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Abstract: To advance the state of the art of physical-principle-enhanced hybrid artificial neural network
(ANN) modeling, network configurations with parallel modules (PMNN) reflecting the structural informa-
tion of the physical principles have been developed (Cao, 2001). In this paper, the PMNN configuration is
applied to develop a scalable and invertible dynamic magneto-rheological (MR) fluid damper model. To ad-
vance the state of the art and address issues of the current ANN-based MR damper models found in the open
literature, two ANN-based MR damper models are developed in this study. The first one is a conventional
first-principle-enhanced hybrid neural network model (defined as the baseline model in the current study)
that improves upon the previous ANN-based MR damper models by introducing feedback loops to represent
the dynamic behaviors of the MR damper. A PMNN-based MR damper model is then derived to further im-
prove the control-input-output scalability and realize the invertible model concept. “Input-output scalability”
refers to the model’s capability to accurately estimate the system response with input profiles significantly
different from the training data. “Invertible model” means that the resultant forward model can be directly
transformed into an inverse model through a simple algebraic operation. The network training/testing re-
sults indicate that while both models provide satisfactory performance, the PMNN model outperforms the
baseline model by showing superior control-input-output scalability. The candidacy of PMNN as a control-
oriented actuator modeling tool is further strengthened by the fact that it is invertible, in other words, the
inverse model with desired force as input and the control signal–voltage as output can be easily established
by algebraically manipulating the forward model. This study indicates that PMNN, as a scalable and invert-
ible dynamic modeling tool, is feasible for developing system-design-oriented models of vibration control
purposes.
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732 M. CAO ET AL.

1. BACKGROUND: MR DAMPER AND SCALABLE/REVERTIBLE ANN

MODELING TECHNIQUE

1.1. MR Damper

Magneto-rheological (MR) fluids have been investigated by many researchers. One impor-
tant feature of such fluids is that their material properties can be modulated through an ap-
plied electro-magnetic field. More specifically, they are capable of reversibly changing from
a linear Newtonian fluid to a semi-solid within milliseconds, and the yield strength of this
semi-solid is controllable. This characteristic makes the MR fluid-based devices attractive
candidates for vibration control and isolation. Therefore, MR fluid dampers have been de-
veloped for damping augmentation of various mechanical systems (Carlson et al., 1996�
Hiemenz and Wereley, 1999� Marathe et al., 1999� Gandhi et al., 2001� Lai and Liao, 2002�
Choi and Wereley, 2003� Kavlicoglu et al., 2006� Koo et al., 2006), where promising results
have been shown.

1.2. Previous MR Damper Modeling Efforts

Significant efforts have been made to model the behaviors of the MR (or electro-rheological
(ER) fluids which have similar characteristics) fluids. Peel et al. (1996) and Kamath et al.
(1996) focused on establishing models based on mechanisms and physical principles. De-
veloped on the basis of an idealized nonlinear Bingham plastic shear flow mechanism, the
quasi-steady dashpot damper model by Kamath et al. (1996) reveals the insight mechanisms
of the MR damper:

� � � y sgn

�
du

dr

�
� �du

dr
� �� � � ��� y

�� (1a)

du

dr
� 0� �� � � ��� y

�� (1b)

where � y is the dynamic yield stress and is assumed to be a polynomial function of the ap-
plied field, u is the velocity, r is the radial coordinate, and � is the plastic viscosity and is
assumed to be independent of the applied field for simplification. Newtonian shear flow can
be viewed as a special case of Bingham plastic shear flow with zero dynamic yield stress.
Comparison with experimental results confirmed that this Bingham plastic model could pro-
vide modestly accurate prediction of the damping force. Since ideal assumptions were made
to facilitate the mathematical analysis, these models are not accurate enough for simulation
and controller design purposes, although they can provide some design guidelines.

Spencer et al. (1997) presented a numerically tractable yet accurate MR phenomenolog-
ical model. The rationale behind this approach is to combine the Bouc-Wen model (Wen,
1976), which is capable of exhibiting a wide variety of hysteretic behavior, with the spring-
linear damper-Coulomb friction component model. The total force generated by the MR
damper is formulated as follows (Spencer et al., 1997):

F � �Z � c0� �x � �y�� k0�x � y�� k1�x � x0� � c1 �y � k1�x � x0� (2)
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SCALABLE AND INVERTIBLE PMNN MODEL 733

where z is the revolutionary variable in Bouc-Wen (Wen, 1976) model, k1 represents the stiff-
ness of the accumulator, c1 intends to simulate the roll off at low velocities when the velocity
is decreasing, c0 stands for the viscous damping coefficient observed at large velocities, and
k0 is the stiffness for large velocities. The forces applied on either sides of the rigid bar are
in balance:

c1 �y � �z � k0�x � y�� c0� �x � �y�	 (3)

The constant parameters �, c1, c0 in equations (2) and (3) are all linearly correlated with
the applied field strength u. Comparisons with empirical results obtained from a prototype
MR damper showed that this model could accurately predict the response of the MR damper
over a wide range of operating conditions.

The model developed by Spencer et al. (1997) can be easily implemented in dynamic
simulations, so it is a convenient tool for studying system response. However, its complexity
makes it hard to use for developing MR-damper-based control strategies. Therefore, more
efforts followed for deriving accurate yet simple MR damper models. One of the promising
approaches is to utilize tools such as artificial neural networks (ANN), as investigated by
Chang and Roschke (1998), Chang and Zhou (2002) and Du et al. (2006).

1.3. Dynamic ANN Modeling Methodologies

Initially inspired by the observed structure of biological neural processing systems, neural
networks have gained wide applications in many fields, including classification, signal pro-
cessing, data compression, pattern recognition, feature detection, system modeling and con-
trol. The application of neural networks as system modeling tools is rooted in their ability to
approximate functions (Cybenko, 1989� Hornik et al., 1989). The idea of incorporating phys-
ical knowledge into the ANN model has been extensively explored, aiming at providing more
accurate description of the system characteristics. It has been demonstrated that a gray-box
hybrid approach, combining physical principles and the neural networks, can significantly
improve the system performance and outperform the traditional black-box ANN model (Cao
et al., 2004a,b� Aceves et al., 2006). While promising, the major bottle neck of neural net-
work as a design tool is that it cannot guarantee its accuracy outside the training range. It was
pointed out (Cao, 2001� Cao et al., 2005) that one way to address this issue and improve the
model scalability (defined as the ANN model’s capability to account for input feature space
outside the training data range) is to introduce the first-principle structural information into
the neural network configuration, if this information is available. Depending on the available
physics and the system, two different approaches were proposed: the dynamic parallel mod-
ulated neural network (PMNN) concept (Cao et al., 2005) and the non-dimensional artificial
neural network (NDANN) structure (Cao et al., 2006). While both approaches demonstrate
promising input-output scalability and are thus good tools for system design, the PMNN
has greater potential for developing control-oriented actuator models, as showcased by the
PMNN model for automotive friction components (Cao, 2001�Wang and Cao, 2001� Cao et
al., 2005).
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2. PROBLEM STATEMENT AND OVERALL APPROACH

Chang and Roschke (1998) investigated the performance of an MR damper model based on
ANN. The results demonstrated that the well-trained black-box neural network model can
accurately predict the output force of an MR damper. In Chang and Roschke’s (1998) ap-
proach, the measured damper forces of previous time steps are used as inputs to the forward
network models. While interesting, this model cannot be applied for simulation and design
purposes when the measured force is not available during these stages. More importantly,
with static mapping, the dynamic characteristics of the system cannot be well represented.
Therefore, the first objective of this investigation is to derive an MR damper model based on
recurrent network architecture with feedback loops, which takes care of the dynamic char-
acteristics of the MR damper. This model will be applied as a representative of conventional
ANN approaches, and compared with the PMNN-based model aiming at demonstrating the
superior input-output scalability of PMNN.

Inverse MR damper models for controller design purpose have also been proposed
(Chang and Zhou, 2002). The inverse MR damper model is a standalone model based on
a recurrent neural network architecture. Therefore, a complete two-way mapping is achieved
by two models: a forward model and an inverse model. The input and output of the forward
model are the control signal (voltage for MR damper) and the damper force, respectively.
The inverse model outputs control voltage using the desired force response as input. Du et al.
(2006) applied a similar approach for capturing the forward and inverse dynamic behaviors
of an MR damper using an evolving radial basis function (RBF) network. In this investi-
gation, genetic algorithm (GA) was combined with other learning algorithms for network
training and satisfying performance was demonstrated. While these approaches have opened
up a good path for MR damper modeling, there are still rooms for improvement. One issue
is that since two models (forward and inverse) are required for one process, training of the
networks could be numerically intensive. The other issue is that the ANN cannot account for
input feature space outside the training data range, that is, the input-output-scalability is not
guaranteed.

To further enhance the model’s applicability for controller design and to improve voltage
scalability of the recurrent ANN based model, the second and the major objective of this
study is to develop a more advanced MR damper model utilizing the PMNN concept. Two
major advantages of PMNN are:

(a) It is a control-oriented approach providing promising input-output scalability, and thus
benefits system design.

(b) The forward model can be easily transformed into an inverse model form through simple
algebraic operation, i.e., only one model is needed for both forward and inverse mapping.
Subsequently, the network training only needs to be done once.

The organization of the paper is as follows: The basic concept of the physical principle-
based neural network with parallel modules (PMNN) is discussed in the next section (Sec-
tion 3). In Section 4, the dynamic MR damper model based on a recurrent network con-
figuration is presented. This model serves as the baseline model versus the more advanced
PMNN model. Section 5 discusses the derivation of the PMNN MR damper model and com-
pares its performance with the baseline model. The procedure to algebraically derive the
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inverse model from the forward PMNN model is also briefly discussed in Section 5. The
study is concluded in Section 6.

3. PMNN – A SCALABLE CONTROL-ORIENTED APPROACH

This section starts with a simple system demonstrating the basic idea of PMNN. We assume
the system can be physically formulated as:

Y � �X� � Fc1� �x1�� Fc2� �x2�� 			� Fcnm � �xnm �

�X � �x1 � �x2 � 			 � �xnm (4)

where Fci (i = 1, 2, . . . , nm) represent the components of the system output, and nm is the
number of modules. �xi ’s are the input variable vectors, corresponding to the respective sys-
tem output components. Each subset �xi (i = 1, 2, . . . , nm) consists of a few elements from
�X . Therefore, they might share vector elements with each other, since an input might be

influential for several different components.
The conventional network model architecture for the system formulated in equation (4)

is shown in Figure 1. This configuration mixes all the input signals and processes them
through one multi-layer neural network. With feedback loops added, the ANN depicted in
Figure 1 can be easily transformed into a recurrent multi-layer-perceptron (MLP) and can
thus be applied to model dynamic systems. Figure 2 shows the newly derived neural-network
paradigm, where the resultant neural network model is

Y �
nm�
i�1

N N_outi (5)

i.e., the activation function of the output neuron is

H�y1� y2� 			� ynm � �
nm�
i�1

yi 	 (6)

The activation function of the output neuron is chosen to be linear to realize the addi-
tive characteristic of the physical system (equation (4)). By applying nm sub-neural-networks
(parallel modules) to capture the flavor of the nm components of the system output Y (Fig-
ure 2), the effects of the nm output components are separated explicitly. This approach, as a
very simple form of PMNN, results in a more accurate model including the structure of the
physical principles. Similar to the conventional network structure, the PMNN configuration
can be applied for modeling dynamic systems through simply adding feedback loops.

Obviously, this modulated neural network idea can be expanded to include other corre-
lation architectures, for instance, if a system to be modeled can be written as:

Y �
nm�
i�1

Fi� �xi� (7)
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Figure 1. Conventional neural network model.

Figure 2. Parallel modulated neural network model

then the resultant neural network model will become:

Y �
nm�
i�1

N N_outi (8)

where NN_outi represents the output of the i-th sub network.
Based on the above discussions, the success of PMNN in system modeling relies on the

fact that the system can be physically formulated as separate parallel modules.
For dynamic system modeling, the general formulas for the PMNN model have been

derived as (Cao, 2001�Wang and Cao, 2001� Cao et al., 2005):

Yi�k� � Hi	 �W i
hid_out

T 
 �Fi [ �W i
inp_hid


 �xT
i

]�� i � 1� 2� 			� nm

Y �k� � H	Y1�k��Y2�k�� 			�Ynm �k�� (9a)

�xT
i

� � �xs
i

T �Y �k � 1��Y �k � 2�� 			�Y �k � no�� u�k�� u�k � 1�� 			� u�k � nu��
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Yi�k� � Hi	 �W i
hid_out

T 
 �Fi [ �W i
inp_hid


 �xT
i

]�� i � 1� 2� 			� nm

Y �k� � H	Y1�k��Y2�k�� 			�Ynm �k�� (9b)

�xT
i

� � �xs
i

T �Y �k � 1��Y �k � 2�� 			�Y �k � no�� u�k�� u�k�
2� 			� u�k�n p�	

In this paper, the default vector orientation is column. In equation (9), Y is the system
output, Yi ’s are the outputs of the individual modules, i is the module index, �xs

i
is the state

variables for the ith module, �xi is the input vector for the ith sub-network (module), �W i
hid_out

(vector dimension: N_hidi , column vector) is the network weighting vector from the hidden
layer to the output layer for the ith module, N_hidi is the number of hidden layer neurons for
the ith module� �W i

inp_hid
(dimension: N_hidiN_inpi ) is the network weighting matrix from

the input layer to the hidden layer for the ith module, N_inpi is the number of NN input for the
ith module� �Fi is the activation function vector of the hidden layer neurons for the ith module,
and u is the control signal, no is the order of the output-delay, nu is the order of the input-
delay. The operator “
” is the inner multiplication of vector/vector or matrix/vector pairs.
The activation function of the output neuron H is derived based on the structural information
of the available first-principle-based or empirical correlations. Equation (9b) is a variation of
equation (9a) with nu equals zero. Therefore, only the current control signal, as well as the
higher order polynomial terms of it (with np as the highest polynomial order), are applied as
the inputs for the individual modules. Considering that the time history of the output already
contains the information concerning previous time steps’ control input, equations (9a) and
(9b) can actually be regarded as equivalent with suitably chosen network configurations and
sizes. In equation (9), the current output is related with the output of previous time steps,
which makes it a dynamic formula.

The PMNN correlation between the system output and the control input/state variables
can be formulated in a way more explicitly reflecting structural information of physical prin-
ciples, provided this kind of information is available (Cao, 2001�Wang and Cao, 2001):

Yi�k� � Hi	 �W i
hid_out

T 
 �Fi [ �W i
inp_hid


 � �xs
i

T �Y �k � 1��Y �k � 2�� 			�Y �k � no�]��
i � 1� 2� 			� nm

Y �k� � Hp	Y1�k��Y2�k�� 			�Ynm �k�� �xT
s
� u�k��� (10a)

�xs � �xs
1
� �xs

2
			 � �xs

nm

Hp � A polynomial function	

Equation (10a) is the foundation for the PMNN-based MR damper model to be presented
in Section 5 of this paper. In this formula, the control input does not show up in the input layer
of the sub-networks. Instead, it only appears in the output layer of the PMNN, correlating
with the system output as a polynomial function. As will be shown later, this enables a
single model applicable as a forward as well as an inverse model, which therefore benefits
controller designs. It also improves the input-output scalability, which is often lacking in the
conventional hybrid ANN modeling methodologies.
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As shown by equation (10a), the input state variables ( �xs
i
, i � 1� 2� 	 	 	 � nm) may also

be inputs for the polynomial output formula (H p) if scalability exists between them and the
final PMNN output. Obviously, depending upon the system to be modeled, the input state
variables can exclusively serve as inputs for the sub-networks (modules), i.e., they will not
show up at all in the polynomial output formula:

Y �k� � Hp	Y1�k��Y2�k�� 			�Ynm �k�� u�k��� (10b)

The physics-based structure enables PMNN to provide accurate prediction even when
the input is significantly different from the training data in both the amplitude and pattern.
This is obviously desired for modeling control actuators, noticing that the design space for
the controller does not necessarily fall in the range of the training data, which is usually
collected under nominal operating conditions.

During the training process of PMNN, it makes sense to rearrange the weighting vec-
tors and matrices of all the modules into one overall weighting vector. The overall PMNN
weighting vector is formulated as:

�WP M N N � 	 �W T
1 � �W T

2 � 			� �W T
nm
�T �

�Wi �
� �W i

inp_hid

�W i
hid_out

�
� i � 1� 2� 			� nm

�W i
inp_hid

� 	 �W i
inp_hid

�1� 1�� �W i
inp_hid

�1� 2�� 			� �W i
inp_hid

�1� No_hidi��

�W i
inp_hid

�2� 1�� �W i
inp_hid

�2� 2�� 			� �W i
inp_hid

�2� No_hidi��

	 	 	 �

�W i
inp_hid

�No_inpi � 1�� �W i
inp_hid

�No_inpi � 2�� 			�

�W i
inp_hid

�No_inpi � No_hidi��T 	 (11)

Therefore, the dimension of the overall weighting vector is:

dimP M N N �
nm�
i�1

[�No_inpi � 1�No_hidi 	 (12)

For a conventional dynamic MLP, the overall weighting vector is:

�WN N � 	 �Winp_hid �1� 1�� �Winp_hid �1� 2�� 			� �Winp_hid �1� No_hid��

�Winp_hid �2� 1�� �Winp_hid �2� 2�� 			� �Winp_hid �2� No_hid��

	 	 	 �

�Winp_hid �No_inp� 1�� �Winp_hid �No_inp� 2�� 			� �

�Winp_hid �No_inp� No_hid� �W T
hid_out�T 	 (13)
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In equation (13), the superscript i is dropped since now there is only one processing
module, versus multiple ones of PMNN as shown in equation (11). The neural network cor-
relation for the conventional approach is thus formulated as:

Y �k� � H	 �Whid_out
T 
 �F[ �Winp_hid 
 � �xT

s �Y �k � 1��Y �k � 2�� 			�Y �k � no��

u�k�� u�k � 1�� 			�� u�k � nu�]� (14a)

where �Whid_out is the weighting vector from the hidden layer to the output layer, �F is the
activation function operator of the hidden layer, �Winp_hid is the weighting matrix from the
input layer to the hidden layer, �xs is the input state vector, Y �k� j j�� j j � 1� 2� 			no are the
time-delayed output feedbacks. One possible variation of equation (14a) has nu equals zero,
and includes higher polynomial orders of the control input:

Y �k� � H	 �Whid_out
T 
 �F[ �Winp_hid 
 � �xT

s �Y �k � 1��Y �k � 2�� 			�Y �k � no��

u�k�� u�1�2� 			� u�k�n p ]� (14b)

where np represents the highest polynomial order of the control input. The variations shown
in equations (14a) and (14b) parallel with those demonstrated by equations (9a) and (9b) for
PMNN.

Obviously, the dimension of the overall weighting vector for a conventional single MLP
approach is:

dimN N � �No_inp � 1�No_hid	 (15)

Since the sizes of sub-networks of PMNN are usually much smaller than the conven-
tional single MLP approach, the PMNN will not necessarily increase the numerical burden
of network training. Actually, it has been shown many times that the PMNN converges faster
than a conventional hybrid network model (Cao, 2001� Cao et al., 2005).

In the next section (Section 4) of this paper, the conventional recurrent MLP-based MR
damper model will be synthesized using equation (14).

4. MR DAMPER MODEL BASED ON CONVENTIONAL HYBRID

NETWORK APPROACH

The previous neural network MR damper model (Chang and Roschke, 1998), while demon-
strating promising accuracy, cannot be directly applied for simulation purpose because the
measured force is normally not available during these stages and the dynamic characteristics
are thus not well represented. To address the dynamics of the MR damper, in this section,
network outputs (estimated damper force) of previous time steps are used as NN inputs (in-
stead of the measured damper force) to derive a conventional-hybrid-network-based model.
The analytical data calculated using Spencer’s model (1997) is applied for network training
and testing.
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It has been demonstrated that the hybrid network architecture integrated with physical
principles can dramatically improve the performance of network models (Cao et al., 2004a,b�
Aceves et al., 2006). The physical principles (equation (1)) suggest that the velocity is the
dominant factor in determining the damping force of the MR fluid. Equation (1) also reveals
that the output force of the MR damper strongly relies not only on the velocity but also on
the sign of the velocity, indicating that correlation between the velocity and the damping
force is strongly nonlinear. By only choosing the displacement of the piston head as net-
work input, Chang and Roschke’s model (1998) did not explicitly realize this relationship.
Therefore, new network inputs reflecting the physical principles, such as the velocity of the
piston head, are introduced to enhance the model performance. The square and cubic terms
of the velocity are also used as neural network inputs to help capture the nonlinear char-
acteristics of the force–velocity correlation. Another important relationship that needs to be
reflected by the model is the voltage-dependence of the damping force. Since the MR damper
is frequently used as a device for vibration control, accurately modeling this characteristic is
critical for the success of controller design. As Spencer et al. (1997) pointed out, the system
response saturates when the applied voltage is larger than a specified value (2.25 V for the
damper tested by Spencer). That is, the relationship between the voltage and output force
is also strongly nonlinear. Hence, linear and square terms of the applied voltage are intro-
duced as network inputs to approximate the nonlinear force–voltage correlation. With all
these improvements and new features, Figure 3 shows the MR damper model based on the
conventional neural network architecture. The configuration shown in Figure 3 is indeed the
same as that of Figure 1 except for the feedback loops. This network is a realization of the
conventional recurrent network formula (equation 14b) with output and control input delay
order no and nu at two and zero respectively, and polynomial order of the control input np

equals 2:

Fk � H	 �Whid_out
T 
 �F[ �Winp_hid 
 �xT ]�

�x T � � �xT
s �Y �k � 1��Y �k � 2�� u�k�� u�k�2�

�x T
s � [ �xk �x2

k �x3
k � 1]� u�k� � 
k�

[Y �k� Y �k � 1� Y �k � 2�] � [Fk Fk�1 Fk�2]	 (16)

This ANN MR damper model is trained and tested based on the analytical data calcu-
lated using Spencer’s model (1997). The analytical model provides a fast and easy way to
create any kind of operating combination for network training and testing, which is partic-
ularly beneficial for validating the input-output scalability requiring some quite outrageous
voltage (the control input for this case) profile. Once a model has been validated by legit-
imate analytical results, it usually performs well using real experimental data, as has been
demonstrated by Cao et al. (2005). The system parameters used are illustrated in Table 1.
Since the network model is a dynamic system, the dynamic Levenberg-Marquardt (Press et
al., 1986) algorithm, a robust and fast scheme commonly used in neural network training,
is used for network training. In the Levenberg-Marquardt algorithm, the Hessian matrix is
approximated by a 1st order gradient, and the updating step is adaptively adjusted.
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Figure 3. Dynamic MR damper model based on the conventional network approach.

A dynamic regression correlation to calculate the gradient of the network output with
respect to the network weighting vector is applied to reflect the dynamic nature of this model:

d Fk

d �WN N

� �Fk

� �WN N

i f k � 1

d Fk

d �WN N

� �Fk

� �WN N

� d Fk

d Fk�1

d Fk�1

d �WN N

i f k � 2

d Fk

d �WN N

� �Fk

� �WN N

� d Fk

d Fk�1

d Fk�1

d �WN N

� d Fk

d Fk�2

d Fk�2

d �WN N

i f k � 2 (17)

where Fk , Fk�1, Fk�2 are the current, previous-time-step, and 2-time-step delayed system out-
puts, with k as the current time step. The definition of the overall weighting vector ( �WN N ) for
this conventional dynamic MLP has been defined in equation (13). The difference between
�Fk

� �WN N

and
d Fk

d �WN N

is due to the fact that the system is a dynamic system with the feedback

loops (that is, Fk is a function of network weightings, as well as the outputs of previous time
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Table 1. MR Damper model parameters [Spencer et al., 1997].

Parameter Value Parameter Value
c0a 21.0 N.sec/cm k1 5.0 N/cm
c0b 3.50 N.sec/(cm.v) x0 14.3 cm
c1a 283.0 N.sec/cm � 363 cm�2

c1b 2.95 N.sec/(cm.v) B 363 cm�2

�a 140.0 N/cm A 301
�b 695 N/(cm.v) n 2
k0 46.9 N/cm  190 sec�1

steps also correlating with the network weightings). For instance, to calculate the derivative
of the output with respect to the hidden-output layer weight vector (No_hid 1), we have
partial differential as (from equation (16)):

�Y �k�

� �Whid_out

� �Fk

� �Whid_out

� �H�Z�

�Z

��
z�Yo�k�

�F[ �Xo�k�] (18a)

Yo�k� � �Whid_out
T 
 �F[ �Xo�k�] (18b)

�Xo�k� � [X1
o
�k�X 2

o
�k� 	 	 	 X No_hid

o
�k�]T

� �Winp_hid 
 [ �x T
s �Y �k � 1��Y �k � 2�� u�k�u�k�2]T (18c)

�F[ �Xo�k�] �

�				
				�
F1[X1

o
�k�]

F2[X2
o
�k�]

			

F No_hid[X No_hid
o

�k�]

�								�
	 (18d)

For a static system:

d Fk

d �Whid_out

� �Fk

� �Whid_out

(19)

but since the current conventional-network-based MR damper model contains inputs that are
actually time-delayed system outputs (equation (16)), which also depends on the network
weightings, regression terms have to be added for accurate gradient calculation (equation
(18c)):

dY �k�

d �Whid_out

� �Y �k�

� �Whid_out

� dY �k�

dY �k � 1�

dY �k � 1�
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� dY �k�

dY �k � 2�

dY �k � 2�

d �Whid_out

� �Y �k�

� �Whid_out

� d H�Z�

d Z

��
Z�Yo�k�

�Whid_out
T 

��

d �F[ �X]

d �X
�� �X� �Xo�k�
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d �Xo�k�

dY �k � 1�

�
dY �k � 1�

d �Whid_out

�
�

d �F[ �X ]

d �X
�� �X� �Xo�k�

d �Xo�k�

dY �k � 2�

�
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�
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�
d �F[ �X ]

d �X
�� �X� �Xo�k�
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�

�

�����������

d F 1 [X 1]

d X 1

���X1�X1
0
�k�

�Winp_hid �1� ikk�

d F2[X2]

d X2

���X2�X2
0
�k�
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���X No_hid�X No_hid
0 �k�
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�����������
� kk � 1� 2

ikk is the position number of Y �k � kk� in the input layer (Fig. 3) :

i1 � 7� i2 � 8	 (20)

Similarly, the partial differential of the output with respect to the input-to-hidden-layer
weighting matrix, which is a 2-dimensional tensor, can be calculated as:

�Fk

� �Winp_hid

� �H�Z�

�Z

��
Z�Yo�k�

�Whid_out
T 
 � �F[ �X]

� �X
�� �X� �Xo�k�

� �Xo�k�

� �Winp_hid

i	e	�

�Fk

� �Winp_hid �i i� j j�
� �H�Z�

�Z

��
Z�Yo�k�

�Whid_out �i i�
� �Fii [Xii ]

�Xii

���Xii�Xii
0 �k�

�x� j j�

i i � 1� 2� 			� No_hid� j j � 1� 2� 			� No_inp	 (21)

In equation (21), �x� j j� is the jjth input of the network as defined in equation (16). A re-
gression formula similar to equation (20) completes the calculation of the dynamic derivative
with respect to the input-layer-hidden-layer weighting matrix.

Constant applied voltage, and sinusoidal velocity signal with combinations of different
frequencies and magnitudes are used to derive the training data sets for network training.
The well-trained MR damper model is then tested by analytical results obtained based on
operating conditions different from the training sets.

As Figure 4(a) shows, the testing voltage profile remains at zero for the first 0.5 seconds,
then starts to increase until the saturation voltage (2.25 volt.) is reached. This voltage pattern
is different from the constant voltage applied in the training cases, while the magnitude of
the voltage remains the same as the training data sets.

The network testing results are illustrated by Figures 4(b), (c) and (d). The comparison
between the time history of the neural network output and the analytical result is demon-
strated in Figure 4(b). As this figure shows, the neural network output agrees well with the
analytical result. Figure 4(c) shows the relationship between the damping force and the dis-
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Figure 4. Performance of the conventional network-based dynamic MR damper model: network testing.
(a) Operating conditions� (b) Comparison between the network output and analytical prediction: time
Domain� (c) Comparison between the network output and analytical prediction: force-displacement
relationship� (d) Comparison between the network output and analytical prediction: force-speed
relationship.

placement, while Figure 4(d) illustrates the damping force’s dependence on the speed of the
piston head. As shown by Figures 4(b), (c) and (d), the conventional network-based dynamic
MR damper model provides promising results for the tested scenario and correctly captures
the system dynamics. It is worth pointing out here that the damping hysteresis phenomenon
(Figure 4(d)) is effectively reflected by the ANN model.
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The MR damper model presented in the current section, while providing accurate re-
sults under this specific testing scenario, does not necessarily guarantee satisfying results
for other voltage input profiles with more significant deviations from the training data (as
will be shown in the next section). Therefore, it is not sufficient for system design, which
demands better input-output scalability that can only be achieved by including the structural
information of the physical principles. This is indeed a restatement of the major motivation
behind the PMNN-based system modeling.

5. CONTROL-ORIENTED MR DAMPER MODEL BASED ON PMNN –

SCALABLE AND INVERTIBLE

5.1. Scalability Validation – Testing with Voltage Profile Significantly Different from the
Training Data

Although physical principle flavors have been included in the conventional-network-based
MR damper model (Section 4), this approach does not realize the input-output scalability
desired for the controller design. Aiming at improving voltage scalability and thus enhancing
the model’s applicability for controller design, the modulated network concept is utilized
to develop a more advanced MR damper model (Figure 5). The same simulated data for
developing the conventional network model in Section 4, derived using Spencer’s model
(1997), is applied for training and testing the newly developed PMNN MR damper model.

As Figure 5 shows, the model consists of three parallel sub-neural networks. The first
module represents the dynamic behavior of the MR damper when the applied voltage is zero,
i.e., this component is not controllable. The second module is responsible for capturing the
linear dependence of the damping force on the applied voltage. Since the correlation between
the damping force and the applied voltage is highly nonlinear, a third module, aimed at
reflecting the nonlinear relationship between the applied voltage and output damping force,
is added. In addition, the speed-dependence of the 2nd and 3rd modules, the controllable
components, is also explicitly implemented into the network. One issue worth noting here is
that a “cut-off” filter is applied on the control signal (the input voltage) in this PMNN model.
That is, when the voltage magnitude becomes higher than the saturation value – 2.25 volts,
the input voltage amplitude applied to the network remains at 2.25 volts.

Applying the PMNN formula of equation (10a), the model in Figure 5 can be written as
(noticing now the number of modules nm is 3):

Yi�k� � Hi	 �W i
hid_out

T 
 �Fi [ �W i
inp_hid


 � �xs
i

T �Y �k � 1��Y �k � 2�]��
�xs

i

T � [ �xk �x2
k �x3

k ]� i � 1� 2� 3

[Y �k� Y �k � 1� Y �k � 2�] � [Fk Fk�1 Fk�2]�

Y �k� � Hp	Y1�k��Y2�k��Y3�k�� �xs
T � u�k��

� �1Y1�k�� �2Y2�k� �xku�k�� �3Y3�k� �xku�k�2

where u�k� � 
k 	 (22)
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Figure 5. Dynamic MR damper model based on the parallel modulated neural network

Applying more explicit notations, we have:

Fk � F[ f N N1
k � f N N2

k � f N N3
k ] � �1 f N N1

k � �2 f N N2
k �xk
k � �3 f N N3

k �xk

2
k

f N Ni
k � fi [Fk�1� Fk�2� �xk� �Wi ]� i � 1� 2� 3 (23)

where f N Ni
k represent the outputs of the ith sub-neural networks, �xk is the speed at time k,


k is the voltage at time k, �Wi is the weighting vector of the ith sub-network, parameters
�i�i � 1� 2� 3� are determined by trial and error. Similar to the training of the conventional
network based-MR damper model, the following chain rule-based correlations are derived to
calculate the dynamic gradient information during the network training process:
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where

� f N Ni
k

� �WP M N N

�
�
� f N Ni

k

� �W1
��i� 1�

� f N Ni
k

� �W2
��i� 2�

� f N Ni
k

� �W3
��i� 3�

�T

(24c)

�W1, �W2 and �W3 are the weighting vectors of the first, second and the third sub neural networks
(modules), as defined in equation 11� ��i� j� equals one if i = j, otherwise it is zero. Partial
derivatives of each sub-network output with respect to the network weightings are similar as
those in equations (18) and (21).

Network training and testing are successfully performed based on the same simulated
data applied for developing the conventional network model. In the previous section (Sec-
tion 4), the MR damper model based on the conventional neural network approach has been
successfully tested with a piecewise-linear magnetic profile. To demonstrate the performance
improvement, network testing based on a voltage profile with large-magnitude and high fre-
quency sinusoidal perturbation is carried out for the new networks – the PMNN model de-
scribed in the current section, as well as for the conventional network MR damper model
described in the previous section.

Noticing the difference between the training and testing data is much more significant�
the network testing based on the sinusoidal-perturbed magnetic field illustrates the improved
model scalability concerning the magnetic field. Figures 6(a) and (b) show the applied volt-
age and speed profiles, respectively. The testing results of the new network approach and
the conventional network model, together with the simulated data, are illustrated in Figure
6(c). The analytical simulation result exhibits high frequency oscillation behavior due to the
high frequency component of the applied voltage profile. While the prediction of the conven-
tional network model shows a clear mismatch with the analytical result, the PMNN network
result closely follows the analytical prediction, i.e., the modulated approach provides a more
accurate estimation and demonstrates better voltage scalability.

5.2. PMNN MR Damper Model – An Invertible Model

The testing results clearly indicate the superior control input-output scalability of the pro-
posed PMNN over the conventional hybrid ANN for modeling MR damper. This feature
alone qualifies the PMNN MR damper model as a strong candidate for controller design,
since it performs well in a much larger operational space than that covered by the training
data, a necessity for system design. As mentioned earlier in this paper, PMNN has another
outstanding feature attractive for system design: it can be transformed into an inverse model
through simple algebraic operations. In other words, instead of two models (Chang and Zhou,
2002� Du et al., 2006), now only one model is needed for the forward mapping as well as the
inverse mapping.

Based on equation (23), the desired voltage can be obtained by solving the quadratic
equation:
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Figure 6. Performance comparison between the parallel modulated and conventional network-based MR
damper model: network testing. (a) Applied voltage profile� (b) Speed profile� (c) Testing comparison
between the PMNN and conventional ANN-based MR damper model.
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d
k � � �2 f N N2

k

2�3 f N N3
k

�
�
��2 f N N2

k �xk�2 � 4�3 f N N3
k �xk��1 f N N1

k � Fd
k �

2�3 f N N3
k �xk

i f f N N3
k �� 0� �xk �� 0 (25a)


d
k � Fd

k � �1 f N N1
k

�2 f N N2
k �xk

i f f N N3
k � 0� f N N2

k �� 0� �xk �� 0	 (25b)

As demonstrated by equation (25), if f N N3
k � 0, the model becomes a linear model, and

the desired voltage (the control signal) is subsequently a linear function of the desired force.
It is obvious that for a solution to exist, the desired force has to be larger than the output of
the first sub-network �1 f N N1

k , which reflects the term not directly related with the velocity.
Otherwise, the desired force cannot be further modulated.

Under most circumstances, f N N3
k � 0. The desired voltage is thus a nonlinear function

of the desired force (equation (25a)), and the unique solution exists when the following
condition is satisfied:

Fd
k � �1 f N N1

k � ��2 f N N2
k �2 �xk

4�3 f N N3
k

� i f �xk � 0

Fd
k � �1 f N N1

k � ��2 f N N2
k �2 �xk

4�3 f N N3
k

� i f �xk � 0	 (26)

As illustrated by equations (25)–(26), the PMNN approach can serve as a forward model
as well as an inverse model through realizing a polynomial input-output correlation. Not only
does it provide a simple way to back-calculate the open-loop control input based on a desired
output value, but it also possesses better input-output scalability. In other words, the model
can perform well even when the input space is outside that provided by the training data sets.
This is especially beneficial for controller design, the design space of which can inevitably
fall outside the training space.

6. CONCLUSION

Two ANN-based MR damper models are developed in this study: a conventional hybrid
neural network model enhanced by physical principles and feedback loops realizing sys-
tem dynamics, and a PMNN-based MR damper model. The first approach (defined as the
baseline model in this paper) improves upon the previous ANN-based MR damper model-
ing efforts through the inclusion of system dynamics. The second one further improves the
control-input-output scalability and realizes the invertible model concept, which makes it a
control-oriented approach. The network training and testing results clearly indicate that both
models provide satisfying performance, while the second one, the PMNN model, outper-
forms the baseline model by showing superior control-input-output scalability. The candi-
dacy of PMNN as a control-oriented actuator modeling tool is further strengthened by the
fact that it is invertible� in other words, the inverse model with desired force as input and the
control signal–voltage as output can be easily established by algebraically manipulating the
forward model.
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This study demonstrates the feasibility of developing scalable and invertible MR damper
models, which can be easily applied for system design purposes. It should be pointed out here
that like all the other modeling techniques, PMNN is not a “universal” approach� a successful
implementation of PMNN demands knowledge about the structure of physical principles.
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