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Abstract—This paper presents an efficient approach for solving
economic dispatch (ED) problems with nonconvex cost functions
using an improved particle swarm optimization (IPSO). Although
the particle swarm optimization (PSO) approaches have several
advantages suitable to heavily constrained nonconvex optimiza-
tion problems, they still can have the drawbacks such as local
optimal trapping due to premature convergence (i.e., exploration
problem), insufficient capability to find nearby extreme points
(i.e., exploitation problem), and lack of efficient mechanism to
treat the constraints (i.e., constraint handling problem). This
paper proposes an improved PSO framework employing chaotic
sequences combined with the conventional linearly decreasing
inertia weights and adopting a crossover operation scheme to in-
crease both exploration and exploitation capability of the PSO. In
addition, an effective constraint handling framework is employed
for considering equality and inequality constraints. The proposed
IPSO is applied to three different nonconvex ED problems with
valve-point effects, prohibited operating zones with ramp rate
limits as well as transmission network losses, and multi-fuels with
valve-point effects. Additionally, it is applied to the large-scale
power system of Korea. Also, the results are compared with those
of the state-of-the-art methods.

Index Terms—Chaotic inertia weights, constraint treatment
technique, crossover operation, economic dispatch problem, im-
proved particle swarm optimization, nonconvex optimization.

1. INTRODUCTION

ANY power system optimization problems including
M economic dispatch (ED) have nonconvex characteristics
with heavy equality and inequality constraints [1]. The objective
of ED is to determine an optimal combination of power output
to meet the demand at minimum cost while satisfying the con-
straints. For simplicity, the cost function for each unit in the
ED problems has been approximately represented by a single
quadratic function and is solved using mathematical program-
ming techniques [2]. Generally, these mathematical methods re-
quire the derivative information of the cost function. Unfortu-
nately, the input-output characteristics of generating units are
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nonconvex due to prohibited operating zones, valve-point load-
ings, multi-fuel effects, etc. Thus, the practical ED problem
should be represented as a nonconvex optimization problem
with constraints, which cannot be directly solved by mathemat-
ical methods. Dynamic programming [3] can treat such types
of problems, but it suffers from the curse of dimensionality.
Over the past decade, many salient methods have been devel-
oped to solve these problems, such as the hierarchical numer-
ical method [4], genetic algorithm (GA) [5]-[7], evolutionary
programming [8]-[10], Tabu search [11], neural network ap-
proaches [12], [13], differential evolution [14], particle swarm
optimization (PSO) [15]-[18], and hybrid artificial intelligence
(AI) method [19].

PSO is one of the modern heuristic algorithms suitable to
solve large-scale nonconvex optimization problems. It is a pop-
ulation-based search algorithm and searches in parallel using a
group of particles. The PSO suggested by Kennedy and Eberhart
in 1995 is based on the analogy of swarm of bird and school of
fish [20]. In PSO, each particle makes its decision using its own
experience together with its neighbor’s experiences [20], [21].
The main advantages of the PSO algorithm are: simple concept,
easy implementation, relative robustness to control parameters,
and computational efficiency [1]. Although the PSO-based ap-
proaches have several advantages, it may get trapped in a local
minimum when handling heavily constrained problems due to
the limited local/global searching capabilities [22], [23].

This paper proposes a PSO-based approach for the nonconvex
ED problems with heavy constraints. In order to overcome the
existing drawbacks of PSO to some extents, this paper proposes
an improved PSO (IPSO) framework combining the chaotic se-
quences and the crossover operation. The chaotic sequences
combined with the linearly decreasing inertia weights are sug-
gested as new dynamic inertia weights in PSO. In addition,
the crossover operation inspired by GA can increase the di-
versity of the population in the PSO mechanism. The employ-
ment of chaotic sequences and the crossover operation in PSO
can improve the global searching capability by preventing pre-
mature convergence through increased diversity of the popu-
lation. In addition, an effective constraint handling technique
is proposed to improve the solution quality without scarifying
the computational efficiency. The suggested IPSO is applied
to three different nonconvex ED problems and the large-scale
Korean power system. The solutions are compared with those
of the conventional PSO as well as other state-of-the-art Al
methods.

0885-8950/$26.00 © 2009 IEEE
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II. FORMULATION OF ECONOMIC DISPATCH PROBLEM

A. Objective Function

The objective of an ED problem is to minimize the total fuel
cost subjected to the constraints of a power system. The simpli-
fied cost function of each generating unit can be represented as
described in (2):

n
Fr =Y F(P) (1
i=1
FZ(PZ) =a; +b;P; + CiPiQ 2)
where

Fr total generation cost;
F; cost function of generator 7;
a;,b;,c;  cost coefficients of generator 7;
F; power output of generator i;
n number of generators.

1) ED Problem Considering Valve-Point Effects: The gen-
erating units with multi-valve steam turbines exhibit a greater
variation in the fuel cost function. Since the valve point results
in the ripples, a cost function contains higher order nonlinearity.
Therefore, the cost function (2) should be replaced by the fol-
lowing to consider the valve-point effects:

Fl(PZ) =a; + bsz + CiPi2 + |6i X Sin(fi X (Pi,min — Pz))|

3)
where e; and f; are the cost coefficients of generator ¢ reflecting
valve-point effects [10].

2) ED Problem Considering Multi-Fuels With Valve-Point
Effects: Since the dispatching units can be supplied with multi-
fuel sources, each unit can be represented with several piecewise
quadratic functions reflecting the effects of different fuel types.
In general, a piecewise quadratic function is used to represent
the input-output curve of a generator with multiple fuels [4] and
described as

Fi(P;)
ait + b1 P+ cin P?, fuell, Pjin < P < Py
@iz + bioP; + cioP?, fuel2, Py < P; < P

@ik + bin Py + i P?, fuelk, Pj_1 < Pi<P;pax
4)

where a;x, bk, ¢ are the cost coefficients of generator ¢ for
fuel type k. In general, fuels are supplied by fuel suppliers under
a multitude of contracts between the suppliers and the utility.
Determining the selection of fuels for each unit is dictated by
the contracts, and can be solved by economic fuel dispatch [24].
This paper assumes that such selection is given a-priori. There-
fore, to obtain an accurate and practical ED solution, the fuel
cost function should be considered with both multi-fuels and

valve-point effects simultaneously [7]. Thus, the fuel cost func-
tion (3) should be combined with (4), and can be represented as
follows:

Fi (P;), fuell, Pjyun < Py < Py
Fi(P;), fuel2, P; < P; < Pjp

Fy(P) = : : )

Fi (Pz) fue1k7 Pik—l < Pz < Pimax

where

Fie(P;) = air, + b Pi + can P?

+ |eir x sin(fir X (Pik,min

—F)l (©

and e;, and f;, are the cost coefficients of generator ¢ reflecting
valve-point effects for fuel type &, and P; min is the minimum
output of generator ¢ using fuel type k.

B. Equality and Inequality Constraints

1) Active Power Balance Equation: For power balance,
an equality constraint should be satisfied. The total generated
power should be the same as the total load demand plus the
total line loss

ZPiZPload+Ploss (7)

i=1

where P, is the total system load. The total transmission net-
work loss, Pj,ss, is a function of the unit power outputs that can
be represented using B coefficients [2] as follows:

n

Pioss = > > PiBijPj+ Y BoPi+ Boo.  (8)

i=1 j=1 i=1

2) Minimum and Maximum Power Limits: Power output of
each generator should be within its minimum and maximum
limits. Corresponding inequality constraint for each generator
is

P in < P < P max 9
where P; 1in and P; 1, are the minimum and maximum output
of generator ¢, respectively.

3) Ramp Rate Limits: The actual operating range of all the
online units is restricted by their corresponding ramp rate limits.
The ramp-up and ramp-down constraints can be written as fol-
lows:

P, — P’ <UR; and P? — P, < DR; (10)
where P is the previous power output of the ith generating
unit. UR; and DR, are the up-ramp and down-ramp limits of
generator i, respectively.
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To consider the ramp rate limits and power output limits con-
straints at the same time, (10) and (9) can be rewritten as an
inequality constraint as follows:

max { P; min, P —DR; } < P; < min {P; max, P +UR; } .
(1)
4) ED Problem Considering Prohibited Operating Zones: In
some cases, the entire operating range of a generating unit is
not always available due to physical operation limitations. Units
may have prohibited operating zones due to faults in machines
themselves or associated auxiliaries. Such faults may lead to in-
stability in certain ranges of generator power output [6]. There-
fore, for units with prohibited operating zones, there are addi-
tional constraints on the unit operating range as follows:

Pi,rnin S Pi S PL'IJ

Poed Py <P <P, ,k=23..pz
F?:bzigpigpi,max
1=1,2,...,npz (12)

where P!, and P}, are, respectively, the lower and upper
bounds of prohibited operating zone of unit 7. Here, pz; is the
number of prohibited zones of unit ¢ and npz is the number of
units which have prohibited operating zones.

III. OVERVIEW OF PARTICLE SWARM OPTIMIZATION

Kennedy and Eberhart developed a PSO algorithm based on
the behavior of individuals (i.e., particles or agents) of a swarm
[20]. Its roots are in zoologist’s modeling of the movement of
individuals within a group. It has been noticed that members of
the group seem to share information among them, a fact that
leads to increased efficiency of the group [21]. The PSO algo-
rithm searches in parallel using a group of particles. Each par-
ticle corresponds to a candidate solution to the problem. A par-
ticle moves toward the optimum based on its present velocity,
its previous experience, and the experience of its neighbors.
In an n-dimensional search space, the position and velocity of
particle ¢ are represented as vectors X; = (z;1,...,%;,) and
V; = (vi1, - . - Vin ), where the dimension represents the number
of components. Let Pbest; = (wﬁ, e 1;57) and Gbest =
(z§,...,zg) be the best position of particle i and its neigh-
bors’ best position so far, respectively. The modified velocity
and position of each particle can be calculated as follows:

VMY =0 . VF 4 ¢ -rng - (Pbestt — XF)

+co-Tng - (Gbestk — Xlk) (13)
Xik*i‘l :XLk _|_ ‘/ik+1 (14)
where
vk velocity of particle  at iteration k;
w inertia weight factor;
c1,C2 acceleration coefficients;
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rni,rny random numbers between 0 and 1;

XF position of particle 7 at iteration k.

In the velocity updating process, the values of parameters
such as w, ¢1, and ¢o should be determined in advance. The
constants c¢; and cp represent the weighting of the stochastic
acceleration terms that pull each particle toward the Pbest; and
Ghbest positions. Suitable selection of inertia weight can provide
a balance between global exploration and local exploitation, and
results in a lower number of iterations to find the optimal solu-
tion. In general, to enhance the convergence characteristics, the
inertia weight factor w is designed to decrease linearly (i.e., In-
ertia Weight Approach (IWA) [1], [22], [23]), descending from
Wimax tO0 Wmin as follows:

Wmax — Wmin
WP = Wy — —oX T ok
1teTmax

15)

where ttery,x corresponds to the maximum iteration number.
Using the new position Xf“, the Pbest; and Gbest are up-
dated at iteration k + 1 using the greedy selection.

IV. IMPROVED PSO WITH CHAOTIC SEQUENCES, CROSSOVER
OPERATION, AND CONSTRAINT TREATMENT STRATEGY

A. Application of Chaotic Sequences in PSO

Chaos, apparently disordered behavior that is nonetheless de-
terministic, is a universal phenomenon that occurs in many areas
of science [25]. Coelho and Mariani [14] combined the chaotic
sequences with the mutation factor in differential evolution to
improve the solution quality. Caponetto et al. [26] applied var-
ious chaotic sequences in evolutionary algorithms (EAs) in lieu
of the random numbers. Shengsong et al. [27] adopted a chaotic
hybrid algorithm to solve the optimal power flow problems. The
application of the chaotic sequences has shown promising re-
sults in some engineering applications.

One of the dynamic systems evidencing chaotic behavior is
the iterator called the logistic map [26], whose equation is de-
scribed as follows:

Ve = K YEk-1 '(1—’Yk—1) (16)

where 1 is a control parameter and has a real value between [4],
and ~yj is the chaotic parameter at iteration k. Despite the ap-
parent simplicity of the equation, the solution exhibits a rich
variety of behaviors. The behavior of the system represented
by (16) is greatly changed with the variation of y. The value
of i determines whether -y is stabilized at a constant size, os-
cillates between a limited sequence of sizes, or behaves chaot-
ically in an unpredictable pattern. The system (16) is deter-
ministic, and displays chaotic behaviors when @ = 4.0 and
v ¢ {0,0.25,0.50,0.75,1.0}.

The performance of a PSO can depend on its parameters such
as the inertia weight factors and two acceleration coefficients.
The first term in (13) represents the influence of previous ve-
locity, which provides the necessary momentum for particles to
fly around in a search space. The balance between exploration
and exploitation can be treated by the value of inertia weight.
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Fig. 1. Comparison of inertia weights for IWA and CIWA.

Therefore, a proper control of inertia weight is very important
to find the optimum solution efficiently. Shi and Eberhart [22],
[23] made a significant improvement in the performance of the
PSO with a linearly varying inertia weights over the iterations
[i.e., IWA in the form of (15)], which is widely used in PSO ap-
plications [16], [17].

In this paper, in order to improve the global searching capa-
bility and to increase the probability of escaping from a local
minimum, a new weight-changing approach, Chaotic Inertial
Weight Approach (CIWA), is suggested as defined as follows:

k

cwh = Wk -V (17)

where cw” is a chaotic weight at iteration k, w” is the weight
factor from the IWA, and ~y, is the chaotic parameter.

Whereas the weight in the conventional IWA decreases mo-
notonously from wp,ax to win, the proposed chaotic weight de-
creases and oscillates simultaneously as shown in Fig. 1. Since
the suggested CIWA can encompass the whole weight domain
under the decreasing line in a chaotic manner, the searching ca-
pability of the proposed algorithm can be increased as illustrated
in numerical studies.

B. Crossover Operation

In order to increase the diversity of a population, the crossover
operation is newly introduced to the PSO mechanism, thereby
can effectively explore and exploit promising regions in a search
space. The position of particle i, X; = (1, .., Zin ), obtained
in (14) is mixed with Pbest; to generate a trial vector Xi =
(Zi1,-..,Zin) as follows:

k+1
Akl ) Tij o
Tij = Pk
T

iy

if Tij S CR
. (18)
otherwise

number between [1], and CR is the crossover rate in the range
of [1]. When the value of CR becomes one, there is no crossover

forj =1,2,...,n, where r;; is a uniformly distributed random

PN

.

:/=n Z & 5, >CR

Fig. 2. Illustration of the crossover operation.

like in the conventional PSO. If the value of CR is zero, the posi-
tion will always have the crossover operation similar to the GA
mechanism. A proper crossover rate CR can be determined by
empirical studies to improve the diversity of a population. Fig. 2
gives an example of the crossover mechanism for an individual
1.

The trial vector X+ is used to update the Pbest; and Gbest
at iteration k + 1 using the greedy selection. The Pbestf*‘1 is
set to X F1if the fitness value of Xf"’l is better than that of
Pbest®. The developed crossover operation is applied for the
improvement of Pbest; while the PSO evolution process of each
particle is conserved by (14).

C. Treatment of Equality and Inequality Constraints

It is very important to create a group of particles satisfying
the equality and inequality constraints. The summation of all
elements within a particle should be equal to the total system
demand and each element j in particle ¢ should be within its
operating boundaries. Therefore, it is necessary to develop a
strategy for satisfying the constraints. This paper proposes an
efficient heuristic constraint-handling technique as follows.

Step 1) Set o = 1 and adjust the value of all elements in the
sth individual to satisfy the inequality constraints as

follows:
Pi];"/ if Pj,min S PZI; S Pj,max
Ps(a) = Pj,min7 if P£ < Pj,min (19)
Pj,max, if PL’; > P',max-

Note that the minimum and maximum power out-
puts of generating units should be adjusted to con-
sider the ramp rate limits of (11).

Step 2) Calculate the transmission network loss (i.e., Pioss)
using B coefficients formula (8).

Step 3) Calculate the residual Prp by subtracting the
total system demand (i.e., Pjoaq + Ploss) from
> Pi]-(a). If |Prp| < e, then go to Step 7;
otherwise, go to Step 4. Here, ¢ is the demand
tolerance.

Step 4) Select an element g in individual ¢ at random, which
was not selected so far, and store the value of the
element g temporarily to PgT mp,
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Step 5) Modify the value of the element g for equality con-
straint treatment as follows:

k()

P

PHO_min{Prp, (PF® P, i) xrng},  if Prp>0
ig RD; \1ig g,min qf RD
PE —max{Ppp, (PE) — P, suax) X1y}, if Prp <0.

ig
(20)

Here rn, implies a uniformly distributed random
number in [1]. This generation update rule for the
equality constraint treatment is devised to reflect the
operation boundary of each generator and distribute
the residual to several generators at random.

6) Recalculate Prp = Prp — (PgT mp _ Pi]z(a)). If
|Prp| < e, then go to Step 7; otherwise, go to Step

Step

7) If maxy; {’P,k,(“) plrla=1)

Step i i < 0, then go to Step
8; otherwise, « = a+ 1 and go to Step 2. Here, 6 is
the solution convergence tolerance.

Step 8) Stop the constraint-handling procedure.

V. IMPLEMENTATION OF IMPROVED PSO ALGORITHM

FOR ECONOMIC DISPATCH PROBLEMS

Since the decision variables in ED problems are real power
outputs, the structure of a particle is composed of a set of el-
ements corresponding to the generator outputs. Therefore, par-
ticle 2’s position at iteration k can be represented as the vector
XF = (Pk,..., Pk) where n is the number of generators. The
velocity of particle ¢ corresponds to the generation updates for
all generators. The process of the proposed IPSO algorithm can
be summarized as in the following steps.

Step 1) Initialize the position and velocity of a population at
random while satisfying the constraints.
2) Update the velocity of particles.
3) Modify the position of particles to satisfy the con-
straints, if necessary.
4) Generate the trial vector through crossover operation
process.
Step 5) Update Pbest and Gbest.
Step 6) Go to Step 2 until the stopping criteria is satisfied.

In the following, the detailed implementation strategies of the

proposed method are described.

Step
Step

Step

A. Creating Initial Position and Velocity

In the initialization process, a set of particles is created at
random as follows [16]:

Pg = Pj,min + Tij X (Pj,max - Pj,min) 21
where 7;; is a uniformly distributed random number between
[0,1]. Here, the minimum and maximum power outputs should
be adjusted using (11) when the ramp rate limits are considered.
Although each element satisfies the inequality constraint, the
problem of equality constraint still remains to be resolved. To do
this, the aforementioned equality constraint treatment strategy is
applied. After creating the initial position of each particle, the
velocity of each particle is also created at random.
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B. Movement of the Particles

To modify the position of each particle, it is necessary to cal-
culate the velocity of each particle in the next stage by (13).
In this process, the new weight approach CIWA of (17) is em-
ployed to improve the global searching capability. After that, the
position of each particle is updated by (14). Since the resulting
position of a particle is not always guaranteed to satisfy the con-
straints, the constraint treatment procedure is performed.

C. Crossover Operation

The trial vector of particle ¢ at iteration k + 1 (i.e., X ik“)
is generated by mixing the current position of particle ¢ (i.e.,
X +1) with Pbest! based on a predetermined crossover rate.
After that, the constraint treatment procedure is executed for
each trial vector to satisfy the constraints.

D. Update of Pbest and Gbest

The Pbest of each particle at iteration k + 1 is updated. If
Gbest yields a smaller cost than Pbest, then Xi’“r1 is set to
Pbest®. Otherwise, the Pbest! is retained:

Pbesti§'+1 — {Xik+17 lff<sz+1> < f(PbeSti'C) (22)

PbestF, otherwise.

Also, Gbest atiteration k+ 1 is set as the best evaluated position
among all the Pbest"*!

P
E. Stopping Criteria

The proposed IPSO algorithm is terminated if the iteration
reaches a predefined maximum iteration.

VI. NUMERICAL TESTS

The proposed IPSO approach is applied to four different
power systems: 1) 40-unit system with valve-point effects;
2) 15-unit system with prohibited operating zones, ramp rate
limits, and transmission network losses; 3) ten-unit system
considering multiple fuels with valve-point effects; and (iv)
140-unit Korean power system with valve-point effects, pro-
hibited operating zones, and ramp rate limits. For each case,
100 independent trials are conducted to compare the solution
quality and convergence characteristics. For each ED problem,
four strategies are applied and compared:

* CTPSO: The conventional PSO with the proposed con-

straint treatment strategy;

e CSPSO: PSO with chaotic sequences;

* COPSO: PSO with crossover operation;

¢ CCPSO: PSO with both chaotic sequences and crossover

operation.

Here, the constraint treatment strategy is applied in common
to all strategies: CTPSO, CSPSO, COPSO, and CCPSO. The
proposed IPSOs have been executed on a Pentium IV 2.0-GHz
computer. In implementing the proposed algorithm, some PSO
parameters must be determined in advance. The population size
NP and maximum iteration number zter, ., are set as 30 and
10000, respectively. Since the performance of PSO-based ap-
proach depends on the parameters such as inertia weight factor
and the two acceleration coefficients, it is important to deter-
mine suitable values of these parameters. As for the linearly de-
creasing dynamic inertia weight, the starting value (i.e., Wmax)
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TABLE I
DETERMINATION OF ACCELERATION COEFFICIENTS FOR TEST SYSTEM 1
Case e o Minimum Average
Cost ($) Cost ($)
1 2.0 2.0 121,762.9576 122,141.5129
2 2.0 1.5 121,740.1196 122,070.9243
3 2.0 1.0 121,694.6056 121,944.3959
4 1.5 2.0 121,749.6415 122,126.5257
5 1.5 1.5 121,751.9378 122,086.6732
6 1.5 1.0 121,739.2087 121,950.2990
7 1.0 2.0 121,753.9811 122,274.9373
8 1.0 1.5 121,751.3391 122,308.8591
9 1.0 1.0 121,756.1262 122.343.2483
TABLE II
DETERMINATION OF CROSSOVER RATE FOR COPSO IN TEST SYSTEM 1
Minimum Average
Case CR Cost ($) Cost (%)

1 0.1 121,426.1795 121,522.4361

2 0.2 121,453.9981 121,527.6191

3 0.3 121,452.7133 121,517.2012

4 0.4 121,440.9613 121,510.3494

5 0.5 121,414.9825 121,503.1294

6 0.6 121,411.8975 121,499.9769

7 0.7 121,452.6741 121,547.8669

8 0.8 121,452.6741 121,625.8105

9 0.9 121,452.6741 121,635.9935

is set as 0.9 and the ending value (i.e., wmin) as 0.4 because these
values are widely accepted in solving various optimization prob-
lems [23], [28], [29]. Two acceleration coefficients of each ED
problem are determined through the experiments without em-
ploying the suggested framework such as the chaotic sequences
and crossover operation. In chaotic sequences, the control pa-
rameter (. is set to 4.0 and initial value of is determined by a
random number between [1] except the values 0, 0.25, 0.5, 0.75,
and 1. In the crossover operation, the crossover rate CR is se-
lected through experiments for each ED problem while ¢; and
co are being fixed.

A. Test System 1: System With Valve-Point Effects

The test system consists of 40 generating units and the
input data are described in [10]. The total demand is set to
10500 MW.

In order to find the optimal combination of acceleration co-
efficients (i.e., v and ¢1), nine cases are considered as described
in Table 1. Here, each acceleration parameter is varied between
2.0 and 1.0 with the step size of 0.5, whose range is widely used
in other PSO applications [15]-[18], [23], [28], [29]. The ac-
celeration coefficients are determined through the experiments
for the system using the CTPSO, and 100 independent trails are
conducted for each case. The optimal values for c; and c; are
selected as 2.0 and 1.0, respectively.

To select the optimal crossover rate, CR is also varied from
0.9 to 0.1 with the step size of 0.1. For each case, 100 inde-
pendent tests are also executed for the COPSO. The results are
summarized in Table II, and the value for CR is determined as
0.6.

Table III summarizes the minimum, average, maximum cost,
standard deviation, and average execution time achieved by the

x10°
130 -
— —CTPSO
e — * - CSPSO
e
""" COPSO
g 120
—— CCPSO
3
T 124
S B
° e i — T
o122 B e e e T
120 T T T T T T T T T 1
0 1000 2000 3000 4000 5000
Iteration
Fig. 3. Convergence characteristics of the IPSOs for Test System 1.
TABLE III
CONVERGENCE RESULTS FOR TEST SYSTEM 1
Methods Minimum Average Maximum  Standard Avg.
Cost ($) Cost ($) Cost ($) Deviation Time (sec)
PSO[16] 121751.3390 122020.7539 122607.9145 210.3657 19.0
CTPSO  121694.6056 121944.3959 122244.8439 196.9282 19.0
CSPSO 1214359581 121945.0564 123305.2476 413.8832 19.0
COPSO  121411.8975 121499.9769 121751.3390 78.7696 19.2
CCPSO  121403.5362 121445.3269 1215254934 32.4898 19.3

PSO [16], CTPSO, CSPSO, COPSO, and CCPSO. Here PSO
[16] implies a conventional PSO with the constraint handling
technique in [16]. The effect of the constraint treatment strategy
can be observed by comparing PSO [16] and the CTPSO of this
paper. The simulation results show that the proposed CCPSO
provides much better solutions than PSO [16], CTPSO, CSPSO,
or COPSO. The convergence characteristics of the best solution
of each IPSO approach are illustrated in Fig. 3. It can be ob-
served that both CSPSO and COPSO are improving the solu-
tion quality continuously while the CTPSO experiences a pre-
mature convergence. In addition, the convergence performance
of CCPSO is dramatically improved due to the synergistic ef-
fects of crossover operation and chaotic weight sequences.

In Table IV, the results of the proposed CTPSO, CSPSO,
COPSO, and CCPSO are compared with those of evolutionary
programming (EP) [10], MPSO [16], PSO-SQP [17], DEC-SQP
[14], NPSO [18], and NPSO-LRS [18]. Although the best so-
lution of CCPSO is not guaranteed to be the global solution,
the proposed CCPSO has shown the superiority to the existing
methods. Regarding the minimum and average cost, the pro-
posed CSPSO, COPSO, and CCPSO have found better solu-
tions than the best solution previously found by NPSO-LRS,
$121664.4308 [18]. The generation output of each unit and
the corresponding total cost of CTPSO, CSPSO, COPSO, and
CCPSO are provided in Table V and compared with that of
NPSO-LRS [18]. One can observe that the generation outputs of
units 6, 10, 11, 15, 34, 35, and 36 by CCPSO are quite different
from those of NPSO-LRS [18]. This implies that the global
searching capability has been improved significantly by the pro-
posed IPSO mechanism. Also, the solutions by the CTPSO,
CSPSO, COPSO, and CCPSO always satisfy the equality and
inequality constraints.
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PSO-SQP [17]
DEC-SQP [14]

NPSO [18]
NPSO-LRS [18]

CTPSO
CSPSO
COPSO
CCPSO

122,094.6700
121,741.9793
121,704.7391
121,664.4308
121,694.6056
121,435.9581
121,411.8975
121,403.5362

TABLE IV
COMPARISON OF RESULTS OF EACH METHOD FOR TEST SYSTEM 1
Methods Minimum Cost ($) Average Cost ($)
EP [10] 122,624.3500 123,382.0000
MPSO [16] 122,252.2650 N/A

122,245.2500
122,295.1278
122,221.3697
122,209.3185
121,944.3959
121,945.0564
121,499.9769
121,445.3269

TABLE V

GENERATION OUTPUT OF EACH GENERATOR AND THE
CORRESPONDING COST IN 40-UNIT TEST SYSTEM

NPSO-LRS

Unit (18] CTPSO CSPSO COPSO CCPSO
1 1139761 1140000  113.8490  110.8089  110.7998
2 1139986  114.0000 1112670  110.8305  110.7999
3974241 120.0000  97.4007  97.3999  97.3999
4 1797327 1797335 1797331 179.7331  179.7331
5 89.6511 97.0000 882536  97.0000  87.7999
6 1054044  140.0000  140.0000  140.0000  140.0000
72597502 259.7341  259.6895  259.5997  259.5997
8 2884534 2869352  284.5997  284.5997  284.5997
9 284.6460  298.6396  284.6068  284.5997  284.5997
10 204.8120  130.0000  130.0000  130.0000  130.0000
11 168.8311  94.0000  168.7998  168.7998  94.0000
12 94.0000  168.8001  94.0000  94.0000  94.0000
13 2147663 1250000 2147598  214.7598  214.7598
14 3942852 3045199 3942794  394.2794 3942794
15 304.5187 3045195  304.5196  394.2794  394.2794
16 3942811  484.0390 3942794  304.5196 3942794
17 4892807 4892800  489.2794  489.2794  489.2794
18 4892832 4802795  489.2794  489.2794  489.2794
19 5112845 5112793 5112794 5112794 5112794
20 511.3049 5112800 5112794  511.2794  511.2794
21 5232916 5232805 5232794 5232794 5232794
22 5232853 5232795 5232794 5232794 5232794
23 5232797 5232797 5232794 5232794 5232794
24 5232994 5232792 5232794 5232794 5232794
25 5232865 5232813 5232794 5232794 5232794
26 5232936 5232805  523.6283 5232794 5232794
27 10.0000 10.0000 10.0000 10.0000 10.0000
28 10.0001 10.0001 10.0000 10.0000 10.0000
29 10.0000 10.0000 10.0000 10.0000 10.0000
30 89.0139  97.0000  87.9351 87.9177 87.8000
31 190.0000  190.0000  190.0000  190.0000  190.0000
32 190.0000  190.0000  190.0000  190.0000  190.0000
33 190.0000  190.0000  190.0000  190.0000  190.0000
34 199.9998  200.0000  200.0000  164.7999  164.7998
35 165.1397  200.0000  200.0000  200.0000  194.3976
36 172.0275  200.0000  169.8773  200.0000  200.0000
37 110.0000  110.0000  110.0000  110.0000  110.0000
38 110.0000  110.0000  109.7281  110.0000  110.0000
39 93.0962  110.0000  110.0000  110.0000  110.0000
40 5112996 5112795 5112794 5112794  511.2794
TP 10500.0000 10500.0000 10500.0000 10500.0000 10500.0000
TC 121664.4308 121694.6056 121435.9581 121411.8975 121403.5362

* TP: total power [MW], TC: total generation cost [$].
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TABLE VI
DETERMINATION OF ACCELERATION COEFFICIENTS FOR TEST SYSTEM 2

Case e o Minimum Average

Cost ($) Cost ($)
1 2.0 2.0 32,704.45139 32,704.45140
2 2.0 1.5 32,704.45139 32,704.45141
3 2.0 1.0 32,704.45139 32,704.45141
4 1.5 2.0 32,704.45139 32,704.45141
5 1.5 1.5 32,704.45139 32,704.45143
6 1.5 1.0 32,704.45139 32,704.45142
7 1.0 2.0 32,704.45139 32,704.45142
8 1.0 1.5 32,704.45139 32,704.45141
9 1.0 1.0 32,704.45139 32,704.45143

TABLE VII

DETERMINATION OF CROSSOVER RATE FOR COPSO IN TEST SYSTEM 2

Minimum Average

Case CR Cost ($) Cost (%)
1 0.1 32,704.45139 32,704.45146
2 0.2 32,704.45139 32,704.45141
3 0.3 32,704.45139 32,704.45144
4 0.4 32,704.45139 32,704.45140
5 0.5 32,704.45139 32,704.45140
6 0.6 32,704.45139 32,704.45139
7 0.7 32,704.45139 32,704.45141
8 0.8 32,704.45139 32,704.45144
9 0.9 32,704.45139 32,704.45142

TABLE VIII

CONVERGENCE RESULTS FOR TEST SYSTEM 2

- . Average
Methods Minimum Average Maximum Stangrd Execution
Cost ($) Cost ($) Cost ($) Deviation .
Time (sec)

CTPSO  32,704.4514 32,704.4514 32,704.4514  0.0000 225
CSPSO  32,704.4514 32,704.4514 32,704.4514  0.0004 16.1
COPSO  32,704.4514 32,704.4514 32,704.4514  0.0000 85.1
CCPSO  32,704.4514 32,704.4514 32,704.4514  0.0000 16.2

B. Test System 2: System With Prohibited Operating Zones,
Ramp Rate Limits, and Transmission Network Losses

Experiments are performed on the 15-unit power system,
which considers the prohibited operating zones, ramp rate
limits, and transmission network losses. Units 2, 5, 6, and
12 have up to three prohibited operating zones. The system
supplies a total load of 2630 MW. The input data and B coef-
ficients for transmission network losses are provided in [15].
To determine the acceleration coefficients and crossover rate
for this test system, the same parameter determination process
is applied as for Test System 1. The values for ¢, c2, and CR
are determined as 2.0, 2.0, and 0.6, respectively, as shown in
Tables VI and VII.

The minimum cost, average cost, maximum cost, standard
deviation, and average execution time of CTPSO, CSPSO,
COPSO, and CCPSO are described in Table VIII. The proposed
CTPSO, COPSO, and CCPSO methods always provide the
same solution in all trials. In Table IX, the best results from the
proposed CTPSO, CSPSO, COPSO, and CCPSO are compared
with those of GA [15] and PSO [15]. The results show that the
CTPSO, CSPSO, COPSO, and CCPSO provide better solutions
than other methods while satisfying the system constraints
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TABLE IX
COMPARISON OF RESULTS OF EACH METHOD FOR TEST SYSTEM 2
vt 9A PSO opso  €SPSO COPSO  CCPSO
[15] [15]
1 415.3108 439.1162 455.0000 455.0000 455.0000 455.0000
2 359.7206 407.9727 380.0000 380.0000 380.0000 380.0000
3 104.4250 119.6324 130.0000 130.0000 130.0000 130.0000
4 74.9853 129.9925 130.0000 130.0000 130.0000 130.0000
5 380.2844 151.0681 170.0000 170.0000 170.0000 170.0000
6  426.7902 459.9978 460.0000 460.0000 460.0000 460.0000
7  341.3164 425.5601 430.0000 430.0000 430.0000 430.0000
8 124.7867 98.5699  71.7430 71.7408 71.7427 71.7526
9 133.1445 113.4936 589186 58.9207 58.9189 58.9090
10 89.2567 101.1142 160.0000 160.0000 160.0000 160.0000
11 60.0572 339116  80.0000 80.0000 80.0000  80.0000
12 499998 79.9583  80.0000 80.0000 80.0000  80.0000
13 38.7713  25.0042 25.0000 25.0000 25.0000 25.0000
14 419425 414140 15.0000 15.0000 15.0000 15.0000
15 22.6445 35.6140 15.0000 15.0000 15.0000 15.0000
TP 2668.4 2662.4 2660.6615 2660.6615 2660.6615 2660.6616
Prss  38.2782 324306 30.6615 30.6615 30.6615 30.6616
TC 33,113 32,858 32,704 32,704 32,704 32,704
TABLE X
DETERMINATION OF ACCELERATION COEFFICIENTS FOR TEST SYSTEM 3
Case o o Minimum Average
Cost ($) Cost ($)
1 2.0 2.0 624.0462 624.2136
2 2.0 1.5 623.8987 624.0004
3 2.0 1.0 623.8721 623.9671
4 1.5 2.0 623.8908 624.0035
5 1.5 1.5 623.8954 623.9576
6 1.5 1.0 623.8712 623.9584
7 1.0 2.0 623.8588 623.9313
8 1.0 1.5 623.8682 623.9375
9 1.0 1.0 623.8633 623.9338
TABLE XI
DETERMINATION OF CROSSOVER RATE FOR COPSO IN TEST SYSTEM 3
Minimum Average
Case - Cost ($) Cost (%)
1 0.1 623.8268 623.8278
2 0.2 623.8266 623.8274
3 0.3 623.8266 623.8275
4 0.4 623.8266 623.8280
5 0.5 623.8266 623.8289
6 0.6 623.8266 623.8302
7 0.7 623.8266 623.8313
8 0.8 623.8266 623.8326
9 0.9 623.8271 623.8354

exactly. In addition, the proposed four IPSO methods provide
the same solution with the cost of $32704.4514, which is the
minimum cost found so far.

C. Test System 3: Multi-Fuels With Valve-Point Effect

The test system consists of ten generating units considering
multi-fuels with valve-point effects. The input data and related
constraints of the test system are given in [7]. The total system
demand is set to 2700 MW. The values for c1, c2, and CR are set

TABLE XII
CONVERGENCE RESULTS FOR TEST SYSTEM 3
Minimum Average Maximum Standard Average
Methods " 00"e Cost(®)  Cost($)  Deviation fl’l‘sg“(‘s‘g;
PSO [16] 623.8829 623.9657 624.0907 0.0405 32
CTPSO 623.8588 6239313 624.0368 0.0332 33
CSPSO 623.8420 623.8988 623.9852 0.0296 33
COPSO 623.8266 623.8274 623.8315 0.0006 32
CCPSO 623.8266 623.8273 623.8291 0.0005 32
TABLE XIII
COMPARISON OF RESULTS OF EACH METHOD FOR TEST SYSTEM 3
Methods Minimum Cost ($) Average Cost ($)
CGA_MU [7] 624.7193 627.6087
IGA_MU [7] 624.5178 625.8692
NPSO [18] 624.1624 625.2180
NPSO-LRS [18] 624.1273 624.9985
CTPSO 623.8588 623.9313
CSPSO 623.8420 623.8988
COPSO 623.8266 623.8274
CCPSO 623.8266 623.8273
TABLE XIV
COMPARISON OF RESULTS OF EACH METHOD FOR TEST SYSTEM 3
Unit NPSO-LRS[18]  CTPSO CSPSO COPSO CCPSO
F GEN F GEN F GEN F GEN F GEN
1 2 2233352 2 2186807 2 219.6210 2 2185940 2 218.5940
2 1 2121957 1 2114642 1 2109690 1 211.7117 1 211.7117
3 1 2762167 1 2806545 1 279.6489 1 2806571 1 280.6571
4 3 2394187 3 2404457 3 2395051 3 239.6394 3 239.6394
5 1 2746470 1 2764034 1 279.8834 1 279.9345 1 279.9346
6 3 2397974 3 240.1769 3 239.6394 3 239.6394 3 239.5051
7 1 2855388 1 2878657 1 289.9623 1 2877275 1 287.7275
8 3 2406323 3 240.5800 3 2399082 3 239.6394 3 239.6394
9 3 4292637 3 4285886 3 425.0471 3 426.5883 3 426.7226
10 1 2789541 1 2751403 1 2758157 1 275.8686 1 275.8686
TP 2700.0000 2700.0000 2700.0000 2700.0000 2700.0000
TC 624.1273 623.8588 623.8420 623.8266 623.8266

to be 1.0, 2.0, and 0.2, respectively, as shown in Tables X and
XI.

Table XII shows the convergence results of the PSO [16],
CTPSO, CSPSO, COPSO and CCPSO methods. The simula-
tion results reveal that CCPSO can yield better solution than
CTPSO, CSPSO, and COPSO. Also, the efficiency of the con-
straint treatment strategy has been demonstrated as in other test
systems. As shown in Table XIII, the best result from each of
the proposed IPSOs is compared with those of the conventional
genetic algorithm with multiplier updating (CGA_MU) [7], im-
proved genetic algorithm with multiplier updating IGA_MU)
[7], NPSO [18], and NPSO-LRS [18]. Table XIII reveals that
the proposed methods outperform other existing methods.

Also in Table XIV, the generation outputs, fuel types, and cor-
responding costs of the best solution obtained from the proposed
IPSO approaches are compared with those of NPSO-LRS [18].
The CTPSO, CSPSO, COPSO, CCPSO have provided better so-
lutions than the existing approaches.
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TABLE XIX
GENERATING UNIT DATA OF KOREAN POWER SYSTEM

a
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TABLE XV
CONVERGENCE RESULTS FOR KOREAN POWER
SYSTEM WITH CONVEX COST FUNCTIONS
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,657,967.12
100

99
150
150

Avg
Time (sec)
50.1
9.6
76.9
429
Standard
Deviation
0.0005
0.0002
0.0036
0.0302
0.3307
0.4475
5.9635
11.6698
12.5054
Avg.

Average
Cost ($)
1,657,966.89
1,657,965.40
1,657,966.21
,657,981.71
,657,971.03
,657,987.32
,658,033.95

1,657,964

Deviation Time (sec)
7.3150
0.0235
0.0002
0.0000

Standard

Required
Iterations
2,882
579
3,156

90

Average
Cost ($)
1,657,962.73
1,657,962.73
1,657,962.73
1,657,962.77
1,657,963.00
1,657,963.30
1,657,965.32
1,657,969.52
1,657,969.01

Cost ($)
1,655,685
1,655,685
1,655,685
5
Minimum
Cost ($)
1,657,962.74
1,657,962.73
1,657,962.73
1,657,962.73
Maximum
Cost ($)
1658002.79
1657962.85
1657962.73
1657962.73

Maximum

TABLE XVI
DETERMINATION OF ACCELERATION COEFFICIENTS FOR KOREAN SYSTEM
TABLE XVII
DETERMINATION OF CROSSOVER RATE FOR COPSO IN KOREAN SYSTEM
TABLE XVIII
CONVERGENCE RESULTS FOR KOREAN POWER SYSTEM

Average
Cost ($)
1,655,685
1,655,685
1,655,685
S
1.5
1.0
2.0
1.5
1.0
2.0
1.5
1.0
Minimum
Cost ($)
1,657,962.73
1,657,962.73
1,657,962.73
1,657,962.73
1,657,962.77
1,657,962.79
1,657,962.88
1,657,963.02
1,657,962.80
Average
Cost ($)
1657964.06
1657962.74
1657962.73
1657962.73

C
2.0
WITH NONCONVEX COST FUNCTIONS

w0 o oo

Cost ($)
1,655,685
2.0

CR
0.1
0.2
03
0.4
0.5
0.6
0.7
0.8
0.9

1,655,685
5
C1
2.0
2.0

Minimum

1,655,685
Minimum

Cost ($)
1657962.73
1657962.73
1657962.73

1657962.73
To investigate the possibility of the proposed IPSOs to the

large-scale power systems, experiments are conducted on the

Case
1
2
3
4
5
6
7
8
9

Methods
CTPSO
CSPSO

COPSO
CCPSO
generating units with ramp rate limits where the hydro and

pump storage plants are not considered. The input data are

Korean power system. The system consists of 140 thermal
given in Table XIX of the Appendix. The total demand is set to
49342 MW. Since the cost function of each generating unit is

D. Large-Scale Power System of Korea

Case

1

2

3

4

5

6

7

8

9
Methods
CTPSO
CSPSO
COPSO
CCPSO

approach. Although the proposed IPSOs have always reached
to the global solution for the 100 independent trials and the

solution can be obtained using the mathematical programming 0.1 (s). Table XV summarizes the performance of each IPSO

techniques. Nonlinear programming (NLP), which was imple-

considered as the second-order polynomial, the global optimum
mented in GAMS, found the global optimum, $1 655 685, in
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TABLE XX
UNIT DATA WITH VALVE-POINT LOADING
Generator a b c e f
COAL#05 1976.469 54.242 0.042468 700 0.080
COAL#10 1320.636 13.226 0.005063 600 0.055
COAL#15 1176.504 14.651 0.003901 800 0.060
COAL#22 1229.131 14.656 0.003684 600 0.050
COAL#33 1074.810 15.033 0.003542 600 0.043
COAL#40 1436.251 15.815 0.001581 600 0.043
LNG_CC#10 1898.415 71.584 0.000044 1100 0.043
LNG_CC#28 13813.001 22.941 0.081540 1200 0.030
LNG_CC#30 9750.750 45.017 0.035475 1000 0.050
LNG_CC#42 2982.219 79.458 0.054868 1000 0.050
OIL#08 2290.381 81.805 0.001580 600 0.070
OIL#10 6743.302 46.665 0.076810 1200 0.043
TABLE XXI
PROHIBIT ZONES OF UNITS
Generator Zone 1 Zone 2 Zone 3
COAL#08 [250, 280] [305, 335] [420, 450]
COAL#32 [220, 250] [320, 350] [390, 420]
LNG_CC#32 [230, 255] [365, 395] [430, 455]
OIL#25 [50, 75] [85, 95] -

CSPSO has rapidly converged into the optimum in 9.6 (s), the
computational efficiency is relatively low in comparison with
NLP for the convex ED problem. However, the applicability
of the IPSOs to large-scale power systems is investigated
throughout the experiments.

In addition, in order to show the applicability of the IPSOs
to the large-scale power system with nonconvex cost function,
it is assumed that 12 generators have the cost function with
valve-point effects and four generators are considered the pro-
hibited operating zones. Therefore, the mathematical methods
such as NLP cannot provide the solution. The data are given in
Tables XX and XXI of the Appendix . Through experiments de-
scribed in Tables XVI and XVII, c¢q, co, and CR are set to be
1.5, 2.0, and 0.2, respectively. The convergence results of each
IPSO approach are summarized in Table X VIIL.

VII. CONCLUSIONS

This paper proposes an IPSO approach for solving non-
convex ED problems. The proposed IPSO employs the chaotic
sequences as well as the crossover operation to enhance the
performance of the conventional PSO. The chaotic sequences
combined with the linearly decreasing inertia weights are
devised to improve the global searching capability and escape
from a local minimum. In addition, the crossover operation is
introduced to increase the diversity of the population. These
strategies not only improve the global searching ability but also
prevent the solution from trapping in a local optimum point.
In addition, a more efficient constraint treatment strategy is
proposed. The proposed IPSO algorithms have been success-
fully applied to three nonconvex ED problems considering
valve-points, prohibited operating zones with ramp rate limits
as well as transmission network losses, and multi-fuels with
valve-point effects. The proposed CSPSO, COPSO, and
CCPSO have found better solutions for the three test systems
than other solutions found so far. Additionally, the IPSOs are

applied to the large-scale Korean power system. First, each
IPSO approach is tested on the power system with convex cost
function considering the ramp rate limits. The results show
that the IPSO can always find the global solution, and they are
somewhat independent to control parameters values while the
computation time is longer than the mathematical optimization
method. Also the proposed IPSOs are tested on the Korean
power system with nonconvex cost function considering
valve-points and prohibited operating zones as well as ramp
rate limits. The results clearly show that the proposed IPSO
framework can be used as an efficient optimizer providing
satisfactory solutions for general nonconvex ED problems;
however, future researches should be followed to reduce the
computation time for large-scale convex ED problems.

APPENDIX

The characteristics data of generating units for Korean power
system are given in Tables XIX-XXI.

REFERENCES

K. Y. Lee and M. A. El-Sharkawi, Eds., Modern Heuristic Optimiza-
tion Techniques with Applications to Power Systems, IEEE Power En-
gineering Society (02TP160), 2002.

A.J. Wood and B. F. Wollenberg, Power Generation, Operation, and

Control. New York: Wiley, 1984.

[3] Z.X. Liang and J. D. Glover, “A zoom feature for a dynamic program-

ming solution to economic dispatch including transmission losses,”

IEEE Trans. Power Syst., vol. 7, no. 2, pp. 544-550, May 1992.

C.E.Lin and G. L. Viviani, “Hierarchical economic dispatch for piece-

wise quadratic cost functions,” IEEE Trans. Power App. Syst., vol. PAS-

103, pp. 1170-1175, Jun. 1984.

D. C. Walters and G. B. Sheble, “Genetic algorithm solution of eco-

nomic dispatch with the valve point loading,” IEEE Trans. Power Syst.,

vol. 8, no. 3, pp. 1325-1332, Aug. 1993.

[6] S. O. Orero and M. R. Irving, “Economic dispatch of generators with
prohibited operating zones: a genetic algorithm approach,” Proc. Inst.
Elect. Eng., Gen., Transm., Distrib., vol. 143, no. 6, pp. 529-534, Nov.
1996.

[7]1 C. L. Chiang, “Improved genetic algorithm for power economic dis-
patch of units with valve-point effects and multiple fuels,” IEEE Trans.
Power Syst., vol. 20, no. 4, pp. 1690-1699, Nov. 2005.

[8] H.T. Yang, P. C. Yang, and C. L. Huang, “Evolutionary programming
based economic dispatch for units with non-smooth fuel cost func-
tions,” IEEE Trans. Power Syst., vol. 11, no. 1, pp. 112-118, Feb. 1996.

[91 Y. M. Park, J. R. Won, and J. B. Park, “A new approach to economic
load dispatch based on improved evolutionary programming,” Eng. In-
tell. Syst. Elect. Eng. Commun., vol. 6, no. 2, pp. 103—110, Jun. 1998.

[10] N. Sinha, R. Chakrabarti, and P. K. Chattopadhyay, “Evolutionary pro-
gramming techniques for economic load dispatch,” IEEE Trans. Evol.
Computat., vol. 7, no. 1, pp. 83-94, Feb. 2003.

[11] W.M.Lin, F. S. Cheng, and M. T. Tsay, “An improved Tabu search for
economic dispatch with multiple minima,” IEEE Trans. Power Syst.,
vol. 17, no. 1, pp. 108-112, Feb. 2002.

[12] J. H. Park, Y. S. Kim, I. K. Eom, and K. Y. Lee, “Economic load dis-

patch for piecewise quadratic cost function using Hopfield neural net-

work,” IEEE Trans. Power Syst., vol. 8, no. 3, pp. 1030-1038, Aug.

1993.

K. Y. Lee, A. Sode-Yome, and J. H. Park, “Adaptive Hopfield neural

network for economic load dispatch,” IEEE Trans. Power Syst., vol. 13,

no. 2, pp. 519-526, May 1998.

[14] L.S. Coelho and V. C. Mariani, “Combining of chaotic differential evo-
lution and quadratic programming for economic dispatch optimization
with valve-point effect,” IEEE Trans. Power Syst., vol. 21, no. 2, pp.
989-996, May 2006.

[15] Z.L. Gaing, “Particle swarm optimization to solving the economic dis-
patch considering the generator constraints,” IEEE Trans. Power Syst.,
vol. 18, no. 3, pp. 1187-1195, Aug. 2003.

[16] J. B. Park, K. S. Lee, J. R. Shin, and K. Y. Lee, “A particle swarm

optimization for economic dispatch with nonsmooth cost functions,”

IEEE Trans. Power Syst., vol. 20, no. 1, pp. 34—42, Feb. 2005.

[1

—

[2

—

[4

[l

[5

—

[13

[ty



[17] T. A. A. Victoire and A. E. Jeyakumar, “Hybrid PSO-SQP for eco-
nomic dispatch with valve-point effect,” Elect. Power Syst. Res., vol.
71, pp. 51-59, Sep. 2004.

[18] A. I. Selvakumar and K. Thanushkodi, “A new particle swarm opti-
mization solution to nonconvex economic dispatch problems,” IEEE
Trans. Power Syst., vol. 22, no. 1, pp. 42-51, Feb. 2007.

[19] W. M. Lin, F. S. Cheng, and M. T. Tsay, “Nonconvex economic dis-
patch by integrated artificial intelligence,” IEEE Trans. Power Syst.,
vol. 16, no. 2, pp. 307-311, May 2001.

[20] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Proc.
IEEE Int. Conf. Neural Networks (ICNN’95), Perth, Australia, 1995,
vol. IV, pp. 1942-1948.

[21] J. Kennedy and R. C. Eberhart, Swarm Intelligence. San Francisco,
CA: Morgan Kaufmann, 2001.

[22] Y. Shi and R. C. Eberhart, “Parameter selection in particle swarm op-
timization,” in Proc. 7th Int. Conf. Evolutionary Programming, 1999,
pp- 591-600.

[23] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm opti-
mization,” in Proc. 1999 Congr. Evolutionary Computation, 1999, pp.
1945-1950.

[24] F. J. Trefny and K. Y. Lee, “Economic fuel dispatch,” IEEE Trans.
Power App. Syst., vol. PAS-100, pp. 3468-3477, Jul./Aug. 1981.

[25] G. Wang and S. He, “A quantitative study on detection and estimation
of weak signals by using chaotic duffing oscillators,” IEEE Trans. Cir-
cuits Syst. I, Fundam. Theory Appl., vol. 50, no. 7, pp. 945-953, Jul.
2003.

[26] R. Caponetto, L. Fortuna, S. Fazzino, and M. G. Xibilia, “Chaotic se-
quences to improve the performance of evolutionary algorithms,” IEEE
Trans. Evol. Computat., vol. 7, no. 3, pp. 289-304, Jun. 2003.

[27] L. Shengsong, W. Min, and H. Zhijian, “Hybrid algorithm of chaos
optimization and SLP for optimal power flow problems with multi-
modal characteristic,” Proc. Inst. Elect. Eng., Gen., Transm., Distrib.,
vol. 150, no. 5, pp. 543-547, Sep. 2003.

[28] H. Yoshida, K. Kawata, Y. Fukuyama, S. Takayama, and Y. Nakanishi,
“A particle swarm optimization for reactive power and voltage control
considering voltage security assessment,” IEEE Trans. Power Syst., vol.
15, no. 4, pp. 1232-1239, Nov. 2000.

[29] S. Naka, T. Genji, T. Yura, and Y. Fukuyama, “A hybrid particle
swarm optimization for distribution state estimation,” IEEE Trans.
Power Syst., vol. 18, no. 1, pp. 60-68, Feb. 2003.

Jong-Bae Park (M’98) received the B.S., M.S., and
Ph.D. degrees from Seoul National University, Seoul,
Korea, in 1987, 1989, and 1998, respectively.

For 1989-1998, he was with Korea Electric
Power Corporation, and for 1998-2001, he was an
Assistant Professor at Anyang University, Anyang,
Korea. Since 2001, he has been with the Electrical
Engineering Department at Konkuk University,
Seoul, as an Associate Professor. Currently, he is a
guest researcher of EPRI, USA. His major research
topics include power system operation, planning,

economics, and markets.

IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 1, FEBRUARY 2010

Yun-Won Jeong received the B.S., M.S., and Ph.D.
degrees from Konkuk University, Seoul, Korea, in
2002, 2004, and 2007, respectively.

His research interests include power system oper-
ation and planning, electricity markets, and compu-
tational intelligence and their application to power
systems.

Joong-Rin Shin (SM’07) received the B.S., M.S.,
and Ph.D. degrees from Seoul National University,
Seoul, Korea, in 1977, 1984, and 1989, respectively.

For 1977-1990, he was with Korea Electric Power
Corporation as a research staff member. Since 1990,
he has been with Konkuk University, Seoul, where he
is currently a Professor of electrical engineering and
the Dean of Engineering. His major research field is
in power system operation and planning.

o Kwang Y. Lee (F’01) received the B.S. degree in

‘ electrical engineering from Seoul National Uni-
versity, Seoul, Korea, in 1964, the M.S. degree
in electrical engineering from North Dakota State
University, Fargo, in 1967, and the Ph.D. degree in
systems science from Michigan State University,
East Lansing, in 1971.

He was on the faculties of Michigan State Univer-
sity, Oregon State University, University of Houston,
and The Pennsylvania State University, and he is cur-
rently a Professor and Chair of Electrical and Com-
puter Engineering, Baylor University, Waco, TX. His research interests include
control theory, computational intelligence, and their application to power sys-
tems and power plant control.

Dr. Lee is a Vice-Chair of the IFAC Technical Committee on Power Plants
and Power Systems Control, an Associate Editor of the IEEE TRANSACTIONS
ON NEURAL NETWORKS, and an Editor of the IEEE TRANSACTIONS ON ENERGY
CONVERSION.



