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Abstract—A large-scale once-through-type ultrasupercritical
boiler power plant is investigated for the development of an an-
alyzable model for use in developing an intelligent control system.
Using data from the power plant, a model is realized using dy-
namically recurrent neural networks (NN). This requires the par-
titioning of multiple subsystems, which are each represented by an
individual NN that when combined form the whole plant model.
Modified predictive optimal control was used to drive the plant
to desired states; however, due to the computational intensity of
this approach, it could not be executed quickly enough to satisfy
project requirements. As an alternative, a reference governor was
implemented along with a PID feedback control system that utilizes
intelligent gain tuning, which, while more complicated, satisfied the
computational speed required for the controller to be realized.

Index Terms—Gain tuning, intelligent control, modified pre-
dictive optimal control (MPOC), ultrasupercritical (USC) power
plant.

1. INTRODUCTION

LTRASUPERCRITICAL (USC) boiler power plants are
U currently being developed to increase the efficiency of
standard fossil fuel power plants. In this paper, the modeling and
control of a large-scale once-through-type USC boiler power
plant is investigated. Larger more complicated power plants
require more sophisticated methods to streamline the modeling
process as well as more sophisticated control schemes that can
be used to further enhance plant efficiency.

The development of large capacity power plants requires new
approaches to analyze plant dynamics for control purposes. In
practice, many utility companies utilize simulation programs,
such as modular modeling systems [1] or their own simulation
tools for modeling. However, it is a challenge to extend cur-
rent models to model larger capacity plants, and to design new
models without component specifications. To design a control
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system for a power plant, a model must be developed in advance.
Recently, the study of neural networks (NN) [2] has become im-
portant in designing system identification and control systems
in the power systems area [3], [4]. With system data, the NN
can be trained to approximate highly nonlinear functions. Since
the NN strongly depends on the input/output data, but not on
the physical structure of the system, it is flexible and can easily
be adapted to different types of power plants.

Accurately modeling such a system with a single NN is theo-
retically possible, but it was discovered that the training of such
a network was not practical. Instead, individual subsystems of
the power plant were modeled with separate NNs that were
combined to form the power plant model. This type of approach
is covered in detail in [5]. Only the higher level details pertinent
to this specific application will be covered in this paper.

It was desired to use a modified predictive optimal control
(MPOC) scheme [6] with this plant to track unit load demand in
order to provide adaptive control that optimized performance of
the power plant. This scheme was developed successfully, but
turned out to be more computationally intensive than desired
for an actual controller. To overcome this difficulty, a reference
governor [7] was developed to provide feedforward (ff) controls
in conjunction with a simple PID feedback control system that
utilizes intelligent gain tuning [8]. Both approaches are pre-
sented with a focus on the reference governor and intelligent
gain tuning.

II. LARGE-SCALE USC POWER PLANT

In this paper, the USC boiler power plant consists of four pro-
cesses, which are air/flue gas, pulverizer, water/steam, and tur-
bine/generator [9]. However, for modeling purposes, the number
of detailed subsystems will be 19. Fig. 1shows the USC boiler
power plant. Most blocks are subsystems, which will be repre-
sented by a NN-based subsystem model. The proposed scheme
will be applicable to other types of plants, including nuclear and
fuel cell plants.

The power plant under investigation is a coal-pulverized,
once-through-type, boiler-turbine-generator unit. There are
three economizers used to raise the temperature of water en-
tering the boiler from the feedwater system. Two forced draft
fans and two primary air fans provide air to the air preheater.
The air preheater in turn provides heated air to the pulverizers,
burners, and furnace. The primary air fans also provide cold air
to the pulverizers. The fuel is provided to the furnace through
the pulverizers and burners. Furnace pressure is maintained at
the desired value by controlling two induced draft fans. The
waterwall surrounds the furnace vertically and spirally. Flue

0885-8969/$26.00 © 2010 IEEE
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Fig. 1. 1000 MW USC boiler power plant.

gas exiting the furnace travels through the superheaters and re-
heaters, economizers, and air preheater to raise the temperature
of the steam, water, or air, respectively. There is a separator
on top of the furnace, which supplies high-pressure (HP) steam
to the primary superheater and reduces the impurities in the
steam. The superheater consists of four parts: primary, divi-
sion, platen, and finish. The reheaters reheat the steam after
the HP turbine using the primary reheater and the reheater fin-
ish. Finally, the turbine generates power from the tandem com-
pound triple turbines, which consist of three parts: a HP turbine,
an intermediate-pressure (IP) turbine, and low-pressure (LP)
turbine.

The model will be focused on boiler, turbine, and generator
parts. Each subsystem has common inputs and outputs: mass
flow rate, temperature, pressure, and enthalpy of fluid. In ad-
dition to these inputs, there are control variables involved in
driving each subsystem to the desired state, which are listed
in Table I. To enhance tractability, the subsystems were cater-
gorized into one of four process models: water and steam, air
and flue gas, pulverizer, and the turbine and generator. The four
process models, which are broken up into subsystems are shown
in Table II. With the proposed approach, the utility company is
able to investigate the dynamic characteristics of power plants
with different capacities.

III. NN COMBINED MODEL

An NN representing each subsystem is trained many times
with different number of hidden neurons. The performance of
the training, which is measured in the mean squared error (MSE)
between the NN output and the target values, is compared with
the others for different number of neurons. The number of hid-
den neurons with the smallest MSE is set as that subsystem’s

TABLE I
CONTROL ACTIONS

IS::::;:: Control Description ‘g::;;l;t:lﬂ
Ugl primary air fan primary air
U forced draft fan secondary air
U induced draft fan gas recirculation
Uea hot primary air damper pulverizer/burner
Ues cold primary air damper pulverizer/burner
Ueg coal feeder pulverizer/burner
Uy feedwater pump feedwater
Ucg superheater division spray feedwater
Ueo superheater platen spray feedwater
Ue10 high pressure turbine valve high pressure turbine
el superheater damper high pressure turbine
Ueln reheater damper high pressure turbine

hidden neuron number. The optimal number of neurons depends
on the number of inputs and outputs of each subsystem, as well
as the input/output data pattern; therefore, some subsystems
with few inputs and outputs require more hidden neurons to
achieve the best performance. The resulting hidden neurons for
each subsystem are shown in Table III. The gas recirculation
system was split into two separate networks because there were
six inputs and 32 outputs. Each NN of the two gas recirculation
networks uses the six inputs to generate half of the outputs.
Gas 1 delivers outputs to the division superheater, the platen
superheater, the primary superheater, the final superheater, the
primary reheater, and the final reheater. Gas 2 delivers outputs
to the primary reheater, the economizers 1, 2, and 3, and the air
preheater. An NN with six inputs and t32 outputs will cause the
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TABLE II
PROCESS MODELS AND SUBSYSTEMS
Water and Air and Flue Pluverizer T(l;::lel:_:::::d
Steam Model Gas Model Model
Model
Feedwater Primary Air Pulverizer/ Intermediate/
Economizerl Secondary Air Burner Low Pressure
Economizer2 Air Preheater Turbine
Economizer3 Gas High Pressure
Separator Recirculation Turbine
Primary
Superheater
Superheater
Division
Superheater
Platen
Superheater
Finish
Primary
Reheater
Reheater Finish
Waterwall/
Furnace
TABLE III
NN PARAMETERS
Hidden
Subsystems Inputs Outputs Neurons
Pulverizers/Burners 11 3 19
Primary Air 2 4 17
Secondary Air 2 2 21
Separator 4 4 11
High Pressure Turbine 5 5 21
Intermediate Pressure Turbine 4 4 25
Platen Superheater 10 4 21
Primary Superheater 7 4 23
Primary Reheater 7 4 25
Air Preheater 7 9 17
Division Superheater 10 4 23
Economizerl 7 4 23
Economizer2 7 4 25
Economizer3 11 4 21
Feedwater 5 11 17
Final Reheater 4 9
Final Superheater 7 4 9
Furnace 10 7 17
Gasl 6 16 21
Gas2 6 16 15

computer to run out of memory when training. The final result
is referred to as the NN combined model (NNCM).

IV. MODIFIED PREDICTIVE OPTIMAL CONTROL

MPOC has already been used successfully in [6], and was the
method expected to be used to control this power plant. This
particular instance of predictive optimal control uses recurrent
NN (RNNs) [10] to implement an online identifier that models
plant behavior. Particle swarm optimization [11] is used in con-
junction with this identifier to test the validity of the next control
action to see if it moves the power plant to the desired states.
This is different from standard predictive control [12], which
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Fig.3. MPOC (NN output) tracking pressure demand (APESS power output).

evaluates further than just the next time step. This was done
to reduce overall calculation time. Unfortunately, the proposed
method still did not achieve quick enough results to be used in
real time for this application. Figs. 2 and 3 show the designed
control system successfully tracking the desired power demand
generated by the power plant simulator advanced power and
energy system simulator (APESS). An online identifier [13] is
updated so that it can accurately model current plant behavior
and can be used by the MPOC to search for the next control
action. Fig. 4details the operation of the online identifier, which
was carried over for use in the second control approach.

The trouble with calculating control actions with MPOC is
that the control signal was desired to be updated at least every
0.25 s. It was acceptable, while running in MATLAB, for the
algorithm to generate an update every second, but the final speed
was closer to 1.5 s. MPOC lends itself to distributed computing,
which would allow the controls to be generated easily in the
required period of time, however, it would require significantly
more sophisticated hardware that is unproven for this type of
application. Additionally, reducing look ahead to one-time step
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does not guarantee stability. For these reasons, it was decided
to investigate an alternative that met speed requirements and
guaranteed stability.

V. REFERENCE GOVERNOR AND GAIN TUNING

Since the MPOC did not generate control actions quickly
enough, an older method was modified to work with this process.
Using a two-stage system, a reference governor can provide ff
control actions as well as setpoints for a feedback controller,
and the feedback controller provides the actual control actions
to the plant, or in this case, the NNCM. This method is visualized
in Fig. 5. For this to work, it was required to determine what
setpoints would be used and which control actions would be
coupled to these setpoints. The results are shown in Tables IV
and V.
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TABLE IV
REFERENCE GOVERNOR SETPOINTS

Set Points

Throttle Pressure Demand

Feedwater Demand
Coal Flow Demand
Final Superheater Temperature Demand
Final Reheater Temperature Demand
Furnace Gas Pressure Demand
Pulverizer Temperature Demand

Air Flow Demand
Power Demand
TABLE V
CONTROL ACTIONS AND COUPLED SETPOINTS
Controls Associated Set Points
Primary Air Fan Coal Flow Demand
Secondary Air Fan Air Flow Demand
Feedwater Pump Feedwater Demand
Spray 2 Final Superheater Temperature Demand
Spray 3 Throttle Pressure Demand
HP Turbine Valve MW Demand
Induced Draft Fan Furnace Gas Pressure Demand
Reheater Damper Air Flow Demand
Superheater Damper Final Reheater Temperature Demand
Hot Air Damper Final Reheater Temperature Demand
Cold Air Damper Pulverizer Temperature Demand
Coal Feeder Pulverizer Temperature Demand
USC Power Plant PID 4
N Controller | | Shared TT——
I] gvsical ] M(Z':i‘:,ry Plant Model
L 1 values)

Fig. 6. Physical implementation of gain tuning.

A. Calculation Time Issue

There are now two separate systems to deal with, the reference
governor and the gain tuner, which both must satisfy the time
requirements. Since the reference governor uses static NN, its
search times are significantly faster than MPOC, and ff controls
and setpoints can be generated faster than 0.25 s using MAT-
LAB, easily satisfying the speed requirements for the reference
governor. The gain tuner must address a separate issue, as it does
not generate the actual control signal, but tells the feedback con-
trol system what gains to use, as shown in Fig 6. This operation
happens on a time scale significantly larger than 0.25 s and the
only issue is whether the search for optimal gains converges
when the gains need to be updated. All control signals are cal-
culated by the PID controller, which could be implemented in
standard hardware and meet any calculation speed requirements
that are typical in industrial applications. The gain tuning search
for this application converged for all tested time windows.
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B. Reference Governor

Using a reference governor for providing ff control actions
and setpoints has been shown many times, such as in [14]. As
done in previous work, a steady-state model of the system was
trained using a static NN, and then, a heuristic search method
was used to find the ff control actions and corresponding set-
points that would optimize a cost function made of weighted
objectives.

For this application, four of the five setpoints are actually
held constant regardless of unit load demand, and can therefore
be eliminated from the NN, as their values will never change.
These setpoints are final superheater temperature demand, final
reheater temperature demand, furnace gas pressure demand, and
pulverizer temperature demand.

Interestingly, this approach worked very poorly at first. With
the high order of this system, the search algorithm was able
to find numerous candidate control actions and setpoints that
equally satisfied the provided cost function. This was very un-
desirable as ideally, the cost function should be set up so that
a single set of control actions and setpoints provide an opti-
mal solution, or the reference governor will not know which
set to choose. Using a scheme where different control actions
have the same fitness is very noisy and inefficient. To cope with
this problem, the concept of using nominal control actions was
introduced. The nominal control actions are simply what the
conventional steady-state control actions would be for a given
unit load demand if a more sophisticated control scheme was
not in place. The cost function was then modified so that it
would optimize specific goals, and then, choose the candidate
control actions that were closest to the nominal control actions.
This modification served to fix the problem and provided good
performance. The result was the following cost function:

f(u) = a; [ULD — PowerOut)|
+ ay |CoalFlow| + ag [t — Upom | (D
where the variables are as follows:

a1, 09,and as multiobjective weights;

ULD unit-load demand;

PowerOut actual power output;

CoalFlow control that determines how much coal is
used;

u ff control actions;

Unom nominal feed forward control actions in
Fig. 7.

There is a disadvantage of using this approach because it
assumes that the nominal control actions are available. In this
case, these nominal control actions were available from earlier
in the power plant’s design process. If this is not the case, a
simple control system would have to be developed to create these
control actions, which may be more work than desired to use this
particular approach to force convergence to a single solution. In
addition to this, having such knowledge of the system allows
the search space to be constrained around the nominal control
actions, which further enhances the accuracy and timeliness
of the results. For this application, the search algorithm was

1067
1 T . —
c —
S o
w o S 1
< -
o -1 el 1 I L 1 L 1 [ L
500 550 600 650 700 750 800 850 900 950 1000
e 1 T T T T T T T ———
S R
w o S i
< -
D e 1 1 | L L 1 L
500 550 600 650 700 750 800 850 900 950 1000
1 T T T T T T T T ———
2 A —
s S |
E R e \/7/ I I I I I L I
500 550 600 650 700 750 800 850 900 950 1000
e - = = = 7 = = = =
S o 77/,,/—'”/““‘ 4
= R
% = — | I | | | | I |
500 550 600 650 700 750 800 850 900 950 1000
c 1 T T T T T T T ———
5 - —
w 0h ,),)'7")),/—‘*" Bl
a Al L I 1 | I L L
500 550 600 650 700 750 800 850 900 950 1000
1= T T T T T T T T T
S —
8 o e .
T I
r - I I 1 I I I 1 I B —
500 550 600 650 700 750 800 850 900 950 1000
o 1 T T T T T T T S S———
g I
8 o S .
Z o
» == I I 1 I I I 1 | 1
500 550 600 650 700 750 800 850 900 950 1000
T———r T T T T T T T T
2 —————
8 of — J
< e
T - I I I I I I L I T —
500 550 600 650 700 750 800 850 900 950 1000
1 T T T T T T T T T
g o S ]
< -
O = T | I I I I L I L
500 550 600 650 700 750 800 850 900 950 1000
- 1 T T T T T T T T m—
5 I —
3 [
w ol - 4
- S
8 e 1 1 1 1 L 1 L
500 550 600 650 700 750 800 850 900 950 1000

Power Output MW

Fig. 7. Nominal control actions.

allowed to explore up to 0.1 above or below the normalized
nominal control action, with limits of 1 and —1.

Another important factor to take into account with this ap-
proach is that some control actions may take on a wide range
of value for any given unit load demand. This was the case
with the spray controls, and better performance was achieved if
they were not constrained to a nominal control actions. For this
reason, they are not included in Fig. 7.

C. Gain Tuning

Intelligent gain tuning is done using an online identifier and a
heuristic search to determine the gains of a PID control system
[15]. The online identifier is similar to the one used for MPOC;
only it is used by a gain tuner to search for gains instead of
control actions. The heuristic search examines different gain
values, and then, simulates the system with these gain values and
the online identifier. It continues to experiment with different
gain values until it finds the set of gains that reduce the error
between the setpoints and the plant outputs.
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It is very similar to MPOC except that instead of choosing
the control values, it is choosing the gain values. This change is
made because the gain values do not have to be updated for each
time increment, while control values do. For gain tuning, a large
window size can be chosen for which to tune the gains. This
window could range from the size of a few minutes to multiple
hours, depending on how often it is desired for the gains be
tuned and how much trust is placed in the forecasted unit-load
demand. The gain tuning takes exactly the time of the search
window to search for the next set of gains. Once the window
time has passed, the gain tuner reports the best set of gains it has
found to the control system, which is then updated with these
new gain values. Then, the gain tuner starts searching again
for the best set of gains for the next window. This process is
repeated indefinitely. It is important that the search has actually
converged, or the results would be meaningless.

The window size was chosen to be 20 min. This is not the only
window size that can be used, but it was the smallest window size
that had smooth operation. Smaller window sizes can change the
gains too often, which causes the system to become noisy and
if the window size was small enough, could actually lead to
unstable operation. Though, this is not the case for a window
size of 20 min. The power plant is obviously running for longer
than one window size, so its operation must be split into multiple
windows. With a window size T, and total operational time of
Ty, the operation is split into N = T;/T windows, with end at
Ty, T1,. .., Ty. This is shown in Fig. 8. The gains are updated
at the end of an optimization window. This means the gains
calculated between T and T, are used for operation between T5
and T3.

The algorithm works by searching three different gain ma-
trices, one for the proportional control, integral control, and
derivative control. The range of possible gains is restricted to
these values, which maintain stable operation of the power plant.
Then, the algorithm takes the possible gain matrices and simu-
lates the system for the next window size with these gain values
using forecasted load data, as shown in Fig. 9. It repeats this sim-
ulation for different possible combinations of gains, and then,
evaluates the gains by choosing which gain has the smallest total
error for setpoint tracking, using the cost function

9 ty
Y= Z setpoint,, — output,, | 2
n=1

|
t=t,
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where setpoint,, is the nth desired setpoint, and output,, is the nth
actual plant output of this setpoint. The points #, and 7 represent
the beginning and end times of the current optimization window.
This particular application has nine setpoints that need to be
included.

Particle swarm optimization was used to implement this
search and y from (2) is used to determine the fitness of each
set of candidate gains. However, for each particle, to determine
its fitness requires an entire simulation of the whole system,
so obviously the search process is computationally intensive.
Additionally, to be able to appropriately simulate the system,
forecasted ff controls and setpoints need to be provided for the
simulation. The feedback control system is receiving ff con-
trols and setpoints continuously from the reference governor. It
would be a waste of time to forecast the unit load demand for the
power plant, and then, include the reference governor for each
simulation of the system because the output from the reference
governor will be the same every time. Instead, the reference
governor only needs to be run once for the forecasted unit load
demand and the outputs can be reused through the entire search
process for a single window. All of this is shown in Fig. 10 with
some of the particle swarm optimization details left out to keep
the flowchart tractable.

One danger in this approach is the extra time taken by us-
ing a reference governor to forecast the optimized setpoints and
ff controls. If the speed of the reference governor is not sig-
nificantly faster than the gain tuner, this approach would most
likely prevent successful convergence of the search for opti-
mized gains. Due to the simple nature of this reference gover-
nor, it was not an issue, but problems are a definite possibility
to take into account based on the specific application.

An online identifier, as with MPOC, is continually updated
and used to provide an updated model for the simulation of the
different gain values. It only needs to be updated once every
window, so a large window size means the online identifier
has to be updated less. In Fig. 11, results are shown for using
the reference governor to vary the power plant from 1000 MW
to 600 MW, and then to 800 MW. Only the setpoints, which
actually change with unit load demand are shown.
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All setpoints were tracked well, with very little overshoot for
tracking power, which is very nice as many times it was found
that instead of using a unit step, providing a ramped signal
helped the power plant respond better to changes in unit-load
demand.

VI. CONCLUSION

Implementation of the reference governor with gain tuning
had a few hitches, but overall was very effective for meeting
desired performance goals. The MPOC, while simpler, only
requiring two processing units instead of three, is not as com-
putationally efficient. Additionally, stability of the gain tuning
system can be analyzed with classical methods, making it a
much more desirable approach for industry and mission critical
applications. It is also an approach that is easier to implement in
existing hardware, while MPOC would be more suited for new
power plants that do not have classical control systems already
in place.

Using the nominal controls in the cost function for the refer-
ence governor was sufficient to force convergence of the feed-
forward controls and setpoints, as well as provide an ideal way to
constrict the search space. Unfortunately, the multiple objectives
must still be aggregated into a single cost function, meaning that
the operator would not be able to make changes online, as the ef-
fects would be unknown. It would be ideal to develop a method
for generating cost functions that matched specific performance
constraints. As of now, the cost function must be optimized by
a human conducting a number of experiments to observe proper
performance under different conditions.

This type of power plant is going to be used mainly for base
line power and will not be seeing a lot of fast changes in the
unit-load demand, which allows the gain tuning method to be
used with forecasted values. This technique may not be quite
as suitable for some of the faster power plants. It is possible
that MPOC would be more suited for this type of operation,
or that more sophisticated forecasting tools would need to be
developed before desired performance could be achieved with
the gain tuner.
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