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Abstract—This paper presents a new approach to economic
dispatch (ED) problems with nonsmooth cost functions using
a particle swarm optimization (PSO) technique. The practical
ED problems have nonsmooth cost functions with equality and
inequality constraints that make the problem of finding the global
optimum difficult using any mathematical approaches. In this
paper, a modified PSO (MPSO) mechanism is suggested to deal
with the equality and inequality constraints in the ED problems. A
constraint treatment mechanism is devised in such a way that the
dynamic process inherent in the conventional PSO is preserved.
Moreover, a dynamic search-space reduction strategy is devised
to accelerate the optimization process. To show its efficiency and
effectiveness, the proposed MPSO is applied to test ED problems,
one with smooth cost functions and others with nonsmooth cost
functions considering valve-point effects and multi-fuel problems.
The results of the MPSO are compared with the results of con-
ventional numerical methods, Tabu search method, evolutionary
programming approaches, genetic algorithm, and modified Hop-
field neural network approaches.

Index Terms—Constrained optimization, economic dispatch
(ED), nonsmooth optimization, particle swarm optimization
(PSO).

I. INTRODUCTION

MOST of power system optimization problems including
economic dispatch (ED) have complex and nonlinear

characteristics with heavy equality and inequality constraints.
Recently, as an alternative to the conventional mathematical ap-
proaches, the heuristic optimization techniques such as genetic
algorithms, Tabu search, simulated annealing, and recently-in-
troduced particle swarm optimization (PSO) are considered as
realistic and powerful solution schemes to obtain the global or
quasiglobal optimums in power system optimization problems
[1].

Recently, Eberhart and Kennedy suggested a particle swarm
optimization (PSO) based on the analogy of swarm of bird and
school of fish [2]. The PSO mimics the behavior of individuals
in a swarm to maximize the survival of the species. In PSO, each
individual makes his decision using his own experience together
with other individuals’ experiences [3]. The algorithm, which
is based on a metaphor of social interaction, searches a space
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by adjusting the trajectories of moving points in a multidimen-
sional space. The individual particles are drawn stochastically
toward the position of present velocity of each individual, their
own previous best performance, and the best previous perfor-
mance of their neighbors [4]. The main advantages of the PSO
algorithm are summarized as: simple concept, easy implemen-
tation, robustness to control parameters, and computational effi-
ciency when compared with mathematical algorithm and other
heuristic optimization techniques.

Recently, PSO have been successfully applied to various
fields of power system optimization such as power system
stabilizer design [5], reactive power and voltage control [3],
and dynamic security border identification [6]. The original
PSO mechanism is directly applicable to the problems with
continuous domain and without any constraints. Therefore, it is
necessary to revise the original PSO to reflect the equality/in-
equality constraints of the variables in the process of modifying
each individual’s search. Yoshida et al. [3] suggested a modified
PSO to control reactive power and voltage considering voltage
security assessment. Since the problem was a mixed-integer
nonlinear optimization problem with inequality constraints,
they applied the classical penalty method to reflect the con-
straint-violating variables. Abido [5] developed a revised PSO
for determining the optimal values of parameters for power
system stabilizers. In the study, the velocity of each parameter
is limited to a certain value to reflect the inequality constraint
problem in the dynamic process.

The practical ED problems with valve-point and multi-fuel
effects are represented as a nonsmooth optimization problem
with equality and inequality constraints, and this makes the
problem of finding the global optimum difficult. To solve this
problem, many salient methods have been proposed such as a
mathematical approach [7], dynamic programming [8], evolu-
tionary programming [9], [15], [16], Tabu search [14], neural
network approaches [10], [11], and genetic algorithm [12].

In this paper, an alternative approach is proposed to the
nonsmooth ED problem using a modified PSO (MPSO), which
focuses on the treatment of the equality and inequality con-
straints when modifying each individual’s search. The equality
constraint (i.e., the supply/demand balance) is easily satisfied
by specifying a variable (i.e., a generator output) at random in
each iteration as a slag generator whose value is determined
by the difference between the total system demand and the
total generation excluding the slag generator. However, the
inequality constraints in the next position of an individual
produced by the PSO algorithm can violate the inequality
constraints. In this case, the position of any individual violating
the constraints is set to its minimum or maximum position
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depending on the velocity evaluated. Additionally, to accelerate
the convergence speed, a dynamic search-space reduction
strategy is devised based on the distance between the best
position of the group and the inequality boundaries.

II. FORMULATION OF ED PROBLEM

A. ED Problem With Smooth Cost Functions

The ED problem is to find the optimal combination of power
generations that minimizes the total generation cost while satis-
fying an equality constraint and inequality constraints. The most
simplified cost function of each generator can be represented as
a quadratic function as given in (2) whose solution can be ob-
tained by the conventional mathematical methods [8]:

(1)

(2)

where
total generation cost;
cost function of generator ;
cost coefficients of generator ;
electrical output of generator ;
set for all generators.

While minimizing the total generation cost, the total genera-
tion should be equal to the total system demand plus the trans-
mission network loss. However, the network loss is not consid-
ered in this paper for simplicity. This gives the equality con-
straint

(3)

where is the total system demand.
The generation output of each unit should be between its min-

imum and maximum limits. That is, the following inequality
constraint for each generator should be satisfied

(4)

where is the minimum, maximum output of
generator .

B. ED Problem With Nonsmooth Cost Functions

In reality, the objective function of an ED problem has non-
differentiable points according to valve-point effects and change
of fuels; therefore, the objective function should be composed
of a set of nonsmooth cost functions. In this paper, two cases of
nonsmooth cost functions are considered. One is the case with
the valve-point loading problem where the objective function is
generally described as the superposition of sinusoidal functions
and quadratic functions. The other is the case with the multiple
fuel problem where the objective function is expressed as the
piecewise quadratic cost functions. In both cases, the problems
have multiple minima, therefore, the task of finding the global
solution still remains to be tackled [7], [14]–[16].

1) Nonsmooth Cost Functions With Valve-Point Effects: The
generator with multi-valve steam turbines has very different
input-output curve compared with the smooth cost function.
Typically, the valve point results in, as each steam valve starts to

Fig. 1. Example of cost function with 5 valves.

Fig. 2. Piecewise quadratic and incremental cost functions of a generator.

open, the ripples like in Fig. 1, [12], [15], [16]. To take account
for the valve-point effects, sinusoidal functions are added to the
quadratic cost functions as follows:

(5)

where and are the coefficients of generator reflecting
valve-point effects.

2) Nonsmooth Cost Functions With Multiple
Fuels: Generally, a piecewise quadratic function is
used to represent the input-output curve of a generator
with multiple fuels [7]. The piecewise quadratic function is
described as (6) and the cost and the incremental cost functions
are illustrated in Fig. 2

...
...

(6)

where are the cost coefficients of generator for
the th power level.
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III. IMPLEMENTATION OF PSO FOR ED PROBLEMS

A. Overview of the PSO

Kennedy and Eberhart [2] developed a PSO algorithm based
on the behavior of individuals (i.e., particles or agents) of a
swarm. Its roots are in zoologist’s modeling of the movement
of individuals (e.g., fishes, birds, or insects) within a group. It
has been noticed that members within a group seem to share in-
formation among them, a fact that leads to increased efficiency
of the group [13]. The PSO algorithm searches in parallel using
a group of individuals similar to other AI-based heuristic opti-
mization techniques [17]. An individual in a swarm approaches
to the optimum or a quasioptimum through its present velocity,
previous experience, and the experience of its neighbors.

In a physical -dimensional search space, the position and
velocity of individual are represented as the vectors

, and , respectively, in the PSO
algorithm. Let , and

, respectively, be the best position of indi-
vidual and its neighbors’ best position so far. Using the infor-
mation, the updated velocity of individual is modified under
the following equation in the PSO algorithm:

(7)

where
velocity of individual at iteration ;
weight parameter;
weight factors;
random numbers between 0 and 1;
position of individual at iteration ;
best position of individual until iteration ;
best position of the group until iteration .

Each individual moves from the current position to the next
one by the modified velocity in (7) using the following equation:

(8)

The search mechanism of the PSO using the modified ve-
locity and position of individual based on (7) and (8) is illus-
trated in Fig. 3.

B. Modified PSO for ED Problems

In this section, a new approach to implement the PSO algo-
rithm will be described in solving the ED problems. Especially,
a suggestion will be given on how to deal with the equality and
inequality constraints of the ED problems when modifying each
individual’s search point in the PSO algorithm. Additionally, to
accelerate the convergence speed, the dynamic search-space re-
duction strategy is devised. The process of the modified PSO
algorithm can be summarized as follows:

Step 1) Initialization of a group at random while satisfying
constraints.

Step 2) Velocity and position updates while satisfying con-
straints.

Fig. 3. The search mechanism of the particle swarm optimization.

Step 3) Update of Pbest and Gbest.
Step 4) Activation of space reduction strategy.
Step 5) Go to Step 2 until satisfying stopping criteria.

In the subsequent sections, the detailed implementation
strategies of the MPSO are described.

1) Initialization and Structure of Individuals: In the initial-
ization process, a set of individuals is created at random. In this
paper, the structure of an individual for ED problem is composed
of a set of elements (i.e., generation outputs). Therefore, indi-
vidual ’s position at iteration 0 can be represented as the vector
of where is the number of generators.
The velocity of individual (i.e., ) corre-
sponds to the generation update quantity covering all generators.
The elements of position and velocity have the same dimension,
i.e., MW in this case. Note that it is very important to create a
group of individuals satisfying the equality constraint (3) and
inequality constraints (4). That is, summation of all elements of
individual (i.e., ) should be equal to the total system
demand and the created element of individual at random
(i.e., ) should be located within its boundary. Although we
can create element of individual at random satisfying the in-
equality constraint by mapping [0, 1] into , it is
necessary to develop a new strategy to handle the equality con-
straint. To do this, the following procedure is suggested for any
individual in a group:

Step 1) Set .
Step 2) Select an element (i.e., generator) of an individual

at random.
Step 3) Create the value of the element (i.e., generation

output) at random satisfying its inequality con-
straint.

Step 4) If then go to Step 5; otherwise
and go to Step 2.

Step 5) The value of the last element of an individual is
determined by subtracting from the total
system demand . If the value is in the range of its
operating region then go to Step 6; otherwise go to
Step 1.

Step 6) Stop the initialization process.
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After creating the initial position of each individual, the ve-
locity of each individual is also created at random. The fol-
lowing strategy is used in creating the initial velocity:

(9)

where is a small positive real number. The velocity of element
of individual is generated at random within the boundary.

The developed initialization scheme always guarantees to pro-
duce individuals satisfying the constraints while maintaining the
concept of the PSO algorithm. The initial of individual

is set as the initial position of individual and the initial Gbest
is determined as the position of an individual with minimum
payoff of (1).

2) Velocity Update: To modify the position of each indi-
vidual, it is necessary to calculate the velocity of each individual
in the next stage, which is obtained from (7). In this velocity
updating process, the values of parameters such as , and
should be determined in advance. In this paper, the weighting
function is defined as follows [1], [3]:

(10)

where
initial, final weights;
maximum iteration number;

Iter current iteration number.
3) Position Modification Considering Constraints: The po-

sition of each individual is modified by (8). The resulting posi-
tion of an individual is not always guaranteed to satisfy the in-
equality constraints due to over/under velocity. If any element of
an individual violates its inequality constraint due to over/under
speed then the position of the individual is fixed to its max-
imum/minimum operating point. Therefore, this can be formu-
lated as follows:

(11)

Fig. 4 illustrates how the position of element of individual
is adjusted to its maximum when the over-velocity situation

occurs.
Although the aforementioned method always produces the

position of each individual satisfying the inequality constraints
(4), the problem of equality constraint still remains to be
resolved. Therefore, it is necessary to develop a new strategy
such that the summation of all elements in an individual (i.e.,

) is equal to the total system demand. To resolve the
equality constraint problem without intervening the dynamic
process inherent in the PSO algorithm, we propose the fol-
lowing heuristic procedures:

Step 1) Set . Let the present iteration be .
Step 2) Select an element (i.e., generator) of individual at

random and store in an index array .
Step 3) Modify the value of element using (7), (8), and

(11).
Step 4) If then go to Step 5, otherwise

and go to Step 2.

Fig. 4. Adjustment strategy for an individual’s position within boundary.

Step 5) The value of the last element of individual is de-
termined by subtracting from . If the
value is not within its boundary then adjust the value
using (11) and go to Step 6, otherwise go to Step 8.

Step 6) Set .
Step 7) Readjust the value of element in the index array

to the value satisfying equality condition (i.e.,
). If the value is within its boundary

then go to Step 8; otherwise, change the value of
element using (11). Set , and go to Step
7. If , go to Step 1.

Step 8) Stop the modification procedure.
4) Update of Pbest and Gbest: The Pbest of each individual

at iteration is updated as follows:

(12)

where
the object function evaluated at the position of indi-
vidual .

Additionally, Gbest at iteration is set as the best evalu-
ated position among .

5) Space Reduction Strategy: To accelerate the convergence
speed to the solutions, the MPSO has introduced the search-
space reduction strategy. This strategy is activated in the case
when the performance is not increased during a prespecified it-
eration period. In this case, the search space is dynamically ad-
justed (i.e., reduced) based on the “distance” between the Gbest
and the minimum and maximum output of generator . To de-
termine the adjusted minimum/maximum output of generator
at iteration , the distance is multiplied by the predetermined
step-size and subtracted (added) from the maximum (min-
imum) output at iteration as described in (13)

(13)

Fig. 5 illustrates how the search space of each generator is
dynamically reduced when activated.
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Fig. 5. Schematic of the dynamic space reduction strategy.

6) Stopping Criteria: The MPSO is terminated if the itera-
tion approaches to the predefined maximum iteration.

IV. CASE STUDIES

To assess the efficiency of the proposed MPSO, it has been ap-
plied to ED problems where the objective functions can be either
smooth or nonsmooth. The results obtained from the MPSO are
compared with those of other methods: the numerical lambda-it-
eration method (NM) [8], the hierarchical numerical method
(HM) [7], the improved evolutionary programming (IEP) [9],
the genetic algorithm (GA) [12], the Tabu search (TS) [14], the
evolutionary programming (EP) [15], [16], the modified Hop-
field neural network (MHNN) [10], and the Adaptive Hopfield
neural network (AHNN) [11].

A. ED Problems With Nonsmooth Cost Functions Considering
Valve-Point Effects

1) Test Systems: The MPSO is applied to two ED prob-
lems, one with 3 generators and another with 40 generators,
where valve-point effects are considered for both problems.
The input data for 3-generator system are given in [14] and
those for 40-generators in [16]. Here, the total demand for the
3-generator and 40-generator systems are set as 850 MW and
10 500 MW, respectively. It was reported in [14] that the global
optimum solution found for the 3-generator system is 8234.07
[$], while the global solution for the 40-generator system is not
discovered yet. The best local solution reported until now is
122 624.35 [$] [16].

2) Parameter Determination Strategy: There exist several
parameters to be determined for the implementation of the
MPSO such as in (7) and (10) as well as
in (13). In this paper these parameters have been determined
through the experiments for the 3-generator system. To avoid
the problem of the curse of dimensionality, the procedures and
strategies are determined as follows [17]: 1) The values of
and have the same value, which implies the same weights
are given between Pbest and Gbest in the evolution processes.
2) The values of are varied from 1.0 to 0.5 and
from 0.5 to 0.1. 3) The values of are also varied from 0.01
to 0.8 with increments of 0.01 under the assumption that the
parameters of are tuned in the processes 1)
and 2).

In Table I, the effects of parameters are illustrated, where 100
random trials are performed for each parameter set.

TABLE I
EFFECTS OF PARAMETERS IN MPSO PERFORMANCE

Fig. 6. Number of hits to the global solution in terms of� values.

Among 12 sets of parameters in Table I, Case 7 shows the best
performance in terms of the number of hits to the global solu-
tion, which was obtained 58 times among 100 random trials.
Therefore, the parameter values for Case 7 are selected for sub-
sequent studies considering valve-point effects.

Next, the value of step-size is determined by varying
it from 0.01 to 0.8 with 0.01 increments. Fig. 6 illustrates
the number of hits to the global in terms of values,
where the dotted horizontal line corresponds to the number
of hits to the global when the space-reduction technique
is not used (i.e., is zero). In most cases, the results
have been improved (i.e., 69 times among 80 cases) while
the exceptional cases were limited to 11 times (i.e., when

,
and ). From these experiments, the best step-size is deter-
mined as 0.31 where the global solution is obtained 80 times
among 100 random trials.

3) Numerical Results: The obtained results for the 3-gen-
erator system using the predetermined parameters are given in
Table II and the results are compared with those from GA [12],
IEP [9], and EP [15]. It shows that the MPSO has succeeded in
finding the global solution presented in [14] with a high prob-
ability (i.e., 80 times among 100 trials) always satisfying the
equality and inequality constraints.

Fig. 7 illustrates the convergence characteristics of the pro-
posed MPSO for different number of particles and Fig. 8 shows
the impact of initialization randomly created. These provide a
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TABLE II
COMPARISON OF SIMULATION RESULTS OF EACH METHOD CONSIDERING

VALVE-POINT EFFECTS (3-GENERATOR SYSTEM)

Fig. 7. Convergence characteristics of the MPSO for different number of
particles when considering valve-point effects.

Fig. 8. Convergence characteristics of the MPSO for different initial group at
random with 20 particles when considering valve-point effects.

robustness of the MPSO regarding to the population size and
initial group.

The MPSO with the same parameter values of 3-generator
system has been applied to the system with 40 generators. In
Table III, the obtained best result is compared with results from
other methods in [16] such as classical EP (CEP), fast EP (FEP),
modified FEP (MFEP), and improved FEP (IFEP). Although the
obtained best solution among 100 trials is not guaranteed to be
the global solution, the MPSO has shown the superiority to the
existing methods as one can see in Table III. The generation
outputs and the corresponding costs of the best solution are pro-
vided in Table IV.

TABLE III
COMPARISON OF SIMULATION RESULTS OF EACH METHOD CONSIDERING

VALVE-POINT EFFECTS (40-GENERATOR SYSTEM)

TABLE IV
GENERATION OUTPUT OF EACH GENERATOR AND THE CORRESPONDING COST

IN 40-GENERATOR SYSTEM

To compare the results between MPSO and various methods
in [16] in a statistical manner, the relative frequency of conver-
gence is provided for each range of cost among 100 trials in
Table V. From Table V, one can observe the robustness and su-
periority to the existing heuristic methods.

4) ED Problem With Smooth Cost Functions: The MPSO
with the same parameters determined is applied to an ED
problem with 3 generators and the quadratic cost functions.
The input data of the system are given in [8] where the system
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TABLE V
COMPARISON OF METHODS ON RELATIVE FREQUENCY OF CONVERGENCE IN

THE RANGES OF COST

TABLE VI
COMPARISON OF SIMULATION RESULTS OF EACH METHOD

demand considered is 850 MW. Table VI shows the comparison
of the results from MPSO, NM [8], IEP [9], and MHNN [10].

As seen in Table VI, the MPSO has provided the global solu-
tion with a very high probability, the same result of the lambda-
iteration method, exactly satisfying the equality and inequality
constraints.

To test the robustness of the MPSO for the smooth cost func-
tions, we have changed the demand from 300 MW to 1200 MW
with 50 MW increments and we have compared the results with
those of NM [8]. As we can see in Table VII, the MPSO has
successfully provided the same results of NM with a very high
probability in every case. Among 1900 simulations reflecting
demand and initial group changes, 1866 simulations have suc-
ceeded in finding the global solution (i.e., the probability to ob-
tain the global optimum is about 98%).

B. ED Problem With Nonsmooth Cost Functions
Considering Multiple Fuels

The developed MPSO has also been applied to the ED
problem with 10 generators where the multiple-fuel effects are
considered. In this case, the objective function is represented
as the piecewise quadratic cost function. The input data and
related constraints of the test system are given in [7], [9], and
[11]. In this case, the total system demand is varied from 2400
MW to 2700 MW with 100 MW increments.

For these problems, the same parameter determi-
nation strategy is adopted as the case of valve-point
loading problems. The resulting values of parameters are

, and .
The best results from the MPSO are compared with those of
HM [7], IEP [9], MHNN [10] and AHNN [11] and given in
Tables VIII–XI. In this case, the global solution is not known,

TABLE VII
COMPARISON OF SIMULATION RESULTS BETWEEN MPSO AND NM

TABLE VIII
COMPARISON OF OPTIMIZATION METHODS (DEMAND = 2400 [MW])

TABLE IX
COMPARISON OF OPTIMIZATION METHODS (DEMAND = 2500 [MW])

or it may be impossible to find the global solution with the
numerical approach for piecewise quadratic cost functions.

As seen in Tables VIII–XI, the MPSO has always provided
better solutions than HM [7] (except for 2600 MW case), IEP
[9], and MHNN [10]. Furthermore, it has provided solutions



PARK et al.: PARTICLE SWARM OPTIMIZATION FOR ECONOMIC DISPATCH 41

TABLE X
COMPARISON OF OPTIMIZATION METHODS (DEMAND = 2600 [MW])

TABLE XI
COMPARISON OF OPTIMIZATION METHODS (DEMAND = 2700 [MW])

satisfying the equality and inequality constraints while HM [7]
and MHNN [10] do not satisfy the equality constraint.

When compared with AHNN [11], the MPSO has provided
better solution for the demand of 2700 MW. Note that the fuel
types and dispatch levels from the MPSO is quite different from
those of other approaches. Although the AHNN has provided
better solutions than the MPSO in the other cases, the generation
configurations are quite similar between the AHNN and MPSO.

V. CONCLUSION

This paper presents a new approach to nonsmooth ED
problems based on the PSO algorithm. A position adjustment
strategy is incorporated in the PSO framework in order to
provide the solutions satisfying the inequality constraints. The
equality constraint in the ED problem is resolved by reducing
the degree of freedom by one at random. The strategies for
handling constraints are devised while preserving the dynamic
process of the PSO algorithm. Additionally, the dynamic
search-space reduction strategy is applied to accelerate the
convergence speed.

The MPSO has provided the global solution satisfying the
constraints with a very high probability for the ED problems
with smooth cost functions. For the ED problems with non-
smooth cost functions due to the valve-point effects, the MPSO

has also provided the global solution with a high probability
for 3-generator system and provided a set of quasioptimums
for 40-generator system which are better than other heuristic
methods. In the case of nonsmooth function problem due to
multi-fuel effects, the MPSO has shown superiority to the con-
ventional numerical method, the conventional Hopfield neural
network, and the evolutionary programming approach, while
providing very similar results with the modified Hopfield neural
networks.
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