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Abstract—This paper presents an efficient approach for solving
economic dispatch (ED) problems with nonconvex cost functions
using an improved particle swarm optimization (IPSO). Although
the particle swarm optimization (PSO) approaches have several
advantages suitable to heavily constrained nonconvex optimiza-
tion problems, they still can have the drawbacks such as local
optimal trapping due to premature convergence (i.e., exploration
problem), insufficient capability to find nearby extreme points
(i.e., exploitation problem), and lack of efficient mechanism to
treat the constraints (i.e., constraint handling problem). This
paper proposes an improved PSO framework employing chaotic
sequences combined with the conventional linearly decreasing
inertia weights and adopting a crossover operation scheme to in-
crease both exploration and exploitation capability of the PSO. In
addition, an effective constraint handling framework is employed
for considering equality and inequality constraints. The proposed
IPSO is applied to three different nonconvex ED problems with
valve-point effects, prohibited operating zones with ramp rate
limits as well as transmission network losses, and multi-fuels with
valve-point effects. Additionally, it is applied to the large-scale
power system of Korea. Also, the results are compared with those
of the state-of-the-art methods.

Index Terms—Chaotic inertia weights, constraint treatment
technique, crossover operation, economic dispatch problem, im-
proved particle swarm optimization, nonconvex optimization.

I. INTRODUCTION

M ANY power system optimization problems including
economic dispatch (ED) have nonconvex characteristics

with heavy equality and inequality constraints [1]. The objective
of ED is to determine an optimal combination of power output
to meet the demand at minimum cost while satisfying the con-
straints. For simplicity, the cost function for each unit in the
ED problems has been approximately represented by a single
quadratic function and is solved using mathematical program-
ming techniques [2]. Generally, these mathematical methods re-
quire the derivative information of the cost function. Unfortu-
nately, the input-output characteristics of generating units are
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nonconvex due to prohibited operating zones, valve-point load-
ings, multi-fuel effects, etc. Thus, the practical ED problem
should be represented as a nonconvex optimization problem
with constraints, which cannot be directly solved by mathemat-
ical methods. Dynamic programming [3] can treat such types
of problems, but it suffers from the curse of dimensionality.
Over the past decade, many salient methods have been devel-
oped to solve these problems, such as the hierarchical numer-
ical method [4], genetic algorithm (GA) [5]–[7], evolutionary
programming [8]–[10], Tabu search [11], neural network ap-
proaches [12], [13], differential evolution [14], particle swarm
optimization (PSO) [15]–[18], and hybrid artificial intelligence
(AI) method [19].

PSO is one of the modern heuristic algorithms suitable to
solve large-scale nonconvex optimization problems. It is a pop-
ulation-based search algorithm and searches in parallel using a
group of particles. The PSO suggested by Kennedy and Eberhart
in 1995 is based on the analogy of swarm of bird and school of
fish [20]. In PSO, each particle makes its decision using its own
experience together with its neighbor’s experiences [20], [21].
The main advantages of the PSO algorithm are: simple concept,
easy implementation, relative robustness to control parameters,
and computational efficiency [1]. Although the PSO-based ap-
proaches have several advantages, it may get trapped in a local
minimum when handling heavily constrained problems due to
the limited local/global searching capabilities [22], [23].

This paper proposes a PSO-based approach for the nonconvex
ED problems with heavy constraints. In order to overcome the
existing drawbacks of PSO to some extents, this paper proposes
an improved PSO (IPSO) framework combining the chaotic se-
quences and the crossover operation. The chaotic sequences
combined with the linearly decreasing inertia weights are sug-
gested as new dynamic inertia weights in PSO. In addition,
the crossover operation inspired by GA can increase the di-
versity of the population in the PSO mechanism. The employ-
ment of chaotic sequences and the crossover operation in PSO
can improve the global searching capability by preventing pre-
mature convergence through increased diversity of the popu-
lation. In addition, an effective constraint handling technique
is proposed to improve the solution quality without scarifying
the computational efficiency. The suggested IPSO is applied
to three different nonconvex ED problems and the large-scale
Korean power system. The solutions are compared with those
of the conventional PSO as well as other state-of-the-art AI
methods.
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II. FORMULATION OF ECONOMIC DISPATCH PROBLEM

A. Objective Function

The objective of an ED problem is to minimize the total fuel
cost subjected to the constraints of a power system. The simpli-
fied cost function of each generating unit can be represented as
described in (2):

(1)

(2)

where

total generation cost;

cost function of generator ;

cost coefficients of generator ;

power output of generator ;

number of generators.

1) ED Problem Considering Valve-Point Effects: The gen-
erating units with multi-valve steam turbines exhibit a greater
variation in the fuel cost function. Since the valve point results
in the ripples, a cost function contains higher order nonlinearity.
Therefore, the cost function (2) should be replaced by the fol-
lowing to consider the valve-point effects:

(3)
where and are the cost coefficients of generator reflecting
valve-point effects [10].

2) ED Problem Considering Multi-Fuels With Valve-Point
Effects: Since the dispatching units can be supplied with multi-
fuel sources, each unit can be represented with several piecewise
quadratic functions reflecting the effects of different fuel types.
In general, a piecewise quadratic function is used to represent
the input-output curve of a generator with multiple fuels [4] and
described as

...
...

(4)

where are the cost coefficients of generator for
fuel type . In general, fuels are supplied by fuel suppliers under
a multitude of contracts between the suppliers and the utility.
Determining the selection of fuels for each unit is dictated by
the contracts, and can be solved by economic fuel dispatch [24].
This paper assumes that such selection is given a-priori. There-
fore, to obtain an accurate and practical ED solution, the fuel
cost function should be considered with both multi-fuels and

valve-point effects simultaneously [7]. Thus, the fuel cost func-
tion (3) should be combined with (4), and can be represented as
follows:

...
...

(5)

where

(6)

and and are the cost coefficients of generator reflecting
valve-point effects for fuel type , and is the minimum
output of generator using fuel type .

B. Equality and Inequality Constraints

1) Active Power Balance Equation: For power balance,
an equality constraint should be satisfied. The total generated
power should be the same as the total load demand plus the
total line loss

(7)

where is the total system load. The total transmission net-
work loss, , is a function of the unit power outputs that can
be represented using coefficients [2] as follows:

(8)

2) Minimum and Maximum Power Limits: Power output of
each generator should be within its minimum and maximum
limits. Corresponding inequality constraint for each generator
is

(9)

where and are the minimum and maximum output
of generator , respectively.

3) Ramp Rate Limits: The actual operating range of all the
online units is restricted by their corresponding ramp rate limits.
The ramp-up and ramp-down constraints can be written as fol-
lows:

(10)

where is the previous power output of the th generating
unit. and are the up-ramp and down-ramp limits of
generator , respectively.
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To consider the ramp rate limits and power output limits con-
straints at the same time, (10) and (9) can be rewritten as an
inequality constraint as follows:

(11)
4) ED Problem Considering Prohibited Operating Zones: In

some cases, the entire operating range of a generating unit is
not always available due to physical operation limitations. Units
may have prohibited operating zones due to faults in machines
themselves or associated auxiliaries. Such faults may lead to in-
stability in certain ranges of generator power output [6]. There-
fore, for units with prohibited operating zones, there are addi-
tional constraints on the unit operating range as follows:

(12)

where and are, respectively, the lower and upper
bounds of prohibited operating zone of unit . Here, is the
number of prohibited zones of unit and is the number of
units which have prohibited operating zones.

III. OVERVIEW OF PARTICLE SWARM OPTIMIZATION

Kennedy and Eberhart developed a PSO algorithm based on
the behavior of individuals (i.e., particles or agents) of a swarm
[20]. Its roots are in zoologist’s modeling of the movement of
individuals within a group. It has been noticed that members of
the group seem to share information among them, a fact that
leads to increased efficiency of the group [21]. The PSO algo-
rithm searches in parallel using a group of particles. Each par-
ticle corresponds to a candidate solution to the problem. A par-
ticle moves toward the optimum based on its present velocity,
its previous experience, and the experience of its neighbors.
In an -dimensional search space, the position and velocity of
particle are represented as vectors and

, where the dimension represents the number
of components. Let and

be the best position of particle and its neigh-
bors’ best position so far, respectively. The modified velocity
and position of each particle can be calculated as follows:

(13)

(14)

where

velocity of particle at iteration ;

inertia weight factor;

acceleration coefficients;

random numbers between 0 and 1;

position of particle at iteration .

In the velocity updating process, the values of parameters
such as , , and should be determined in advance. The
constants and represent the weighting of the stochastic
acceleration terms that pull each particle toward the and

positions. Suitable selection of inertia weight can provide
a balance between global exploration and local exploitation, and
results in a lower number of iterations to find the optimal solu-
tion. In general, to enhance the convergence characteristics, the
inertia weight factor is designed to decrease linearly (i.e., In-
ertia Weight Approach (IWA) [1], [22], [23]), descending from

to as follows:

(15)

where corresponds to the maximum iteration number.
Using the new position , the and are up-
dated at iteration using the greedy selection.

IV. IMPROVED PSO WITH CHAOTIC SEQUENCES, CROSSOVER

OPERATION, AND CONSTRAINT TREATMENT STRATEGY

A. Application of Chaotic Sequences in PSO

Chaos, apparently disordered behavior that is nonetheless de-
terministic, is a universal phenomenon that occurs in many areas
of science [25]. Coelho and Mariani [14] combined the chaotic
sequences with the mutation factor in differential evolution to
improve the solution quality. Caponetto et al. [26] applied var-
ious chaotic sequences in evolutionary algorithms (EAs) in lieu
of the random numbers. Shengsong et al. [27] adopted a chaotic
hybrid algorithm to solve the optimal power flow problems. The
application of the chaotic sequences has shown promising re-
sults in some engineering applications.

One of the dynamic systems evidencing chaotic behavior is
the iterator called the logistic map [26], whose equation is de-
scribed as follows:

(16)

where is a control parameter and has a real value between [4],
and is the chaotic parameter at iteration . Despite the ap-
parent simplicity of the equation, the solution exhibits a rich
variety of behaviors. The behavior of the system represented
by (16) is greatly changed with the variation of . The value
of determines whether is stabilized at a constant size, os-
cillates between a limited sequence of sizes, or behaves chaot-
ically in an unpredictable pattern. The system (16) is deter-
ministic, and displays chaotic behaviors when and

.
The performance of a PSO can depend on its parameters such

as the inertia weight factors and two acceleration coefficients.
The first term in (13) represents the influence of previous ve-
locity, which provides the necessary momentum for particles to
fly around in a search space. The balance between exploration
and exploitation can be treated by the value of inertia weight.
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Fig. 1. Comparison of inertia weights for IWA and CIWA.

Therefore, a proper control of inertia weight is very important
to find the optimum solution efficiently. Shi and Eberhart [22],
[23] made a significant improvement in the performance of the
PSO with a linearly varying inertia weights over the iterations
[i.e., IWA in the form of (15)], which is widely used in PSO ap-
plications [16], [17].

In this paper, in order to improve the global searching capa-
bility and to increase the probability of escaping from a local
minimum, a new weight-changing approach, Chaotic Inertial
Weight Approach (CIWA), is suggested as defined as follows:

(17)

where is a chaotic weight at iteration , is the weight
factor from the IWA, and is the chaotic parameter.

Whereas the weight in the conventional IWA decreases mo-
notonously from to , the proposed chaotic weight de-
creases and oscillates simultaneously as shown in Fig. 1. Since
the suggested CIWA can encompass the whole weight domain
under the decreasing line in a chaotic manner, the searching ca-
pability of the proposed algorithm can be increased as illustrated
in numerical studies.

B. Crossover Operation

In order to increase the diversity of a population, the crossover
operation is newly introduced to the PSO mechanism, thereby
can effectively explore and exploit promising regions in a search
space. The position of particle , , obtained
in (14) is mixed with to generate a trial vector

as follows:

if

otherwise
(18)

for , where is a uniformly distributed random
number between [1], and CR is the crossover rate in the range
of [1]. When the value of CR becomes one, there is no crossover

Fig. 2. Illustration of the crossover operation.

like in the conventional PSO. If the value of CR is zero, the posi-
tion will always have the crossover operation similar to the GA
mechanism. A proper crossover rate CR can be determined by
empirical studies to improve the diversity of a population. Fig. 2
gives an example of the crossover mechanism for an individual
.

The trial vector is used to update the and
at iteration using the greedy selection. The is
set to if the fitness value of is better than that of

. The developed crossover operation is applied for the
improvement of while the PSO evolution process of each
particle is conserved by (14).

C. Treatment of Equality and Inequality Constraints

It is very important to create a group of particles satisfying
the equality and inequality constraints. The summation of all
elements within a particle should be equal to the total system
demand and each element in particle should be within its
operating boundaries. Therefore, it is necessary to develop a
strategy for satisfying the constraints. This paper proposes an
efficient heuristic constraint-handling technique as follows.
Step 1) Set and adjust the value of all elements in the

th individual to satisfy the inequality constraints as
follows:

if
if
if

(19)

Note that the minimum and maximum power out-
puts of generating units should be adjusted to con-
sider the ramp rate limits of (11).

Step 2) Calculate the transmission network loss (i.e., )
using coefficients formula (8).

Step 3) Calculate the residual by subtracting the
total system demand (i.e., ) from

. If , then go to Step 7;
otherwise, go to Step 4. Here, is the demand
tolerance.

Step 4) Select an element in individual at random, which
was not selected so far, and store the value of the
element temporarily to .
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Step 5) Modify the value of the element for equality con-
straint treatment as follows:

if

if

(20)

Here implies a uniformly distributed random
number in [1]. This generation update rule for the
equality constraint treatment is devised to reflect the
operation boundary of each generator and distribute
the residual to several generators at random.

Step 6) Recalculate . If

, then go to Step 7; otherwise, go to Step
4.

Step 7) If , then go to Step
8; otherwise, and go to Step 2. Here, is
the solution convergence tolerance.

Step 8) Stop the constraint-handling procedure.

V. IMPLEMENTATION OF IMPROVED PSO ALGORITHM

FOR ECONOMIC DISPATCH PROBLEMS

Since the decision variables in ED problems are real power
outputs, the structure of a particle is composed of a set of el-
ements corresponding to the generator outputs. Therefore, par-
ticle ’s position at iteration can be represented as the vector

where is the number of generators. The
velocity of particle corresponds to the generation updates for
all generators. The process of the proposed IPSO algorithm can
be summarized as in the following steps.
Step 1) Initialize the position and velocity of a population at

random while satisfying the constraints.
Step 2) Update the velocity of particles.
Step 3) Modify the position of particles to satisfy the con-

straints, if necessary.
Step 4) Generate the trial vector through crossover operation

process.
Step 5) Update and .
Step 6) Go to Step 2 until the stopping criteria is satisfied.

In the following, the detailed implementation strategies of the
proposed method are described.

A. Creating Initial Position and Velocity

In the initialization process, a set of particles is created at
random as follows [16]:

(21)

where is a uniformly distributed random number between
[0,1]. Here, the minimum and maximum power outputs should
be adjusted using (11) when the ramp rate limits are considered.
Although each element satisfies the inequality constraint, the
problem of equality constraint still remains to be resolved. To do
this, the aforementioned equality constraint treatment strategy is
applied. After creating the initial position of each particle, the
velocity of each particle is also created at random.

B. Movement of the Particles

To modify the position of each particle, it is necessary to cal-
culate the velocity of each particle in the next stage by (13).
In this process, the new weight approach CIWA of (17) is em-
ployed to improve the global searching capability. After that, the
position of each particle is updated by (14). Since the resulting
position of a particle is not always guaranteed to satisfy the con-
straints, the constraint treatment procedure is performed.

C. Crossover Operation

The trial vector of particle at iteration (i.e., )
is generated by mixing the current position of particle (i.e.,

) with based on a predetermined crossover rate.
After that, the constraint treatment procedure is executed for
each trial vector to satisfy the constraints.

D. Update of and

The of each particle at iteration is updated. If
yields a smaller cost than , then is set to
. Otherwise, the is retained:

if
otherwise.

(22)

Also, at iteration is set as the best evaluated position
among all the .

E. Stopping Criteria

The proposed IPSO algorithm is terminated if the iteration
reaches a predefined maximum iteration.

VI. NUMERICAL TESTS

The proposed IPSO approach is applied to four different
power systems: 1) 40-unit system with valve-point effects;
2) 15-unit system with prohibited operating zones, ramp rate
limits, and transmission network losses; 3) ten-unit system
considering multiple fuels with valve-point effects; and (iv)
140-unit Korean power system with valve-point effects, pro-
hibited operating zones, and ramp rate limits. For each case,
100 independent trials are conducted to compare the solution
quality and convergence characteristics. For each ED problem,
four strategies are applied and compared:

• CTPSO: The conventional PSO with the proposed con-
straint treatment strategy;

• CSPSO: PSO with chaotic sequences;
• COPSO: PSO with crossover operation;
• CCPSO: PSO with both chaotic sequences and crossover

operation.
Here, the constraint treatment strategy is applied in common

to all strategies: CTPSO, CSPSO, COPSO, and CCPSO. The
proposed IPSOs have been executed on a Pentium IV 2.0-GHz
computer. In implementing the proposed algorithm, some PSO
parameters must be determined in advance. The population size
NP and maximum iteration number are set as 30 and
10 000, respectively. Since the performance of PSO-based ap-
proach depends on the parameters such as inertia weight factor
and the two acceleration coefficients, it is important to deter-
mine suitable values of these parameters. As for the linearly de-
creasing dynamic inertia weight, the starting value (i.e., )
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TABLE I
DETERMINATION OF ACCELERATION COEFFICIENTS FOR TEST SYSTEM 1

TABLE II
DETERMINATION OF CROSSOVER RATE FOR COPSO IN TEST SYSTEM 1

is set as 0.9 and the ending value (i.e., ) as 0.4 because these
values are widely accepted in solving various optimization prob-
lems [23], [28], [29]. Two acceleration coefficients of each ED
problem are determined through the experiments without em-
ploying the suggested framework such as the chaotic sequences
and crossover operation. In chaotic sequences, the control pa-
rameter is set to 4.0 and initial value of is determined by a
random number between [1] except the values 0, 0.25, 0.5, 0.75,
and 1. In the crossover operation, the crossover rate CR is se-
lected through experiments for each ED problem while and

are being fixed.

A. Test System 1: System With Valve-Point Effects

The test system consists of 40 generating units and the
input data are described in [10]. The total demand is set to
10 500 MW.

In order to find the optimal combination of acceleration co-
efficients (i.e., and ), nine cases are considered as described
in Table I. Here, each acceleration parameter is varied between
2.0 and 1.0 with the step size of 0.5, whose range is widely used
in other PSO applications [15]–[18], [23], [28], [29]. The ac-
celeration coefficients are determined through the experiments
for the system using the CTPSO, and 100 independent trails are
conducted for each case. The optimal values for and are
selected as 2.0 and 1.0, respectively.

To select the optimal crossover rate, CR is also varied from
0.9 to 0.1 with the step size of 0.1. For each case, 100 inde-
pendent tests are also executed for the COPSO. The results are
summarized in Table II, and the value for CR is determined as
0.6.

Table III summarizes the minimum, average, maximum cost,
standard deviation, and average execution time achieved by the

Fig. 3. Convergence characteristics of the IPSOs for Test System 1.

TABLE III
CONVERGENCE RESULTS FOR TEST SYSTEM 1

PSO [16], CTPSO, CSPSO, COPSO, and CCPSO. Here PSO
[16] implies a conventional PSO with the constraint handling
technique in [16]. The effect of the constraint treatment strategy
can be observed by comparing PSO [16] and the CTPSO of this
paper. The simulation results show that the proposed CCPSO
provides much better solutions than PSO [16], CTPSO, CSPSO,
or COPSO. The convergence characteristics of the best solution
of each IPSO approach are illustrated in Fig. 3. It can be ob-
served that both CSPSO and COPSO are improving the solu-
tion quality continuously while the CTPSO experiences a pre-
mature convergence. In addition, the convergence performance
of CCPSO is dramatically improved due to the synergistic ef-
fects of crossover operation and chaotic weight sequences.

In Table IV, the results of the proposed CTPSO, CSPSO,
COPSO, and CCPSO are compared with those of evolutionary
programming (EP) [10], MPSO [16], PSO-SQP [17], DEC-SQP
[14], NPSO [18], and NPSO-LRS [18]. Although the best so-
lution of CCPSO is not guaranteed to be the global solution,
the proposed CCPSO has shown the superiority to the existing
methods. Regarding the minimum and average cost, the pro-
posed CSPSO, COPSO, and CCPSO have found better solu-
tions than the best solution previously found by NPSO-LRS,
$121 664.4308 [18]. The generation output of each unit and
the corresponding total cost of CTPSO, CSPSO, COPSO, and
CCPSO are provided in Table V and compared with that of
NPSO-LRS [18]. One can observe that the generation outputs of
units 6, 10, 11, 15, 34, 35, and 36 by CCPSO are quite different
from those of NPSO-LRS [18]. This implies that the global
searching capability has been improved significantly by the pro-
posed IPSO mechanism. Also, the solutions by the CTPSO,
CSPSO, COPSO, and CCPSO always satisfy the equality and
inequality constraints.
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TABLE IV
COMPARISON OF RESULTS OF EACH METHOD FOR TEST SYSTEM 1

TABLE V
GENERATION OUTPUT OF EACH GENERATOR AND THE

CORRESPONDING COST IN 40-UNIT TEST SYSTEM

TABLE VI
DETERMINATION OF ACCELERATION COEFFICIENTS FOR TEST SYSTEM 2

TABLE VII
DETERMINATION OF CROSSOVER RATE FOR COPSO IN TEST SYSTEM 2

TABLE VIII
CONVERGENCE RESULTS FOR TEST SYSTEM 2

B. Test System 2: System With Prohibited Operating Zones,
Ramp Rate Limits, and Transmission Network Losses

Experiments are performed on the 15-unit power system,
which considers the prohibited operating zones, ramp rate
limits, and transmission network losses. Units 2, 5, 6, and
12 have up to three prohibited operating zones. The system
supplies a total load of 2630 MW. The input data and coef-
ficients for transmission network losses are provided in [15].
To determine the acceleration coefficients and crossover rate
for this test system, the same parameter determination process
is applied as for Test System 1. The values for , , and CR
are determined as 2.0, 2.0, and 0.6, respectively, as shown in
Tables VI and VII.

The minimum cost, average cost, maximum cost, standard
deviation, and average execution time of CTPSO, CSPSO,
COPSO, and CCPSO are described in Table VIII. The proposed
CTPSO, COPSO, and CCPSO methods always provide the
same solution in all trials. In Table IX, the best results from the
proposed CTPSO, CSPSO, COPSO, and CCPSO are compared
with those of GA [15] and PSO [15]. The results show that the
CTPSO, CSPSO, COPSO, and CCPSO provide better solutions
than other methods while satisfying the system constraints
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TABLE IX
COMPARISON OF RESULTS OF EACH METHOD FOR TEST SYSTEM 2

TABLE X
DETERMINATION OF ACCELERATION COEFFICIENTS FOR TEST SYSTEM 3

TABLE XI
DETERMINATION OF CROSSOVER RATE FOR COPSO IN TEST SYSTEM 3

exactly. In addition, the proposed four IPSO methods provide
the same solution with the cost of $32 704.4514, which is the
minimum cost found so far.

C. Test System 3: Multi-Fuels With Valve-Point Effect

The test system consists of ten generating units considering
multi-fuels with valve-point effects. The input data and related
constraints of the test system are given in [7]. The total system
demand is set to 2700 MW. The values for , , and CR are set

TABLE XII
CONVERGENCE RESULTS FOR TEST SYSTEM 3

TABLE XIII
COMPARISON OF RESULTS OF EACH METHOD FOR TEST SYSTEM 3

TABLE XIV
COMPARISON OF RESULTS OF EACH METHOD FOR TEST SYSTEM 3

to be 1.0, 2.0, and 0.2, respectively, as shown in Tables X and
XI.

Table XII shows the convergence results of the PSO [16],
CTPSO, CSPSO, COPSO and CCPSO methods. The simula-
tion results reveal that CCPSO can yield better solution than
CTPSO, CSPSO, and COPSO. Also, the efficiency of the con-
straint treatment strategy has been demonstrated as in other test
systems. As shown in Table XIII, the best result from each of
the proposed IPSOs is compared with those of the conventional
genetic algorithm with multiplier updating (CGA_MU) [7], im-
proved genetic algorithm with multiplier updating (IGA_MU)
[7], NPSO [18], and NPSO-LRS [18]. Table XIII reveals that
the proposed methods outperform other existing methods.

Also in Table XIV, the generation outputs, fuel types, and cor-
responding costs of the best solution obtained from the proposed
IPSO approaches are compared with those of NPSO-LRS [18].
The CTPSO, CSPSO, COPSO, CCPSO have provided better so-
lutions than the existing approaches.
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TABLE XV
CONVERGENCE RESULTS FOR KOREAN POWER

SYSTEM WITH CONVEX COST FUNCTIONS

TABLE XVI
DETERMINATION OF ACCELERATION COEFFICIENTS FOR KOREAN SYSTEM

TABLE XVII
DETERMINATION OF CROSSOVER RATE FOR COPSO IN KOREAN SYSTEM

TABLE XVIII
CONVERGENCE RESULTS FOR KOREAN POWER SYSTEM

WITH NONCONVEX COST FUNCTIONS

D. Large-Scale Power System of Korea

To investigate the possibility of the proposed IPSOs to the
large-scale power systems, experiments are conducted on the
Korean power system. The system consists of 140 thermal
generating units with ramp rate limits where the hydro and
pump storage plants are not considered. The input data are
given in Table XIX of the Appendix. The total demand is set to
49 342 MW. Since the cost function of each generating unit is
considered as the second-order polynomial, the global optimum
solution can be obtained using the mathematical programming
techniques. Nonlinear programming (NLP), which was imple-
mented in GAMS, found the global optimum, $1 655 685, in

TABLE XIX
GENERATING UNIT DATA OF KOREAN POWER SYSTEM

0.1 (s). Table XV summarizes the performance of each IPSO
approach. Although the proposed IPSOs have always reached
to the global solution for the 100 independent trials and the
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TABLE XX
UNIT DATA WITH VALVE-POINT LOADING

TABLE XXI
PROHIBIT ZONES OF UNITS

CSPSO has rapidly converged into the optimum in 9.6 (s), the
computational efficiency is relatively low in comparison with
NLP for the convex ED problem. However, the applicability
of the IPSOs to large-scale power systems is investigated
throughout the experiments.

In addition, in order to show the applicability of the IPSOs
to the large-scale power system with nonconvex cost function,
it is assumed that 12 generators have the cost function with
valve-point effects and four generators are considered the pro-
hibited operating zones. Therefore, the mathematical methods
such as NLP cannot provide the solution. The data are given in
Tables XX and XXI of the Appendix . Through experiments de-
scribed in Tables XVI and XVII, , , and CR are set to be
1.5, 2.0, and 0.2, respectively. The convergence results of each
IPSO approach are summarized in Table XVIII.

VII. CONCLUSIONS

This paper proposes an IPSO approach for solving non-
convex ED problems. The proposed IPSO employs the chaotic
sequences as well as the crossover operation to enhance the
performance of the conventional PSO. The chaotic sequences
combined with the linearly decreasing inertia weights are
devised to improve the global searching capability and escape
from a local minimum. In addition, the crossover operation is
introduced to increase the diversity of the population. These
strategies not only improve the global searching ability but also
prevent the solution from trapping in a local optimum point.
In addition, a more efficient constraint treatment strategy is
proposed. The proposed IPSO algorithms have been success-
fully applied to three nonconvex ED problems considering
valve-points, prohibited operating zones with ramp rate limits
as well as transmission network losses, and multi-fuels with
valve-point effects. The proposed CSPSO, COPSO, and
CCPSO have found better solutions for the three test systems
than other solutions found so far. Additionally, the IPSOs are

applied to the large-scale Korean power system. First, each
IPSO approach is tested on the power system with convex cost
function considering the ramp rate limits. The results show
that the IPSO can always find the global solution, and they are
somewhat independent to control parameters values while the
computation time is longer than the mathematical optimization
method. Also the proposed IPSOs are tested on the Korean
power system with nonconvex cost function considering
valve-points and prohibited operating zones as well as ramp
rate limits. The results clearly show that the proposed IPSO
framework can be used as an efficient optimizer providing
satisfactory solutions for general nonconvex ED problems;
however, future researches should be followed to reduce the
computation time for large-scale convex ED problems.

APPENDIX

The characteristics data of generating units for Korean power
system are given in Tables XIX–XXI.
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