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Step-Response Model Development for Dynamic
Matrix Control of a Drum-Type Boiler–Turbine

System
Un-Chul Moon and Kwang. Y. Lee, Life Fellow, IEEE

Abstract—This paper presents the application of dynamic ma-
trix control (DMC) to a drum-type boiler–turbine system. Two
types of step-response models for DMC are investigated in de-
signing the DMC; one is developed with the linearization of the
nonlinear plant model and the other is developed with the process
step-response data. Then, the control performances of the DMC
based on both types of models are evaluated. Because of severe
nonlinearity of drum water-level dynamics, it is observed that the
simulation with the step-response model based on the test data
shows satisfactory results, while the linearized model is not suit-
able for controller design of the drum-type boiler–turbine system.

Index Terms—Boiler–turbine control, dynamic matrix control
(DMC), power generation control, predictive control, process
control.

I. INTRODUCTION

ABOILER–TURBINE system provides high-pressure
steam to drive the turbine in thermal electric power gen-

eration. The purpose of the boiler–turbine system control is
to meet the load demand of electric power while maintaining
the pressure and water level in the drum within tolerance. This
boiler–turbine system is usually modeled with a multi-input–
multi-output (MIMO) nonlinear system [1].

The severe nonlinearity and wide operation range of the
boiler–turbine plant have resulted in many challenges to power
system control engineers. Hogg and Ei-Rabaie presented an ap-
plication of adaptive control, that is, the self-tuning generalized
predictive control to a boiler system [2]. Cori and Maffezzoni
applied a linear quadratic Gaussian (LQG) controller [3], Pel-
legrinetti and Bentsman designed an H∞ controller for boil-
ers [4], Ben-Abdennour and Lee applied the LQG with loop
transfer recovery (LQG/LTR) method [5], and Tan and others
approximated the H∞ to PI controller [6]. These controllers are
designed using the mathematical model of the underlying plant.
Apart from these model-based controller designs, many kinds
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of artificial intelligence techniques have also been applied for
nonmodel-based controller design [7]–[10].

Model predictive control (MPC) refers to a class of control
algorithms that compute a sequence of control inputs based on
an explicit prediction of outputs within some future horizon. The
computed control inputs are typically implemented in a receding
horizon fashion, meaning only the inputs for the current time are
implemented and the whole calculation is repeated at the next
sampling time [11], [12]. Therefore, one of the most important
strengths of MPC is that it can consider the constraints of input
and output variables that often exist in real industrial systems.
Now, MPC has become a standard tool for process controls [12].

One of the most well-known MPC algorithms for the pro-
cess control is dynamic matrix control (DMC), which assumes
a step-response model for the underlying system. The multivari-
able DMC controller has been discussed extensively in the past
[13]–[19]. Because DMC needs much numerical calculation at
every sampling time, it is a suitable technique for the systems
with slow dynamics. DMC has been successfully applied to nu-
merous industrial processes, and many commercial softwares
have been developed: DMC+, SMC, RMPCT, HIECON, PFC,
OPC, etc.

Nowadays, the MPC based on the state-space model has been
developed [20]–[22]. However, it is hard to find industrial ap-
plications of the MPC based on state-space models. Prasad and
others [23] presented simulation results of nonlinear physical
MPC to the drum-type boiler–turbine system with disturbance
and Prasad [24] proposed a nonlinear physical MPC based on
principal component analysis to the drum-type boiler–turbine
system in the case of sensor malfunction. In these papers, they
used continuous linearization of a nonlinear physical model. In
spite of these advanced developments of nonlinear MPC algo-
rithm, the use of a single model at one operating point is standard
practice in many industrial applications [25], [26].

Rovnak and Corlis [27] discussed theoretical and practical
aspects of DMC, and presented simulation results of a super-
critical boiler. In their paper, DMC was applied to supercritical
boiler that has three outputs: electric power, steam pressure,
and steam temperature. In the drum-type boiler–turbine system,
however, drum water-level control is considered to be a more
difficult problem, main reason being a nonminimum phase
behavior due to shrink/swell and instability because of the inte-
grating properties of drum-level dynamics [28]. Although many
successful applications of DMC to various industrial plants
have been reported, it is difficult to find the application of DMC
to drum-type boiler–turbine system. Sanchez and others [29]
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presented an application of DMC to steam temperature control
of fossil power plants, and showed that the single-input–single-
output (SISO) DMC performs better than the PID control.

In this paper, we present a comparative study of DMC to a
drum-type boiler–turbine system in a fossil power plant. In a
practical design of a DMC, one of the most important steps is
the development of a step-response model to describe the sys-
tem dynamics. Here, two types of methods are considered for
the development of the step-response model. One is when the
exact nonlinear mathematical model is given, the step-response
model can be found by linearizing the nonlinear model, and the
other is when the step-response model is identified from the
process test data. A DMC is designed for each model, and
the control performances are evaluated and discussed. In ad-
dition, this paper demonstrates the advantages of using pro-
cess step-response data over linearizing a mathematical model,
which might not be available or too complex for a practical
large-scale real plant.

II. BOILER–TURBINE SYSTEM MODEL

A. Nonlinear Boiler–Turbine System Model

The model of Bell and Åström [1] is assumed as a real
plant among various nonlinear models for the boiler–turbine
system. The model represents a 160 MW oil-fired drum-type
boiler-turbine generator for overall wide-range simulations and
is described by a third-order MIMO nonlinear state equation as
follows [1]:

ẋ1 = −0.0018u2x
9/8
1 + 0.9u1 − 0.15u3 (1)

ẋ2 =
[(0.73u2 − 0.16)x9/8

1 − x2 ]
10

(2)

ẋ3 =
[141u3 − (1.1u2 − 0.19)x1 ]

85
(3)

y1 = x1 (4)

y2 = x2 (5)

y3 = 0.05
(
0.13073x3 + 100acs +

qe

9
− 67.975

)
(6)

where

αcs =
(1 − 0.001538x3) (0.8x1 − 25.6)

x3 (1.0394 − 0.0012304x1)
(7)

qe = (0.854u2−0.147) x1 +45.59u1−2.514u3−2.096. (8)

The three state variables x1 , x2 , and x3 are drum steam pres-
sure (P in kg/cm2), electric power (E in megawatt), and steam-
water fluid density in the drum (ρf in kg/m2), respectively. The
three outputs y1 , y2 , and y3 are drum steam pressure (x1), elec-
tric power (x2), and drum water-level deviation (L in meters),
respectively. The y3 , drum water-level L, is calculated using
two algebraic calculations αcs and qe that are the steam quality
(mass ratio) and the evaporation rate (kilograms per second),
respectively.

The three inputs u1 , u2 , and u3 are normalized positions of
valve actuators that control the mass flow rates of fuel, steam to
the turbine, and feed water to the drum, respectively. Positions

of valve actuators are constrained to [0, 1], and their rates of
change per second are limited to

− 0.007 ≤ du1

dt
≤ 0.007 (9)

− 2.0 ≤ du2

dt
≤ 0.02 (10)

− 0.05 ≤ du3

dt
≤ 0.05. (11)

B. Step-Response Model With Linearization

In most cases of designing boiler–turbine control systems, it is
assumed that the exact mathematical model is given, therefore,
the linearization of the nonlinear mathematical model is used
to design the linear controller [3]–[6]. With this assumption,
the step-response model for DMC can be developed with the
familiar linearization technique.

In using the nonlinear model, (1)–(8) is linearized us-
ing Taylor series expansion at the operating point, ȳ0 =
(y10 , y20 , y30), x̄0 = (x10 , x20 , x30), ū0 = (u10 , u20 , u30).

The result of linearization is as follows:

˙̄x = Ax̄(t) + Bū(t) (12)

ȳ(t) = Cx̄(t) + Dū(t) (13)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0162
8

u20x
1/8
10 0 0(

6.57
80

u20 − 1.44
80

)
x

1/8
10 − 1

10
0

(
0.19
85

− 1.1
85

u20

)
0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(14)

B =

⎡
⎢⎢⎢⎢⎣

0.9 −0.0018x
9/8
10 −0.15

0
0.73
10

x
9/8
10 0

0 −1.1
85

x10
141
85

⎤
⎥⎥⎥⎥⎦ (15)

C =

⎡
⎢⎢⎣

1 0 0
0 1 0(

5
∂

∂x1
acs +

0.05
9

∂

∂x1
qe

)
0

(
0.065 + 5

∂

∂x3
acs

)
⎤
⎥⎥⎦

(16)

D =

⎡
⎣ 0 0 0

0 0 0
0.2533 0.00474x10 −0.014

⎤
⎦ (17)

The variables ȳ, x̄, and ū are the differences of the output,
state, and input, respectively, from the corresponding operating
points.

The operating points are determined based on a nominal op-
eration of the plant. Considering that the model represents a
160 MW unit, the operating point for power output y2 is as-
sumed as 85 MW, which is around its midpoint. This yields
the corresponding pressure y1 to be 115 kg/cm2 from the
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balance of the plant model. The operating point for water level
y3 is zero in order to keep the water level in the middle of the
drum. Then, the operating points for other remaining variables
can be calculated by neglecting the derivative terms in (1)–
(9). The resulting operating points are ȳ0 = (115, 85, 0), x̄0 =
(115, 85, 402.759), ū0 = (0.4147, 0.7787, 0.5436).

The constant matrices A, B, C, and D are evaluated at these
operating points as follows:

A =

⎡
⎣−0.002854 0 0

0.083152 −0.1 0
−0.007842 0 0

⎤
⎦ (18)

B =

⎡
⎣ 0.9 −0.374591 −0.15

0 15.191754 0
0 −0.148126 1.658824

⎤
⎦ (19)

C =

⎡
⎣ 1 0 0

0 1 0
0.007566 0 0.004257

⎤
⎦ (20)

D =

⎡
⎣ 0 0 0

0 0 0
0.2533 0.543056 −0.014

⎤
⎦ (21)

Then, a simple algebraic operation with Laplace transform
gives transfer functions as follows:

Y (s) = [C(sI − A)−1B + D]U(s) (22)

=

⎛
⎝ G11 G12 G13

G21 G22 G23
G31 G32 G33

⎞
⎠ U(s) (23)

where the transfer functions Gij are determined as follows:

G11 =
0.9s + 0.09

s2 + 0.103s + 0.00028
(24)

G12 =
−0.37s − 0.037

s2 + 0.103s + 0.00028
(25)

G13 =
−0.15s − 0.015

s2 + 0.103s + 0.00028
(26)

G21 =
0.0748

s2 + 0.103s + 0.00028
(27)

G22 =
15.19s + 0.0122

s2 + 0.103s + 0.00028
(28)

G23 =
−0.01247

s2 + 0.103s + 0.00028
(29)

G31 =
0.2533s3 + 0.0328s2 + 0.0007s − 3.0 × 10−6

s3 + 0.103s2 + 0.00028s
(30)

G32 =
0.543s3 + 0.0524s2 − 0.00018s + 1.07 × 10−6

s3 + 0.102s2 + 0.00028s
(31)

G33 =
−0.014s3 + 0.0045s2 + 0.0006s + 2.5 × 10−6

s3 + 0.102s2 + 0.00028s
(32)

With (24)–(32), the unit step-response model {sij} is devel-
oped, where sij represents the response yi of Gij with input uj .

Fig. 1 shows the comparison of step responses with lin-
earized step-response model (dotted line) and original non-

Fig. 1. Step-responses comparison of linearized model (dot) and nonlinear
model (solid). Horizontal axes are time (in seconds), and the three rows of
plots represent the outputs, y1 (P in kg/cm2 ), y2 (E in megawatt), and y3 (L
in meters). The three columns of plots are the responses corresponding to the
respective step inputs, u1 , u2 , and u3 .

linear model (solid line), when the system is at the oper-
ating points ȳ0 = (115, 85, 0), x̄0 = (115, 85, 402.759), ū0 =
(0.4147, 0.7787, 0.5436). In the figure, three inputs are inde-
pendently applied as 0.03, which is 3% of the entire range
of valve position. Horizontal axes are time (in seconds), and
vertical axes represent the outputs, y1 (P in kg/cm2), y2 (E in
megawatt), and y3 (L in meters). The three columns of plots
are the responses corresponding to the respective step inputs,
u1 , u2 , and u3 .

We can observe the outputs y1 and y2 of linearized step-
response model describe effectively the original nonlinear dy-
namics, while the output y3 of linearized model shows some
differences. The models G31 and G33 show some difference in
slopes, but in the same direction. However, G32 , the response
from the amount of governor steam to the drum water level,
shows an opposite direction in the slope. Therefore, the qual-
ity of G32 has a limitation to describe the original nonlinear
dynamics. This point will be discussed in Section II-D.

C. Step-Response Model With Process Test

In the case when a reliable mathematical model is not avail-
able, the step-response model is obtained from experimental
data. The usual process test signal is the step signal or a pseu-
dorandom binary signal [25], [26].

In this paper, instead of the physical experiment a virtual
experiment was performed to develop the step-response model
by applying step inputs to the plant described by the nonlinear
model (1)–(8). One of the important issues in the process test is
the amplitude of the step. In general, large step input drives the
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Fig. 2. Unit step-response models with different step inputs. Ten step inputs,
10−1 , 10−2 , . . . , 10−10 , are applied as inputs.

process output to nonlinear region, while the response of small
step input is concealed in noise and disturbance signal. There-
fore, an engineering judgment with compromise is necessary.

With the same operating point of the linearized model, ȳ0 =
(115, 85, 0), x̄0 = (115, 85, 402.759), ū0 = (0.4147, 0.7787,
0.5436), the three step inputs, u1 , u2 , and u3 , are applied
independently, and then corresponding output responses are
stored. To obtain the unit step response, output responses are
normalized by dividing the outputs with the amplitude of the
corresponding inputs.

To find out the effect of step input size, different step in-
puts are applied independently and corresponding unit step-
response models are compared. Ten different step inputs, 10−1 ,
10−2 , . . . , 10−10 , are applied independently for u1 , u2 , and u3 .
Fig. 2 shows the ten-unit step-response models, where the re-
sponses of y1 and y2 show little difference among the ten dif-
ferent responses. The responses of y3 also show little difference
except for the step size of 10−1 . In the case when u1 = 0.1, y3
is diverged; therefore, the step input greater than 0.1 should be
avoided.

In the Fig. 2, the unit step responses are almost the same when
the inputs are smaller than 10−2 . Therefore, the step size 10−2

is small enough to develop the step-response model to avoid the
nonlinear region. Considering the noise and disturbance of the
real process test, the step size of 10−2 is used in the process
test in this paper. The step size 10−2 means the 1% of the entire
range of valve position.

D. Comparison of the Two Step-Response Models

Fig. 3 shows a comparison of the two-unit step-response mod-
els, solid line is the unit step response from the process test with
step size 0.01 and dotted line is the unit step response from
the linearized model (24)–(32). In the DMC design, the step-
response model in Fig. 3 is discretized with a sampling time.
The discretized step-response coefficients are stored in a ma-

Fig. 3. A comparison between linearized model and process test model. Dotted
line: by linearization; solid line: by process test.

trix form, called dynamic matrix, to describe the dynamics of
nonlinear boiler–turbine system.

In Fig. 3, we can observe the notable difference of output y3 ,
drum level, as expected from Fig. 1. The models G31 and G33
show some difference in slopes, moreover, G32 , the response
from the amount of governor steam to the drum water level,
shows an opposite direction in the slope. Therefore, the G32
obtained from the linearized model has a limitation. Considering
that DMC use a long-range prediction of future output, poor
performance is expected with linearized step-response model.

The linearization of a nonlinear system describes the dynam-
ics with infinitesimal variable changes. Therefore, the linearized
model is valid only in small variation of both input and output.
The accuracy of the linearized model depends on the degree of
nonlinearity. The model for the water level y3 is highly nonlin-
ear compared to that for variables y1 and y2 as shown in (1)–(8).
Therefore, the linearized model for y3 is not expected to be re-
liable. In fact, the linearized model for water level y3 contains
integration modes in (30)–(32), while y1 and y2 in (24)–(29)
are stable in the bounded-input–bounded-output sense. As time
increases, the water level y3 , due to the integral effect, keeps
increasing or decreasing with the constant step input signal and
finally goes out of the initial linearization region. Therefore,
considering the fact that the DMC uses the step-response model
that is obtained from a long-range prediction of future output,
the performance with the linearized model has a limitation.

III. DMC FOR BOILER–TURBINE SYSTEM

The design of DMC in this paper follows the standard ap-
proach [12]. For a SISO system, the prediction equation is in
the following form:

Yk+1|k = Yk+1|k−1 + SΔUk + Y d
k+1|k (33)

where, Yk+1|k is a p×1 vector representing a prediction of fu-
ture output trajectory, [yk+1|k , . . . , yk+p |k ]T at t = k, and p is
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the prediction horizon; Yk+1|k−1 is a p × 1 vector represent-
ing the unforced output trajectory [yk+1|k−1 , . . . , yk+p |k−1 ]T ,
which means the open-loop prediction while the input u re-
mains constant at the previous value uk−1 ; ΔUk is an m × 1
input adjustments vector [Δuk , . . . ,Δuk+m−1 ]T and m is the
control horizon; Y d

k+1|k is a p × 1 vector representing an esti-
mate of unmeasured disturbance on the future output; and, S is a
p × m dynamic matrix containing the step-response coefficients
as follows:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 0 · · · 0

s2 s1
. . .

...

s3 s2
. . . 0

...
...

. . . s1
...

... · · · ...
sp sp−1 · · · sp−m+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(34)

where si is the amplitude of step response at the ith sampling
step.

To compute the inputs, the following online optimization is
performed at every sampling time:

min
ΔUk

∥∥Ek+1|k
∥∥

Λ + ‖ΔUk‖Γ (35)

where, Ek+1|k = Yk+1|k − Rk+1|k = [ek+1 , . . . , ek+p ]T is a
p × 1 error vector, Rk+1|k = [rk+1 , . . . , rk+p ]T is a p × 1 vec-
tor containing the desired trajectory of the future output, Λ
and Γ are the weights for the weighted Euclidean norm of the
corresponding vectors. To the above, the following additional
constraints are added:

Ymin ≤ Yk+1|k ≤ Ymax (36)

ΔUmin ≤ ΔUk ≤ ΔUmax (37)

Umin ≤ Uk ≤ Umax (38)

where Uk is an m × 1 input vector, [uk , . . . , uk+m−1 ]T .
The resulting problem is a quadratic programming problem

with the inequality constraints (36)–(38). Once the optimal in-
puts [Δuk , . . . ,Δuk+m−1 ] are computed, only the first input
Δuk is implemented and the rest is discarded. The procedure is
repeated at the next sampling time.

In this study, the boiler–turbine system is a MIMO system
that has three inputs and three outputs. Therefore, the vectors
Yk+1|k , Yk+1|k−1 , Y d

k+1|k , Rk+1|k , and Ek+1|k are extended to
3p × 1 vectors and ΔUk is a 3m × 1 vector in (33)–(38). The
prediction equation of the boiler–turbine system is then in the
following form:

Ȳk+1|k = Ȳk+1|k−1 + S̄ΔŪk + Ȳ d
k+1|k (39)

where

Ȳk+1|k = [ ȳk+1|k ȳk+2|k · · · ȳk+p |k ]T (40)

= [( y1(k+1|k) , y2(k+1|k) y3(k+1|k) )

· · · ( y1(k+p |k) y2(k+p |k) y3(k+p |k) )]T (41)

ΔŪk = [ Δūk Δūk+1 · · · Δūk+m−1 ]T (42)

= [(Δu1(k) , Δu2(k) , Δu3(k) )

· · · (Δu1(k+m−1) Δu2(k+m−1) Δu3(k+m−1) )]T . (43)

The subscripts 1–3 in (41) and (43) are the indices for the
three outputs and three inputs, and S̄ is a 3p × 3m dynamic
matrix containing nine step responses as follows:

S̄ =

⎡
⎢⎢⎢⎢⎢⎢⎣

s̄1 0̄ · · · 0̄

s̄2 s̄1
. . .

...
...

...
. . . s̄1

...
...

. . .
...

s̄p s̄p−1 · · · s̄p−m+1

⎤
⎥⎥⎥⎥⎥⎥⎦

(44)

where every matrix element s̄i is a 3 × 3 vector containing nine
amplitudes of the step response at the i-th sampling step.

The optimization problem (35) is also extended as follows:

min
Δ Ūk

∥∥Ēk+1|k
∥∥

Λ +
∥∥ΔŪk

∥∥
Γ (45)

where Ēk+1|k = Ȳk+1|k − R̄k+1|k .
R̄k+1|k is fixed with three constant setpoint values. In (45),

error and input change are weighted for the three outputs and
three inputs as follows:

∥∥ēk+1|k
∥∥ =

⎡
⎣ e1(k+1|k)

e2(k+1|k)
e3(k+1|k)

⎤
⎦

T ⎡
⎣ 1 0 0

0 1 0
0 0 100

⎤
⎦

⎡
⎣ e1(k+1|k)

e2(k+1|k)
e3(k+1|k)

⎤
⎦ (46)

‖Δūk‖ =

⎡
⎣ Δu1(k)

Δu2(k)
Δu3(k)

⎤
⎦

T ⎡
⎣ 1 0 0

0 1 0
0 0 1

⎤
⎦

⎡
⎣Δu1(k)

Δu2(k)
Δu3(k)

⎤
⎦ (47)

In (46), the weight of the third output error is 100 while other
output weights are ones, this is because the nominal value of
variables y1 and y2 are about 100 times than that of y3 . The
three control actions are equally weighted as ones.

Y d
k+1|k in (39) is taken as a constant bias of difference be-

tween the actual measurement and the open-loop model output.
Output constraint (36) is not considered in this study and input
constraints (9)–(11) are implemented in the form of (37), and
three inputs are constrained in [0, 1] in (38).

From theoretical viewpoint, a small sampling time and a large
prediction and control horizon are desirable, while they increase
the computational burden in practice. Usually, sampling time
for discrete control is recommended to be less than 10% of the
smallest time constant. Considering the time constants of y1
and y2 being about 200 s from Fig. 3, the sampling time is deter-
mined as 5 s. Both prediction and control horizons, p and m, are
600 s, in which outputs are settled down as seen in Fig. 3. More
extensive analysis to tune the DMC is discussed in [18] and [19].

Fig. 4 shows the system configuration. The DMC controller
is applied to the nonlinear boiler–turbine system, and the con-
trol algorithm optimizes the control performance (45) at every
sampling step with the developed step-response model. For the
comparison purpose, the same DMC controller is implemented
with both step-response models.
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Fig. 4. DMC-based system configuration.

Fig. 5. Responses of the DMC designed with the linearized model.

IV. SIMULATION RESULTS

The control system and the process model were simulated
with MATLAB in a personal computer environment. The control
performance (45) with constraints is optimized with MATLAB
function “quadprog ()” at every sampling step.

With the assumption that the system is initially in a steady
state with ȳ0 = (100, 50, 0), x̄0 = (100, 50, 449.5), ū0 =
(0.271, 0.604, 0.336), several cases are considered. Figs. 5–12
show the simulation results. In the figures, the horizontal axis
is time [in seconds], and the vertical axis is [kilograms per
centimeter square] for y1 , [megawatt] for y2 and [centimeters]
for y3 and units for inputs variables are normalized positions of
valve actuators for the three inputs u1 , u2 , and u3 .

In the first case, the DMCs designed with the two step-
response models in Fig. 3 are compared. In this case, the set-
points of outputs are implemented as R̄ = (120, 100, 0) for both
DMCs. This case describes that the setpoints of pressure and
electric load are increased to 120 and 100, respectively, while
the drum water level is kept to zero.

In Fig. 5, y2 and y3 show fluctuation, while y1 tracks the ref-
erence 120 after 150 s. Fig. 6 shows the corresponding control
actions. As mentioned in Section II-D, the long-range prediction
of y3 with linearized model has a limitation for the nonlinear sys-
tem. Therefore, even if we have a good nonlinear mathematical
model of the boiler–turbine system, its linearized model is not
suitable for the DMC control of the drum-type boiler–turbine
system.

Fig. 6. Control inputs designed with the linearized model.

Fig. 7. Responses of the DMC designed with the process test data model.

Fig. 8. DMC control inputs designed with the process test data model.

Fig. 7 shows the response of the DMC designed with the pro-
cess data, where the three outputs are stabilized after 110 s.
Fig. 8 shows the corresponding control actions. This result
shows that the plant is successfully controlled by the DMC
designed with the step-response model obtained by the process
data.

To conform the comparison between the linearized model and
the process test model, different values of prediction horizon p
and control horizon m were tested from 200 to 600 s. And, a
different setpoint R̄ was tested also. However, similar results,
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Fig. 9. Response of the DMC designed with the process test data model.

Fig. 10. DMC control inputs designed with the process test data model.

Fig. 11. Process outputs without considering the input constraints.

as shown in Figs. 5–8, were observed in all cases. That is, the
process test model is better than linearized model in all cases.

The second case is to demonstrate the tracking ability of
DMC. In this case, the setpoints are changed with the DMC
designed with the process test data. The setpoint R̄ is (110,
80, 0) initially, and changed to (120, 100, 0) at 400 and (130,
120, 0) at 800 s, respectively. Figs. 9 and 10, respectively, show
the outputs and inputs for this case. Although the step-response
model is developed at the operating point, ȳ0 = (115, 85, 0),
the DMC works well at other operating points, demonstrating
its robust characteristics to the boiler–turbine system.

Fig. 12. Process control inputs without considering the inputs constraints.

There are two main reasons about the robustness for the DMC
designed with the test data. First, the test data with step inputs
have already included the nonlinearity of the boiler–turbine sys-
tem, while the linearized model is not accurate when the oper-
ating point is changed. Second, model mismatch at different
operating points is considered as unmeasured disturbance term,
Y d

k+1|k in (39), which is updated at every sampling step. This
eliminates the steady-state error at different operating points.

In the third case, the input constraints, (37) and (38) are re-
moved from the DMC designed with the process test data model.
In other words, the inputs are considered only with a weighting
factor in (45) in the controller. Therefore, the amplitude and
the input change rates are simply chopped with the limit [0, 1]
and constraints (9)–(11), respectively. In this case, R̄ is (120,
100, 0) as in the first case. Figs. 11 and 12 show the outputs
and inputs for this case. In Fig. 11, the settling times of three
outputs are increased from those in the Fig. 7. This implies the
control performance can be enhanced by considering the input
constraints in the DMC algorithm, which is often the case in the
real-process industry. This is one of the most important benefits
to apply the DMC to the real boiler–turbine system.

V. CONCLUSION

This paper presents the application of DMC to a drum-type
boiler–turbine system. Two possible step-response models are
investigated in designing the DMC; one developed by lineariz-
ing the mathematical model and the other developed with the
process test data. Because of the high nonlinearity of the drum
water-level dynamics, the linearized model is not accurate for
relatively large changes in step inputs. On the other hand, the
model based on the test data has already reflected the nonlinear-
ity of the model, thus exhibits better responses. Consequently,
DMC designed with the process test data model shows satis-
factory results while with the linearized model it shows poor
results. The DMC shows robust performances for different size
of input signals, and prediction and control windows. It also
shows good tracking performance and has benefit when consid-
ering the input/output constraints, which is often the case in real
industrial systems.
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The novel contribution of this paper is as follows: First, it
has been shown that the wide-range operation of drum-type
boiler–turbine system can be effectively controlled by a direct
application of DMC. Until now, the direct application of DMC to
drum-type boiler-turbine system was found to be difficult due to
the drum-level dynamics with instability and the nonminimum
phase. Second, the linearized model of drum-type boiler–turbine
system is shown not to be valid for a long-range prediction of
DMC, main reason being the poor quality of linearized drum
water-level dynamics. Therefore, a careful validation of the step-
response model is necessary in designing the DMC, although a
valid mathematical model is used in this paper. These results can
provide a good practical guidance in implementing the DMC.
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