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Abstract: A learning automaton systematically updates a strategy to enhance the performance of a
system output. The authors apply, a variable-structure learning automaton to achieve a best
compromise solution between the economic operation and stable operation in a power system
when the loads vary randomly. Both the generation cost for economic operation and the modal
performance measure for stable operation of the power system are considered as performance
indices for multi-objective optimal operation. In particular, it is shown that the S-model learning
automata can be applied satisfactorily to the multi-objective optimisation problem to obtain the
best trade-off between the conflicting objectives of economy and stability in the power system.

1 Introduction

An automaton acting so as to improve its performance in
an unknown random environment is referred to as a
learning automaton. Learning automata have attracted
considerable interest in the last decades due to their
potential usefulness in various engineering problems that
are generally characterised by nonlinearity or a high level of
uncertainty. Learning automata are based on the theories of
probability and Markov processes. Tsetlin [1] first studied
the behaviour of deterministic automata functioning in
random environments. The fixed-structure learning auto-
mata learn to choose asymptotically better actions with a
higher probability, while the state transition probabilities
remain fixed. On the other hand, variable-structure
stochastic automata update either the transition probabil-
ities or the action probabilities on the basis of the input at
each stage, leading to greater flexibility.

There is a body of literature on the fixed-structure and
variable-structure learning automata. Cover and Hellman
[2] studied a two-action fixed-structure scheme with finite
memory, and Aso and Kimura [3] showed what kind of
logical structure leads to expedient automata with multiple
actions. Viswanathan and Narendra [4] studied the
reinforcement scheme for variable-structure learning auto-
mata and its asymptotic characteristics. Narendra and
Thathachar [5] carried out the outstanding work on a wide
range of learning automata including learning algorithms,
asymptotic behaviour and a hierarchical system. Thatha-
char and Phansalkar [6] proposed learning algorithms for
feedforward connectionist systems in a reinforcement-
learning environment. Najim and Poznyak [7] studied a
multimodal searching technique in an environment with a

changing number of actions of the automata. Howell and
Gordon [8] proposed a genetic adaptation and population-
based approach to increase the speed of convergence of the
interconnected learning automata and to escape from local
minima. Agache and Oommen [9] introduced a general-
isation of the learning method of the pursuit algorithms that
pursues the actions that have higher estimates than the
currently chosen action, and hence minimising the prob-
ability of pursuing a wrong action. Papadimitriou et al. [10]
proposed a new P-model absorbing learning automaton,
which is based on the use of a stochastic estimator in order
to achieve a rapid convergence.

A learning automaton generates a sequence of actions on
the basis of its interaction with the random environment and
the environment responds to the input action by producing
its output (the input to the automaton) that is probabil-
istically related to the input action. There are three types of
models for learning automata: (i) the P-model; (ii) the Q-
model; and (iii) the S-model. In a P-model learning
automaton, the output of the environment can take only
one of two values, zero or one, with one corresponding to
‘unfavourable’ and zero corresponding to a ‘favourable’
response based on a suitably defined threshold. In a Q-
model, the output set is composed of a finite number of
discrete values in the interval [0, 1]. When the output of the
environment is a continuous random variable that assumes
values in the interval [0, 1], it is then referred to as a S-model.
We will adopt the S-model in our work since it represents
the most general version of the linear model environment.

A decision based on an engineering trade-off is made by
simultaneously considering multiple quality criteria. In
power systems, it is usually required to simultaneously
optimise more than one of the power system attributes.
Both producing power economically and maintaining the
system stability are two important goals for the utility
business, and yet these are in general conflicting objectives.
This multi-objective problem requires a best compromise
solution. There are several papers on the application of
multi-objective optimisation methods in the power systems
area. Jung et al. [11] studied optimal reactive power dispatch
with the objectives of economy of operation and system
security. Wadhwa and Jain [12] studied an optimal load
flow problem to simultaneously minimise both the cost of
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generation and transmission loss. Gardunao-Ramirez and
Lee [13, 14] presented a multi-objective optimisation
technique in generating set points for power plants.

We intend to apply S-model learning automata in a
multi-objective optimisation problem to obtain the best
trade-off among the conflicting economy and stability
objectives in a power system. The performance indices to be
considered are the generation cost for economic operation
and the modal performance measure for stable operation of
a power system [15]. The multi-objective optimisation is
performed in a simple six-bus test system, and the
simulation results are compared for various S-model
learning automata and are also compared with results
obtained using Monte Carlo techniques. To date there has
been no direct application of learning automata in power
system problems or in solving multiple objective problems.
We intend to propose a procedure to apply learning
automata to solving multi-objective problems. This method
presents the best compromise solution that satisfies the
given criteria in the probabilistic sense when loads vary
randomly.

2 S-model learning automata

A learning automaton generates a sequence of actions on
the basis of its interaction with the random environment
and the actions of the automaton are various alternatives to
provide for the environment. The automaton approach to
learning involves the determination of an optimal action out
of a set of allowable actions. These actions are performed
on a random environment and the environment responds to
an input action by producing an output that is probabil-
istically related to the input action.

We can consider the action probability vector p(n) at an
instant n whose ith component pi(n) is defined by

piðnÞ ¼ Pr½aðnÞ ¼ ai� i ¼ 1; 2; . . . ; r ð1Þ
where r is the number of different actions, a(n) is the action
of the automaton at instant n and ai is an action selected by
the automaton.

A penalty probability si is the probability of obtaining
response b(n) corresponding to an action ai, and may be
defined by:

Pr bðnÞ aj ðnÞ ¼ ai½ � ¼ si i ¼ 1; 2; . . . ; r ð2Þ
where b(n) is the response of the environment at instant n.
The S-model automaton is the automaton whose response
can take continuous values over the unit interval [0, 1]. The
response b(n) in the S-model means the degree of
unfavourableness, which approaches zero if the response
is favourable and approaches one if the response is
unfavourable.

When a stationary random environment with penalty
probabilities {s1, s2,ysr} is considered, a quantity M(n) that
is the average penalty for a given action probability vector is
defined as follows:

MðnÞ ¼E bðnÞ pðnÞj½ �

¼
Xr

i¼1
E bðnÞ pðnÞ; aj ðnÞ ¼ ai½ �Pr aðnÞ ¼ ai½ �

¼
Xr

i¼1
sipiðnÞ

ð3Þ

where E[ � ]denotes the mathematical expectation. This
average penalty M(n) plays a useful role in comparing
various automata.

The automaton is represented by the action probability
sequence {p(n)}, which is a discrete-timeMarkov process on

a suitable state space. Let a variable-structure automaton
with r actions operate in a stationary environment with
bðnÞ 2 ½0; 1�. A general linear reinforcement scheme in the
S-model for updating action probabilities can be repre-
sented as follows [5]:

If aðnÞ ¼ ai and i 2 f1; � � � ; rg then
piðnþ 1Þ ¼ piðnÞ � bðnÞbpiðnÞ þ ½1� bðnÞ�að1� piðnÞÞ
otherwise

ð4Þ

pjðnþ 1Þ ¼pjðnÞ þ bðnÞ½b=ðr � 1Þ � bpjðnÞ��
½1� bðnÞ�apjðnÞ for all j 6¼ i

ð5Þ

where a is a reward parameter in [0, 1] and b is a penalty
parameter in [0, 1]. Equation (4) means that the probability
of taking an action ai increases if the response correspond-
ing to an action ai is favourable (b(n) is close to zero) and
decreases otherwise (b(n)is close to one). Equation (5)
means that the probabilities of taking other actions increase
if the response corresponding to an action ai is unfavuorable
and decreases otherwise. It can be seen that the property of
probability,

Pr
j¼1 pjðnÞ ¼ 1, is satisfied for all n whenever

the action is selected randomly at all stages. The probability
p(n+1) is determined completely by p(n), and {p(n)} is a
discrete-time homogeneous Markov process, where the
value at stage n depends only on the value at stage n�1.

Selection of the reward and penalty parameters, a and b,
dictates the property of the learning automata. The linear
reinforcement schemes in the S-model for a¼ b, a4b and
b¼ 0 are called, respectively, the linear reward-penalty
(SLR–P) scheme, the linear reward e-penalty (SLR–eP)
scheme and the linear reward-inaction (SLR–I) scheme.
The linear reward-penalty (SLR–P) scheme and the linear
reward e-penalty (SLR–eP) scheme are not dependent on
initial conditions since they converge to the optimal value
irrespective of the initial conditions. However, the linear
reward-inaction (SLR–I) scheme can be dependent on the
initial conditions because it can have an absorbing state,
that is, the state can be trapped with probability one [5].
These three linear reinforcement schemes with multiple
actions will now be applied to the multi-objective optimisa-
tion problem for power system operation.

3 Multi-objective optimal operation of a power
system

3.1 Problem formulation
A multi-objective optimisation problem in a power system
can be represented in a compact form:

minimise : JðxÞ ¼ fJ1ðxÞ; J2ðxÞ; � � � ; JnðxÞgt

Subject to : x 2 gc

ð6Þ

where J(x) is a vector of multi-objective functions, x is a
vector of decision variables, t represents transpose and gc
represents the feasible region in the decision space which is
spanned by the decision variables and it includes various
constraints.

Under a random environment the load varies randomly
and the objective functions become random variables.
Then, the multi-objective optimisation problem can be
represented in the following form:

maximise : PrfJðxÞ � J sg
Subject to : x 2 gr

ð7Þ

where Js is a vector of specified values of objective functions
that are considered to be satisfactory. Equation (7) means
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to maximise the probability that J(x) may be less than Js,
satisfying the given constraints.

This optimisation problem can be solved by using
learning automata. The concept of learning automata
application to the multi-objective problem is shown in
Fig. 1, where the random environment represents a target
system, which may have uncertainties and random noises.

The procedure in the learning automata is summarised as
follows:

1. Extremum points are determined by independently,
minimising each single objective function and r actions are
appropriately selected over the space enclosed by the
extremum points.

2. The probabilities of r actions (probability vector:

pðnÞ ¼ fp1ðnÞ;p2ðnÞ; � � � ;prðnÞgt) are updated according
to the degree of favourableness of the response in the
random environment (In general, the initial probabilities are
of equal probability in (4) and (5)).

3. An action is randomly selected under the probability
vector of r actions and applied to the environment.

4. The random environment responds to the input and the
performance of J(x) is assessed by evaluating the output
according to the given criteria.

5. The above steps 2, 3 and 4 are repeated until the
probability vector converges to a fixed value.

6. After convergence, the action that has the highest
probability in a learning automaton is the best compromise
solution that simultaneously satisfies the multi-criteria.

To illustrate this concept, two objective functions are
considered namely: (i) the generation cost for economic
operation; and (ii) a modal performance measure for stable
operation of the power system.

3.2 Multi-objective functions

3.2.1 Economic operation of a power sys-
tem: The first goal of power system operation is to
minimise the operation cost. For simplicity of analysis, it is
assumed that the cost function for economic operation is
given by the total summation of the generation fuel costs,
which can be expressed as a quadratic function of the
generating powers:

J1ðPsgÞ ¼
X
k2G

ðak þ bkPk þ ckP 2
k Þ ð8Þ

where G is a set of indices of generator buses including the
swing bus, J1 is the generation cost function, Psg is the real
powers of the generator buses including the swing bus, and

ak,bk and ck are generation cost parameters. The steepest
descent method [16] is used to minimise this function.

3.2.2 Stable operation of a power system: -
The second important goal is to enhance the dynamic
stability of a power system. The following modal perfor-
mance measure is used for a rapid decay of the mode
envelopes derived from the mathematical model for
dynamic stability [13]:

J2ðPsgÞ ¼
Xn

j¼0
JSj ð9Þ

with

JSj ¼
Z T

0

Xn

i¼1
zt

j;iWjzj;i � dt for the j th state ð10Þ

where T is an integration time interval, z(t) is the output
error from a reference, zj,i is the ith mode of the component
of z(t) that depends on the jth state of the state vector xðtÞ
in the system dynamics, Wj is a weighting matrix for the jth
state, and superscript (*) denotes complex conjugate. A
detailed description of the mathematical model for the
dynamic stability can be referred to in [13]. The gradient of
the modal performance measure has been evaluated in [13].
We will use the steepest descent method [16] to obtain the
minimum of the performance measure J2.

4 Simulation

4.1 Power system model
The system used for simulation is the six-bus power system
shown in Fig. 2. Buses 1 and 2 are generator buses and
others are load buses. The line data and the initial data for
generation and load of the power system are given in
Tables 1 and 2, respectively. Bus 1 is a swing bus. It is
assumed that loads contain uncertainty and are Gaussian

probabilistic
action generation
( r actions set )

random 
environment
(plant with

random variables)

learning automaton
(updating of action

 probability vector P )

�

input

βn

β2
β1

multiple responses
(n objectives)

Fig. 1 Application of a learning automaton to the multi-objective
optimisation problem

G

G1

2

34

6 5 26

34

Fig. 2 The six-bus power system

Table 1: Line data for the six-bus power system

Line From bus To bus Line impedance
p.u.

R X

1 1 6 0.135 0.962

2 1 4 0.100 0.756

3 4 6 0.120 0.795

4 5 6 0.110 0.873

5 2 5 0.142 0.983

6 2 3 0.181 1.210

7 3 4 0.050 0.410
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with a 3% standard deviation and that the power factor at
each bus remains constant. The model for the analysis of
the modal performance measure includes the nonlinear
machine model with a two-axis representation of the
generator and the IEEE type-1 excitation system [13]. The
data for the generation cost parameters are given in Table 3.

4.2 Performance evaluation
If the power of generator 2 is specified, the power of
generator 1 can be determined through load flow. There-
fore, the generation dispatch in this system is to determine
the real power of generator 2. For the case considered, the

real power (Pmin
G2E) of generator 2 to safely minimise the

generation cost is 0.072 p.u., whereas the real power (Pmin
G2S)

to safely minimise the modal performance measure for the
enhancement of power system stability is 0.417 p.u. Suitable
values of the thresholds used for determining the extent of
satisfaction are decided by the decision maker, depending
on various conditions. Here, they are selected so that the
performance ratio, i.e. the ratio of the minimum value of the
generation cost to the actual value of the generation cost,
J1ðPmin

G2EÞ=J1ðPG2EÞ, to be 90% for economic operation and,
similarly, the performance ratio of the minimum value of
the modal performance measure to the actual value of the
modal performance measure, J2ðPmin

G2SÞ=J2ðPG2SÞ, to be 50%
for stable operation. Each performance ratio is normalised
to give a sigmoid output between zero and one around the
threshold value. The sum of the performance ratios are
added as an input to generate the response b(n), which is a
monotonically decreasing sigmoid function with one-half at

the threshold point. As the ratios of the performance
measures become greater than the given thresholds, the
power system operation becomes more favourable and the
value of b(n) approaches zero. Similarly, as the performance
ratios become less than the given thresholds, the power
system operation becomes less favourable and the value of
b(n) approaches one.

Since the power system operation in this model depends
on the generation power of generator 2, the generation
power of generator 2 can be considered as the action of the
learning automaton. The interval between Pmin

G2E and Pmin
G2S is

considered as the range of actions that can take place and it
is discretised with equal increments to give ten candidate
compromise solutions. The values (PG2) of the actions are
shown in Table 4. The problem of solving for a best
compromise solution that simultaneously satisfies both the
economic operation criterion and the stable operation
criterion is reduced to that of determining the best action to
satisfy the given criteria in the probabilistic sense. The
system is under a random environment where the
uncertainly of the load is represented by a normally
distributed random variable with a 3% standard deviation.
The random loads are generated repeatedly and the power
system is analysed for the given values of the loads. Then
the learning automata learn to choose better actions to
improve the performance, making the solution converge to
a best compromise solution. The reward parameter a and
the penalty parameter b are selected suitably by trial and
error. If the values of a and b are large, the trajectories
converge with a large oscillation. On the other hand, if the
values are small, the trajectories are smooth, but converge
slowly.

4.3 Simulation results
The simulation results for the SLR–P scheme with
a¼ b¼ 0.02 are shown in Fig. 3. The probability of action
5 converges to one as the trial number n increases and this

Table 2: Initial data of generation and load of the system
(unit: p.u.)

Bus Voltage magnitude Voltage angle P Q

1 1.0 0.0

2 1.0 0.32

3 �0.27 �0.06

4 0.00 0.00

5 �0.19 �0.05

6 �0.28 �0.03

Table 3: Generation cost data

Cost coefficients of
generator 1

Cost coefficients of
generator 2

a1 52.0 a2 88.0

b1 1.12 b2 1.91

c1 0.0021 c2 0.0035
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Fig. 3 Probabilities of actions and average penalty in the SLR–P

scheme

Table 4 PG2 values of actions. (unit: p.u.)

Actions Action 1 Action 2 Action 3 Action 4 Action 5 Action 6

PG2 0.072 0.106 0.141 0.175 0.210 0.244

Actions Action 7 Action 8 Action 9 Action 10 Action 11

PG2 0.279 0.313 0.348 0.382 0.417
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implies that action 5 is optimal. As the probability of action
5 increases to one, the probabilities of the other actions
asymptotically decrease to zero. It is shown that the
trajectory of the probability of action 10 asymptotically
decreases to zero and the average penalty M decreases to its
minimum value as the trial number n increases. The value of
M converges from the initial value of 0.414 to 0.05.
Similarly, the simulation results for the SLR–eP scheme with
a¼ 0.02 and b¼ 0.002 are shown in Fig. 4, and the results
for the SLR–I scheme with a¼ 0.02 and b¼ 0.0 are shown in
Fig. 5. Comparing the three cases, the SLR–P scheme is the
slowest in terms of the speed of convergence with somewhat
large fluctuations. Among the three schemes the SLR–I

scheme is the fastest, but it may have an absorbing state
from which the state cannot escape [5]. On the other hand,
the SLR–sP scheme has no absorbing state and is relatively

fast in speed. The simulation results of the SLR–eP and SLR–

I schemes are very close to one an other. The performances
of the SLR–P and SLR–I schemes are compared in Fig. 6.
From the simulation results, we can see that action 5, i.e.
PG2¼ 0.210 p.u. is the best solution that satisfies both the
criteria simultaneously. Considering the fact that the
threshold values are somewhat flexible, this solution seems
to be satisfactory enough for practical application. We have
shown that S-model learning automata can be applied in

power systems, which are under a random environment and
are difficult to solve analytically.

In a large-scale power system where a number of
generators participate in actions, a base case is first analysed
and the corresponding operating point(PGB) is determined.

Then, for the case considered, the real power vector (Pmin
GE )

of the generators to solely minimise the generation cost is

determined. Also, the real power vector (Pmin
GS ) to solely

minimise the modal performance measure for the enhance-
ment of power system stability is determined. The vector

space enclosed by the two extrema, Pmin
GE and Pmin

GS , forms
the range of actions. From the selected actions in the range
the best compromise solution can be determined using our
proposed procedure.

5 Comparison with the Monte Carlo method

The least-squares method is usually used to solve the
multiple objective problems. In this method, weightings are
given to each objective and the weighted objective functions
are added up. Consequently, the problem is reduced to
minimising the sum of all the weighted objectives. On the
other hand, the Monte Carlo method is used to solve
problems with random variables. In a Monte Carlo
analysis, the simulation is repeatedly performed in order
to obtain as many solutions as possible and hence determine
the probabilistic distribution of the solutions in the random
environment. By performing many simulations, the best
solution in a probabilistic sense can be obtained. Under a
random environment the load varies randomly and the
objective functions become random variables. Then, the
multi-objective optimisation problem can be represented in
the following form:

maximise : JðxÞ ¼
Xn

i¼1
WiJiðxÞ=JBi

subject to : x 2 gc

ð11Þ

where Wi is the weighting of the ith performance measure
and JBi is the value of the ith performance measure of the
base case, which is used to normalise each performance
measure. In the case of the two performance measures,
namely the generation cost for economic operation and the
modal performance measure for stable operation, the
objective function becomes: JðxÞ ¼ W1J1ðxÞ=JB1þ
W2J2ðxÞ=JB2.
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Fig. 4 Probabilities of actions and average penalty in the SLR�eP
scheme
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scheme
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Fig. 6 Comparison of probabilities of action 5 in the SLR–P and
SLR–I schemes
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The simulation results obtained using the Monte Carlo
method under the same random environment as in the case
of the learning automata are shown in Fig. 7. Here, the
weightings of the economic operation and the stable
operation performance measures are the same (W1¼ 0.5
and W2¼ 0.5). The small circles in the Figure indicate the
optimum values obtained to each to iteration. Considering

the results after 400 iterations, the best generation power to
satisfy the given performance measure in a probabilistic
sense is PG2¼ 0.252 p.u. Similarly, the simulation results
with W1¼ 0.35 and W2¼ 0.65 are shown in Fig. 8, in which
case the best generation power to satisfy the given
performance measure in a probabilistic sense is
PG2¼ 0.230 p.u.

The Monte Carlo method can give a reasonable solution
under a random environment. However, determining the
weighting factors is very difficult in the Monte Carlo
method. In the learning automata, the value of the
threshold for each objective can be easily selected by
considering the optimum value of each objective. It rates the
action as favourable if the value of the objective function
corresponding to the response is less than the threshold

value and it increases the probability of selecting that action
among all the possible actions. The processes are repeatedly
performed to learn which action is the best in a random
environment and the learning automata converges to the
best action as the learning automata learn more about
which action causes good response with the highest
probability according to the repeated procedures.

6 Conclusions

The concept of learning automata has applied to a multi-
objective optimisation problem to obtain the best trade-off
between the conflicting objectives of economy and stability
in a power system. The generator power is considered as the
action for the learning automaton. The problem of solving
for a best compromise solution that simultaneously satisfies
both the economic operation and stable operation criteria
was reduced to that of determining the best action to satisfy
the given criteria in a probabilistic sense. The procedure of
applying the learning automata to a multi–objective
optimisation problem was proposed. We have demon-
strated that learning automata can be applied effectively to
solve multi-objective power system problems that are
under a random environment and are difficult to solve
analytically.
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Fig. 8 Monte Carlo analysis (W1¼ 0.65 and W2¼ 0.35)
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Fig. 7 Monte Carlo analysis (W1¼ 0.5 and W2¼ 0.5)
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