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a b s t r a c t

Wind power generation is gaining popularity as the power industry in the world is moving toward
more liberalized trade of energy along with public concerns of more environmentally friendly mode of
electricity generation. The weakness of wind power generation is its dependence on nature—the power
output varies in quite a wide range due to the change of wind speed, which is difficult to model and
predict. The excess fluctuation of power output and voltages can influence negatively the quality of
electricity in the distribution system connected to the wind power generation plant. In this paper, the
authors propose an intelligent adaptive system to control the output of a wind power generation plant
to maintain the quality of electricity in the distribution system. The target wind generator is a cost-
effective induction generator, while the plant is equipped with a small capacity energy storage based on
conventional batteries, heater load for co-generation and braking, and a voltage smoothing device such as
a static Var compensator (SVC). Fuzzy logic controller provides a flexible controller covering awide range
of energy/voltage compensation. A neural network inverse model is designed to provide compensating
control amount for a system. The system can be optimized to cope with the fluctuating market-based
electricity price conditions to lower the cost of electricity consumption or to maximize the power sales
opportunities from the wind generation plant.

© 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In remote areas such as small islands, diesel generators are
the main power supply. Diesel fuel has several drawbacks: it is
expensive because transportation to remote areas adds extra cost,
and it causes air pollution by engine exhaust. Providing a feasible
economical and environmental solution to diesel generators is
important. A hybrid system of wind power and diesel generators
can benefit islands or other isolated communities and increase fuel
savings. Wind is, however, a natural energy source that produces
a fluctuating power output. The excessive fluctuations of power
output adversely affect the quality of power in the distribution
system, particularly frequency and voltage (Feris, 1990; Hunter
& Elliot, 1994). Autonomous renewable energy systems such as
wind, solar, and micro-hydro require control methods to maintain
stability due to the real-time variation of input energy and load,
while maximizing the use of the renewable resources.
Since the early eighties, the wind–diesel autonomous power

system (WDAPS) has been accepted and widely used as electricity
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generating systems for remote areas. In such cases, the WDAPS
serves an entire isolated load and is responsible for maintaining
frequency and voltage stability. The main driving force in WDAPS
design was to secure both fuel saving and reliable power supply.
Usually, diesel generator installed capacity is sized to meet the
peak power demand, but is used in practice to supply power only
when the wind power output is insufficient to meet the load
demand (Karaki, Chedid, & Ramadan, 2000).
The random power disturbances at the output of wind-

turbine generators can cause relatively large frequency and voltage
fluctuations. In a large power system network, these fluctuations
can have little effect on the overall quality of the delivered
energy. However, with weak autonomous networks, these power
fluctuations can have a marked effect, which must be eliminated
regardless of the penetration rate, that is to say, the rate of wind
power with respect to the power from a conventional power plant
in the power system network (Chedid, Karaki, & Chadi, 2000;
Pandiaraj, Taylor, & Jenkins, 2001). Hence, the control of the voltage
and frequency of a weak-wind–diesel system is considered more
challenging than that in large grids.
The hybrid strategy is motivated with the hope that an

effective combination of controllers might improve the control
performance. Since the PID controller is simple to understand
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and tune, it is dominantly used in industrial systems (Hagan &
Menhaj, 1994). However, it is difficult to obtain good performance
from the PID controller only because a nonlinearity makes control
with a PID controller difficult unless gain scheduling is used.
Linearizable systems can be controlled by conventional linear
controllers such as state space method, optimal control, robust
control, model predictive control, etc. Neural network, fuzzy logic
and genetic algorithm are widely studied to deal with highly
nonlinear systems.
The feedforward control concept has attractive features of

practical relevance. Since it is assumed that a stabilizing controller
is available in advance, the experiment to collect a set of training
data sets is easily performed. Another feature is that one can
introduce the feedforward signal gradually. In applications where
an inappropriate control input can cause damage, this can be a soft
control strategy (Madsen, 1995).
The main reasons for using feedback are to stabilize unstable

systems and to reduce the influence from possible disturbances
and model inaccuracies. Using feedback to ensure that the system
rapidly follows changes in the reference is not always a good
practice. A rapid reference tracking obtained with feedback
generally has the side effect that the controller becomes highly
sensitive to noise which implies the poor robust properties. To
achieve a satisfying reference tracking without feedback, the
feedforward is applied which is governed only by the reference.
Moreover, feedforward control is used for regulation where the
reference attains constant levels for longer periods of time.
To speed up the tracking of set-point changes, a feedforward
controller is typically designed to provide the steady-state value of
the control signal for minimizing tracking error (Haley, Soloway, &
Gold, 1999; Madsen, 1995).
In this paper, fuzzy–neural hybrid controller is proposed and

applied for pitch control of wind turbine. Fuzzy logic is applied
for designing a feedback controller. Neural network inverse model
is designed for a dynamic feedforward controller. Therefore, fast
damping from fuzzy controller and fast reference tracking can be
accomplished.

2. System description

The wind–diesel autonomous power system consists of the
wind turbine having the induction generator (IG), the diesel engine
(DE), synchronous generator (SG), superconducting magnetic
energy storage (SMES), and the dumpload. When wind generated
power is sufficient to serve the load, the DE is disconnected
from the SG by electromagnetic clutch, and the synchronous
generator acts as a synchronous condenser. The main purpose
of the dumpload is to regulate the system frequency. The SG
(with/without diesel) is used for reactive power control that is
achieved by the excitation system to regulate voltage. The SG
also contributes the reactive power to compensate the induction
generator.
SMES is a control unit for a synchronous machine (Tripathy,

Kalantar, & Balasubramanian, 1991). When there is a sudden rise
in the demand of load, the stored energy is immediately released
through the power system. As the governor and pitch control
mechanism start working to set the power system to the new
operating condition, a SMES unit charges back to its initial value
of current. In the case of sudden release of the loads, a SMES
immediately gets charged towards its full value, thus absorbing
some portion of the excess energy in the system, and as the system
returns to its steady state, the excess energy absorbed is released
and SMES current attains its normal value.
Fig. 1 shows the prototype of a wind–diesel autonomous power

system (Chedid et al., 2000). Generator dynamicsmodel consists of
a synchronous machine driven by diesel engine through flywheel
and connected in parallel with an induction machine driven by a
wind turbine.
Fig. 1. The prototype of wind–diesel autonomous power system.

Fig. 2. The basic configuration of WDAPS.

Blade pitch control of wind turbine has the potential for
producing the highest level of interaction because of the presence
of both diesel and wind-turbine control loops (Tripathy et al.,
1991). The pitch control system consists of a power measurement
transducer, a manual power set-point control, a proportional plus
integral feedback function, and hydraulic actuator, which varies
the pitch of the blades. Turbine blade pitch control has a significant
impact on the dynamic behavior of the system. Variable pitch
turbines operate efficiently over a wider range of wind speeds
than fixed pitchmachines. The generator dynamics model consists
of a synchronous generator driven by a diesel engine through a
flywheel and connected in parallel with an induction generator
driven by a wind turbine. The diesel generator will act as a dummy
grid for the wind generator, which is connected in parallel. When
wind power rises above the power set point and SMES unit is fully
charged, the pitch control system begins to operate to maintain an
average power equal to the set point. The study in this paper is
focused on the designing of turbine blade pitch controller based
on fuzzy logic and neural network.
The simplified description of Fig. 1 is in Fig. 2 with SMES

(Tripathy et al., 1991).
The models of the generators are based on the standard

Park’s transformation (Krause, Wasynczuk, & Sudhoff, 1986) that
transforms all stator variables to a rotor reference frame described
by a direct andquadrature (d–q) axis. The set of SG and IG equations
are based on the d–q-axis in accordance with (International
Electrotechnical Commission, 1975). The SMESmodel can be found
in Tripathy et al. (1991).
The nonlinear mathematical model of the wind–diesel power

system is given in detail in Appendix A. The following consid-
erations are taken into account to identify component models:
the electrical system is assumed as a perfectly balanced three-
phase system with pure sinusoidal voltage and frequency. High
frequency transients in stator variables are neglected, which indi-
cates that the stator voltage and currents are allowed to change
instantly. This is because this paper is focused on the transient pe-
riod instead of sub-transient period. Damper-winding models are
ignored because their effect appears mainly in a grid-connected
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Fig. 3. Membership function of error and change in error.

system or a system with several synchronous generators running
in parallel. The different component models are of equal level of
complexity.

3. Fuzzy–neural hybrid control

3.1. Feedback controller based on fuzzy logic

Fuzzy control systems are rule-based systems in which a set
of fuzzy rules represents a control decision mechanism to adjust
the effects of certain system conditions. Fuzzy controller is based
on the linguistic relationships or rules that define the control
laws of a process between input and output (Passino, 1997; Yen
& Langari, 1999). This feature draws attention toward a fuzzy
controller due to its nonlinear characteristics and no need for an
accurate system modeling. The fuzzy controller consists of rule
base, which represents a fuzzy logic quantification of the expert’s
linguistic description of how to achieve good control, fuzzification
of actual input values, fuzzy inference, and defuzzification of fuzzy
output. When the expert’s linguistic description is not available,
fuzzy controller still can be designed by using the measurement of
real-time input/output data (Park, Moon, & Lee, 1995, 1996)
In this paper, a total of 121 rules are used for the power system

under study. The general form of the fuzzy rule is given in the
if–then form as follows:

if x(k) is A and∆x(k) is B, then y(k) is C, (1)

where
x,∆x: input signals,
y: controller output,
A, B, C: linguistic variables.
The linguistic values extracted from the experimental knowl-

edge are NH (negative high), NL (negative large), NB (negative big),
NM (negative medium), NS (negative small), ZE (zero), PS (positive
small), PM (positive medium), PB (positive big), PL (positive large),
and PH (positive high).
In the power system under study, generator power deviation

(1P) is chosen for the input of a fuzzy controller. The linguistic
descriptions provide experimental expressions of the expert for
a control decision-making process and each linguistic variable is
represented as triangular membership functions shown in Figs. 3
and 4. In the fuzzy controller, the input normalization factors are
chosen to represent the proper membership quantifications of
linguistic values. In addition, normalization factors can be used to
yield the desired response of the fuzzy controller. g1, g2 stand for
a normalization factor for input of fuzzy controller and g0 stands
for a denormalization factor for output of fuzzy controller. Fig. 3
shows the membership function for error and change in error and
Fig. 4 depicts the membership function for output.
In Figs. 3 and 4, the membership functions are overlapped with

each other to smooth a fuzzy system output and a fuzzy controller
is designed to regulate a system smoothly when an error and a
change in error are near zero. The rules are established to control
transient stability problem for all possible cases. Tables 1 and 2
show the inference rule table for two input fuzzy variables in
negative and positive sides of change in error, respectively.
Fig. 4. Membership function of output.

Table 1
Inference rule table in negative side of change in error.

Error Change in error
−1 −0.8 −0.6 −0.4 −0.2 0

−1 −1 −1 −1 −1 −1 −1
−0.8 −1 −1 −1 −1 −1 −0.7
−0.6 −1 −1 −1 −1 −0.7 −0.4
−0.4 −1 −1 −1 −0.7 −0.4 −0.2
−0.2 −1 −1 −0.7 −0.4 −0.2 −0.1
0 −1 −0.7 −0.4 −0.2 −0.1 0
0.2 −0.7 −0.4 −0.2 −0.1 0 0.1
0.4 −0.4 −0.2 −0.1 0 0.1 0.2
0.6 −0.2 −0.1 0 0.1 0.2 0.4
0.8 −0.1 0 0.1 0.2 0.4 0.7
1 0 0.1 0.2 0.4 0.7 1

Table 2
Inference rule table in positive side of change in error.

Error Change in error
0.2 0.4 0.6 0.8 1

−1 −1 −1 −1 −1 −1
−0.8 −0.4 −0.2 −0.1 0 −0.7
−0.6 −0.2 −0.1 0 0.1 −0.4
−0.4 −0.1 0 0.1 0.2 −0.2
−0.2 0 0.1 0.2 0.4 −0.1
0 0.1 0.2 0.4 0.7 0
0.2 0.2 0.4 0.7 1 0.1
0.4 0.4 0.7 1 1 0.2
0.6 0.7 1 1 1 0.4
0.8 1 1 1 1 0.7
1 1 1 1 1 1

It is required to find the fuzzy region for the output for each rule.
The centroid or the center of gravity defuzzificationmethod (Yen &
Langari, 1999) is usedwhich calculates themost typical crisp value
of the fuzzy set and ‘‘y is C ’’ in Eq. (1) can be expressed by (2).

y =

∑
i
µA(yi)× yi∑
i
µA(yi)

(2)

where µA is a degree of the membership function.

3.2. Feedforward compensator based on neural network inverse
model

A neural network can model an input/output relationship of
a dynamic system. A direct or forward model is a mapping that
maps a system input to a system output. An inverse model, on
the other hand, is an inverse mapping that maps a system output
to a system input. In particular, if one sets the output to be the
reference, then the inversemodel could give a desired input for the
output to follow the reference or set point. The concept of inverse
model was used in designing feedforward controls for dynamic
systems (Harnold, Lee, Lee, & Park, 1998; Kawato, Furukawa, &
Suzuki, 1987; Nakanishi & Schaal, 2004; Park, Choi, & Lee, 1996).
Kawato et al. (1987) applied the concept of inverse-dynamics
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Fig. 5. Training mode of NNIM.

Fig. 6. Neural Network Inverse Model (NNIM).

model to control a three-joint robotic manipulator represented in
a continuous nonlinear kinematics model. In view of the fact that
the inverse-dynamicsmodel only gives the ideal computed torque,
feedback-error-learning scheme was utilized to compensate for
the output error. Nakanishi and Schaal (2004) reformulated the
feedback-learning scheme for a class of nonlinear systems from a
viewpoint of the nonlinear adaptive control theory. Park and Choi
et al. (1996) and Harnold et al. (1998) approached the problem
from the viewpoint of discrete-timemodel of the nonlinear system,
thus avoiding the issues of the invertibility of a nonlinear model.
A two layer neural network is applied to obtain a dynamic

feedforward compensator (Haykin, 1998). In general, the output
of a system can be described with a function or a mapping of the
plant input–output history (Haykin, 1998; Ng, 1997). For a single-
input single-output (SISO) discrete-time system, the mapping can
be written in the form of a nonlinear function as follows:

y(k+ 1) = f (y(k), y(k− 1), . . . , y(k− n),
u(k), u(k− 1), . . . , u(k−m)). (3)

Solving for the control, (3) can be represented as the following:

u(k) = g(y(k+ 1), y(k), y(k− 1), y(k− 2), . . . , y(k− n),
u(k− 1), u(k− 2), u(k− 3), . . . , u(k−m)), (4)

which is a nonlinear inverse mapping of (3). The objective of the
control problem is to find a control sequence, which will drive a
system to an arbitrary reference trajectory. This can be achieved by
replacing y(k+1) in (4)with reference output yref or the temporary
target yr(k+ 1), evaluated by

yr(k+ 1) = y(k)+ α(yref − y(k)), (5)

where α is the target ratio constant (0 < α ≤ 1). The value of α
describes the rate with which the present output y(k) approaches
the reference output value, and thus has a positive value between
0 and 1 (Park et al., 1995; Park & Moon et al., 1996). In Fig. 5,
the training mode is introduced, where ∆ denotes the vector of
delay sequence data. Fig. 6 shows the neural network inverse
model (NNIM) in training mode. All activation functions in the
hidden layer are tanh(x) (described as fj in Fig. 6) and the activation
function in output layer is x (depicted as Fi in Fig. 6).
Fig. 7. The fuzzy–neural hybrid control.

The output of the NNIM can be represented as

ûi(k) = Fi

[
nh∑
j=1

Wijfj

(
nϕ∑
l=1

wjlϕ̄ + wj0

)
+Wi0

]
, (6)

where
ϕ̄ = [y(k+ 1), y(k), . . . , y(k− n), u(k− 1), . . . , u(k−m)]T

and ϕ̄ = [ϕ1, ϕ2, ϕ3, . . . , ϕnϕ ]
T

wjl: weight between input and hidden layers,
nh, nϕ: number of hidden neurons and external input,
Wij: weight between hidden and output layers.
The above neural network inversemodel is trained based on the

input–output data described in Fig. 5. To train the neural network
inversemodel, the Levenberg–Marquardtmethod is appliedwhich
is fast and robust (Haykin, 1998; Madsen, 1995; Ng, 1997). The
trained NNIM is used as a feedforward compensator.
The total control scheme is indicated in Fig. 7. In the fuzzy

controller, the input normalization factors are chosen to represent
the proper membership quantifications of linguistic values. In
addition, normalization factors can be used to yield the desired
response of the fuzzy controller. The symbol∆ denotes the vector
of delay sequence data. The total control input is u(k) = ufb(k) +
uff (k). The feedback control ufb(k) is the output of the fuzzy
controller and the output of the feedforward controller, uff (k), can
be represented as the following:
uff (k) = g(yr(k+ 1), yr(k), yr(k− 1), . . . , yr(k− n),

ufb(k− 1), ufb(k− 2), . . . , ufb(k−m)). (7)
In Fig. 7, once a signal of a feedforward compensator is given

to the control system, the fuzzy controller provides a signal that
minimizes the error between the system output and its set point.
This control scheme can be a soft way of generating a control signal
to minimize the tracking error and improve system performance
in the sense that the compensating signal is given in advance
(Madsen, 1995). This implies the improvement of the existing
PID-type controller, which is the main purpose of a feedforward
controller in a hybrid control scheme.

4. Simulation

First, a fuzzy controller is designed for a feedback controller
and a neural network inverse model is obtained for a feedforward
compensator. In this paper, α is 0.1 and g1, g2, g0 are 5,
50, and 5, respectively, determined by trial and error. The
Levenberg–Marquardt method is applied to train a neural network
inversemodel. The sampling time is 0.01 s. for the proposed control
action. The training is carried out by giving varying white noise
signals. Firstly, before training, fuzzy control is implemented with
the plant. Secondly, white noise signal is inserted into the fuzzy
controller and data set is obtained, using noise signal as input and
plant output as output. Then, the neural network inverse model
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Fig. 8. Comparison of system response among PI, FC, and FNHC.

(NNIM) is trained by setting the noise signal as output and the plant
output as input of the NNIM.
The proposed fuzzy–neural hybrid controller is tested in a

wind–diesel autonomous power system (WDAPS). Two cases are
considered: first, the sudden step load increase of 0.01 per-unit
(p.u.) when SMES is in discharging mode (rectifier mode); second,
when the SMES is fully discharged and there is a sudden step load
increase. In this case, SMES is in recharging mode (inverter mode).
(The ‘‘(p.u.)’’ stands for ‘‘per-unit’’. It is a normalized value with
respect to a base or reference value.)

4.1. Case 1: A sudden step load increase

The load is suddenly increased by 0.01 p.u. The SMES
releases the charged current (2 p.u.). The governor and pitch
mechanism start operating for charging current of SMES and
damping of WDAPS. Fig. 8 shows improvement of the system
frequency oscillations and power deviations, where PI stands for
conventional proportional–integral controller and FC stands for
fuzzy logic feedback controller.
Fig. 9. Comparison of system response among PI, FC, and FNHC.

4.2. Case 2: Sudden step load increase with fully discharged SMES

In this case, the SMES is fully discharged (0 p.u.). Then, the SMES
needs to recharge current to the set point (2 p.u.). The wind power
generation from the wind turbine is assumed to be not sufficient.
Fig. 9 also shows that the FNHC performance is much better than
the PI and the FC.

5. Conclusion

In this paper, the fuzzy–neural hybrid controller for elec-
tricity quality control of wind power generation plants is pre-
sented. The main idea of hybrid control is that the dynamic
feedforward control can be used for improving the reference
tracking while feedback is used for stabilizing the system and
for suppressing disturbances. Feedforward controller is a neu-
ral network inverse model (NNIM), which is trained by the Lev-
enberg–Marquardt method, and feedback controller is a fuzzy
controller.
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The Fuzzy-NNIM was tested in a wind–diesel autonomous
power system and compared with the conventional PI and the
fuzzy controller. In all cases, the Fuzzy-NNIM out-performed the
conventional PI and the fuzzy controller. The Fuzzy-NNIMprovides
quite small frequency deviation. Thus, the usefulness of Fuzzy-
NNIM-based controller design is demonstrated.

Appendix A. Wind–diesel power system model (International
Electrotechnical Commission, 1975; Krause et al., 1986)

A.1. Diesel-engine–Synchronous-generator model (salient pole)

Q̇f =
1
τc

(
−Qf + Qd(t − τd)

)
θ̇cl = ωd − ωs

ω̇d =
1
Jd

(
kckvQf − (Dd + Dcl)ωd + Dclωs − kvpo − Cclθcl

)
ψ̇f =

1
τ ′do

(
−ψf + LmdIsd

)
+ Efd

ω̇s =
1
Js
(Cclθcl + Dclωd − Ts − (Dcl + Ds)ωs)

(8)

Rs −ωsL′d 1 0
ωsLq Rs 0 1
R1 −ωsL1 −1 0
ωsL1 R1 0 −1


IsqIsdVsq
Vsd

+
0 0
0 0
1 0
0 1

[VbqVbd
]

=


ωs
Lmd
Lf
ψf

0
0
0

 (9)

where Ts = −
Lmd
Lf
ψf Isq − (L′d − Lq)IsqIsd.

A.2. Induction generator model (squirrel-cage rotor)

ψ̇rq =
1
τ ′o
(−ψrq + LmIaq)+ ωb(ωs − ωa)ψrd

ψ̇rd =
1
τ ′o
(−ψrd + LmIad)− ωb(ωs − ωa)ψrq

(10)


Ra −ωsL′s 1 0
ωsL′s Ra 0 1
r2 −ωsL2 (ω2s CaL2 − 1) ωsR2Ca
ωsL2 R2 −ωsR2Ca (ω2s CaL2 − 1)


IaqIadVaq
Vad



+

0 0
0 0
1 0
0 1

[VbqVbd
]
=


ωs
Lm
Lr
ψrd

−ωs
Lm
Lr
ψrq

0
0

 . (11)

A.3. Wind-turbine drive train model (shaft between rotor turbine and
the IG)

θ̇c = ωt − ωa

ω̇t =
1
Jt

(
1
2
CpρAr

v3w

ωt
− Ccθc − (Dt + Dc)ωt + Dcωa

)
ω̇a =

1
Ja
(Ccθc + Dcωt − (Da + Dc)ωa − Ta) .

(12)

A.4. Network model

Isq + Iiq − Ilq − Iac,q = 0, Isd + Iid − Ild − Iac,d = 0 (13)
where

Ilq =
(

R3
R23 + X

2
3
+

1
rdump

)
Vbq +

X3
R23 + X

2
3
Vbd

Ild = −
X3

R23 + X
2
3
Vbq +

(
R3

R23 + X
2
3
+

1
rdump

)
Vbd

and
Iiq = Iaq + ωsCaVad, Iid = Iad − ωsCaVaq,

Iac,q =
−ωsCfilt

1− ω2s CfiltLfilt
Vcd +

1
1− ω2s CfiltLfilt

Icq,

Iac,d =
ωsCfilt

1− ω2s CfiltLfilt
Vcq +

1
1− ω2s CfiltLfilt

Icd.

A.5. Symbols

Ca, ωa: capacitor bank and angular speed of wind turbine
Lmd, L′d: d-axis field mutual inductance and transient induc-

tance.
Ilq, Ild: current component of the load
Vsq, Vsd: stator terminal voltage components of SG
Efd, ψf : field voltage and field flux linkage of SG
ωs, ωt : bus frequency (or angular speed of SG) and IG rotor
τ ′do, τ

′
o: transient open circuit time constant

Ts, Ta: air gap torque of SG and IG
Js,Ds: inertia and frictional damping of SG

ψrq, ψrd: rotor flux linkage components of SG
Rs, Ra, L′s, Lr : stator and rotor resistance and inductance of SG
R1, R2, L1, L2: resistance and reactance between SG and IG and bus
Isq, Isd, Iiq, Iid: current component of SG and IG into the bus
Iaq,Iad,Vaq,Vad: stator terminal current and voltage of IG
Lq, Ld, Lf , Lm: q-, d-axis, field, and mutual inductance of SG
Icq,Icd,Vcq,Vcd:AC side current and voltage of the converter
Iac,q, Iac,d: the AC side current before the filters

Qf : fuel flow rate into the combustion chamber
Qd: fuel flow rate at the governor chamber valve
po: zero torque pressure when running idle
τd: time delay of combustion
kv: stroke volume of the engine
kc : a constant describing efficiency of combustion
θcl: torsional angle between the engine and the generator
shaft

ρ: air density
Cp: power efficient coefficient
Ar : swept area of the rotor
vw: wind velocity

R3, X3: equivalent load resistance and reactance

A.6. Parameter base values

Terms Symbols Parameters

Angular
speed/frequency

ωb 2π50 rad/s

Power Sb = Pb = Qb 55000 VA
Line AC voltage Vb 230 V (rms)
DC voltage Vdc 230 V
AC current Ib = Sb/

√
3Vb 138 A

DC current Idc = Sb/Vdc 239 A
Resistance Rbase = V 2b /Sb 0.96�
Inductance Lbase = Rbase/ωb 3.06 mH
Capacitance Cbase = 1/(Rbaseωb) 3.31 mF
Torque Tb = Sb/ωb 175.1 N m
Moment of inertia Jbase = Sb/ω2b 0.557 kg m2/s
Torsional stiffness CT ,base = Tbase/rad 175.1 N m/rad
Torsional damping DT ,base = Tbase/ωb 0.557 N ms/rad
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Fig. 10. The structure of the dumpload with binary resistor sizing.

Fig. 11. Transistor switching signal.

Appendix B. Dumpload model

Fig. 10 is the three-phase dumpload, where each phase
consists of 7 transistor-controlled resistor banks with binary
resistor sizing in order to minimize quantum effects and provide
more-or-less linear resolution. Fig. 11 shows how the transistors
are switched to meet the required power. For example, based on
the rated AC line voltage of 230 V and per-phase resistance of
R (=120 �), if the required dumpload power from the dumpload
controller is 880 W, Step-2 is identified, and only switch S2 is
turned ON.
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