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Abstract—This paper proposes a new binary particle swarm
optimization (BPSO) approach inspired by quantum computing,
namely quantum-inspired BPSO (QBPSO). Although BPSO-based
approaches have been successfully applied to the combinatorial
optimization problems in various fields, the BPSO algorithm has
some drawbacks such as premature convergence when handling
heavily constrained problems. The proposed QBPSO combines the
conventional BPSO with the concept and principles of quantum
computing such as a quantum bit and superposition of states.
The QBPSO adopts a Q-bit individual for the probabilistic rep-
resentation, which replaces the velocity update procedure in the
particle swarm optimization. To improve the search capability of
the quantum computing, this paper also proposes a new rotation
gate, that is, a coordinate rotation gate for updating Q-bit indi-
viduals combined with a dynamic rotation angle for determining
the magnitude of rotation angle. The proposed QBPSO is applied
to unit commitment (UC) problems for power systems which are
composed of up to 100-units with 24-h demand horizon.

Index Terms—Binary particle swarm optimization, combinato-
rial optimization, constraint treatment technique, quantum com-
puting, quantum evolutionary algorithm, unit commitment.

I. INTRODUCTION

P ARTICLE swarm optimization (PSO) suggested by
Kennedy and Eberhart in 1995 is based on the analogy of

swarm of bird and school of fish [1]. In the PSO, particles are
drawn stochastically toward new positions based on the present
velocity of each particle, its own previous best performance,
and the best previous performance of their neighbors [1], [2].
In 1997, Kennedy and Eberhart showed that the binary particle
swarm optimization (BPSO) was able to successfully optimize
the De Jong’s suite of five test functions [3].

Quantum computing is a new paradigm which has been pro-
posed as a consequence of applying quantum mechanics to com-
puter science [4]–[7]. Research on merging evolutionary com-
putation and quantum computing has being carried out since
the late 1990s and can be classified into two fields: 1) new
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quantum algorithms using automatic programming techniques
such as genetic programming [4], 2) quantum-inspired evolu-
tionary computing for a digital computer as a branch of study on
evolutionary computation that is characterized by certain prin-
ciples of quantum mechanics such as uncertainty, superposi-
tion, and interference, etc. [5]–[7]. Quantum inspired computing
was first introduced in [5]. Narayanan and Moore [6] proposed
quantum-inspired genetic algorithms, where concepts and prin-
ciples of quantum mechanics are used to inform and inspire
more efficient evolutionary computing methods. Han and Kim
[7] proposed a quantum-inspired evolutionary algorithm (QEA)
and Vlachogiannis and Lee applied it to a real and reactive dis-
patch problem in power systems [8].

Unit commitment (UC) problem has a significant influence
on secure and economic operation of power systems. Optimal
commitment scheduling can save huge amount of costs to
electric utilities and improve reliability by keeping proper
spinning reserves. The UC problems involve scheduling the
on/off states of generating units, which minimizes the operating
cost, start-up cost and shut-down cost for a given horizon
under various operating constraints [9]. In the UC problem, the
decisions are the selection of the time for each unit to be on-
and/or offline (binary variables) as well as the unit’s economic
generation level (continuous variables). Thus, the UC problem
can be formulated as a nonlinear mixed integer combinatorial
optimization problem [10]–[26]. The number of combinations
of 0-1 binary variables grows exponentially for a large-scale
UC problem, which makes it difficult to solve in practice. Over
the past decades, many salient methods have been developed
for solving the UC problems. The exact solution to the problem
can be obtained by complete enumeration, which cannot be
applied to realistic power systems due to its computational
burdens [8]. The solution methods for UC problems can be
divided into two classes: One is the numerical optimization
techniques such as priority list methods [10], [11], dynamic
programming [12], [13], Lagrangian relaxation methods [14],
[15], branch-and-bound methods [16], and mixed-integer pro-
gramming [17]. The other is the stochastic search methods such
as genetic algorithms [18], [19], evolutionary programming
[20], [21], simulated annealing [22], [23], and particle swarm
optimization [24]. Recently, quantum-inspired evolutionary
algorithms have also been introduced as solution methods for
UC problems [25], [26].

Among many modern heuristic optimization algorithms
[27], however, the PSO algorithm has attracted much attention
because of its simplicity and powerful performances [28]–[32].
Recently, quantum-behaved PSO approaches, inspired by the
fundamental theory of particle swarm and features of quantum
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mechanics, have been developed [33]–[35]. This paper pro-
poses a quantum-inspired BPSO (QBPSO) which is based
on the concept and principles of quantum computing such
as a quantum bit and superposition of states to enhance the
performance of the conventional BPSO. The proposed QBPSO
introduces a Q-bit individual for the probabilistic representation
of a particle, thereby replacing the velocity update procedure
in the traditional PSO. In QBPSO, therefore, an inertia weight
factor and two acceleration coefficients can be removed and
only one factor, rotation angle, is needed when modifying the
position of particles. To improve the conventional rotation
gate for the Q-bit individual update, this paper proposes a new
rotation gate in which two effective techniques are included: 1)
a coordinate rotation gate for updating Q-bits, 2) a dynamic ro-
tation angle approach for determining the magnitude of rotation
angle. Therefore, the proposed QBPSO can obtain an efficient
balance between exploration and exploitation with a smaller
population size and shorter computation time. Furthermore, the
rule-based heuristic constraint treatment techniques [25] are
adopted to effectively satisfy the minimum up/down time and
spinning reserve constraints in the UC problem.

The QBPSO is applied to UC problems for realistic power
systems of different sizes, which consist of the 10-, 20-, 40-,
60-, 80-, and 100-units along with 24-h load demands. And their
results are compared with those of previous works which used
the same benchmarks [18], [20], [23]–[26].

II. OVERVIEW OF PARTICLE SWARM OPTIMIZATION

The PSO, suggested by Kennedy and Eberhart [1], is a pop-
ulation-based parallel search algorithm using a group of parti-
cles. It is based on the behavior of individuals of a swarm and
its roots are in the zoologist’s modeling of the movement of
individuals within a population. It has been noticed that mem-
bers of a group seem to share information among them, a fact
that leads to increased efficiency of the group [2]. A particle
moves toward the optimum based on its present velocity, its
previous experience, and the experience of its neighbors. In an

-dimensional search space, the position and velocity of the th
particle are represented as vectors and

, where each element has real values. Let
and be the

best position of the th particle and the group’s best position so
far, respectively. The velocity and position of each particle is
updated as follows:

(1)

(2)

where is the velocity of the th particle at iteration , is the
inertia weight factor, and are the acceleration coefficients,

and are random numbers between 0 and 1, and
is the position of the th particle at iteration . In the velocity
updating process, the values of parameters such as , , and
should be determined in advance, which makes it cumbersome
to solve large-scale optimization problems.

The BPSO, also introduced by Kennedy and Eberhart [3],
enables the PSO to operate in binary spaces. The structure of
the BPSO is effectively the same as that of the real-valued PSO.
In BPSO, however, the position vector of a particle is a binary
one. The velocity of the th element in the th particle is related
to the possibility that the position of the particle takes a value
of 1 or 0. It is implemented by defining an intermediate variable

, called a sigmoid limiting transformation, as follows:

(3)

The value of can be interpreted as a probability
threshold. If a random number , selected from a uniform
distribution in [0, 1], is less than the value of the posi-
tion of the th element in the th particle at iteration (i.e.,

) is set to 1 and otherwise, set to 0. In the BPSO, therefore,
(2) for modifying the position vector is replaced as follows:

if
otherwise.

(4)

III. QUANTUM-INSPIRED BPSO ALGORITHM

A. Quantum Computing

The smallest unit of information stored in a quantum com-
puter is called a quantum bit or Q-bit [7]. A Q-bit is analogous
to a bit of storage in a traditional computer. A Q-bit may be in
the “1” state, in the “0” state, or in any superposition of the two,
while a bit in traditional computing can only hold a single state,
either 0 or 1. To illustrate this, the traditional 0 and 1 values are
written as and , and the state of a Q-bit is represented as
follows:

(5)

where and are complex numbers that specify the probability
amplitudes of the corresponding states. Here, and de-
note the probability that the Q-bit will be found in “0” state and
“1” state, respectively. Normalization of the state to unity guar-
antees . The state of a Q-bit can be changed by
the operation with a quantum gate such as NOT gate, rotation
gate, and Hadamard gate, etc. [4].

In [7], Han and Kim suggested a novel QEA, inspired by the
concept of quantum computing, in which a Q-bit representation
is designed to represent a linear superposition of states (i.e., bi-
nary solutions). A Q-bit is defined as the smallest unit of infor-
mation, which is defined with a pair of numbers as ,
where . A Q-bit individual as a string of Q-bits
is defined as

(6)

where , . The Q-bit represen-
tation has the advantage of representing a linear superposition
of states. All possible combinations of the decision variables
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TABLE I
EXAMPLE OF LOOKUP TABLE FOR DETERMINING ROTATION ANGLE

can be derived from a single representation, while a system of
bits has possible single states in the classical computing.

Evolutionary computing with Q-bit representation has a better
characteristic of population diversity than other representations,
since it can represent linear superposition of states probabilisti-
cally.

The following rotation gate is used as a variation operator, by
which a Q-bit individual is updated:

(7)

where is a rotation angle of the th Q-bit toward either
0 or 1 state. As described in Table I, the value of can be
determined through a pre-defined lookup table [7], where

is the best solution.
In [7], the values of were set as , ,

, , , , , and
through experimental tests on the knapsack problems.

B. BPSO With Quantum Computing

In the proposed QBPSO, the state of each element in a particle
takes a value of 0 or 1 by the probability of or . In other
words, the velocity update process (1) in the traditional BPSO is
replaced by the quantum computing. In the proposed QBPSO,
therefore, an inertia weight factor (i.e., ) and two acceleration
coefficients (i.e., and ) can be removed, and only a rotation
angle is added. The position vector of the th particle (i.e.,

) is updated by probability of stored in the
th Q-bit individual (i.e., ). The th element of the th particle

takes a value of 0 or 1 by the following:

if
otherwise

(8)

for , . Here, is the uni-
formly distributed random number between [0, 1] and is
the population size.

To enhance the rotation gate for updating Q-bit individuals,
this paper proposes a new rotation gate as a variation operator
where two effective techniques are deployed: One is a coordi-
nate rotation gate for updating Q-bits and the other is a dynamic
rotation angle approach for determining the magnitude of rota-
tion angle. The conventional rotation gate requires a pre-spec-
ified lookup table to determine the rotation angle to obtain

new . However, the proposed coordinate rotation gate de-
termines the rotation angle without the lookup table information
since it uses the current position, , and of a swarm
as in the following:

(9)

where is the magnitude of rotation angle, and and can
be obtained by comparing the fitness of current position of par-
ticle with those of and , respectively, as follows:

if
otherwise

(10)

if
otherwise.

(11)

Therefore, each particle can approach to the optimum solu-
tion through its own experience and its neighbor’s experiences.

The magnitude of rotation angle (i.e., ) can give an effect on
the quality of solution and the speed of convergence. Therefore,
the proper selection of may not only lead to a balance between
global exploration and local exploitation, but also result in less
iteration in finding the optimal solution. In general, the values
from to are recommended for the magnitude of
the rotation angle, although they depend on problems [7]. This
paper proposes a dynamic rotation angle approach for the mag-
nitude of rotation angle to enhance the convergence character-
istics. In the proposed approach, the magnitude of the rotation
angle decreases monotonously from to along the it-
eration as follows:

(12)

where is the maximum iteration number and is the
current iteration number.

The procedure of the proposed QBPSO algorithm can be
summarized as the following pseudo-code:
Begin

Initialize Q-bit individual and position of a population.

Set initial and .

Do while

For to Population size

Update Q-bit individual of the th particle.

Modify position of the th particle.

Update of the th particle.

Next

Update .

Until termination criterion is met

End

The inevitable problem of the conventional BPSO is how to
set the suitable parameters (i.e., a weight factor and two accel-
eration coefficients). It is requires significant effort for user to
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set these parameters; often it involves trial and error methods
for each new UC problem. However, the proposed QBPSO can
search the solution without these parameters. Therefore, the
computation efficiency of the QBPSO is clearly expected to be
better than BPSO. As was the superior performance of QEA for
combinatorial optimization problems was demonstrated in [7].
Additional computational efficiency of QBPSO is also based on
the concept and principles of quantum computing, which can
achieve a better balance between exploration and exploitation
of the solution space and obtain better solutions, even with a
small population, compared with the conventional PSOs.

IV. APPLICATION OF QBPSO TO UNIT COMMITMENT PROBLEM

A. Formulation of Unit Commitment Problem

1) Objective Function: The objective of the UC problem is
to minimize the total operating cost, fuel cost, start-up cost and
shut-down cost, of all generating units during a time horizon,
subject to a number of system and unit constraints [9].

Fuel cost function: For all committed generating units, the
total fuel cost is minimized by economically dispatching the
units. The fuel cost function of unit at hour can be expressed
as a second-order polynomial as follows:

(13)

where is the power generation of unit at hour and
are the cost coefficients of unit .

Start-up cost: Start-up cost for restarting a de-committed
generating unit, which is related to the temperature of the boiler,
is included in the objective function. The start-up cost is asso-
ciated with the number of hours during which the unit has been
off. Start-up cost will be high, defined as the cold cost ,
when down time duration exceeds the cold-start hour
in excess of the minimum down time; and will be low, defined
as the hot cost , when down time duration does not ex-
ceed the cold-start hour in excess of the minimum down time.
In general, the start-up cost is described as follows:

if
if

(14)
where is the duration for which unit has remained
offline at hour and is the minimum down-time of the
th unit.

Shut-down cost: Shut-down cost is usually modeled as a
constant value for each unit per shutdown. In this paper, the
shut-down costs have not been taken into consideration.

Consequently, the objective function of the UC problem is
given by the minimization of the following cost function:

(15)

where is the number of scheduling period, is the number
of generating units, and is the on/off status of unit at hour

(i.e., when unit is online, and when unit
is offline).

2) System and Unit Constraints:
Load balance constraints: The sum of unit generation out-

puts at each hour must satisfy the system load demand require-
ment of the corresponding hour as follows:

(16)

where is the total system demand at hour .
Generation limit constraints: The power produced by each

unit must be within its limits as indicated below:

(17)

where and are the minimum and maximum gen-
eration limits of unit , respectively.

Spinning reserve constraints: Spinning reserve must be
provided so as to minimize the probability of load interruption.
The spinning reserve is considered to be a pre-specified amount
or a given percentage of the forecasted peak demand. Spinning
reserve can be specified in terms of excess megawatt capacity,
which is expressed by

(18)

where is the required spinning reserve at hour .
Generation ramping constraints: Due to the mechanical

characteristics and thermal stress limitations of a generating
unit, the operating range of all online units is restricted by their
corresponding ramp-rate limits as follows:

(19)

where and are the ramp-down and ramp-up limits of
unit , respectively.

Minimum up-time/down-time constraints: The unit cannot
be turned on/off immediately once it is committed or de-com-
mitted. The minimum up/down time constraints indicate that a
unit must be on/off during a certain number of hours before it
becomes shut-down or start-up, respectively. These constraints
are given by

if
if
otherwise

(20)

where is the duration for which unit remains online
at hour and is the minimum up-time of unit .

B. Implementation of QBPSO for UC Problems

Since the UC problems involve determining the on/off states
of generating units, the decision variables are the on/off status of
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Fig. 1. Structure of a population of QBPSO for UC problems.

generating units. The structure of a population of the proposed
QBPSO for UC problems is depicted in Fig. 1. The is set
to be 1 if the th generator in the th particle at hour is ON;
otherwise, is set to be 0.

After determining the optimal commitment scheduling, the
optimal power outputs of the units are determined through the
conventional economic dispatch (ED) procedure. Since the fuel
cost function of a generating unit is approximately represented
as the quadratic function as (13), ED problem can be easily
solved by numerical techniques. In the subsequent sections, the
detailed procedures of QBPSO for scheduling the on/off states
of units are described.

1) Creating Initial Q-Bit Individual and Position of Particles:
In the initialization process, and of all Q-bit individ-
uals are set to be . It means that a Q-bit individual rep-
resents the linear superposition of all possible states with the
same probability. The initial position of a set of particles is de-
termined by the probability stored in the initialized Q-bit in-
dividuals. After generating a random number , an initial
value of the th element in the th particle at hour (i.e., )
takes a value of 1 if is less than 1/2; otherwise, it is set to be
0. The initial of each particle is set as its initial position,
and the initial is determined as the position of the particle
with the minimum cost.

2) Q-Bit Individual Update: Q-bit individuals are updated by
the rotation gate. After setting the magnitude of rotation angle
by (12), the proposed coordinate rotation gate determines the
rotation angle for each Q-bit as follows:

(21)
Then a new pair of of each Q-bit in Q-bit individuals

is obtained by

(22)

where is the index of time . The updated Q-bit
should satisfy the normalization condition,

.

3) Modification of Position of Particles: The position vector
of the th particle at iteration (i.e., ) is modified by the
probability stored in the th Q-bit individual as follows:

if
otherwise.

(23)

4) Update of and : If yields a smaller
cost function value than , then is set to .
Otherwise, is retained:

if
otherwise.

(24)

Also, is set as the best evaluated position among
the .

5) Stopping Criteria: The proposed QBPSO algorithm is ter-
minated if the iteration reaches a pre-specified maximum itera-
tion.

C. Constraint-Handling Techniques

This paper applies the rule-based heuristic constraint-han-
dling techniques for the minimum up/down time and the
spinning reserve constraints [25]. In evolutionary process for
solving UC problem, random bits-flipping of state variables has
occurred, thereby the constraints may be frequently violated.
Therefore, heuristic-based repair algorithms are applied to
accelerate the solution quality and to avoid infeasible solutions.
To reduce the operating costs incurred by the excessive spinning
reserve, the unit de-commitment approach is also introduced.

1) Minimum Up-Time/Down-Time Constraints: While mod-
ifying the binary solution of each individual, the minimum
up/down time constraints should be satisfied. To do this, this
paper introduces a heuristic-based constraint treatment tech-
nique, as illustrated in the following pseudo-code:

Begin

For to MaxUnit

If unit is set to be ON at hour (i.e., )
then

If then

If then

Elseif then

Endif

Elseif then

Endif

Elseif then

If then

If then

Elseif then
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Fig. 2. Flowchart of repair algorithm for handling spinning reserve constraint.

Endif

Elseif then

Endif

Endif

Next

End

2) Spinning Reserve Constraints: Adequate spinning re-
serves are required to maintain the system reliability for a given
time horizon. If the spinning reserve constraint is violated, the
system suffers from deficiency of units. This paper introduces
an efficient heuristic-based repair method, which is launched
when the spinning reserve is deficient at any scheduling period
to avoid infeasible solutions. In the repair process, de-com-
mitted units are forced to turn on until the spinning reserve
constraint is satisfied, as shown in Fig. 2.

3) Unit De-Commitment for Excessive Spinning Reserve:
Excessive spinning reserve is not desirable due to the high op-
eration costs. Therefore, this paper introduces a heuristic-based
unit de-commitment process to reduce the excessive spinning
reserve, leading to cost savings, as illustrated in Fig. 3. The unit
de-commitment process is performed after obtaining the solu-
tions satisfying the minimum up/down time and the spinning
reserve constraints.

Fig. 3. Flowchart of unit de-commitment for prevention of excessive spinning
reserve.

V. NUMERICAL TESTS

The QBPSO is applied to UC problems for realistic power
systems of different sizes, which consist of the 10-, 20-, 40-, 60-,
80-, and 100-units along with 24-h load demands. Also, their re-
sults are compared with those of previous works which used the
same testbeds [18], [20], [23]–[26]. For each test case, 50 in-
dependent trials are conducted to compare the solution quality
and convergence characteristics. Numerical tests have been ex-
ecuted on a Pentium IV 2.0-GHz computer.

A. Parameter Sensitivity Analysis

The performance of the proposed QBPSO is influenced by the
rotation angle and the population size. The maximum iteration
number is set as 1000. In [7], the value from to is
recommended for the magnitude of rotation angle. The proposed
dynamic rotation angle approach determines the magnitude of
rotation angle from to along the iteration. In order to
find the optimal combination of rotation angles (i.e., and

), eight cases are tested on the 40-unit system with 10 and
30 population sizes, respectively, as shown in Fig. 4. Through
this experiment, and are selected as to ,
respectively.

The population size is determined through the experi-
ments for the 40-unit system with different population sizes. As
shown in Fig. 5, the solution quality is continuously and margin-
ally improved when increasing the population size, while the
computation time is linearly increased. Through the heuristic
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Fig. 4. Average cost of the QBPSO by combinations of rotation angles.

Fig. 5. Average cost and execution time of the QBPSO on the 40-unit system
by population sizes.

TABLE II
GENERATING UNIT DATA FOR THE TEN-UNIT BASE SYSTEM

trade-off analysis between the solution quality and the compu-
tation time, the population size (i.e., ) is selected as 30.

B. Experimental Results

The proposed QBPSO is initially tested on a simple ten-unit
base system with a 24-h time horizon. The unit characteristics
of the ten-unit system and the demand are given in Tables II
and III, respectively. Subsequently, the 20-, 40-, 60-, 80-, and
100-unit data are obtained by duplicating the base case, and the
load demands are adjusted in proportion to the system size. In

TABLE III
DEMAND DATA WITH 24-H TIME HORIZON

TABLE IV
SIMULATION RESULTS OF EACH METHOD FOR TEST SYSTEMS

Fig. 6. Convergence characteristics of the IQEA, BPSO, and QBPSO for the
40-unit system.

all cases, the spinning reserve requirements are assumed to be
10% of the hourly demand.

In Table IV, the best, average and worst costs, and standard
deviation for test systems obtained by the proposed QBPSO al-
gorithm are summarized and compared with those of the con-
ventional BPSO and improved quantum evolutionary algorithm
(IQEA) [25]. Here, the BPSO employed the same constraint
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TABLE V
COMPARISON OF SIMULATION RESULTS OF EACH METHOD

treatment techniques used in the IQEA and QBPSO. The sim-
ulation results show that the proposed QBPSO provides much
better solutions than the IQEA and BPSO.

The convergence characteristics of the IQEA, BPSO, and
QBPSO for the 40-unit system are illustrated in Fig. 6. We
have observed that the QBPSO was improving the solution

TABLE VI
UNIT SCHEDULING AND CORRESPONDING COSTS FOR THE TEN-UNIT SYSTEM

quality continuously while the BPSO experienced a premature
convergence.

In Table V, the best results of the proposed QBPSO are
compared with those of genetic algorithm (GA) [18], evolu-
tionary programming (EP) [20], simulated annealing (SA) [23],
improved particle swarm optimization (IPSO) [24], IQEA [25],
and QEA-based UC method (QEA-UC) [26]. Table V reveals
that the proposed QBPSO is clearly superior to all existing
methods. In the 100-unit system, for example, the QBPSO can
save the operating costs of $3536 in a 24-h period compared to
the IQEA [25] which is the best solution until now. The QBPSO
works well for larger systems. For 10 gen unit, IPSO [24] and
QEA [26] seem to provide better results than QBPSO. This is
because the overhead for QBPSO is the same, independent of
system sizes, and the effect of computational efficiency is not
apparent for small system. However, the differences in the best
cost among the results of IPSO [24], QEA [26], and QBPSO
are very small. It should be noticed that the QBPSO has been
terminated earlier than QEA [26] due to the termination crite-
rion, which could have been refined for better operating cost.

For the ten-unit and 100-unit systems, the commitment
schedules during the planning horizon obtained by the pro-
posed QBPSO are described in Tables VI and VII, respectively.

Fig. 7 illustrates the execution time of the QBPSO with the
system size. As shown in the figure, the execution time increases
in a quadratic way with the number of units.

VI. CONCLUSIONS

This paper presents a new BPSO inspired by quantum com-
puting and it is applied to the UC problems in power systems.



1494 IEEE TRANSACTIONS ON POWER SYSTEMS, VOL. 25, NO. 3, AUGUST 2010

TABLE VII
COMMITMENT SCHEDULING FOR THE 100-UNIT SYSTEM OBTAINED BY QBPSO

Fig. 7. Scaling of the average execution time of the QBPSO.

The proposed QBPSO is based on the concept and principles
of quantum computing, and developed to enhance the conven-
tional BPSO in solving the combinatorial optimization prob-
lems. The QBPSO introduces a Q-bit individual for the prob-
abilistic representation, which replaces the velocity update pro-
cedure in the traditional PSO, in order to derive a swarm to-
ward promising regions in a search space with a simple mech-
anism. In the QBPSO, therefore, a weight factor and two ac-
celeration coefficients in the PSO framework are removed and
only one factor, rotation angle, is considered. In updating Q-bit
individuals, this paper also proposes a new rotation gate, which

includes a coordinate rotation gate for updating Q-bits and a dy-
namic rotation angle approach for determining the magnitude
of rotation angle. The proposed QBPSO is applied to UC prob-
lems in which several test power systems consisting of up to
100-units along with 24-h load demands and the results were
compared with those of previous works. The simulation results
clearly reveal that the proposed QBPSO algorithm can be used
as an excellent optimizer in solving large-scale UC problems.
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