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Abstract—In this paper a new approach using Harmony Search
(HS) algorithm is presented for placing Distributed Generators
(DGs) in radial distribution systems. The approach is making use
of a multiple objective planning framework, named an Improved
Multi-objective HS (IMOHS), to evaluate the impact of DG place-
ment and sizing for an optimal development of the distribution
system. In this study, the optimum sizes and locations of DG units
are found by considering the power losses and voltage profile as
objective functions. The feasibility of the proposed technique is
demonstrated in two distribution networks, where the qualitative
comparisons are made against a well-known technique, known as
Non-dominated Sorting Genetic Algorithm II (NSGA-II). Further-
more, the results obtained are compared with those available in the
literature.

Index Terms—Distributed generation, harmony search algo-
rithm, multi-objective optimization.

I. INTRODUCTION

R ECENTLY, there has been a great interest in the integra-
tion of distributed generation (DG) units at the distribu-

tion level. In addition to environmental protection, DG could ef-
fectively improve power system stability, power quality and en-
ergy efficiency [1], [2]. Taking advantages of DGs [3] depends
largely on how these devices are placed in the power system,
namely on their location and size.
The optimal DG allocation is a complex problem with non-

linear objective function and nonlinear constraints, in which
heuristic algorithms are a good choice for placing DGs. A range
of techniques has been proposed to define the optimal locations
and capacities of DGs [3]–[37]. Furthermore, a wide range of
objectives and a variety of constraints are suggested in the liter-
ature, where two distinct approaches in solving the problem can
be identified: 1) Finding optimal locations and sizes by using a
weighted sum approach, and 2) Finding optimal locations and
sizes based on Pareto-optimal front.
The first approaches aim to site DGs, by usingmulti-objective

technique to optimize more than one objective functions simul-
taneously, which can be solved by using the weighting factors

Manuscript received August 25, 2011; revised January 18, 2012, July 31,
2012, December 18, 2012; accepted December 27, 2012. Date of publication
February 08, 2013; date of current version February 27, 2013. Paper no. TSG-
00402-2011.
K. Nekooei, M. M. Farsangi, and H. Nezamabadi-Pour are with Kerman

University, Kerman, Iran. (e-mail: komailnekooei@gmail.com, mmagh-
foori@mail.uk.ac.ir, nezam@mail.uk.ac.ir).
K. Y. Lee is with the Department of Electrical and Computer En-

gineering, Baylor University, Waco, TX 76798-7356 USA. (e-mail:
Kwang_Y_Lee@baylor.edu).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TSG.2012.2237420

for maximizing the benefits of DG. In this approach, a combina-
tion of all objectives are considered as a single one, by using a
weighted sum of multiple objective functions, such as the work
carried out in [23]–[31].
The second approach aims to site DGs by optimizing all ob-

jective functions simultaneously, based on the Pareto front to
yield non-dominated solutions [32]–[37].
The main drawback of the first approach is that it gener-

ates only one solution, which depends on the selected weights
for each objective function. This solution could be one of the
non-dominated solutions found by the second approach, i.e., the
Pareto front.
However, the literature on Pareto front only reported the

non-dominated solutions and the best non-dominated solution
without comparing the quality of obtained non-dominated
solutions. The quality comparison should be made between
different multi-objective algorithms in order to choose the most
effective one. Otherwise, this may lead us to a non-optimum
solution for the problem at hand.
In this paper, the harmony search (HS) is selected as a tool for

optimal DG allocation in two study systems. The standard HS
is performing well but has some drawbacks that make the algo-
rithm fails in finding the optimum solution in some problems. In
view of these drawbacks, two improved versions of the HS algo-
rithm are reported in the literature: Improved Harmony Search
(IHS) and Novel Global Harmony Search (NGHS). These ver-
sions have improved the performance of the basic HS with some
benefits and drawbacks.
This paper takes the benefit of the NGHS version and pro-

poses additional improvement to overcome its drawbacks.
Then, based on the improved NGHS algorithm, an improved
multi-objective HS (IMOHS) is developed. The proposed
IMOHS is different from other version of the multi-objective
HS [38] in the improvisation, updating step and saving the
non-dominated harmonies at each iteration with additional
memory.
The proposed IMOHS is used to evaluate the impact of DG

placement in developing optimal distribution system. A wide
range of objectives and a variety of constraints are suggested
in the literature for the placement of DGs, such as loss reduc-
tion, voltage improvement, reliability improvement [3]–[37],
etc. This paper has considered the primary objectives that have
led to an increasing interest in placing DGs, that is, the mini-
mization of power losses and voltage deviations. It should be
noted that there are varieties of DGs available in the market;
some of them are variable power DG sources such as wind and
photovoltaic (PV). In practice, the site of such DG sources may
be mainly determined by meteorological and geographic fac-
tors. However, DG sources with predictable output power such
as fuel cells and microturbines can be placed at any bus in the
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distribution system to achieve optimal result. Without the loss
of generality, the proposed algorithm can be applied for speci-
fied DG(s) in a practical power system. It should be noted that
the placing problem of DGs is in two parts. The first part is
choosing the objectives and the types of DGs and the second
part is choosing a powerful algorithm for finding the optimal
solution, which is the main focus of the paper. Nevertheless,
the method presented in this paper can be effective and helpful
to system designers in selecting proper sites to place DGs.
Feasibility of the proposed technique is demonstrated for two

typical distribution networks and is compared against a well
known technique known as NSGA-II [37], [39], [40] method
and other algorithms available in the literatures.
To make sure that a proper algorithm is chosen, the compar-

ison is made based on qualitative observation by plotting the
Pareto front and by considering comparison metrics known as
convergence metric (C-metric), spacing metric (SP-metric) and
diversity metric (D-metric). Obtained results show that the pro-
posed IMOHS performs much better than NSGA-II.
The main contributions of the paper can be summarized as

follows:
1. An improvement is made on the improved version of HS
algorithm (NGHS).

2. Apart from the improvement of the HS, a new version of
multi-objective HS (IMOHS) is introduced.

3. The comparison is made qualitatively by plotting the
Pareto front and considering comparison metrics.

The paper is organized as follows: to make a proper back-
ground, the basic concept of the HS and two improved versions
of the HS algorithm reported in the literature (known as IHS and
NGHS) are briefly explained in Section II. Also, in Section II,
we propose NGHS-II algorithm as an improvement of NGHS.
The proposed multi-objective HS is explained in Section III.
The optimization problem is formulated in Section IV. Results
obtained are given in Section V and some conclusions are drawn
in Section VI.

II. HARMONY SEARCH ALGORITHMS

An overview of the basic Harmony Search (HS) algorithm is
presented in this section, followed by two improved versions of
the HS algorithm reported in the literature, Improved Harmony
Search (IHS) and Novel Global Harmony Search (NGHS). We
then propose NGHS-II algorithm as an improvement of the
NGHS.

A. Harmony Search (HS)

The HS is based on the natural musical process which
searches for a perfect state of harmony. The HS algorithm does
not require initial values for the decision variables and uses a
stochastic random search. In general, the HS algorithm works
as follows [41], [42]:
Step 1. Define the objective function and decision variables.

Input the system parameters and the boundaries of the decision
variables.
The optimization problem can be defined as:

where and are the lower and upper bounds for decision
variables.
The HS algorithm parameters are specified in this step. They

are the harmony memory size (HMS) or the number of solution
vectors in harmony memory, the harmony memory considering
rate (HMCR), the distance bandwidth (bw), the pitch adjusting
rate (PAR), and the number of improvisations or stopping
criterion, where is the same as the total number of function
evaluations.
Step 2. Initialize the harmony memory (HM). The har-

mony memory is a memory location where all the solution
vectors (sets of decision variables) are stored. The ini-
tial harmony memory is randomly generated in the region

. This is done based on the fol-
lowing equation:

(1)

where is a random number from a uniform distribution
of [0, 1].
Step 3. Improvise a new harmony from the harmony memory.

Generating a new harmony is called improvisation, which
is based on 3 rules: memory consideration, pitch adjustment,
and random selection. First of all, a uniform random number is
generated in the range [0, 1]. If is less than the HMCR, the de-
cision variable is generated by the memory consideration;
otherwise, is obtained by a random selection. Then, each
decision variable will undergo a pitch adjustment with a
probability of PAR if it is produced by the memory considera-
tion. The pitch adjustment rule is given as follows:

(2)

Step 4. Update harmony memory. After generating a
new harmony vector , the harmony memory will be
updated. If the fitness of the improvised harmony vector

is better than that of the worst
harmony, the worst harmony in the HM will be replaced with

and become a new member of the HM.
Step 5. Repeat Steps 3–4 until the stopping criterion (max-

imum number of improvisations, ) is met.

B. The Improved Harmony Search (IHS)

An improved harmony search algorithm (IHS) is proposed in
[43], in which the key modifications are about PAR and bw. In
the HS, PAR, and bw are all constants, but the IHS updated them
dynamically as follows:

(3)

(4)

where is current number of improvisations, and is
maximum number of improvisations. Numerical results on
engineering optimization problems reveal that the IHS can find
better solutions compared to the HS.
In IHS, the numbers of parameters are increased, which is

not good, and this is the main drawback of the IHS. It should
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be noted that in order to get the optimum point by heuristic
algorithms, the parameters of the algorithm must be tuned for
the problem at hand.

C. A Novel Global Harmony Search (NGHS)

TheNGHS proposed by Zou [44] is different fromHS in three
aspects as follows:
1)Mutation operator is added. Instead of parameters HMCR,

bw and PAR in the basic HS, a genetic mutation probability
is considered in the NGHS. Therefore, the number of pa-

rameters is decreased.
2) The NGHS modifies the improvisation step of the HS, and

it works as follows [44]:

for do
% calculate the adaptive step

% (5)

if
% genetic

mutation
end

end for

Here, “best” and “worst” are the indices of the global best
harmony and the worst harmony in the HM, respectively, and
and are all uniformly generated random numbers in [0,
1].
The adaptive step can guarantee that the algorithm

has strong local search ability in the late stage of optimization
and has strong global search ability in the early stage of opti-
mization.
To prevent the premature convergence of the NGHS, the ge-

netic mutation operation is carried out for the worst harmony in
the harmony memory (HM) after updating the position.
3) After improvisation, the NGHS replaces the worst har-

mony in the HM with the new harmony even if
is worse than .

The NGHS has some drawbacks. In the next section, we pro-
pose NGHS-II algorithm as an improvement of NGHS.

D. The Proposed NGHS-II

In the NGHS, the original structure of harmony search is
changed by excluding the HMCR parameter and including a
mutation probability, . With a careful observation, we can
find that the role of the mutation probability is the same as
(1-HMCR), i.e., the complement of HMCR. Therefore, in this
paper, the genetic mutation probability is removed and the
HMCR is used to preserve the original structure of the harmony
search and the improvisation step becomes as follows [45]:

for do
if

% calculate the adaptive step

% (6)

else
% genetic

mutation
end

end for

In the NGHS-II, a new harmony is inclined to mimic the
global best harmony in the HM, similar to the NGHS. Since the
parameter (1-HMCR) determines the randomness of the new
harmony, large HMCR results in premature convergence. To
maintain the diversity of the HM, HMCR must be small. But
small HMCR decreases convergence speed, and also results in
producing new harmonies which are infeasible.
In this paper HMCR is adjusted close to one to produce fea-

sible solutions and have a good exploitation. After some eval-
uations, the algorithm may reach to a local solution and the
adaptive step goes to zero. At this step the algorithm
is stagnated. Therefore, to prevent the stagnation, we generate a
few harmonies randomly and replace the worse harmonies with
them in theHM. The number of new random harmonies depends
on the problem and the size of the HM. The new random har-
monies cause the to increase and the algorithm starts new
exploration to find a better solution.
In the NGHS, the worst harmony in the HM will be

replaced with the new harmony even if is worse than
. This replacement is not good since it makes the algo-

rithm not to converge. Therefore, in this paper, the worst har-
mony in the HM will be replaced with the new harmony

only if is better than .
It should be noted that in the NGHS and NGHS-II the number

of parameters is decreased compared to IHS.

III. THE IMPROVED MULTI-OBJECTIVE HARMONY SEARCH

There is only one multi-objective harmony search (MOHS)
in literature, which is reported in [38] and it is based on IHS.
In this paper, an improved multi-objective harmony search

(IMOHS) is proposed. In the IMOHS, the search process of the
proposed NGHS-II is applied on harmonies, which are ranked
based on the non-dominated sorting and distance crowding
strategies [39] to find new harmonies based on the following
definitions:
Domination rank. A multi-objective optimization problem

can be defined as follows:

(7)

where . The objective functions are
conflicting to one another and the aim is optimizing them si-
multaneously (without loss of generality it is assumed that the
objective functions are to be minimized). The decision vectors

belong to the feasible region
which is formed by the constraints.
The feasible region for objective functions is denoted

by and is called as the feasible objective re-
gion. The elements of are called objective vectors
and they consist of the values of the objective functions,

.
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A decision vector is said to dominate a decision
vector (denoted by ), if and only if:

(8)

(9)

This means that the decision vector is not worse than
in all objectives and is strictly better than in at least one
objective.
Also weakly dominates (denoted by ), if and

only if

(10)

Finding the non-dominatedmembers in population is based
on the following steps:
1. Define a rank counter to be 0.
2. Increase: .
3. Based on the definition of domination, find the non-domi-
nated harmonies from population .

4. Assign rank to these harmonies.
5. Remove these harmonies from population .
6. If population is empty, stop. Otherwise, go to Step 2.

Crowding distance. The density of solutions can be mea-
sured by a crowding distance. The value of the crowding dis-
tance shows an estimate of the density of solutions surrounding
a particular solution.
Based on the above definitions, if a solution is better than

another harmony , one of the following conditions has hap-
pened: (a) the domination rank of solution is smaller than
that of solution , or (b) their domination ranks are equal and
the crowding distance of harmony is larger than that of har-
mony .
In the proposed IMOHS, an additional memory is used to save

the non-dominated harmonies at each iteration, which is called
Archive while the dominated harmonies remain in the HM.
To keep the diversity of the HM, dominated harmonies are

not discarded and they are given a chance to participate in the
improvisation process. Based on the definition of domination
the harmonies in Archive have the rank of 1 while the domi-
nated harmonies in the HM have the ranks of 2, 3, . Among
harmonies in the HM, those harmonies with ranks 2 and 3 are
the ones who can help the algorithm for exploitation since they
are close to those harmonies in the Archive. The harmonies with
other ranks can be used in exploration. Therefore, to prevent dis-
carding the weak-dominated harmonies (harmonies with ranks
of 4, 5, ) in the earlier iterations and preserve the diversity of
the HM, updating process is improved as follows:
To generate a new harmony , a dominated harmony

and a non-dominated harmony is selected ran-
domly from the HM and archive, respectively. Then the new
harmony is produced as follows:

(11)

The HM is updated by new harmony. The dominated har-
mony will be replaced by if dominates .

Generation of a new harmony and updating the HM are repeated
for HMS times in each iteration.
At the end of iterations, the Archive is updated so that the har-

monies of the HM are sorted according to the definition of dom-
ination, and the non-dominated harmonies of the HM are trans-
ferred to Archive. Also, the harmonies of Archive which are
dominated by the new non-dominated harmonies (transferred
from the HM) return to the HM.
Based on the above descriptions, the details of proposed

IMOHS are as follows:
Step 1. Define objective functions and decision variables,

and input the system parameters and the boundaries
of the decision variables.

Step 2. Initialize the harmony memory (HM) and Archive.
2-1. Initial population is produced randomly
within the range of the boundaries of the deci-
sion variables in the HM so that none of them
are repeatable.
2-2. Evaluate the population of the HM and rank
the evaluated population based on the non-dom-
inated sorting scheme.
2-3. The non-dominated solutions (harmonies
with rank 1) are moved to the Archive. Har-
monies with other ranks remain in the HM.

Step 3. Generate new harmonies and update the HM.
3-1. Select a harmony randomly from the
Archive .
3-2. Select a harmony randomly from the HM

.
3-3. Find the distance between the selected
non-dominated harmony and dominated har-
mony and consider it as a search radius.
3-4. Generate a new harmony based on (11). The

will be replaced by the if the
dominates the .
3-5. Repeat steps 3-1 to 3-4 for HMS times.

Step 4. Update the Archive.
At the end of each iteration, the harmonies in the
HM are sorted according to the definition of dom-
ination, and the non-dominated harmonies in the
HM are transferred to Archive. Also, the harmonies
in the Archive which are dominated by the new
non-dominated harmonies return to the HM. If the
number of candidate harmonies to transfer to the
Archive is greater than the size of the Archive,
the crowding distance is calculated and those with
higher crowding distance are moved to the Archive.

Step 5. Check for stopping conditions. If the number of im-
provisations has been reached to the maximum, go
to the next step. Otherwise, return to step 3.

Step 6. The harmonies in the Archive (or non-dominated so-
lution vectors) are Pareto front. The best compro-
mise solution is obtained by using the max-min [7],
[35] method as follows:

(12)
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Fig. 1. The study system-1.

Fig. 2. The study system-2.

where refers to the -th solution of the non-domi-
nated set, and are the maximum and min-
imum values of the -th objective function, respec-
tively.

IV. STUDY SYSTEM AND PROBLEM FORMULATION

Two study systems are used in this paper.
1) Study System-1: This test system is illustrated in Fig. 1

which is a radial distribution system with the total load of 3.72
MW, 2.3 MVar, 33 bus, and 32 branches and the power loss of
210.998 kW [23]. A PV model is considered for DGs in this
study system.
2) Study System-2: The system shown in Fig. 2 is also a

radial distribution system, which consists of 69 bus and 68
branches with the total load of 3.8 MW, 2.69 MVar, and power
loss of 225 kW [9].
A PQ model is considered for DGs in this study system. The

DGs are considered to be working at a specified power factor
(0.85 lagging).
In practice, in the distribution network, load pattern is varying

with time. The optimal location and size of DG determined
under invariant loads may not be optimal under time-varying
loads and the optimal DG size may vary with varying load de-
mand. But in practice, it is not economically feasible to change
the DG size with changing load demand. Therefore, for plan-
ning purpose, an optimal size and location of DGs can be de-
termined by considering peak, average, or combination of the
two loading conditions to get the maximum benefit of DGs. In
this paper, we have considered the two prototype systems with
existing loading conditions and studied the impact of DGs by
comparing the case with and without DGs.
It should be noted that in PQ model, the DG is considered as

negative load. The PV model regulates the terminal bus voltage

Fig. 3. Pareto front of the IMOHS and the obtained results by [23].

TABLE I
THE OBTAINED SOLUTIONS BY GA, PSO AND GA/PSO IN [23]

by adjusting their reactive power output. However, it is pre-
ferred to not to use a PV model, since injecting a great amounts
of reactive power in order to raise the bus voltage may result in
high field currents and overheating for the generator, triggering
the excitation limit and disconnecting the generator from the
network.
The penetration level of distributed generation is increasing

in distribution network. Therefore, distribution networks are no
longer passive in nature, and their characteristics are becoming
similar to an active transmission network. Therefore, consid-
ering power losses as an objective function in distribution net-
work is very common in the literature [10]–[21].
In this paper, the objective is to minimize the network power

loss and maximize the voltage regulation in the study systems
as follows [23]–[25]:

(13)

(14)

subject to

(15)

(16)

where is the total number of nodes, is voltage magnitude
of node . is the power of DG and is the max-
imum power of DG. is 1.2 MW and 2 MW for the study
system-1 [23] and system-2 [9], respectively.
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TABLE II
SOLUTIONS OBTAINED BY IMOHS THAT DOMINATE THE SOLUTIONS OBTAINED BY GA, PSO, AND GA/PSO IN [23] FOR STUDY SYSTEM-1

In general, optimal placement of DGs can be formulated by
considering other factors, such as economic and geographic
considerations. In this paper, only two factors, power loss and
voltage regulation, are taken into account, and the optimal
placement of DGs is found by considering these two objectives.
However, any other objectives can be added to the problem and
optimized by the proposed algorithm.

V. IMPLEMENTATION OF IMOHS

In order to find the effectiveness and superiority of the
IMOHS, the test results are compared with the results obtained
by other algorithms available in the literature. To compare the
result of IMOHS and its improvement in results over other
heuristic approaches, all conditions must be the same. There-
fore, four DGs are placed in the study system-1. The goal of the
optimization is to find the best location and size of each DG.
Therefore, each harmony is a -dimensional vector, in which

. The HMS, HMCR and maximum number of
improvisations are set to be 100, 0.9, and 500, respectively.
In searching for the harmony associated with non-dominated

solutions, each harmony in the population is evaluated using the
objective function defined by (13)–(14) subject to (15)–(16). To
find the best location and size, the IMOHS is run for 50 inde-
pendent runs under different random seeds. It should be noted
that the archive size is fixed to members of all the non-dom-
inated solutions obtained, where is selected to be 100.
Fig. 3 shows the obtained Pareto front by IMOHS. In [23]

the location and size of the DGs are found by Genetic Algorithm
(GA), Particle Swarm optimization (PSO), and a combination of
GA/PSO. The results in [23] are obtained by the weighted-sum
approach which only gives one solution. This figure shows the
difference between the obtained solutions by IMOHS and other
approaches in [23]. Table I shows the obtained location of the
DGs in [23]. Table II shows the 16 Pareto solutions obtained by
IMOHS that dominate the solutions obtained by GA, PSO, and
GA/PSO in [23].
Among the 16 Pareto solutions obtained, one solution with

the best compromise between the two objective functions is ex-
plored by using max-min approach [7], [35] from the Pareto

Fig. 4. Voltage magnitude of the busses of the study system-1 with and without
DGs.

front. Based on the max-min approach, the bolded solution in
Table II is selected for DGs location. The DGs are placed at
busses 6, 14, 24, and 31 with the size of 0.9369, 0.6672, 1.0117,
and 0.7312 MW, respectively. As the table shows, if we select
the solutions above the bolded solution, the voltage deviation
(the first objective function) is getting worse but the loss (the
second objective function) is getting better. Also, if we select
the solutions below the bolded solution, the voltage deviation
(the first objective function) is getting better but the loss (the
second objective function) is getting worse. Fig. 4 shows the
voltage magnitude of the busses of the study system-1 before
and after the placement of DGs.
To investigate the ability of the IMOHS in finding the solu-

tion and convergence characteristics of the algorithm, the same
study is carried out on the second study system, which is a larger
system. For this system, based on [9], three DGs are placed in
the system. Therefore, and other settings are the same as
in the system-1.
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Fig. 5. Pareto front of the IMOHS and the obtained results by [9].

Fig. 6. Voltage magnitude of the busses of the study system-2 with and without
DGs.

TABLE III
PSO [9] AND IMOHS RESULTS FOR STUDY SYSTEM-2

The results obtained are compared with those obtained in [9]
in which PSO is applied to find the location of three DGs by
minimizing . The obtained results by the IMOHS and PSO
in [9] are shown in Fig. 5. Once again, the max-min approach is
used to find the best solution from the Pareto front obtained. The
selected location by the max-min approach is given in Table III
with the result given by PSO in [9]. Based on Table III, three
DGs are placed at busses 61, 11, and 21 with the size of 1.4552,
0.4769, and 0.3124 MW, respectively. Fig. 6 shows the voltage
magnitude of the busses of the study system-2 before and after
placement of DGs.

Fig. 7. Pareto front of IMOHS and NSGA-II for study system-1.

VI. COMPARISON OF IMOHS WITH NSGA-II

The IMOHS is compared with one outstanding evolutionary
multi-objective optimization algorithm, NSGA-II. The two
multi-objective algorithms are executed 50 times, where the
population was monitored for non-dominated solutions and the
resulting non-dominated set is taken as the outcome of one opti-
mization run. The number of fitness evaluations is the same for
both algorithms. The comparison is made qualitatively. In the
case of multi-objective optimization, the definition of quality is
more complex than in the single-objective optimization. For a
powerful multi-objective optimization algorithm, the distance
of the obtained non-dominated set to the Pareto front should be
minimized. Also, a proper distribution is desirable for the ob-
tained solutions. Furthermore, for each objective, a wide range
of values should be covered by the non-dominated solutions. In
view of these, the quality of the multi-objective algorithm can
be checked by some comparison metrics such as error ratio,
convergence metric, generational distance, diversity metric,
spaced metric, relative convergence metric, etc. [46]–[50]. The
first three metrics need the true Pareto-optimal front of the
problem.
Since for engineering problem, the true Pareto-optimal front

is unknown, therefore, in this paper, the comparison is made by
plotting the Pareto front and considering relative convergence
metric (C-metric) [46], [47], [49], spacing metric (SP-metric)
[47]–[53], and diversity metric [47], [48], [50]. Since the two
multi-objective algorithms are executed 50 times, box-plot and
t-test tools are used to show the quality of obtained results by
these metrics.
Comparison of the Pareto front. The obtained Pareto front

with the IMOHS and NSGA-II in placing the DGs is shown in
Figs. 7 and 8 for study system-1 and system-2, respectively.
The figures show that the Pareto front of IMOHS dominates
the NSGA-II’s, which shows the superiority of the proposed
algorithm.
Convergence metric (C-metric). The quality of two given sets

of non-dominated solutions is compared with C-metric. For two
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Fig. 8. Pareto front of IMOHS and NSGA-II for study system-2.

given Pareto sets, the function maps the ordered pair
to the interval [0, 1] as follows:

(17)

where is the number of elements in the specified set
means weakly dominated, is the size of the Pareto set .
A value of 1 for indicates that all the decision vec-

tors in are weakly dominated by , and indi-
cates that no decision vectors in is weakly dominated by ones
in . Since is not necessarily equal to ,
both directions always have to be considered.
The box-plot and t-test can be used to show the quality of

the solutions obtained by IMOHS with respect to NSGA-II as
follows:
a) Box-plot. For a pair there is a sample set of 50

C-metric average values according to the 50 runs performed.
The box-plot can be used to visualize the distribution of these
samples.
The upper and lower ends of the box are the upper and lower

quartiles. In other words, on each box, the edges of the box are
the 25th and 75th percentiles and the central mark is the median.
Figs. 9–10 illustrate the box-plots for two study systems.

These figures show that the left boxes (IMOHS, NSGA-II)
are higher than the right box (NSGA-II, IMOHS) in all 50
runs. According to the definition of the C-metric, (IMOHS,
NSGA-II) represents the ratio of solutions in NSGA-II that are
weakly dominated by the Pareto set of IMOHS. In other words,
the higher (IMOHS, NSGA-II) means the better approximate
Pareto-optimal set is found by IMOHS than by NSGA-II. The
figures show that the proposed method is performing well in
finding the approximate Pareto-optimal front.
b) t-test. The unpaired t-test is a statistical test applied to

data containing two or more groups. The test shows whether the
means of two groups are statistically different from each other or
not. Tables IV–V showmean value, standard deviation (Std) and
the results of an unpaired t-test between IMOHS and NSGA-II

Fig. 9. Box-plot: C-metric values of 50 runs for study system-1.

Fig. 10. Box plot: C-metric values of 50 runs for study system-2.

TABLE IV
C-METRIC: THE MEAN VALUE, STANDARD DEVIATION (STD) AND THE

RESULTS OF UNPAIRED T-TEST BETWEEN IMOHS AND NSGA-II FOR STUDY
SYSTEM-1

TABLE V
C-METRIC : THE MEAN VALUE, STANDARD DEVIATION (STD) AND THE

RESULTS OF UNPAIRED T-TEST BETWEEN IMOHS AND NSGA-II FOR STUDY
SYSTEM-2

(p-value) [51]–[53]. These tables reveal that there is statistically
significant difference between IMOHS and NSGA-II for both
study systems.
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Fig. 11. Box-plot: SP-metric values of 50 runs for study system-1.

Fig. 12. Box-plot: SP-metric values of 50 runs for study system-2.

TABLE VI
SP-METRIC: THE MEAN VALUE, STANDARD DEVIATION (STD) AND THE

RESULTS OF UNPAIRED T-TEST BETWEEN IMOHS AND NSGA-II FOR STUDY
SYSTEM-1

Spacing metric (SP-metric). The range (distance) variance of
neighboring vectors in the Pareto front is measured by spacing
metric and is defined as:

(18)

where where is
the number of objectives, is the mean of all , and is the
number of vectors in the Pareto front found by the algorithm.
If SP-metric takes a value of zero, it shows that all the

non-dominated solutions found are equidistantly spaced. The

TABLE VII
SP-METRIC: THE MEAN VALUE, STANDARD DEVIATION (STD) AND THE
RESULTS OF UNPAIRED T-TEST BETWEEN IMOHS AND NSGA-II FOR STUDY

SYSTEM-2

TABLE VIII
D-METRIC: THE MEAN VALUE, STANDARD DEVIATION (STD) AND THE

RESULTS OF UNPAIRED T-TEST BETWEEN IMOHS AND NSGA-II FOR STUDY
SYSTEM-1

TABLE IX
D-METRIC: THE MEAN VALUE, STANDARD DEVIATION (STD) AND THE

RESULTS OF UNPAIRED T-TEST BETWEEN IMOHS AND NSGA-II FOR STUDY
SYSTEM-2

obtained results for SP-metric are given by Figs. 11–12 and
Tables VI–VII. The results show that two algorithms are per-
forming similar in study system 1 while in study system 2
which is a larger system, the difference is significant between
the two.
Diversification metric. The diversification metric is used to

measure the spread of the solution set. Its definition is:

(19)

where is the Euclidean distance between of the non-
dominated solution and the non-dominated solution .
The results are given in Tables VIII–IX. The results show that

NSGA-II has more diversity than the IMOHS in its obtained
Pareto front. This is obvious since as it is shown in Figs. 7–8,
the IMOHS dominates the NSGA-II and all solutions found in
IMOHS are closer to Pareto-optimal front which we expect to
have less diversity.
Therefore, we can come to the conclusion that the proposed

IMOHS can maintain superior approximate Pareto-optimal set
than the NSGA-II in dealing with the 50 independent runs.

VII. CONCLUSION

In this paper a new multiple objective planning framework,
namely improved multi-objective harmony search (IMOHS), is
developed, which is able to evaluate the impact of DG place-
ment for an optimal planning of a distribution system. The fea-
sibility of the proposed technique is demonstrated for a two typ-
ical distribution networks and is compared with a well known
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NSGA-II method. The comparison is made quantitatively by
plotting the Pareto front, convergence metric (C-metric), the
spacing metric (SP-metric), and the diversity metric (D-metric).
The Pareto front of the IMOHS and other threemetrics represent
that the IMOHS has superior performance in both convergence
and uniform diversity.
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