directly constructed with-
out completing the fuzzy model; therefore, the intermediate modeling
procedure for the MPC and resulting modeling mismatch can be
avoided. Thus, based on the fuzzy technique and subspace idea, a
direct predictive controller, rather than the indirect, i.e., the MPC, will
be developed in this section.

Now, consider the objective function

J ¼ ðŷf �rf ÞTQf ðŷf �rf ÞþΔuT
f RfΔuf ð32Þ

where Qf ¼QT
f 40; Rf ¼ RT

f 40 are weighting matrices of output
and input, respectively, and rf ¼ ½rTkþ1 rTkþ2 ⋯ rTkþNy

�T is the
desired output trajectory.

Using the predictor (31), the predictive output ŷf ¼
½ŷTkþ1 ŷTkþ2 ⋯ ŷTkþNy

�T can be estimated by:

ŷf ¼ lwwpþ luΩuf ð33Þ

where wp ¼ ½yTk�Nþ1 … yTk uT
k�Nþ1 uT

k �T is the past output

and the mixed input data, uf ¼ ½uT
kþ1 uT

kþ2 ⋯ uT
kþNu

�T is the

future control input, lw ¼ Lwð1 : lNy; :Þ and lu ¼ Luð1 : lNy;1 : mLNuÞ
are prediction matrices, and Ny and Nu, NyZNu are, respectively,
the prediction horizon and the control horizon, and Ω the matrix
consisting of the future fuzzy membership functions:

Ω¼
ωkþ1 � Im 0 0

0 ⋱ 0
0 0 ωkþNu

� Im

2
64

3
75

In order to deal with the effect of unknown disturbances or
identification mismatch, integral action is taken into account to
achieve an off-set free tracking performance.

To include an integral action, the noise input ek in the state-
space model (19) is considered as an integrated noise which is
common in industrial processes [22]:

ek ¼ ek�1þak ð34Þ
Using a difference operator Δ¼ 1�z�1, (34) can be written as:

ek ¼
ak
Δ

ð35Þ

Collect the input-output data of the plant uk, yk ,
k=1,2, ,N

Perform the fuzzy clustering to determine the clustering
centers Vi and calculate the width of the membership

functions , i=1, 2 , by (16)

Calculate the membership functions for the input-output
data by (15) and (17) and calculate the mixed input

Build the data Hankel matrices using the output and mixed
input data, and perform the SID in section 3.3 to find the

local model parameters.

i

k

uk k ku

Fig. 1. Procedure of the data-driven fuzzy modeling.
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then Eq. (19) can be rewritten as

Δxkþ1 ¼ AΔxkþBΔukþKak
Δyk ¼ CΔxkþDΔukþak ð36Þ
and following the same procedure, the prediction (33) is changed
to:

Δŷf ¼ lwΔwpþ luΩΔuf ð37Þ
Thus, we can have:

ŷf ¼ ykþζlwΔwpþζluΩΔuf ð38Þ
where yk ¼ ½yTk yTk ⋯ yTk �T and

ζ¼

I 0 ⋯ 0
I I ⋯ 0
⋮ ⋮ ⋱ ⋮
I I ⋯ I

2
6664

3
7775

The input magnitude constraint ðumin;umaxÞ as well as the input
rate constraint ðΔumin;ΔumaxÞ can be imposed as:

I

I

⋮
I

2
6664

3
7775ðumin�ukÞrζΔuf r

I

I

⋮
I

2
6664

3
7775ðumax�ukÞ ð39Þ

I
I

⋮
I

2
6664

3
7775ΔuminrΔuf r

I
I

⋮
I

2
6664

3
7775Δumax ð40Þ

Substituting (38) into the objective function (32), and mini-
mizing (32) subject to (39) and (40) at every sampling time, the
future input sequence Δuf can be calculated, and the first input in
the sequence,ukþ1, can be obtained and applied to the plant.

Remark 4.1. To simplify the calculation, during the implementa-
tion, we assume that the matrix Ω is composed by the fuzzy
membership function ωkþ1 over the entire prediction horizon Nu,
which brings the optimal control sequence into a suboptimal one.
This is commonly used in the fuzzy MPC literatures.

5. Simulation results

This section demonstrates the data-driven modeling strategy
and predictive controller design for boiler-turbine unit using fuzzy
clustering and subspace identification method. The accuracy of the
fuzzy model is demonstrated first, and then the proposed con-
trollers, the FMPC_S and DDFPC, are tested and compared with
other types of predictive controllers.

5.1. Verification of the fuzzy system

The input signals we used to generate data are shown in Fig. 2.
Since the power output has a fast response to the variation of
steam control valve, the sampling time is selected as 1 s. Although
increasing the number of the clusters L will improve the accuracy
of the model, for the sake of simplicity, we set L¼5. The identified
model outputs are shown in Fig. 3. A single linear model devel-
oped by the SID method using the same data is also tried for
comparison; however, due to the high nonlinearity of the boiler–
turbine unit, it leads to a non-convergent result.

To further test the accuracy of the identified fuzzy model,
another group of data in the medium-high power region are used
for validation as shown in Figs. 4 and 5. Severe nonlinearity is
distributed within this region according to previous studies
[13,15]. From the comparison between model outputs and plant
outputs, it can be seen that the fuzzy model has very high

precision for the power output, which is the most important
variable for the boiler–turbine unit. It can also capture the drum
pressure and water level dynamics correctly in terms of trend and
time constant. The figure shows a little offset for the drum
pressure and water level outputs; however, it is acceptable for
controller design and can be easily reduced by increasing the
number of fuzzy rules or further tuning of the fuzzy membership
functions. The effectiveness of the proposed identification strategy
is clearly demonstrated by the results.

5.2. Testing of predictive controllers

The designers of this boiler-turbine unit model provide 7 typical
operating points along the operation range as shown in Table 1.
To cover this wide range of operation, a transition from the lowest
load point to the highest is considered. Such a wide range
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Fig. 2. Input signals used in the fuzzy subspace identification method.
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operation is achieved by the use of fuzzy predictive controllers to
overcome the significant nonlinearity.

Two commonly used operating modes in modern power plant,
Coordinated Control Scheme (CCS) mode and Automatic Genera-
tion Control (AGC) mode, are considered for comparison:

5.2.1. CCS mode
In the CCS mode the demands of the power plant is given by

operators. The control mission is tracking the expected operating
points of drum pressure and output power while maintaining the
drum water level constant.

The first case is designed to show the overall control perfor-
mance of the fuzzy subspace based controllers over a wide
operation range. At t¼50 s, the operating point (P, E, L) changes
from (75.6, 15.27, 0) to (135.4, 127, 0), then at t¼400 s it changes
again to (110, 80, 0).

The proposed DDFPC and FMPC_S are compared with another
MPC built on the Taylor series approximation model (FMPC_T)
[11], in which seven local models are derived at the typical
operating points in Table 1 and connected by the triangular fuzzy
membership functions to form the fuzzy model.

For all three controllers, the sampling time is set as 1 s and a
prediction horizon Ny¼10 s and control horizon Nu¼10 s are
adopted. The weighting diagonal matrices Qf,Rf for all controllers
are given as: Qf ¼ INy � Q ;Rf ¼ INu � R, with diagonal elements:

Q ¼
1 0 0
0 1 0
0 0 100

2
64

3
75;R¼

2 0 0
0 80 0
0 0 2

2
64

3
75:

The simulation results in Figs. 6 and 7 show that the three
controllers have almost the same performance. The power output
and the drum pressure have rapid response to the load change,
and then approach to the expected operating points while the
drum water level jumps and then gradually return to zero after a
period of fluctuation. All the three manipulated variables are
within the magnitude and rate constraints. The results show that
a satisfactory control of the boiler-turbine for a wide range
operation can be achieved.

However, in FMPC_S, additional computation for SVD as well as
system matrix estimation are needed. In FMPC_T, the exact
analytical model of power plant is required first to build a Taylor
series approximation model, which greatly limits its applicability;
moreover, affine terms exist in the state-space model [11–13,16],
increasing the controller design complexity and computational
burden. Due to the unavoidable modeling mismatch, we can also
observe tracking offset in FMPC_S and FMPC_T, when integral
action is not included.
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Fig. 4. Input signals used in the fuzzy model verification.
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To further illustrate the effect of the fuzzy strategy, a linear
MPC (linear_MPC_S) based on the state-space model identified
around (108, 66.65, 0) operating point is used for comparison.

A wide range operating point change, from (75.6, 15.27, 0) to
(135.4, 127, 0), is considered and the simulation results are shown
in Figs. 8 and 9. Although the linear_MPC_S has the similar
performance with fuzzy_MPC_S at low-medium load operating
range, where the nonlinearity is small, the control performance is
degraded at the high load level, where the nonlinearity is strong.
Due to the severe modeling mismatches, large tracking offsets
in power output and drum water level are shown for the
linear_MPC_S.

5.2.2. AGC mode
In AGC mode, the boiler-turbine unit follows the load demand

from the grid which is given by the Automatic Dispatch System
(ADS) and generally it requires that the power plant tracks the
load demand rapidly. We also consider the load following over a
wide range of operation: the power demand rises from 15.27 MW
to 127 MW in the rate of 0.7449 MW/s, while the pressure demand
rises from 75.6 kg/cm2 to 130 kg/cm2 in the rate of 0.3627 kg/cm2/s
first, then a “constant pressure” operation mode is considered while
the power demand decreases to 15.27 MW in the rate of
0.5587 MW/s. The simulation results in Figs. 10 and 11 show that
in both “variant pressure mode” and “constant pressure mode” the
proposed DDFPC and FMPC_S can drive the power output to follow
the load demand very closely while regulating the drum pressure
and water level gradually reach the set-points. The effectiveness
of the proposed controllers for a wide range operation is
demonstrated.

6. Conclusion

In order to solve the problem of modeling and control of a
highly nonlinear boiler-turbine unit, a new data-driven modeling
and predictive control strategy is proposed using fuzzy clustering
and subspace identification method. The fuzzy model has a good
approximation accuracy of the boiler-turbine unit and is suitable
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for advanced controller design, resulting in a fuzzy model pre-
dictive controller. Following the same clustering and subspace
method, a direct data-driven fuzzy predictive controller is
proposed as an alternative method, which can achieve a wide
range offset-free tracking control while dealing with the input

constraints. Due to their data-driven nature, the proposed model-
ing and control method are flexible and can easily be adapted to
other types of systems without knowing mathematical models of
the plant.
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Fig. 11. Performance of the boiler-turbine unit in AGC mode: Manipulated Vari-
ables (solid in red: DDFPC; dotted in blue: FMPC_S). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.),
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Fig. 10. Performance of the boiler-turbine unit in AGC mode: Output Variables
(solid in red: DDFPC; dotted in blue: FMPC_S; dot-dashed in green: reference). (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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