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A Boiler-Turbine System Control Using A Fuzzy
Auto-Regressive Moving Average (FARMA) Model

Un-Chul Moon and Kwang Y. Lee, Fellow, IEEE

Abstract—This paper presents an application of an online
self-organizing fuzzy logic controller to a boiler-turbine system of
fossil power plant. The control rules and the membership functions
of the proposed fuzzy logic controller are generated automatically
without using a plant model. A boiler-turbine system is described
as a multi-input multioutput (MIMO) nonlinear system in this
paper. Then, three single-loop fuzzy logic controllers are designed
independently. Simulation shows robust results for various kinds
of electric load demand changes and parameter variations of
boiler-turbine system.

Index Terms—Boilers, fuzzy control, self-organizing control.

I. INTRODUCTION

A boiler-turbine system supplies high-pressure steam to ro-
tate the generator in thermal electric power generation.

The purpose of the boiler-turbine system control is to meet the
load demand of electric power while maintaining the pressure
and water level in the drum within tolerance. To design a con-
troller, the boiler-turbine system is usually modeled as a multi-
input multioutput (MIMO) nonlinear system [1].

The severe nonlinearity and wide operation range to the
boiler-turbine plant have resulted in many challenges of power
system control engineers. Hogg and Ei-Rabaie presented an ap-
plication of self-tuning generalized predictive control (GPC) to
a boiler system [2]. Rovnak and Corlis presented an application
of dynamic matrix control to fossil power plant [3]. Though [2]
and [3] both optimize the performance on a receding horizon,
the self-tuning GPC uses an online identification model, while
the dynamic matrix control uses offline step-response model
of the plant. Ben-Abdennour and Lee applied robust control
method for a power plant [4]. They decomposed a power
system to boiler, turbine, and generator, and applied the linear
quadratic Gaussian with loop transfer recovery (LQG/LTR) to
two subsystems, boiler, and turbine, as local controllers.

To overcome the nonlinearity of the boiler-turbine plant,
many kinds of artificial intelligence techniques have also been
applied. Prasad, Swidenbank, and Hogg proposed a predictive‘
control based on an NN model [5]. They used offline training
of neural network to capture the nonlinearity of power plant
dynamics. And the performance of receding horizon is mini-
mized by real-time optimization. Dimeo and Lee used a genetic
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algorithm (GA) to enhance the wide range performance of
PI controller or linear quadratic regulator (LQR) [6]. In that
paper, the parameters of conventional PI controller or LQR
are found by GA for wide operation range of boiler-turbine
system. Alturki and Abdennour applied a neural-fuzzy control
to a boiler-turbine system [7]. They trained neuro-fuzzy system
with the data from five LQRs which are designed for each
operating point. Cheung and Wang presented a comparison
of fuzzy and PI controller for drum-boiler system [8] and
concluded that the fuzzy control system has better performance
than PID control system especially in setpoint tracking.

In this paper, a self-organizing fuzzy logic controller
(SOFLC) proposed in [9], called fuzzy auto-regressive moving
average (FARMA) controller, is applied to the boiler-turbine
system. In [9], we proposed a complete design method for
an online SOFLC without using the mathematical model.
The FARMA fuzzy logic controller (FLC) was successfully
applied to several kinds of power system stabilizer design [10],
[11]. In contrast to a conventional FLC, where the rule base
and membership functions are supplied by an expert or tuned
offline through experiment, the FARMA FLC needs no experts
in making control rules. Instead, rules are generated using the
history of input-output data. The generated rules are stored in
the fuzzy rule space and updated online by a self-organizing
procedure.

The single-loop control scheme is applied to control the
boiler-turbine system in this paper. That is, three input-output
pairs of boiler-turbine system are determined. Then, three
FARMA FLCs are applied independently to the three single
loops. Simulation considers various kinds of electric load
demand changes and parameter variations of boiler-turbine
system.

II. FARMA FUZZY LOGIC CONTROLLER

A. FARMA Rule

The self-organizing FARMA fuzzy logic controller is
reviewed briefly [9]. A single-input single-output (SISO)
system can be described with a function or a mapping of the
input-output history.

(1)

where and are, respectively, the output and input vari-
ables at the -th time step.

The objective of the control problem is to find a control input
sequence which will drive the system to an arbitrary reference
set point . Rearranging (1) for control purposes, the value of
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the input at the -th step that is required to yield the reference
output can be written as follows:

(2)
which is viewed as an inverse mapping of (1) for the setpoint.

The system (1) yields the last output value when the
output and input values

are given. This implies that is the input to
be applied when the desired output is as indicated explic-
itly in (2). Therefore, a FARMA rule with the input and output
history is defined as follows:

is is

is is

is

is is

is for the -th rule (3)

where
, number of output and input variables;

, antecedent linguistic values for the-th rule;
consequence linguistic value for the-th rule.

Unlike a conventional FLC, where an expert gives the lin-
guistic values , , and , and makes rules, these linguistic
values are determined from the crisp values of the input and
output history at each sampling time. Therefore, the assigned

may not be a good control initially. However, the rule base
is updated each time using the self-organizing procedure and
better controls are applied as time progresses.

The linguistic values , , and are obtained by fuzzi-
fying the corresponding crisp values ofand . The fuzzifica-
tion is done for a crisp value on a reasonably assumed input or
output range. When an assumed input or output range is,
the membership function for a crisp value is defined in a tri-
angular shape as follows:

else .

(4)

The above fuzzification procedure generates a FARMA rule
at each sampling step and stores in a rule base. This means that
every experience is regarded initially as a fuzzy logic control
rule. As the run continues, the knowledge will be accumulated
and the FARMA rule is updated in the rule space.

B. Inference and Defuzzification

When a new set of input and output data is sampled, its “truth
value” is determined with respect to each rule and the net lin-
guistic control action is deduced with the -operation [12]
as follows:

(5)

(6)

where
net linguistic control action;
truth value of the -th rule;
membership degree of the consequence linguistic
value in the -th rule.

By taking the -cut of the where , the net
control range (NCR) is determined as the subset of
with the constant membership valueas the highest possibility.

Defuzzification is performed to determine a crisp value from
the NCR resulting from the inference. First, the NCR is mod-
ified by using a prediction or “trend” of the output response.
For example, the series of the last outputs can be extrapolated
in time domain to estimate using the Newton back-
ward-difference formula.

Defuzzification is performed by comparing the two values,
the estimate and the reference output , or the tem-
porary target generated by

(7)

where is the target ratio constant . The value of
describes the rate with which the present output approaches
the reference output value, and thus, has a positive value be-
tween 0 and 1. The value of is chosen by the user to obtain a
desirable response.

When the estimate exceeds the reference or the target output,
the control has to slow down. Otherwise, the control should
speed up. To modify the control range, the sign of

is assumed to be the same as the sign of
( ) without the loss of generality. Thus,
when , hence the sign of is posi-
tive, has to be increased from the previous input .
On the other hand, when the sign of is negative, has
to be decreased from the previous input . This limits the
range of control and modifies the NCR. The final crisp control
value is then selected as one of the midpoints of the mod-
ified NCR as follows:

(8)

where and are the respective lower and upper limits of the
NCR.

C. Self-Organization of the Rule Base

The FARMA rule defined in Section II-A is generated
at every sampling time. Each rule can be represented as
a point in the ( )-dimensional rule space [i.e.,
( )]. To update the rule base, the fol-
lowing performance index is defined

(9)

where is the real plant output and is the
reference output. Therefore, at the -th step, the perfor-
mance index is calculated with the real plant output ,
resulting from the -th step control.
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Fig. 1. FARMA control system architecture.

The fuzzy rule space is partitioned into a finite number of do-
mains and only one rule (i.e., a point), is stored in each domain.
If there is a new rule in domain with the smaller value of, the
old rule is replaced by the new one. The self-organization of the
rule base, in other words “learning” of the object system, is per-
formed at each sampling time as shown in Fig. 1.

III. B OILER-TURBINE SYSTEM CONTROL

A. Boiler-Turbine System Model

The model of Bell and Åström [1] is used in the simulation
for the nonlinear boiler-turbine system. It was developed for a
160-MW oil–fired drum-type boiler-turbine-generator system
for overall wide-range simulation. The model is a third-order
MIMO nonlinear system described as follows [1]:

(10)

(11)

(12)

(13)

(14)

(15)

where

(16)

(17)

The three state variables, , and are drum steam pressure
( in kg/cm ), electric power ( in MW), and steam-water fluid
density in the drum ( in kg/m ), respectively. The three out-
puts , , and are drum steam pressure (), electric power
( ), and drum water level deviation (in m), respectively. The

, drum water level , is calculated using two algebraic calcu-
lations and which are the steam quality (mass ratio) and
the evaporation rate (kg/s), respectively.

The three inputs , , and are normalized positions of
valve actuators that control the mass flow rates of fuel, steam to
the turbine, and feedwater to the drum, respectively. Positions of

Fig. 2. Boiler-Turbine control system.

valve actuators are constrained to [0.1] and their rates of change
per second are limited to

(18)

(19)

(20)

B. FARMA FLC Application to Boiler-Turbine System

In this paper, the FRAMA FLC for SISO system (1) is directly
applied to the boiler-turbine system. From the input-output point
of view, the boiler-turbine system (10)–(20) is a three-input and
three-output system. Therefore, three single loops, which are
three FARMA FLCs, are applied independently in this paper.

The dominant input-output fairs should be determined first
to design the single-loop configuration. From (10), thecan
be controlled by and . Considering that the order of is
about 100 in normal operation, term is smaller than term,
which means (pressure) is dominantly affected by (mass
flow rates of fuel). Therefore, the first FARMA FLC loop is to
control with . And from (11), is affected by . There-
fore, the second FARMA FLC is to control (electric power)
with (steam to the turbine). Finally, from the physical prop-
erty of boiler-turbine system, (drum water level deviation) is
controlled by (feedwater to the drum). Therefore, the third
FARMA FLC is to control with .

The overall structure to control the boiler-turbine system is
shown in Fig. 2. In Fig. 2, FARMA FLC I, II, and III control
(pressure), (electric power), and (drum water level devia-
tion) with (mass flow rates of fuel), (steam to the turbine)
and (feedwater to the drum), respectively.

The orders and in (3) are 3 and 1 for each FRAMA FLC.
Therefore, (3) for each FRAMA FLC is as follows:

for the -th rule (21)

The output ranges for (4) are [70 150] (in kilograms/cm),
[10 190] ( in megawatts) and [0.5 0.5] ( in meters) for
FARMA FLC I, II, and III, respectively. The input ranges are
[0 1] for each FARMA FLC.
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Fig. 3. Outputs of case 1.

IV. SIMULATION RESULTS

The control system and process model were developed with
C-language in a personal-computer environment. Sampling
times for simulations are 0.5 s. Simulations presented here are
to evaluate the control system performance for various kinds
of electric load demand changes and parameter variations of
boiler-turbine system and characteristics of single-loop controls
with three FARMA FLCs. In [4], they pointed out that the
pressure setpoint is increased through a functional mapping as
the electric load is increased. Therefore, the pressure setpoints
are also increased as electric loads increased in simulations.

With the assumption that the system is in a steady
state with , ,

initially, we consider the seven
cases to validate the proposed control system. The first four
cases are to consider various kinds of electric load demands and
the second three cases are to consider the parameter variations.

A. Electric Load Demand Changes

In this case study, four cases with various kinds of electric
load demand changes are considered as follows: .

Case 1

Case 2

Case 3

Case 4

Case 1 describes that the setpoints of pressure and electric load
demand are increased to 110 and 80, respectively, while the
drum water level is kept to zero. Cases 2 and 3 describe the
cases that the setpoints of pressure and electric load demand
are increased to larger values for wider-range operation. Case 4
is to demonstrate the learning ability of the FARMA FLC. The
setpoints of pressure and electric load demand are increased to
the values of Cases 1, 2, and 3, but successively in every 400 s
while the drum water level is kept to zero. Therefore, new plant
experience is added to a rule base as new setpoints are applied.

Figs. 3–10 show the simulation results for cases 1, 2, 3, and
4. In the plots, units for output variables are (kg/cm) for ,
(MW) for and (cm) for and units for input variables are
normalized positions of valve actuators for three inputs, ,
and .

Fig. 4. Inputs of case 1.

Fig. 5. Outputs of case 2.

Fig. 6. Inputs of case 2.

Fig. 7. Outputs of case 3.

Fig. 3 shows the outputs for case 1. The outputtracks the
reference 110 after 60 s and theis reached to the reference 80
in about 50 s. The drum water level is initially increased to 20,
but returns to zero after 60 s. Fig. 4 shows the control actions
of case 1. For larger step increases (cases 2 and 3), the outputs
respond similarly, but take longer to reach the setpoint and with
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Fig. 8. Inputs of case 3.

Fig. 9. Outputs of case 4.

Fig. 10. Inputs of case 4.

more overshoots (Figs. 5 and 7). However, input signals are get-
ting larger and often saturated as in Figs. 6 and 8. Figs. 9 and
10 show the outputs and inputs for case 4, which is to demon-
strate the learning ability of FARMA FLC. The outputs and

track their references in every 400 s. The drum water level
deviation is 20 at the first reference change, but reduced to 10
at the subsequent changes Fig. 9. On the contrary, in cases 2
and 3, the drum water level deviation is 20 and takes longer to
settle down (Figs. 5 and ). In case 4, however, the drum water
level deviations is 10 for the same level of setpoints as cases
2 and 3 (Fig. 9). This is because there is no rule at the initial
setpoint change, but the experience on the first setpoint change
was accumulated in the rule space and was used for the second
setpoint change. Similarly, the experience gained with the first
and the second setpoint changes were accumulated and used for
the third setpoint change. As the controller experiences new in-
puts, the knowledge base is increased and the performance of
the FARMA FLC improves.

Fig. 11. Outputs of case 5.

Fig. 12. Inputs of case 5.

B. Parameter Variations

Three different cases for parameter variations are considered
as follows:

Case 5) 50% change in model parameters in (10);
Case 6) 50% change in model parameters in (10), (11), and

(12);
Case 7) 50% change in the steam quality (mass ratio)in

(15).
In case 5, three coefficients in (10) are reduced to 50% as

follows:

(22)

In case 6, all coefficients in the three state equations are reduced
to 50% [i.e., in addition to (22)]

(23)

(24)

In case 7, the coupling constant 100 in (15) is reduced to 50%
as follows:

(25)

The setpoint changes of outputs for cases 5, 6, and 7 are the
same as those in case 4. Figs. 11–16 show the simulation results
for cases 5, 6, and 7.

Compared to the base case, case 4, the output responses of
cases 5 and 6 are closed to each other and the base case Figs. 11
and 13. However, control efforts are much larger (Figs. 12 and
14). Figs. 15 and 16 are for case 7. In Fig. 15,is better than
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Fig. 13. Outputs of case 6.

Fig. 14. Inputs of case 6.

Fig. 15. Outputs of case 7.

Fig. 16. Inputs of case 7.

that of case 4. This is because the effect ofon is reduced
to 50% in (25), which makes smaller response ofthan that of
case 4.

From cases 5, 6, and 7, the proposed controller shows satis-
factory performances though the plant model is changed signif-

icantly. This is because the proposed controller does not use the
mathematical model of the system. Instead, the control rules are
generated automatically with input-output history and the rule
base is updated online to learn the behavior of the controlled
plant.

The simulation results for various electric load demand
changes and parameter variations show that the boiler-turbine
system, which is highly complex and nonlinear, can be effec-
tively controlled by the three single-loop FARMA FLCs.

V. CONCLUSION

This paper presents an application of online self-organizing
fuzzy logic controller (SOFLC) to a boiler-turbine system in
a fossil power plant. The control rules and the membership
functions of FARMA FLC are generated automatically without
using the plant model. The generated rules are stored in the
fuzzy rule space and updated online by a self-organizing pro-
cedure. Three single loops are controlled with three FARMA
FLCs. The boiler-turbine system considered is a highly
nonlinear MIMO system. For various electric load demand
changes and parameter variations, simulation results show that
the MIMO nonlinear boiler-turbine system can be controlled
effectively with the proposed SOFLC. Moreover, the proposed
control system is shown to be adaptive and robust.
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