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This paper presents a model predictive control (MPC) strategy based on genetic algorithm
to solve the boiler–turbine control problem. First, a Takagi–Sugeno (TS) fuzzy model based
on gap values is established to approximate the behavior of the boiler–turbine system, then
a specially designed genetic algorithm (GA) is employed to solve the resulting constrained
MPC problem. A terminal cost is added into the standard performance index so that a short
prediction horizon can be adopted to effectively decrease the on-line computational bur-
den. Moreover, the GA is accelerated by improving the initial population based on the opti-
mal control sequence obtained at the previous sampling period and a local fuzzy linear
quadratic (LQ) controller. Simulation results on a boiler–turbine system illustrate that a
satisfactory closed-loop performance with offset-free property can be achieved by using
the proposed method.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

A boiler–turbine system is an energy conversion device which transforms the input chemical energy of fuel such as coal,
oil, or gas, into the mechanical energy acting on the generator. The purpose of the boiler–turbine system control is to meet
the load demand of electric power while maintaining the pressure and water in the drum within tolerance.

The boiler–turbine system presents a challenging control problem owing to its severe nonlinearity over a wide operation
range and tight operating constraints on control and control move, which has attracted much attention and has been studied
extensively in recent years [1–11].

In [1], a gain-scheduled ‘1-optimal approach was presented for boiler–turbine controller design based on a linear param-
eter varying (LPV) form of the boiler–turbine dynamics. A single linear controller was designed in [2] on the basis of careful
choice of the operating range to avoid severe nonlinearity. To overcome the nonlinearity of the boiler–turbine system, many
kinds of artificial intelligence techniques have also been applied. In [3], a fuzzy auto-regressive moving average (FARMA)
controller was applied to the boiler–turbine system with rules generated using the history of input–output data. In [4], a
feedforward fuzzy inference system and a feedback control loop were combined to attain wide-range operation. Particle
swarm optimization was employed in [5,6] to realize the optimal mapping between unit load demand and pressure set-
point, and genetic algorithm (GA) was used to develop a proportional-integral (PI) controller and a linear quadratic regulator
(LQR) controller in [7] for a boiler–turbine system.
. All rights reserved.
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However most of these approaches except [1] cannot effectively deal with the constraints at the controller design stage.
As a result, model predictive control (MPC) has been applied to control the boiler–turbine system in recent years. In [8], two
types of step-response models for dynamic matrix control (DMC) were investigated in controlling a boiler–turbine system. It
shows that the step-response model based on the test data is more suitable than the linearized model for controller design of
the drum-type boiler–turbine system. However, because of the severe nonlinearity of the boiler–turbine system, the control
performance of the linear model-based controller will degrade for a wide range of operating points. Based on the piecewise
affine (PWA) model of a boiler–turbine system, an explicit MPC controller was designed offline in [9] using multi-parameter
programming. But its computation burden grows exponentially with prediction horizon and the dimensions and the number
of dynamics of the PWA model. Two nonlinear predictive control approaches were studied in [10], one based on neuro-fuzzy
networks and another based on input–output feedback linearization technique, and showed better performance than the
conventional predictive method.

In this paper, we propose a nonlinear predictive control strategy to solve the boiler–turbine control problem based on GA.
First, a Takagi–Sugeno (TS) fuzzy model is established to approximate the behavior of the boiler–turbine system. Compared
with the ordinary method which distributes the local linear models evenly in the whole operating range for simplification
[10–12], we propose a systematic approach based on gap values in determining the local linear models for the TS fuzzy model
of a boiler–turbine system. Then, a specially designed GA is employed to solve the resulting constrained nonlinear predictive
control problem. A term for terminal cost is added into the standard performance index to further enhance the control per-
formance, and GA is accelerated by selecting the initial population based on the optimal control sequence obtained at the
previous sampling period and a local controller.

The remainder of this paper is organized as follows: Section 2 introduces the boiler–turbine dynamics. Section 3 estab-
lishes the TS fuzzy model of the boiler–turbine system based on the gap values. Offset-free MPC design using GA optimiza-
tion is presented in Section 4. A linear H1 controller is introduced briefly in Section 5. Simulation results are given in Section
6. Finally, some conclusions are drawn in Section 7.

2. Boiler–turbine dynamics

A boiler–turbine system is an energy conversion device that consists of steam boiler and turbine. A schematic picture of a
drum–boiler–turbine system is shown in Fig. 1. The aim of the steam boiler part is to transfer the input chemical energy of
fuel into the thermal energy that is directly fed to the turbine part.

The boiler–turbine model used in this study is a third-order nonlinear dynamics developed by Bell and Åström in 1987
[13]. The model is based on a 160 MW oil-fired plant in Malmo, Sweden. The boiler dynamic model is provided by both phys-
ical and empirical methods based on data obtained from a series of experiments and identifications which capture all the
relevant characteristics of the process.

Assume that the nonlinear dynamics of the system are in the form:
_x ¼ Fðx;uÞ
y ¼ Gðx;uÞ

�
ð1Þ
where F and G are the state and output nonlinear equations. The dynamics of the boiler–turbine system is given by
[1–5,7–11]:
Fig. 1. Schematic diagram of a drum–boiler–turbine system.
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_x1 ¼ �0:0018u2x9=8
1 þ 0:9u1 � 0:15u3

_x2 ¼ ð0:073u2 � 0:016Þx9=8
1 � 0:1x2

_x3 ¼ ð141u3 � ð1:1u2 � 0:19Þx1Þ=85
y1 ¼ x1

y2 ¼ x2

y3 ¼ 0:05ð0:13073x3 þ 100acs þ qe=9� 67:975Þ

8>>>>>>>>><>>>>>>>>>:
ð2Þ
where
qe ¼ ð0:854u2 � 0:147Þx1 þ 45:59u1 � 2:514u3 � 2:096 ð3Þ

acs ¼
ð1� 0:001538x3Þð0:8x1 � 25:6Þ

x3ð1:0394� 0:0012304x1Þ
ð4Þ
The inputs u1, u2 and u3 are the valve positions for fuel flow, steam control and feedwater flow, respectively. The three state
variables, x1, x2 and x3, are drum steam pressure (kg/cm2), power output (MW) and fluid density in the drum (kg/m3), respec-
tively. The output y3 is the drum water level (m), qe is the evaporation rate (kg/s) and acs is the steam quality factor.

The control inputs are subject to magnitude and rate saturations as follows. The control valve positions are normalized to
the interval [0,1]. The other constraints model the dynamics of the control valve actuators to limit the rate of change of the
valve positions.
0 6 u1;u2;u3 6 1
�0:007 6 _u1 6 0:007
�2 6 _u2 6 0:02
�0:05 6 _u3 6 0:05

8>>><>>>: ð5Þ
Some typical operating points of the boiler–turbine model (2) are shown in Table 1 [1,2].
3. TS fuzzy modeling for the boiler–turbine system based on gap values

We consider the following discrete affine TS fuzzy model to approximate the boiler–turbine system. Due to the load
dependent characteristic of the power plant, power output x2 is chosen as the unique antecedent variable.

Ri: if x2(k)is Zi,
then
xðkþ 1Þ ¼ AixðkÞ þ BiuðkÞ þ ai

yðkÞ ¼ C ixðkÞ þ DiuðkÞ þ bi

�
; i ¼ 1; . . . ; r ð6Þ
where Ri denotes the ith rule of the fuzzy model, and Zi is the ith fuzzy set of x2. The linear model parameters are evaluated as
Ai ¼ expðeAi � TsÞ; Bi ¼
R Ts

0 expðeAi � TsÞdt
� �

� eBi

C i ¼ @G
@x

��
ðxi ;uiÞ; Di ¼ @G

@u

��
ðxi ;uiÞ

ai ¼
R Ts

0 expðeAi � TsÞdt
� �

� ~ai

bi ¼ Gðxi;uiÞ � ðC ixi þ DiuiÞ

8>>>>>><>>>>>>:
ð7Þ

eAi ¼
@F
@x

����
ðxi ;uiÞ

; eBi ¼
@F
@u

����
ðxi ;uiÞ

; ~ai ¼ Fðxi;uiÞ � ðeAixi þ eBiuiÞ;
where Ts is the sampling time; (xi,ui) is a linearization point, and when it is an equilibrium point, F(xi,ui) = 0.
Next step is to determine the linearization points (xi,ui), and thus, to determine the number of the fuzzy rules and the

state-space matrices of local linear models. Most of the time, this is an ad hoc procedure, relying on the designer’s experience
operating points of the boiler–turbine system.

#1 #2 #3 #4 #5 #6 #7

75.6 86.4 97.2 108 118.8 129.6 135.4
15.27 36.65 50.52 66.65 85.06 105.8 127
299.6 342.4 385.2 428 470.8 513.6 556.4
0.156 0.209 0.271 0.34 0.418 0.505 0.6
0.483 0.552 0.621 0.69 0.759 0.828 0.8971
0.183 0.256 0.34 0.433 0.543 0.663 0.793
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and knowledge about the process. In this study, a more systematic approach using gap values is offered. Therefore, the gap
concept between two linear systems is first introduced to facilitate our discussion in the subsequent sections.

Let P1 ¼ N1M�1
1 and P2 ¼ N2M�1

2 be normalized right coprime factorizations of the transfer functions of two linear sys-
tems. Then the gap between the two systems can be defined by [2,14,15]:
dgðP1; P2Þ ¼ maxf~dðP1; P2Þ;~dðP2; P1Þg ð8Þ
where ~dðP1; P2Þ is the directed gap and can be computed by
~dðP1; P2Þ ¼ inf
Q12H1

M1

N1

� �
�

M2

N2

� �
Q 1

���� ����
1

ð9Þ
Here, H1 represents the Hardy space with its norm kDðsÞk1 ¼maxx �rðDðjxÞÞ; �rð�Þ denotes the maximum singular value of
D(jx) and Q1 is any function that belongs to H1 [2].

For any two linear systems, the gap is bounded as
0 6 dgðP1; P2Þ 6 1 ð10Þ
The gap can be regarded as the distance between two linear systems, and it is a generalization of the conventional distance
expressed by the1-norm [2]. An important feature of the gap metric is that it is applicable not only to stable systems, but
also to integrating with unstable systems.

The proposed method in determining linearization points comprises the following five steps.

Step 1: Distribute Nm linearization points Opi ¼ xi
2; x

i
1

	 

¼ xi

2; f xi
2

	 
	 

; i ¼ 1;2; . . . ;Nm, evenly in terms of power output x2

along the power–pressure curve f(.) in the whole operating range, where we use Opi to denote the linearization
points for briefness since the linearization equilibrium point (xi,ui) can be solely determined by Opi according to
(2) with the drum water level chosen to be yi

3 ¼ 0; Nm is a large number representing the initial number of linear-
ization points. Next, linearize the boiler–turbine system around these points to obtain Nm linear models
Gi(i = 1,2, . . . ,Nm).

Step 2: Prescribe a distance level e, and calculate the gap values between adjacent linear models to obtain Nm � 1 gap values
di(i = 1,2, . . . ,Nm � 1).

Step 3: Find the minimal gap value dk among di, i.e.,
dk ¼ dgðGk;Gkþ1Þ ¼ min
Nm�1

i¼1
di ð11Þ
where Gk and Gk+1 are the two adjacent linear models corresponding to dk.
Step 4: If dk P e, stop the algorithm. Otherwise, merge the two linearization points corresponding to dk into one new line-

arization point Opnew ¼ 0:5 xk
2 þ xkþ1

2

	 

; f 0:5ðxk

2 þ xkþ1
2 Þ

	 
	 

, then linearize the boiler–turbine system around Opnew to

obtain a new linear model Gnew.
Step 5: Calculate the gap values between Gnew and its two adjacent linear models Gk�1 and Gk+2, and let Nm = Nm � 1. Rear-

range the gap values and go to Step 3.

By using the previous procedures, we can finally obtain r linearization points eOpiði ¼ 1;2; . . . ; rÞ, which partitions the
operating space as fuzzy sets with the overlapping triangle membership functions (see Fig. 3). The local state-space matrices
{Ai,Bi,Ci,Di,ai,bi} in the consequent part of the fuzzy model (6) are also evaluated at these points according to (7).

By using a singleton fuzzifier, the product inference, and the center-average defuzzifier, the fuzzy model (6) can be ex-
pressed as follows:
xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ þ a
yðkÞ ¼ CxðkÞ þ DuðkÞ þ b

�
ð12Þ
where
A ¼
Xr

i¼1

liðx2ðkÞÞAi; B ¼
Xr

i¼1

liðx2ðkÞÞBi; C ¼
Xr

i¼1

liðx2ðkÞÞC i; D ¼
Xr

i¼1

liðx2ðkÞÞDi;

a ¼
Xr

i¼1

liðx2ðkÞÞai; b ¼
Xr

i¼1

liðx2ðkÞÞbi;
liðx2ðkÞÞ ¼ Ziðx2ðkÞÞ=
Pr

i¼1Ziðx2ðkÞÞ; and Zi(.) is the membership function of fuzzy set Zi.
By using the proposed method, more fuzzy rules will be distributed in the highly nonlinear operating ranges of the boiler–

turbine system. As a result, it may achieve better global approximation accuracy with the same number of fuzzy rules
compared with the ordinary method which distributes the local linear models evenly in the whole operating range.
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4. Offset-free model predictive control based on genetic algorithm

4.1. Model predictive control problem formulation for the boiler–turbine system

Because of the use of the TS fuzzy predictive model, a nonlinear optimization problem needs to be solved to achieve the
MPC. However, the conventional nonlinear programming method, e.g., sequential quadratic programming (SQP) provides lo-
cal optimum values only and, in addition, these values depend on the selection of the starting point. The GA has shown better
performance in solving this kind of optimization problem [16–21]. In this paper, modifications are made on the standard GA-
based model predictive control via taking advantage of the well-developed theory on the stability of MPC [22–24].

The three key ingredients of the stabilizing MPC are summarized in [22], which include a terminal set, a terminal cost and
a local controller. In this paper, we employ a fictitious fuzzy linear quadratic (LQ) controller as the local controller and a cor-
responding terminal cost is added to the performance index of the standard GA-based MPC.

The performance index and the constraints of the MPC for the fuzzy dynamic system (12) are defined by
JðkÞ ¼
XN�1

j¼0

ðx̂ðkþ jþ 1jkÞ � �xÞT Qðx̂ðkþ jþ 1jkÞ � �xÞþ
h

ðuðkþ jjkÞ � �uÞT Rðuðkþ jjkÞ � �uÞ
i
þWðx̂ðkþ N þ 1jkÞ � �xÞ ð13Þ
s.t.
0 6 uðkþ jjkÞ 6 1; j ¼ 0; . . . ;N � 1 ð14Þ
Dumin 6 Duðkþ jjkÞ 6 Dumax; j ¼ 0; . . . ;N � 1; ð15Þ
where N is the prediction horizon; Q and R are weighting matrices, and Q ¼ Q T P 0;R ¼ RT > 0; x̂ðkþ jþ 1jkÞ is the pre-
dicted state at instant k + j + 1 based on the current state x(k) and control sequence; u(k + jjk) is the control action at instant
k + j calculated from solving the optimization problem at instant k; �x and �u are the equilibrium values of the state and control
input vectors that correspond to the current set-points (see (22)).

The last term in (13) represents the terminal cost. This terminal cost represents the stabilizing cost that would be re-
quired when the system is to be controlled beyond the finite-time horizon N toward the infinite-time horizon. We assume
that this stabilizing controller can be designed by a local LQ controller near the equilibrium point. The local controller can
also be designed by other linear control techniques. In that case, a Lyapunov equation instead of (18) will need to be solved
[24].

The optimal cost in driving the system to equilibrium from the time instant k + N + 1 to the infinite time is defined by
Wðx̂ðkþ N þ 1jkÞ � �xÞ ¼ ðx̂ðkþ N þ 1jkÞ � �xÞT Pðx̂ðkþ N þ 1jkÞ � �xÞ ð16Þ

P ¼
Xr

i¼1

liðx̂2ðkþ N þ 1jkÞÞPi ð17Þ
where Pi is the symmetric positive semi-definite solution of the algebraic Riccati equation
Pi ¼ AT
i PiAi � AT

i PiBi BT
i PiBi þ R0

� ��1
BT

i PiAi þ Q 0 ð18Þ
where Q0 and R0 are the weighting matrices for the local LQ controller for the linearized model (6), and Q0 = Q0T P 0,
R0 = R0T > 0.

The local controller K corresponding to the terminal cost is designed as
K ¼
Xr

i¼1

liðx̂2ðkþ N þ 1jkÞÞK i ð19Þ
where
K i ¼ � BT
i PiBi þ R0

� ��1
BT

i PiAi: ð20Þ
Thus the local controller is represented by a fuzzy LQ controller based on membership functions of the terminal state. In for-
mulating the optimization problem (13)–(15), which is viewed as a global optimization problem, we assume that there is a
finite-time horizon length N, such that the prediction of the state vector, x̂ðkþ N þ 1jkÞ 2 X, where X is the terminal set, and
the constraints can be assumed to be inactive for j P N, because it is very difficult to calculate the terminal set for a given
nonlinear system, and also to reduce the computational load. As a result, the terminal set constraint is omitted in (13)–(15).
Note that the assumption on the terminal set may be met if the prediction horizon is long enough or, in the case of short
horizon, a large weighting matrix R0 is used in designing the local controller.

The local LQ controller is only used to determine a terminal penalty matrix Pi offline and to help the GA improve the initial
population, which will be illustrated in Part 4.3 of this section.

This method does not require the globally optimal input profile to be found numerically at every step. Stability only re-
quires feasible solutions to the optimization problem. The computational (and performance) advantage of this scheme lies in
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the fact that shorter horizons can be used, without jeopardizing performance and stability. This is especially beneficial for
on-line application of the GA-based predictive control approach.

4.2. Offset-free output tracking

To achieve offset-free output tracking, a simple disturbance estimator is run at each step, assuming that the output dis-
turbance is given by the difference between the measured output and the expected output at time k � 1:
d̂ðkÞ ¼ yðk� 1Þ � ŷðk� 1jk� 2Þ ð21Þ
This is then used to estimate the equilibrium values of the control input �u, assuming that the disturbance will remain con-
stant at this estimated value: �d ¼ d̂ðkÞ. Specifically, the equilibrium values �x and �u are found by setting xðkþ 1Þ ¼
xðkÞ ¼ �x;uðkÞ ¼ �u in (12):
�x ¼ Axþ B�uþ �a
yr ¼ xr

1 xr
2 0½ �T ¼ C�xþ D�uþ �bþ d̂ðkÞ

(
ð22Þ
where xr
1 and xr

2 denote the set-points for the drum pressure and the power output, respectively, and the set-point for drum
water lever is always set to be 0. The matrices ðA;B; C;D; �a; �bÞ in (22) are determined by the membership function of xr

2 as in
(12).

Note that this solution results in offset-free control in the presence of an unknown but constant disturbance, even if the
steady-state gains in the model are not accurate.

4.3. Genetic optimization of control inputs

A dynamic nonlinear optimization problem has been formulated based on the TS fuzzy model, where conventional opti-
mization techniques cannot be easily applied. Therefore, in this work, the online optimization problem is solved using a GA.

The algorithm starts with an initial population of chromosomes, which represent possible solutions of the optimization
problem, i.e., control inputs. For each chromosome the objective function is computed. New generations are produced by the
genetic operators such as selection, crossover and mutation. The algorithm stops after the maximum allowed time has
passed. To deal with constraints in this optimization problem, the penalty function method is commonly used. However, this
approach lowers the efficiency of a GA, because the genetic material is wasted due to the unfeasible solutions in the standard
genetic operation. In this paper, specially designed genetic operators are employed to make the newly generated chromo-
somes satisfy the constraints automatically.

A chromosome which is a candidate solution of the optimization problem is represented by sl, whose elements consist of
present and future control inputs and has the following structure [17]:
sl ¼ ulðkÞ ulðkþ 1Þ � � � ulðkþ N � 1Þ
� �

; l ¼ 1;2; . . . ; L ð23Þ
where k indicates the current time, and L is the number of chromosomes. The algorithm can be described as follows:

Step 1 (initial population generation): Set the number of iterations i = 1. Predictive control uses the receding horizon prin-
ciple, which implies that an optimization has to be performed at each time step. Therefore, the past solutions give
important information, which can be used to improve the initial population of the current solutions.
Assume the optimal input sequence obtained at k-1 is U�ðk� 1Þ ¼ u�ðk� 1Þ; u�ðkÞ ; . . . ; u�ðkþ N � 2Þf g. At the
current time k, consider a ‘‘shifted’’ input sequence eUðkÞ as shown below, where the last gene takes ~uðkþ N � 1Þ, to
be one of the initial chromosomes. This chromosome might be a very good guess for the solution of the next opti-
mization problem. The optimal input sequence found at k-1 and an initial chromosome at time k obtained by shifting
the input sequence forward by one are given below:
where the newly added tail is defined by
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~uiðkþ N � 1Þ ¼

lowi; if ~u0i < lowi

~u0i; if lowi 6 ~u0i 6 upperi

upperi; if ~u0i > upperi

8>><>>: ði ¼ 1;2;3Þ ð24Þ

~u0 ¼ Kðx̂ðkþ N � 1Þ � �xÞ þ �u; ð25Þ

lowi ¼max 0;u�i ðkþ N � 2Þ þ Dui min
� �

; ð26Þ

upperi ¼min 1;u�i ðkþ N � 2Þ þ Dui max
� �

: ð27Þ
where K is the optimal gain (19) computed for the local controller.
To satisfy both the control and control move constraints, we use a simple procedure to generate the remaining L � 1 chro-
mosomes, s2, . . . ,sL, of the initial population:
ul
iðkþ jÞ ¼minð1;maxð0;urÞÞ ð28Þ
(1 6 i 6 3, 0 6 j 6 N � 1,2 6 l 6 L). where
ur ¼

rand½uiðk� 1Þ þ Dui min;uiðk� 1Þ þ Dui max�

ðj ¼ 0Þ

rand ul
iðkþ j� 1Þ þ Dui min; ul

iðkþ j� 1Þ þ Dui max

 �

ð1 6 j 6 N � 1Þ

8>>>>><>>>>>:
ð29Þ
In the above equations, ur is a random number. A new random number ur is generated each time (28) is used.
Step 2 (fitness function evaluation): Evaluate the objective function of (13) for all of the chosen chromosomes. Then calcu-

late their fitness value according to
fitnessðlÞ ¼ 1=ð1þ JlÞ; l ¼ 1;2; . . . ; L ð30Þ
where Jl is the value of the objective function for the lth chromosome.
Then, calculate the normalized fitness value of each chromosome, which implies the selection probability, calculated by
pl ¼ fitnessðlÞ
XL

l¼1

fitnessðlÞ
,

ð31Þ
Step 3 (selection operation): Preserve m2 best individuals, and reintroduce them into the population for the next genera-
tion. Therefore, the partly optimized chromosomes will not get lost in spite of the disruption of building blocks dur-
ing crossover.
Generate the rest L �m2 chromosomes according to their selection probabilities. The chromosomes with high fitness
values will have more chances to be selected.

Step 4 (crossover operation): For each chromosome, generate a random number r1 between 0 and 1. If r1 is lower than the
probability of crossover pc, this particular chromosome will undergo the process of crossover. Mate the selected
chromosomes, and for each selected pair one of the following two crossover operations is implemented with equal
probability.

(1) The one-point crossover operation

Generate a random integer z between 1 and N � 1, which indicate the position of the crossover point. Two new
chromosomes are produced by interchanging all of the members of the parents following the crossover point,
which can be expressed graphically as follows:
The previous operation might produce infeasible offspring if the input values at the crossover point do not satisfy the control
move constraints. This situation is avoided by the following correction mechanism for each of the new chromosomes sl

new and
slþ1

new.
For slþ1

new, suppose di ¼ ul
iðkþ zÞ � ulþ1

i ðkþ z� 1Þ, then



Table 2
Process

Time

1
2
3
4
5
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ul
iðkþ zþ jÞ ¼
ul

iðkþ zþ jÞ � ðdi � Dui maxÞ; if di > Dui max

ul
iðkþ zþ jÞ � ðdi � Dui minÞ; if di < Dui min

(
ð32Þ

(1 6 i 6 3, 0 6 j 6 N � z � 1)
Similar equations can be obtained for the chromosome sl

new.
(2) The uniform crossover operation

For the uniform crossover operation, two new chromosomes based on sl and sl+1 are produced by
sl
new ¼ r2 � sl þ ð1� r2Þ � slþ1

slþ1
new ¼ ð1� r2Þ � sl þ r2 � slþ1

(
ð33Þ
where r2 is a random number between 0 and 1.
Step 5 (mutation operation): For every member of each chromosome, generate a random number r3 between 0 and 1. If r3 is

lower than the probability of mutation pm, this particular member of the chromosomes will undergo the process of
mutation, otherwise it will remain unchanged. For the selected members, lower and upper bounds [bl(j),bu(j)] are
defined as:
buðjÞ ¼
minðDui max þ uiðk� 1Þ;Dui max þ uiðkþ 1Þ;1Þ; j ¼ 0
minðDui max þ uiðkþ j� 1Þ;Dui max þ uiðkþ jþ 1Þ;1Þ; 0 < j < N � 1
minðDui max þ uiðkþ j� 1Þ;1Þ; j ¼ N � 1

8><>: ð34Þ
blðjÞ ¼
maxðDui min þ uiðk� 1Þ;Dui min þ uiðkþ 1Þ;0Þ; j ¼ 0
maxðDui min þ uiðkþ j� 1Þ;Dui min þ uiðkþ jþ 1Þ;0Þ; 0 < j < N � 1
maxðDui min þ uiðkþ j� 1Þ;0Þ; j ¼ N � 1

8><>: ð35Þ
The above bounds define the region of values of which will produce a feasible solution. The mutation operation is then
achieved by the generation of a random number within [bl(j),bu(j)].
unew
i ðkþ jÞ ¼ rmðjÞ; if r3 < pm ð36Þ
where rm(j) is a random number within [ bl(j),bu(j)].
Step 6 (repeat or stop): If the maximum allowed time has not expired, set and return the algorithm to Step 2. Otherwise,

stop the algorithm and select the chromosome that produced the highest value of the fitness function throughout
the entire procedure.
The previous modified GA makes it possible to calculate the suboptimal control in real time.
Fig. 2. Power–pressure curve in sliding operation mode.

of determination of linearization points using gap values.

Power output xi
2

	 

at the linearization points Gap values between the adjacent linearized models

15.27 29.2 43.2 57 71 85 99 113 127 0.051 0.0565 0.056 0.0487 0.0586 0.086 0.147 0.6358
15.27 29.2 43.2 64 85 99 113 127 0.051 0.0565 0.081 0.0812 0.086 0.147 0.6358
22.2 43.2 64 85 99 113 127 0.083 0.081 0.0812 0.086 0.147 0.6358
22.2 53.6 85 99 113 127 0.1257 0.1105 0.086 0.147 0.6358
22.2 53.6 92 113 127 0.1257 0.1469 0.1934 0.6358



Fig. 4. Comparison of step responses of the TS fuzzy model (dotted lines) and the original nonlinear model of the boiler–turbine system (solid lines) at low
load.

Fig. 3. Membership function of the power level x2.
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5. H‘ controller

In [2], a linear controller was designed for this system based on a loop-shaping H1 approach using a linearized model at
the nominal operating point. A precompensator and postcompensator were designed with a constant decoupler, aligning the
singular values of the model at 0.001 rad/s.

To compensate for the effects of the constraints, this approach employed the anti-windup bumpless transfer (AWBT)
technique after the controller design. But since the implementation of the AWBT technique is not easy for a state space
controller, the H1 controller was simplified by using a PID reduction method. Finally, it was reduced to four SISO PI control-
lers as follows:
KðsÞ ¼
0:0485þ 0:0012=s 0 1:2091þ 0:0486=s

0 0:0197þ 0:0045=s 0
0 0 7:2548þ 0:2914=s

264
375 ð37Þ
This controller was then compensated using the AWBT technique.
6. Simulation results

6.1. TS fuzzy model of the boiler–turbine system

From the typical operating points given in Table 1, we fitted a power–pressure curve x10 = f(x20) of the boiler–turbine sys-
tem in sliding operation mode as shown in Fig. 2. The linearized model of the nonlinear model (2)–(4) about an equilibrium
point (x0, u0) was obtained using Taylor series expansion with



Fig. 6. Comparison of step responses of the TS fuzzy model (dotted lines) and the original nonlinear model of the boiler–turbine system (solid lines) at high
load.

Table 3
Mean square errors of the TS fuzzy model.

Step inputs x20 = 53.6 MW (Nt = 80) x20 = 92 MW (Nt = 80) x20 = 120 MW (Nt = 80)

MSE (y1) MSE (y2) MSE (y3) MSE (y1) MSE (y2) MSE (y3) MSE (y1) MSE (y2) MSE (y3)

u1 0.0201 0.0651 0.0004 0.0500 0.0128 0.0009 0.1644 0.4891 0.0002
u2 0.0930 0.0089 0.0002 0.0700 0.0045 0.0007 0.1729 0.3450 0.00002
u3 0.2079 0.2706 0.0001 0.0281 0.0869 0.0014 0.0562 0.0198 0.0024

Fig. 5. Comparison of step responses of the TS fuzzy model (dotted lines) and the original nonlinear model of the boiler–turbine system (solid lines) at
medium load.
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A0 ¼
� 0:0162

8 u20x1=8
10 0 0

6:57
80 u20 � 1:44

80

	 

x1=8

10 �0:1 0
0:19
85 � 1:1

85 u20
	 


0 0

2664
3775 ð38Þ

B0 ¼
0:9 �0:0018x9=8

10 �0:15

0 0:073x9=8
10 0

0 � 1:1
85 x10

141
85

264
375 ð39Þ



Fig. 8. Control inputs of the system obtained with the linear controller, and with the model predictive controller with and without a terminal cost.

Fig. 7. Comparison of the closed-loop responses obtained with the linear controller, and with the model predictive controller with and without a terminal
cost.
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C0 ¼
1 0 0
0 1 0
c31 0 c33

264
375 ð40Þ
where
c31 ¼
4ð1� 0:001583x30Þ

x30ð1:0394� 0:0012304x10Þ2
þ 0:0047u20 � 0:00082

c33 ¼ 0:0065� 4x10 � 128
x2

30ð1:0394� 0:0012304x10Þ



Fig. 10. Control inputs of the system obtained with the model predictive controller with a terminal cost when the operating point was changed from #1 to
#7.

Fig. 11. Output responses of the system during load rejection.

Fig. 9. Output response of the system obtained with the model predictive controller with a terminal cost when the operating point was changed from #1 to
#7.
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Fig. 12. Control inputs of the system during load rejection.
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D0 ¼
0 0 0
0 0 0
0:2533 0:00474x10 �0:014

264
375 ð41Þ
In terms of Table 1, we initially distributed nine linearization points evenly along the power–pressure curve within the
power range, x22 [15.27,127]. Then, by applying the gap based method depicted in Section 3 step by step with e = 0.1, we
ended up with five linearization points after going through four mergers. This process is displayed in Table 2, where the final
five linearization points are [22.2,53.6,92,113,127].

Based on the five linearization points and after choosing the sampling time as Ts = 10 s, we obtained the discrete TS fuzzy
model (6) with five rules for the boiler–turbine system with matrices {Ai,Bi,Ci,Di,ai,bi,i = 1,2, . . . ,5}, which are given in
Appendix A. The membership functions of the power level x2 are shown in Fig. 3.
Fig. 13. Output responses of the system under an input step disturbance.



Fig. 14. Control inputs of the system under an input step disturbance.
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Figs. 4–6 show a comparison of the step responses obtained with the TS fuzzy model (dotted lines) and the original nonlinear
model (solid lines), for three different initial operating points x01 = (98.9647,53.6,446.8871)T, u01 = (0.2836,0.6369,0.3584)T,
y01 = (98.9647,53.6,0)T; x02 = (122.74,92,385.18)T, u02 = (0.4474, 0.7820,0.5834)T, y02 = (122.74,92,0)T; and x03 =
(133.7807,120,317.8048)T, u03 = (0.5609,0.8855,0.7439)T, y03 = (133.7807,120,0)T. In the results shown in these figures, three
inputs with a step size of 0.05 were applied independently. The mean square errors (MSEs) of the outputs are shown in Table 3,
where Nt is the number of test data points.

It can be observed that the outputs y1, y2 and y3 of the TS fuzzy model describe the original nonlinear dynamics
effectively.
Fig. 15. Output responses of the system obtained with the proposed MPC controller under an output noise disturbance.



Fig. 16. Control inputs of the system obtained with the proposed MPC controller under an output noise disturbance.
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6.2. Predictive control of the boiler–turbine system

In this section, we describe the application of the proposed model predictive controller to the boiler–turbine system.
In addition to using the same parameters N, Q, R, etc. as in regular MPC, the weighting matrices Q0 and R0 need to be cho-

sen properly in this method, because they affect the weighting matrix P in the terminal cost (16), and therefore affect the
control performance. During the simulations, we first fixed Q0 by setting Q0 = Q, and then simply changed R0. It was found
that increasing R0 would also increase the penalty on the terminal states, but that satisfactory control performance could still
be achieved, even though R0 varied over a wide range. However, too large a value of R0 had a bad influence on the control
performance, whereas too small a value of R0 reduced the effects of the terminal cost.

By trial and error, the weighting matrices and control parameters used in all of the simulations described here were cho-
sen as Q = Q0 = diag(120,20,5), R = diag(100,80,80), R0 = diag(10000,8000,8000), pc = 0.8, pm = 0.1, L = 20 and m2 = 2.

Using the system matrices {Ai,Bi,Ci,Di,ai,bi, i = 1,2, . . . ,5}, the positive semi-definite matrix solution Pi and the local con-
troller Ki were first calculated by means of (18) and (20).

The linear H1 controller introduced in Section 5 was also used for comparison. The sampling time of the linear controller
was set to 2 s.

We considered the following cases.
In the first case, we assumed that the system was initially in the same steady state as in Fig. 5, and at t = 20 s, the setpoints

for the pressure and power output were increased to 131.66 and 113, respectively, while the drum water level was kept at
zero. Fig. 7 shows a comparison of the closed-loop responses of the boiler–turbine system obtained with the linear controller
(dash–dotted line), the model predictive controller with a terminal cost (solid line) and the model predictive controller with-
out a terminal cost (dashed line), where a short horizon N = 2 was adopted. Fig. 8 shows the corresponding control actions.
These results show that good control performance can be achieved by considering a terminal cost, even when a short horizon
is adopted. The main advantage of adopting a short horizon is that the online computational burden is effectively decreased,
Fig. 17. Output responses of the system obtained with the linear controller under an output noise disturbance.



Fig. 18. Control inputs of the system obtained with the linear controller under an output noise disturbance.
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since both the number of decision variables and the number of prediction steps are reduced. In addition, although the linear
controller can also successfully control the system at this operating point near its nominal model, the model predictive con-
troller with a terminal cost achieves better performance.

To further test the performance of the proposed model predictive controller with a terminal cost, another two simulations
were done on the boiler–turbine system under step-like load changes. In the first simulation, the system was driven from
operating point #1 (see Table 1) to the distant operating point #7 at t = 10 s while the drum water level was maintained
at zero. The proposed MPC controller showed good tracking behavior, as shown in Figs. 9 and 10. However, the linear con-
troller resulted in instability of the system; the results have been omitted here for brevity. The second simulation was done
to imitate the condition of load rejection. With the same initial operating point as in Fig. 5, we assumed that the setpoint of
the power output was suddenly decreased from 92 to 50 MW. The responses and the control inputs of the proposed MPC
controller and the linear controller are shown in Figs. 11 and 12. It is apparent that the MPC controller has better control
performance and less overshoot.

Next, an unmeasured input disturbance and also output noise disturbances were considered in order to evaluate the dis-
turbance rejection ability of the control system. We first assumed that at t = 18 s, there was an additive unmeasured distur-
bance u1d = �0.2 acting on the valve position u1 controlling the fuel flow. The outputs of the boiler–turbine system obtained
Fig. 19. Output responses of the system under wide-range operation.



Fig. 20. Control inputs of the system under wide-range operation.
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with both the MPC controller with a terminal cost and the linear controller are shown in Fig. 13, and the inputs are shown in
Fig. 14. It is evident from Fig. 13 that the proposed MPC controller handles the sudden decrease in fuel flow more effectively
than does the linear controller. Second, we assumed that the outputs y1, y2, and y3 were affected by white Gaussian noise
with the power equal to 0.12, 0.1, and 0.001 Watt, respectively. The responses and the control inputs of the two controllers
are depicted in Figs. 15–18. By comparing these figures with the results for the noise-free cases shown in Figs. 7 and 8, one
can conclude that the proposed MPC method is more robust to output noise than the linear controller is.

The final case was designed to demonstrate the tracking ability of the proposed method during wide-range operation. As
shown in Fig. 19, after t = 20 s the setpoint for the load demand (the dotted line in the plot of y2) changed linearly between 40
and 124 MW at a rate of 0.4 MW/s (15% maximum continuous rating/min), and the drum pressure setpoint (the dotted line
in the plot of y1) changed in proportion between 89.46 and 134.9 kg/cm2. Figs. 19 and 20 show the simulation results. It can
be observed that good tracking of the unit load demand and drum pressure was obtained, with a smooth transition between
the operating windows, while the water level deviation (y3) was regulated. The control results obtained using the linear
controller are also given (dash–dotted lines). It can be observed that the linear controller can guarantee satisfactory control
performance only at operating points near its nominal model, and wide-range operation may result in instability of the boi-
ler–turbine system.
7. Conclusion

In this paper, we have proposed a model predictive control strategy to solve the boiler–turbine control problem, in which
a TS fuzzy model was first established for local models based on gap values to approximate the behavior of the boiler–tur-
bine system, then a specially designed GA was employed to solve the resulting nonlinear constrained predictive control
problem. Meanwhile, a modification was made on the standard performance index by adding a terminal cost, which can fur-
ther enhance the control performance. Moreover, the GA was accelerated by improving the initial population based on the
optimal control sequence obtained at the previous sampling period and a local fuzzy LQ controller. In addition, the measure
to achieve offset-free property was also discussed. Simulation results on the boiler–turbine system illustrate that the pro-
posed method can successfully handle the control and control move constraints, and that a satisfactory closed-loop perfor-
mance can be achieved.
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Appendix A. Local linear models for TS fuzzy model
A1 ¼
0:9851 0 0
0:1986 0:3679 0
�0:0347 0 1

264
375; B1 ¼

8:9328 �2:4337 �1:4888
1:0439 62:5699 �0:1740
�0:1567 �10:1683 16:6141

264
375; a1 ¼ 1:2109 �29:4221 4:4968½ �T ;

A2 ¼
0:9773 0 0
0:3977 0:3679 0
�0:0593 0 1

264
375; B2 ¼

8:8973 �3:1289 �1:4829
1:9998 80:4326 �0:3333
�0:2679 �12:7178 16:6327

264
375; a2 ¼ 2:2411 �55:3966 8:0905½ �T ;

A3 ¼
0:9714 0 0
0:5246 0:3679 0
�0:0779 0 1

264
375; B3 ¼

8:8708 �3:9711 �1:4785
2:7655 102:0555 �0:4609
�0:3521 �15:7214 16:6467

264
375; a3 ¼ 3:4951 �86:9743 12:2813½ �T ;

A4 ¼
0:9685 0 0
0:5988 0:3679 0
�0:0876 0 1

264
375; B4 ¼

8:8575 �4:2939 �1:4763
3:1586 110:3244 �0:5264
�0:3963 �16:8519 16:6540

264
375; a4 ¼ 4:1434 �103:3970 14:4336½ �T ;

A5 ¼
0:9666 0 0
0:6539 0:3679 0
�0:0944 0 1

264
375; B5 ¼

8:8487 �4:4253 �1:4748
3:4507 113:6710 �0:5751
�0:4271 �17:3084 16:6592

264
375; a5 ¼ 4:5551 �113:8303 15:8101½ �T ;

b1¼ 0 0 �3:2278½ �T ;b2¼ 0 0 �3:1609½ �T ;b3¼ 0 0 �3:0124½ �T ;b4¼ 0 0 �2:9110½ �T ;b5¼ 0 0 �2:7787½ �T ;

C1ð3;1Þ ¼ 0:0036; C1ð3;3Þ ¼ 0:0057; C2ð3;1Þ ¼ 0:0055; C2ð3;3Þ ¼ 0:0050; C3ð3;1Þ ¼ 0:0082; C3ð3;3Þ ¼ 0:0037;

C4ð3;1Þ ¼ 0:0106; C4ð3;3Þ ¼ 0:0025; C5ð3;1Þ ¼ 0:0140; C5ð3;3Þ ¼ 0:0006; D1ð3;2Þ ¼ 0:3740; D2ð3;2Þ ¼ 0:4693;

D3ð3;2Þ ¼ 0:5816; D4ð3;2Þ ¼ 0:6243; D5ð3;2Þ ¼ 0:6418:
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