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Abstract—In this paper, the generator contributions to the trans-
mission system are determined by an evolutionary computation
technique. Evaluating the contributions of generators to the power
flows in transmission lines is formulated as a multiobjective op-
timization problem and calculated using a parallel vector evalu-
ated particle swarm optimization (VEPSO) algorithm. Specifically,
the contributions are modeled by particles of swarms whose po-
sitions are optimally determined while satisfying all multiobjec-
tives and other physical and operating constraints. The VEPSO
method is parallelized by distributing the swarms in a number
of networked PCs. The proposed parallel VEPSO algorithm ac-
counts for nonlinear characteristics of the generators and trans-
mission lines. The applicability of the proposed parallel VEPSO
algorithm in accessing the generator contributions is demonstrated
and compared with analytical methods for four different systems:
three-bus, six-bus, IEEE 30-bus, and 136-bus test systems. The ex-
perimental results show that the proposed parallel VEPSO algo-
rithm is capable of obtaining precise solutions compared to ana-
lytical methods while considering nonlinear characteristics of the
systems.

Index Terms—Evolutionary computation techniques, generator
contribution to transmission system, multiobjective optimization,
parallel vector evaluated particle swarm optimization (VEPSO).

I. INTRODUCTION

S INCE competition has been introduced in generation and
energy supply sector, it is widely agreed that the transmis-

sion system is a natural monopoly and should remain centrally
controlled. It is also recognized that the operation of transmis-
sion system can have an enormous impact on a competitive
market. To achieve the benefits of a robust, competitive bulk
power market, all buyers and sellers must have equal access to
the transmission grid, and it has become necessary to determine
the capacity usage of different transmissions happening simul-
taneously [1]–[4].

Various analytical [1]–[4] and approximate methods [5]–[11]
have been proposed to estimate the contribution of the generator
units to the power flows, loads, and losses of the transmission
grid in the literature.

Among them, in the analytical method [1]–[4], some closed
formulae are introduced to express the above contributions,
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derivations of which are based on the sensitivity and corrective
action analysis [1] and on graph theory [2]–[4]. Although,
these contributions are more precise than other methods, the
drawbacks are that they do not take into account the nonlinear
characteristics of the generators such as prohibited operating
zones and the operating constraints of the transmission lines
such as thermal limits.

Among approximate and widely spread methods is the
power flow comparison (PFC) [5], which assumes the constant
voltage. Other methods are the topological trace algorithm [6],
[7] and the up-stream and down-stream looking algorithms
[8], [9], which assume proportional contribution factors. The
circuit-based method is also used challenging the flow-based
proportional sharing method [10], [11]. However, inaccurate
assumptions were made in all previous methods, ignoring var-
ious nonlinear characteristics of the generators and operating
constraints of transmission lines, which resulted in the reduc-
tion of their applicability, accuracy, and flexibility in complex
and large-scale power systems.

Since the contributions of generators satisfy simultaneously
different objectives such as the real power flow balance at each
line, generator real power outputs, and real power balance at
each node of the system, it is an urgent need to develop a new
multiobjective method, which offers accuracy in determining
the generator contributions, taking into account at the same
time nonlinear characteristics of the real power systems. Al-
though someone can claim that the multiobjective problems
can be faced by single-objective methods (e.g., creating an
aggregation between objectives using weighting factors), this
would possibly lead to unsatisfactory solutions due to the
additional effort of determining the appropriate weights and
possible competitive objectives. However, recent studies [20],
[32] have proven that the whole computing time of aggre-
gating multiobjective algorithms is comparable with Pareto
dominance but greater than coevolutionary meta-heuristic
algorithms. Moreover, up to this point in power engineering,
a basic particle swarm optimization (PSO) has been used to
combine many objective functions (using weighted sum with
equal/unequal weights [22], [23], [27]), but the advantages of
additional multiobjective methods have not been evaluated yet.

Recently, modern meta-heuristic algorithms are considered
as effective tools for nonlinear optimization problems with
applications to power systems [12]. The algorithms do not
require that the objective functions and the constraints have
to be differentiable and continuous. A PSO introduced by
Kennedy and Eberhart [13] is such an algorithm that can be
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applied to nonlinear optimization problems [14]–[20]. PSO
has been developed from the simulation of simplified social
systems such as bird flocking and fish schooling. Unlike other
heuristics techniques such as genetic algorithm (GA), PSO has
a flexible and well-balanced mechanism to enhance and adapt
to the global and local exploration and exploitation abilities
within a short calculation time [15]. Although PSO seems to be
sensitive to the tuning of its parameters, many researches are
still in progress in solving complex power systems [21]–[28].
Vector evaluated particle swarm optimization (VEPSO) [32],
[33] belongs to coevolutionary meta-heuristic algorithms and
is a multiswarm variant of PSO, which is inspired by the vector
evaluated genetic algorithm (VEGA) [34]. In VEPSO, each
swarm is evaluated using only one of the objective functions
of the problem under consideration, and the information it
possesses for its own objective function is communicated to
the other swarms through the exchange of their best experience
[20], [32], [33]. The VEPSO method can be straightforwardly
parallelized by distributing the number of swarms in the same
number of networked PCs, which accelerates the convergence
time [32].

Recently, PSO has been very successfully developed in
solving problems in power systems. For example, Yoshida,
et al. [21] applied PSO to the reactive power and voltage con-
trol problem that also considers voltage security assessments.
Park et al. [22], Gaing [23], and Aruldoss et al. [24], [25] also
applied PSO to the economic dispatch problem that considers
nonlinear characteristics of power systems. Naka et al. [26]
solved a practical distribution state estimation problem with
PSO. Other problems where the PSO was used are the OPF
by Abido [27], generation expansion planning by Kannan et
al. [28], optimal capacitor placement with harmonic distortion
consideration by Yu et al. [29], robust tuning of power sys-
tems stabilizers by Mendonca et al. [30] and identification of
dynamic security border by Kassabalidis et al. [31].

In this paper, evaluating the contributions of generators to
the real power flows in transmission lines is formulated as a
multiobjective optimization problem and calculated using the
VEPSO algorithm. Specifically, the contributions of generators
to real power flows in transmission lines are modeled as po-
sitions of agents in swarms. Their aim is the correct determi-
nation of the generator contributions to transmission system,
respecting generator constraints such as prohibited operating
zones and line thermal limits.

II. GENERATOR CONTRIBUTIONS TO TRANSMISSION SYSTEM

A. Contribution of Generators to Line Flows

Considering a generation and load pattern, the ac load flow
calculates the line power flows regarding various operational
constraints. However, the contributions of each generator (com-
ponents of generator’s output) to line power flows can pos-
sibly violate any of the constraints, either the generator prohib-
ited zones or the thermal limit of lines. None of the currently
published methods take into account these constraints in deter-
mining generator contributions. Coevolutionary multiobjective
optimization techniques are the effective tools for solving this

problem. In this paper, the problem of determining the generator
contributions to transmission line flows is modeled as a multi-
objective optimization problem. We first define the following
variables for the optimization problem:

contribution of generator to line (state vari-
ables);
real power flow at line ;

, real power generation, demand at bus ;
, , number of lines, generators, and nodes;
, number of lines connected to node , gener-

ator .
If has the same sign with , then they both have the same
direction and vice versa.

The multiobjective function is then defined with the following
three objectives.

1) The total contribution of generators to each transmission
line must be equal to the line flow

(1)

2) The real power balance between all generator contribu-
tions and the local generation and demand at each nodes
must be satisfied

(2)

3) The total contribution of a generator injected to the
transmission system must be equal to the generator’s real
power output minus a local demand

(3)

For simplicity, there is no consideration of real power
losses in the above objective functions. However, we con-
sider the line capacitances and no assumption that values
of voltages are of 1.0 p.u. is made. Therefore, the ac load
flow method is used for the calculation of line power
flows. This sets the scene for a further study, where con-
tribution of reactive generations to reactive power flows
can be calculated replacing the real powers with reactive
powers in (1)–(3). In addition to the objective functions,
the optimization is subject to the following constraints.

4) In practical operation, the contribution of generators must
avoid values in the prohibited operating zones of genera-
tors due to their valve operations:

(4)

with and ,

where is number of prohibited operating zones, and
and are the upper and lower limits of generator .
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III. VECTOR EVALUATED PSO

A. PSO

The PSO is a swarm intelligence algorithm, inspired by the
social dynamics and emergent behavior that arises in socially
organized colonies. The PSO algorithm exploits a population of
individuals to probe promising regions of search space. In this
context, the population is called swarm, and the individuals are
called particles or agents. Each particle moves with an adaptable
velocity within the regions of search space and retains a memory
of the best position it ever encountered. The best position ever
attained by each particle of the swarm is communicated to all
other particles.

In PSO, assume an -dimensional search space ,
where is the number of control or decision variables in the
optimization problem and a swarm consisting of -particles.
The position of the th particle at time is an -dimensional
vector denoted by

(5)

The velocity of this particle at time is also an -dimensional
vector

(6)

The best previous position of the th particle is a point in ,
denoted by

(7)

and the global best position ever attained among all particles is
a point in denoted by

(8)

The swarm is manipulated by the equations [13], [18], [26]

rand

rand (9)

(10)

where , and are the cognitive and the so-
cial parameters, respectively, and rand and rand are random
numbers uniformly distributed within .

The inertia weighting function for the velocity of particle is
defined by the inertial weight approach

(11)

where is the maximum number of iterations, and
is the current number of iterations.

The role of the inertia weighting function is considered crit-
ical for the PSO’s convergence behavior. It is employed to con-
trol the influence of the previous history of the velocities on the
current one. Accordingly, the inertia weighting function regu-
lates the tradeoff between the global and local exploration abil-
ities of the swarms [32].

In order to guarantee the convergence of the PSO algorithm,
the constriction factor is defined as

(12)

When the system behavior is controlled by constriction factor
and parameter , it has the following features [18], [26].

1) The system does not diverge in a real value search space
and finally can converge.

2) it can search different and discrete regions of search space
efficiently by avoiding premature convergence.

B. Parallel VEPSO

In spite of the robustness and computational efficiency of the
PSO algorithm in solving single-objective optimization prob-
lems, it does not face satisfactorily multiobjective optimization
problems. On the other hand, the VEPSO method [20], [32]
can be effective in solving multiobjective optimization problems
such as the determination of generator contributions to trans-
mission systems. The VEPSO method [20], [32] has been in-
spired by the concept and main ideas of the VEGA [34]. In this
paper, the parallel implementation of VEPSO [32] is adopted in
solving our multiobjective problem.

The VEPSO method [20], [32] assumes that swarms
of size aim to optimize simultaneously

-objective functions. Each swarm is evaluated according to
one of the objective functions. Let , , , be the
current position, velocity, the best previous position of the th
particle, and the global best in the th swarm, respectively, at
a given time . Then, the VEPSO’s swarms should be manipu-
lated according to the equations

rand

rand (13)

(14)

where the superscripts represent the PSO parameters for the
th swarm. The VEPSO assumes that the search behavior of a

swarm is affected by a neighboring swarm. Specifically, it pro-
poses the use of the global best position and the best po-

sition of the particles until now in the th swarm for the
evaluation of the velocities of the particles in the th swarm, as-
suming a “ring” migration topology (see Fig. 1) defined in [32]

if
if

(15)

In the case of the multiobjective optimization problem
with the three objective functions (1)–(3), three swarms are
employed, and each objective function is enforced by each
swarm in order to determine the generator contributions. The
parallel implementation of VEPSO assumes that each swarm is
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Fig. 1. Ring-migration scheme [32].

Fig. 2. Ethernet network for ring-migration scheme [32].

evaluated in one of the three PCs, which are connected in an
Ethernet network allowing the migration of server from CPU
to CPU (see Fig. 2).

In this way, the positions of particles for the three swarms are
the contribution of generators to real power flows in transmis-
sion lines . The number of dimensions of search space
in our study is . The positions of the th particle
belonging to the th swarm in the -dimensional search space
are limited by the minimum and maximum positions expressed
by vectors

(16)

where the vectors of minimum and maximum positions com-
prise terms, respectively, (4)

(17)

(18)

The velocities of the th particle belonging to the th swarm
in the n-dimensional search space are limited by

(19)

where the vector of maximum velocities comprises terms

(20)

Here, is a chosen number of search intervals for the
particles. It is an important parameter in the proposed parallel
VEPSO algorithm. A small facilitates global exploration
(searching new areas), while a large one tends to facilitate local
exploration (fine tuning the current search area). A suitable
value for the usually provides balance between global
and local exploration abilities and consequently results in a
reduction of the number of iterations required to locate the
optimum solution.

Incorporating the above modifications the proposed parallel
VEPSO algorithm for determining generator contributions to
transmission system can be described in the following steps.

Step 1 (Initialization): Set the time counter
and generate particles. For each particle in the
three swarms ( particles for each swarm) generate,
with uniform probability distribution, initial positions

limited by (16), and initial velocities
limited by (19). To enforce the “ring” migration
topology defined by (15), each particle in the initial
population is evaluated using (1) if it belongs to the
third swarm, (2) if it belongs to the first swarm, and
(3) if it belongs to the second swarm. Set as best
positions and as global positions

global best of , global best of

and global best of . Set the cognitive and

the social parameters , , .
Step 2 (Time update): Update the time counter

. Set random numbers rand and rand uniformly
distributed within the range .
Step 3 (Velocity update): Using the global best of
each swarm and the best positions of each
particle in the three swarms , update
the velocities of particles in three swarms using (13).
Check if the limits of (19) are enforced. If the limits
are violated, then they are replaced by the respective
limits.
Step 4 (Position update): Based on the updated veloci-
ties, each particle in all swarms moves to new positions
according to (14). Check if the limits of (16) are en-
forced. If the limits are violated, then they are replaced
by the respective limits.
Step 5 (Particles best position update): Each particle
in the swarms is evaluated according to its updated po-
sitions using (1)–(3), where (1) is for the third, (2) is
for the first, and (3) is for the second swarm.
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TABLE I
CHARACTERISTICS OF TEST SYSTEMS AND VEPSO ALGORITHM

Step 6 (Global best position update): Based on the up-
dated best positions, each swarm updates the global
best position .
Step 7 (Stopping criteria): The search will terminate
if the number of iterations reaches the maximum al-
lowable number (1500 in this study), or the following
criteria 1), 2) and 3) are all satisfied.

1) The maximum of the relative errors between the line flow
and the sum of all generator contributions to the line is
less than 0.5%

(21)

2) The maximum of the errors of the real power balance of
each generator at each node of the system is less than 0.1%

(22)

3) The maximum of the relative errors between the real
power injection of each generator and its total contribu-
tions is less than 0.5%

(23)

IV. SIMULATION RESULTS

To verify the feasibility of the proposed parallel VEPSO al-
gorithm in determining the generator contributions to the trans-
mission system, power systems in four different sizes are tested.
In these systems, the thermal power limits at lines and the pro-
hibited operating zones of generators are taken into considera-
tion for practical application, and the proposed parallel VEPSO
algorithm is compared with the analytical method whose for-
mulae are based on the sensitivity and corrective action analysis
[1].

The characteristics of power systems, which are tested, are
given in Table I. Specifically, the dimension of each optimiza-
tion problem is given in the column of parameter resulting
from the product of the number of generators by the number

Fig. 3. Contribution of generators to line flows in the three-bus test system.

Fig. 4. Convergence of objective functions for the three-bus test system.

of lines in the system . The table also gives
the parameters of parallel VEPSO and the dimensions of the
swarm’s search space chosen in the case studies. The parameters

, , , , and are those that lead the proposed par-
allel VEPSO algorithm faster in convergence and were selected
after many empirical runs on the test power systems. Especially
for the parameter , this is determined among the candidate
values of , and is chosen as the
best.

A. Three-Bus Test System

In the three-bus test system, the line resistances are 0.01 p.u.,
the reactances 0.1 p.u. and the distributed capacitance is con-
sidered with model in all transmission lines [1], [5]. Fig. 3
shows the base case power flow result and contribution of each
generator to each line flow, resulting from the proposed parallel
VEPSO algorithm.

In this case, the minimum real power output at generator A
is considered at 50 MW. This case study took about 65 itera-
tions for the objective functions F1, F2, and F3 to converge (see
Fig. 4).

B. Six-Bus Test System

Fig. 5 shows the topology of the six-bus test system, the base
case power flow results [1], and the contribution of each gen-
erator to each line flows, resulting from the proposed parallel
VEPSO algorithm.

In this case, the generator constraints and the thermal power
flow limits at lines 30–50, 40–60, and 50–60, shown in Table II,
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Fig. 5. Contribution of generators to line power flows of six-bus test system.

TABLE II
CONSTRAINTS OF THE SIX-BUS TEST SYSTEM

Fig. 6. Convergence of objective functions for the six-bus test system.

are satisfied. Fig. 6 shows that all objective functions (F1, F2,
F3) took about 125 iterations in order to converge.

We declare that the minus sign of generator contribution
means that the influence of a generator on the flow

of line has inverse direction from the real power line flow.
So, the contribution of generator C to line 10–20 results from
the power balance of the generator C contribution to lines
10–30 and 10–40, on bus 10 (there is no load at bus 10). The
contribution of generator C to line 10–40 results from the power
balance of generator C contributions to line 40–60 and the load
on bus 40 and so on. In order to interpret the contribution of
generator C to real line power flows (from where they come),
one can “hide” the outputs of generators A and B and their

contributions to lines and loads from Fig. 5 and then examine
the power balance of generator C contributions at every bus of
the system. Generally, as it is depicted in Fig. 5, the contribu-
tions of each one of the generators to each line satisfy the real
power balance of the six-bus system and the generator and line
constraints regardless of the contributions of other generators.

C. IEEE 30-Bus System

The proposed parallel VEPSO algorithm is tested on the IEEE
30-bus power system. The topology and the complete data of
this network are given in [35]. The network consists of four gen-
erators, 41 lines, four transformers, and two capacitor banks.
Loads were set at the values referred in [35] multiplied by a
factor of 0.6 (nominal load). The results for the cases when
generators are both constrained and unconstrained are given in
Table III. In the case of constrained generators, the upper limits
of generators 2 and 3 are 30MW and 8MW, respectively. Com-
paring the results of the unconstrained case with those given by
[1], it is concluded that the last are similar to those given by the
proposed parallel VEPSO algorithm.

Fig. 7 demonstrates that all objective functions lead to con-
vergence after about 550 iterations. In this case, the total CPU
time is 5 sec while the CPU time of [1] is 0.6 sec since the gener-
ator contribution demand only one calculation of Newton power
flow.

The Appendix shows the parameter sensitivity analysis of
VEPSO. In the simulation, the parameters , , ,
and are changed. The average and minimum of , ,
and with up to 1500 iterations in 100 trials for each case are
shown in the table in the Appendix. The results reveal that the
appropriate values for and are 0.1 and 0.9, respec-
tively. The appropriate value for and is 2.05 and for is
15. Consequently, the appropriate parameter values for VEPSO
are the same with the ones suggested in Table I, which were
found empirically. Alternatively, the determination of optimum
parameters ( , , , , ) of VEPSO algorithm can
be achieved by incorporating any of the modern evolutionary
algorithms such as cultural algorithms [36] in the proposed par-
allel VEPSO. This can be studied in future research.

D. 136-Bus System

The proposed parallel VEPSO algorithm is also applied to
compute the contributions of 79 generators on 199 transmission
lines in the 136-bus system. This system consists of 136 buses
(33 PV and 103 load buses), 24 transformers, and 17 reactive
compensations [37], [38]. The results in this case are similar
to those given by [1] with 0.5% precision. Fig. 8 shows that
all objective functions are converged after approximately 440
iterations. The total CPU time for the 136-bus system is cal-
culated at 157.2 s. The CPU time of [1] is only 16.8 s since the
generator contribution demands only one calculation of Newton
power flow.

Finally, Fig. 9 shows the statistical evaluation results by
VEPSO in 100 trials. In this case, the maximum, average, and
minimum values of the objective functions , , and are
shown in Table IV.

In all case studies, the proposed parallel VEPSO was imple-
mented on a network of three 1.4-GHz Pentium-IV PCs so that



VLACHOGIANNIS AND LEE: DETERMINING GENERATOR CONTRIBUTIONS 1771

TABLE III
CONTRIBUTIONS OF CONSTRAINED AND UNCONSTRAINED GENERATORS

TO REAL POWER FLOWS IN IEEE 30-BUS SYSTEM

the three swarms are distributed in parallel on these PCs (see
Fig. 2). Therefore, the total CPU time of the proposed parallel
VEPSO algorithm was the time in which the last function con-
verged (F2 in the last case study). It must be noticed that al-
though the CPU time of the proposed method is greater than
that given in [1], the proposed method can solve the problem,
which includes nonlinear characteristics of the power systems.
Moreover, the proposed algorithm can be distributed in more

Fig. 7. Convergence of objective functions for the IEEE 30-bus test system in
the case of constrained generators.

Fig. 8. Convergence of objective functions for the 136-bus test system.

Fig. 9. Statistical results by VEPSO (100 trials) for 136-bus test system.

TABLE IV
MAXIMUM, AVERAGE, AND MINIMUM VALUES OF OBJECTIVE FUNCTIONS

(F , F , F ) FOR 136-BUS SYSTEM (100 TRIALS)

than three networking PCs resulting in a further reduction of
the computing time.

V. CONCLUSIONS

This paper presented a parallel VEPSO algorithm for de-
termining generator contributions to the transmission system
under various generator and transmission line constraints. The
problem of determining real power contributions is formulated
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TABLE V
PARAMETER SENSITIVITY ANALYSIS FOR IEEE 30-BUS SYSTEM (100 TRIALS)

as a multiobjective optimization problem that takes into account
nonlinear characteristics of the power systems such as prohib-
ited operating zones of generators and thermal limit of lines. The
feasibility of the proposed method was demonstrated and com-
pared with other analytical methods, for four different systems
of various sizes. The experimental results showed that though
the proposed parallel VEPSO algorithm is slower than the an-
alytical method, it is capable of obtaining results with high ac-
curacy while considering various nonlinear constraints of the
power systems in a short computing time, which is in part due
to the fact that the three swarms are distributed in parallel on a
network of three PCs. Parallel distribution in a larger PCs net-
work can result in further reduction in computing time. As fur-

ther research, a hybrid evolutionary algorithm, such as cultural-
VEPSO, will be introduced to determine the optimum values of
empirical parameters of the VEPSO algorithm.

APPENDIX

Table V shows the parameter sensitivity analysis for the IEEE
30-bus system (100 trials).
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TABLE V
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