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Abstract—This paper presents an efficient algorithm for loss
minimization by using an automatic switching operation in large-
scale distribution systems. Simulated annealing is particularly well
suited for a large combinatorial optimization problem since it can
avoid local minima by accepting improvements in cost. However, it
often requires a meaningful cooling schedule and a special strategy,
which makes use of the property of distribution systems in finding
the optimal solution. In this paper, we augment the cost function
with the operation condition of distribution systems, improve the
perturbation mechanism with system topology, and use the polyno-
mial-time cooling schedule, which is based on the statistical calcu-
lation during the search. The validity and effectiveness of the pro-
posed methodology is demonstrated in the Korea Electric Power
Corporation’s distribution system.

Index Terms—Combinatorial optimization problem, cooling
schedule, distribution system, loss minimization, network re-
configuration, perturbation mechanism, power flow, simulated
annealing.

I. INTRODUCTION

E FFICIENT operation of a distribution system can be
achieved by reconfiguring the system to minimize

system loss as the operating condition changes. The network
reconfiguration problem essentially belongs to a combinato-
rial optimization problem since the problem is to determine
open/closed status of all switches by considering all possible
operational constraints in a large-scale distribution system. It
is, therefore, difficult to obtain a true optimal solution fast in
a real system.

Merlin and Back [1] first proposed a branch-and-bound
method for distribution systems, which later was modified
by Shirmohammadi and Hong [2]. Aokiet al. [3] used a
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quasiquadratic nonlinear programming technique to minimize
the distribution system loss. Civanlaret al. [4] and Baran and
Wu [5] proposed approximate power-flow methods for loss
minimization, resulting from a switch operation in distribution
systems. Liuet al. [6] used an expert system technique to solve
the reconfiguration problem for distribution systems. Chiang
and Jean-Jumeau [7], [8] proposed a solution procedure for the
reconfiguration problem using simulated annealing, which later
was extended by Chang and Kuo [9], Jiang and Baldick [10],
and Su and Lee [11]. Naraet al. [12] implemented the genetic
algorithm to find the minimum loss configuration.

Although the branch-and-bound, branch-exchange, and
expert system techniques can solve the problem with rather less
computational burden, the calculated results are only approx-
imates and local optima. Moreover, although other heuristic
methods work well in a small system, it is difficult to find
global optimum in a real system that would have a large number
of switches. Recently, a genetic algorithm and tabu search
were used in combinatorial optimization problems [12]–[15].
A genetic algorithm generates new solution candidates through
crossover and mutation of strings, but many infeasible solutions
that violate the radial configuration are generated. Tabu search
generally finds a good solution, but it does not have a good
convergence property. Because of its flexible nature, tabu
search would be better in hybrid with another algorithm rather
than as an independent application.

Although the methods mentioned before do not have a good
convergence property in comparison with simulated annealing,
they are used due to less computation time. Distribution systems
are growing continually and becoming more complex. However,
computer technology has advanced remarkably. Therefore, sim-
ulated annealing is particularly well suited for reconfiguration
problems in large-scale distribution systems. However, simu-
lated annealing requires an elaborate cooling schedule and a
special strategy to find the optimal solution in large-scale distri-
bution systems. In this paper, we introduce the polynomial-time
cooling schedule, which is based on the statistical calculation
during the search. A novel strategy is also used to make the
cost function “landscape” smooth. Moreover, a new perturba-
tion mechanism is developed to generate a network configura-
tion by considering the system topology. The proposed proce-
dure avoids local minima better in the complex solution surface.

The rest of the paper is organized as follows: In Section II,
the problem formulation and distribution system power flow are
presented. In Section III, the essence of the simulated annealing
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Fig. 1. One-line diagram of a main feeder with laterals.

is presented, and a detailed solution methodology through sim-
ulated annealing is explained in Section IV. In Section V, nu-
merical examples are shown to demonstrate the validity and ef-
fectiveness of the proposed methodology, and conclusions are
drawn in Section VI.

II. PROBLEM FORMULATION

The network reconfiguration problem in a distribution system
is to find a configuration with the minimum power loss while
all system constraints are satisfied. In this paper, we use the
power-flow method of Baran and Wu [5] to determine the power
flow approximately in a radial distribution system as shown in
Fig. 1.

Due to the complexity of a large-scale distribution network,
the network reconfiguration problem normally assumes a sym-
metrical systems and constant loads. Therefore, the distribution
lines are modeled as series impedances . Load de-
mand at bus is modeled as a constant and balanced power sink

. The real and reactive power flow at the re-
ceiving end of branch , , and , and the voltage
magnitude at the receiving end, , can be expressed by the
following set of equations:

(1)

(2)

(3)

Equations (1)–(3) are known as theSimplified DistFlow equa-
tions. They are not accurate in comparison with theDistFlow
equations[5], but the calculation error is acceptable in view of
the negligible error in the section load estimation.

In the distribution system power-flow equations, several
boundary conditions must be satisfied:

1) at the substation, the voltage magnitude is given;
2) at the end of the main feeder: and ;
3) at the end of lateral: and

where and are the node numbers of the main feeder and
branch , respectively.

The power loss in the distribution system can be calculated
as the sum of the loss in each branch. The total power loss
can be calculated by

(4)

where is the total number of branches.

III. SIMULATED ANNEALING

In statistical mechanics, a physical process known as an-
nealing is often performed in order to relax the system to a state
with minimum free energy. In the annealing process, a solid in
a heat bath is heated up by increasing the temperature of the
bath until the solid melts into liquid, then the temperature is
lowered slowly. In the liquid phase, all particles of the solid
arrange themselves randomly. In the ground state, the particles
are arranged in a highly structured lattice and the energy of the
system is minimal. The ground state of the solid is obtained
only if the maximum temperature is sufficiently high and the
cooling is performed sufficiently slow. Otherwise, the solid will
be frozen into a metastable state rather than into the ground
state. If a state is defined by the set of particle positions, then,
at thermal equilibrium, the probability of the system being in
state i is represented by theBoltzman distribution[16], [17],

(5)

where is known as thepartition
function, is theBoltzman constant, is the temperature,
is the energy of the state, and is the state space [16], [17].
At a very high temperature, it can be seen that

(6)

where denotes the total number of states in. This implies
that all of the states are equally probable at a very high tem-
perature. In this case, the energy of the state does not affect the
probability of the state. On the other hand, at a lower temper-
ature, the value of exponential function is strongly affected by
the energy of the state. Therefore, we have

(7)

if

otherwise

where and .
From this equation, we observe that as the temperature ap-
proaches zero, the system will converge to the state with the
minimum energy, , since the probability of the state only
with the minimum energy is nonzero, while the probability of
others is 0.

To illustrate this concept, consider the generalizedBoltzman
distribution of a simple system with energy function

, shown in Fig. 2. This system has nine states between2.0
and 2.0 with intervals of 0.5, and itsBoltzman distribution is
illustrated for 99.0, 1.0, and 0.1.

In Fig. 2, it can be seen that all of the states are equally prob-
able at , while the probability of the state with min-
imum energy is very high at . Therefore, if the system
follows theBoltzman distribution, the state with minimum en-
ergy can be obtained by decreasing the temperature.

Based on the annealing process in the statistical mechanics,
the simulated annealing was independently introduced for
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Fig. 2. Boltzman distribution with different temperatures.

TABLE I
ANALOGY BETWEENPHYSICAL SYSTEM AND SIMULATED ANNEALING

solving complicated combinatorial optimization problems by
Kirkpatrick et al. in 1983 and Cerny in 1985 [18], [19]. The
name “simulated annealing” originates from the analogy with
the physical process of solids. The analogy between physical
system and simulated annealing is tabulated in Table I.

As shown in Table I, the cost function and the solution (con-
figuration) in the optimization process correspond to the energy
function and the state of statistical physics, respectively.

Suppose that a cost function , , to be min-
imized is dined on some finite set. In simulated annealing,
given the current state , a neighboring state is ran-
domly selected from a neighboring set , where is the th
trial. The transition probability from state to is given
by the Metropolis criterion [16], [17]

(8)

From (8), it can be seen that the Metropolis criterion, while
performing the local search for the minimum cost at a fixed
temperature , enables occasional transition from a lower-cost
configuration to a higher-cost configuration with certain prob-
ability, thus preventing the system from getting stuck in a local
minimum. The random process can be characterized by a dis-
crete-timeMarkov chain[16], [17]. Under the feature ofMarkov
chain, the stationary equilibrium distribution for configura-
tion exists after an infinite number of transitions.

(9)

From (7), we know that

if

otherwise.
(10)

Therefore,

(11)

Equation (11) states that the simulated annealing asymptoti-
cally converges to configurations with the minimum cost (i.e.,
if the temperature is slowly lowered and at each temperature the
system performs a sufficient number of transitions, the config-
urations with the global minimum cost can be found with prob-
ability one [16], [17], [20].

IV. SOLUTION ALGORITHM

In a large combinatorial optimization problem, an appro-
priate perturbation mechanism, cost function, solution space,
and cooling schedule are required to find an optimal solution
with simulated annealing. In this section, these elements for the
network reconfiguration problem in distribution systems are
revisited and their improvements are proposed.

A. Topology-Based Perturbation Mechanism

The open/closed status of sectionalizing switches and tie
switches determines the network configuration of the system.
Hence, a new system configuration can be generated from
current system configuration with a perturbation mechanism
that changes the status of sectionalizing and tie switches. To
achieve a new system configuration, theadd/subtractperturba-
tion mechanism proposed by Chiang and Jean-Jumeau [7], [8]
is described as follows.

1) Randomly choose a switchfrom a tie switch set , and
then close it. The switchis removed from and placed
in a sectionalizing switch set . This creates a loop in the
system, and sectionalizing switches in the loop are included
in a loop set

2) Randomly choose a switch from and then open it.
This will restore the system back to a radial structure. The
switch s is removed from the set and added to the set

..
This perturbation mechanism is illustrated using the simple

radial distribution system as shown in Fig. 3 [5]. Tie switches
and sectionalizing switches represent the switch on the dotted
lines and solid lines, respectively. When closing the tie switch
34, a loop 2 is created and sectionalizing switches 9—14 are in-
cluded in . If any sectionalizing switch in is opened,
the system configuration is restored to a radial structure. As a re-
sult of this switching, a new system configuration can be gener-
ated, which satisfies the radial configuration and power-supply
constraints.

This perturbation mechanism is suitable for the network
reconfiguration problem, but its drawback is that it is not
taking advantage of knowing the system topology. Tie and
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Fig. 3. Simple radial distribution system.

Fig. 4. Number of selected switch with two switch selection methods.

sectionalizing switches that are randomly selected implies
that system topology and temperature are not affecting the
search process and, therefore, the search property of simulated
annealing cannot be influenced.

As shown in Fig. 3, the local solution space of loop 1 is larger
than that of loop 2 due to the different size of the loops. If all
of the tie switches are selected with equal probability, in loop 1
the search may not be performed sufficiently. On the other hand,
in loop 2, the search often returns to a configuration just visited
because the search is performed more than what is necessary.
Also, it is necessary that tie switches are selected in relation to
the size of a loop because the size of each loop is significantly
different in large-scale distribution systems. For example, when
the length of Markov chain is 100 and temperature is decreased
50 times by decrement function (i.e., for which the perturbation
mechanism generates 5000 solutions), the selected switches are
shown in Fig. 4.

In Fig. 4, the switches in loop 2, which are 9—14, are se-
lected less often by the proposed selection method than by the
random selection method, while switches in other larger loops
are selected more often. The proposed selection method induces
diversity in the search.

In Fig. 3, if the tie switch 37 is closed, any sectionalizing
switch in loop 1 must be opened in order to remain as a
radial structure. If the sectionalizing switch 3 is opened, the
system may be largely perturbed, which can be accepted by
theMetropolis criterionat high temperature, although the cost
may be increased. However, most of these largely perturbed
transitions must be rejected at a lower temperature. Therefore,
it is necessary that a perturbation mechanism generates an
acceptable configuration at a low temperature. From these
observations, the following topology-based perturbation
mechanism (TPM)is proposed to select tie and sectionalizing
switches.

1) Given an initial radial configuration and a set of tie switches,
for each tie switch there exists a loop formed by the closing
of the switch. Then, the size of the loop (i.e., the number
of sectionalizing switches in the loop) can be determined.
Determine the size of the loops corresponding to all tie
switches. Normalize each loop size with the sum of all loop
sizes. The result is the relative loop size.

2) Perform a size-proportionate selection of a tie switch
through the simulated spin of a weighted roulette wheel.
The roulette wheel is biased with the relative loop sizes that
correspond to each tie switch. Close the selected tie switch,
creating a loop in the system. Form the loop set with
all of the sectionalizing switches in the loop. This forces tie
switches selected in relation to the size of the loop.

3) For all sectionalizing switches in , calculate the
“switch level,” (i.e., the distance between the tie switch t
and each sectionalizing switch). Choose and open a section-
alizing switch with the switch-level-dependent selection
probability in . This will restore the system back to a
radial structure.

The selection probability of sectionalizing switches is deter-
mined by the uniform distribution biased with the inverse of the
switch level

(12)

where and are the respective selection probability and
switch level of the sectionalizing switch, is the number of
sectionalizing switches in , and is a positive number in
the range [0, 1], which is calculated by the following equation:

(13)

where is a positive number in the range [0, 0.5], andand
are the initial and current temperatures, respectively.

At and with , all sectionalizing switches are ran-
domly selected (i.e., is 1), and each sectionalizing switch may
be selected by the same probability. By decreasing the temper-
ature , is decreased, which increases the selection proba-
bility of the switch with the small switch level. This implies that
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Fig. 5. Number of accepted solution with two perturbation mechanisms.

a slightly perturbed configuration from the proposed topology-
based perturbation mechanism is quite probable, which can be
easily accepted as a new configuration at low temperature.

As an example for the selection of sectionalizing switches,
when the length ofMarkov chain is 100 and temperature is
decreased 50 times, the numbers of accepted solutions by the
Metropolis criterionare shown in Fig. 5.

As shown in Fig. 5, the proposed topology-based perturbation
mechanism generates more new solutions than the random per-
turbation mechanism. The proposed and random perturbation
mechanism generates 1015 and 989 solutions for 5000 trials,
respectively, and 317 and 252 solutions from the 26th to 50th
Markov chain, respectively. This implies that a slightly per-
turbed configuration from the proposed topology-based mech-
anism is quite probable, which can be easily accepted as a new
configuration at low temperature.

The proposed topology-based perturbation mechanism
changes the status of tie and sectionalizing switches with the
system topology and temperature, which is diversified at a
high temperature and intensified at attraction regions at lower
temperature.

B. Cost Function and Solution Space

In the network reconfiguration problem, the solution space
is the set of all possible open/closed status of the switches.
The new system configuration is generated by using the pro-
posed topology-based perturbation mechanism, but it is diffi-
cult to satisfy all of the network reconfiguration constraints. In
this paper, the set of network reconfiguration constraints is di-
vided into two subsets to generate efficiently a network config-
uration satisfying all network reconfiguration constraints. Any
violation of power-supply and radial configuration constraints
can be avoided by using the perturbation mechanism before the
power-flow calculation, while any violation of the line-capacity
and voltage-drop constraints is penalized through penalty fac-
tors after the power-flow calculation. In this paper, we will call
the former and latter as “before” and “after” constraints, respec-
tively. The set of network reconfiguration constraints are as fol-
lows:

“Before” constraints: Power Supply, Radial
Configuration

“After” constraints: Line Capacity, Voltage Drop

Thus, the set of solutions deemed feasible by the simulated
annealing is defined as

satisfies all constraints in (14)

The network reconfiguration problem is to minimize the total
system loss (4) while satisfying the “after” constraints. That is,

Minimize (15)

where and are penalty factors and and corre-
spond to the set of violations to line capacity and voltage drop
constraints, respectively.

In the cost function, line capacity and voltage drop constraints
are included by using the penalty factors because these con-
straints can be checked for violation after the power-flow cal-
culation. When any solution violates constraints, this infeasible
solution is generally discarded or its selection probability is de-
creased by using penalty factors. Solving by using this method is
always feasible and the size of the solution space is decreased.
However, in a large combinatorial optimization problem, it is
difficult to find an optimal solution because the solution surface
is very complex and multimodal. Also, if an optimal solution
must pass through an infeasible solution space, it may not find
the optimal solution.

If a slightly infeasible solution is included in the solution
space by using small penalty factors, the solution is easily gen-
erated and the solution surface is smoothed. However, the size
of the solution space is generally increased and it is necessary
that any fine-tuning algorithm should turn from an infeasible so-
lution to a feasible solution.

In this paper, we incorporate these features. The line-capacity
constraint is a sensitive issue in the network reconfiguration of
a real distribution system because line-capacity constraints are
composed of many varieties of lines. Although a planner de-
signs a distribution system by considering this issue, the viola-
tion of a line-capacity constraint in large-scale distribution sys-
tems is rather common and more than in small distribution sys-
tems during the optimization process. Therefore, in this paper,
penalty factors are adjusted by multiplying , where is
the temperature. In the beginning of the search, small penalty
factors lead to contain a slightly infeasible solution. As the tem-
perature decreases, penalty factors are increased and only fea-
sible solutions are generated at the latter part of the search.

As shown in Fig. 6, the presence of slightly infeasible so-
lutions leads to a smoothing of the cost function “landscape,”
which enables the simulated annealing to escape more easily
from local minima and to reach rapidly in the vicinity of an
optimal solution. Penalty factors are increased with decreasing
temperature, and the infeasible solution will be excluded at the
end. Therefore, with the new definition of cost (15) and the
smoothing strategy, all trial solutions are made feasible and the
search is efficiently performed.

C. Polinomial-Time Cooling Schedule

If the temperature is slowly lowered and at each tempera-
ture the system performs the infinite number of transitions, the
configuration with the global minimum cost can be found. But
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Fig. 6. Solution surface with the smoothing strategy.

the infinite number of transitions is impossible in the real sim-
ulation. Therefore, a finite-time implementation of the simu-
lated annealing is realized by generatingMarkov chainsof finite
length for a finite sequence of descending temperatures. To do
this, a set of parameters that govern the convergence of the al-
gorithm is specified. These parameters form a cooling schedule,
which is defined as following:

• a finite sequence of the temperature, (i.e.,
an initial temperature ;
a decrement function for decreasing temperature;
a final temperature specified by a stop criterion);

• a finite number of transitions for each temperature (i.e.,
a finite length for eachMarkov chain).

In this paper, we use thepolynomial-time cooling schedule
proposed by Aarts and Laarhoven in [17]. This cooling
schedule leads to a polynomial-time execution of the simulated
annealing, but it cannot guarantee the optimal solution [16],
[17], [21]. Different parameters of the cooling schedule are
determined based on the statistics calculated during the search.
In the following, we describe these parameters.

1) Initial Temperature : Initial temperature should be
large enough to support virtually all transitions to be accepted.
This is achieved by requiring that theacceptance ratio( ),
the ratio accepting transitions in trials, is close to one. As-
sume that a sequence of trials is generated at a certain tem-
perature . Let denote the number of transitions fromto

for which , and is the number of transitions

for which . Furthermore, let be the average
difference in cost over the cost-increasing trials. Then
can be approximated by the following equation [17]:

(16)

from which we obtain

(17)

The temperature can be calculated the following way: Ini-
tially, in (16) is set to zero. Next, a sequence oftrial is
generated, and , , , and are obtained, where

. A new temperature is determined using (17).
Equations (16) and (17) are recursively calculated until
reaches a previously specified value. A final temperatureob-
tained in this way is then taken as the initial temperature.

2) Decrement Function of the Temperature : The
length ofMarkov chainand decrement function for changing

into are strongly related through the concept of
quasiequilibrium. If decrement in is large, it takes longer
to establish quasiequilibrium at . Thus, there is a tradeoff
between fast decrement of and the length ofMarkov chain.
The value is related to the current value, , by the
following function [17]:

(18)

where is the standard deviation of the cost values generated
in , and is a constant called the distance parameter. Small
values lead to small decrements in.

3) Final Temperature:Termination in this schedule is based
on an extrapolation of the expected average cost at the final tem-
perature. Hence, the algorithm is terminated if for some value
of we have

(19)

where is the average cost at initial tempera-
ture , is the average cost at theth Markov chain,

is the rate of change in the average cost at,
and is a positive number. We refer toas the stopping param-
eter and (19) as the stopping criterion.

4) Length of Markov Chains:In [16], [17], it is concluded
that the decrement function of the temperature, (18), requires
only a “small” number of trial solutions to rapidly approach
the stationary distribution for a given temperature. In general,
a chain length of more than 100 transitions is reasonable.

D. Solution Algorithm for Network Reconfiguration

In conclusion, the network reconfiguration methodology by
using simulated annealing is summarized in detail as follows.

Step 1): Input system data and initialize parameters,
input the system and network data, initialize the current so-

lution , the optimal solution , acceptance ratio, and
the length ofMarkov chain, and determine initial temperature

using (16) and (17).
Step 2): Generate the updating term of solution.
A new configuration is generated by the proposed topology-

based perturbation mechanism.
Step 3): Calculate the cost difference

.
Calculate the cost difference by (15); line capacity and

voltage drop constraints are penalized by penalty factors.
Step 4): Check for .
If , go to Step 6). Otherwise, go to Step 5).
Step 5): Check theMetropolis criterion.
If , where is a random number in the

range [0, 1], then go to Step 6). Otherwise, restore to the pre-
vious configuration and go to Step 2).



1076 IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 17, NO. 4, OCTOBER 2002

Step 6): Update the system configuration.
Retain the new configuration. If the number of perturbations

is not less than the length ofMarkov chain, go to Step 7). Oth-
erwise, go to Step 2).

Step 7): Reduce the temperature.
Calculate the standard deviation of the cost at theth Markov

chain, and then calculate the new temperature with (18).
Step 8): Check the stopping criterion.
If (19) is satisfied, stop. Otherwise, continue the process by

returning to Step 2).

V. NUMERICAL RESULT

Application of the simulated annealing generally requires
specification of three items: i) a concise problem representa-
tion, ii) a perturbation mechanism, and iii) a cooling schedule.
In addition, two additional items are required according to our
experience. One is to make the cost function small. If the cost
is small, the exponential function is sensitive for the small
changes in the cost, which results in good moves in the search
process. If the cost is large, a randomly performed search takes
longer. Another is to select a good random number generator.
Theory of simulated annealing assumes a true random number
generator, but the function in a compiler generally has
a short-cycle period. Use of the random number generator with
a long cycle period is desirable for a large-scale optimization
problem. In this paper, the random number generator proposed
by Kirkpatrick and Stoll is used [22]. These items are often
neglected when applying the simulated annealing. However,
they are important to produce the best results. Considering
the items just mentioned, the proposed methodology was
demonstrated in various distribution systems.

The proposed methodology was implemented inC language
on an Intel Pentium II 350-MHz processor with a double
linked-list data structure to represent the data base of the distri-
bution system. The proposed methodology is tested in several
systems, including a 148-bus system and a real distribution
system of the Korea Electric Power Corporation (KEPCO).

A. The 148-Bus System

The 148-bus system is part of a real distribution system in
Joongdong City, a satellite city of Seoul, Korea. The rated
voltage is 22.9 kV and total load is 44.43 MW and 21.51
MVAR. The system consists of 148 buses, 148 sectionalizing
switches, and 19 tie switches as shown in Fig. 7. The dot
“( )” in Fig. 7 denotes a bus and the switches are connected
between the buses. The switches between the following buses
are opened in the initial configuration: (41–42), (24–56),
(38–59), (9–60), (47–66), (54–75), (61–78), (74–95), (68–98),
(102–103), (105–113), (106–120), (119–127), (101–136),
(28–142), (96–143), (72–144), (49–147), and (145–148).

In the initial configuration, the total power loss and the min-
imum bus voltage of the system is 1068 kW and 0.935 p.u., re-
spectively.

Fig. 8 is the final result of the simulation with the proposed
methodology. Optimal configuration has a total power loss
of 860 kW and minimum bus voltage of 0.953 p.u. The
switches connecting the following buses are opened for the

Fig. 7. Initial configuration of the KEPCO 148-bus system.

Fig. 8. Optimal configuration of the KEPCO 148-bus system.

optimal configuration: (29–39), (30–41), (34–46), (46–56),
(38–59), (47–66), (64–75), (72–83), (80–90), (84–95), (87–98),
(94–105), (100–110), (102–112), (109–116), (113–120),
(121–128), (124–133), and (72–144). In the implementa-
tion, good results have been reached with the parameters

, , acceptance ratio 0.6, the length of
Markov chain 100, , , and .

The proposed methodology is tested on a 32-bus [5], 69-bus
[8], and the 148-bus systems and compared with a conventional
simulated annealing algorithm, which is performed with the
cooling schedule by Kirkpatricket al. [16], [18]. In the con-
ventional simulated annealing, good results have been reached
with the parameter , , acceptance
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Fig. 9. Convergence properties of two simulated annealing algorithms for the
148-bus system.

TABLE II
COMPARISON OFCONVENTIONAL AND PROPOSEDSAS

ratio 0.85, decrement constant 0.9, the length of Markov
chain 100, and final value in the stopping criterion 30.
The convergence profile is shown in Fig. 9 and the results of
the comparisons are tabulated in Table II for the 32-, 69-, and
148-bus systems, where the computation time of both methods
is for the average of ten trials for a fair comparison.

In the 32- and 69-bus systems, an optimal solution can be
easily obtained by small transitions, and both methods have
comparable results in computation time. In the 148-bus system,
the conventional and the proposed simulated annealing methods
yielded the same system loss and the minimum voltage drop.
However, the percentage reduction in the computation time
is approximately 10.7% by the proposed simulated annealing
method. The proposed methodology used meaningful cooling
schedule and a perturbation mechanism by considering the
system topology and temperature, and is shown to be efficient
in middle or large distribution systems.

B. KEPCO’s Real Distribution System

This system is the real distribution system in Joongdong City,
a satellite city of Seoul, Korea. The rated voltage is 22.9 kV.
There are one substation, four main transformers, 25 feeders,
362 buses, and 421 switches in the distribution system. This
system is mostly composed of underground cable (CN-CV 325
mm ), and the total loads are 150 MW and 75 MVAR.

The initial configuration is altered to change the status of
many tie switches because the original configuration is consid-
ered to be near optimal. In the initial configuration, total power
loss and the minimum bus voltage of the system is 3959 kW and
0.9 p.u., respectively. Optimal configuration has the total power
loss of 833 kW and the minimum bus voltage of 0.979 p.u. In

TABLE III
COMPARISON OFCONVENTIONAL AND PROPOSEDSAS IN THE KEPCOS

REAL DISTRIBUTION SYSTEM

the implementation, good results have been reached at accep-
tance ratio 0.8, the length ofMarkov chain 150, ,

, and , and and are adjusted by the smoothing
strategy. In the conventional simulated annealing, good results
have been reached with the parameter , ,
acceptance ratio 0.95, decrement constant0.95, the length
of Markov chain 150, and final value in stopping criterion
50. Conventional simulated annealing and the proposed simu-
lated annealing are tested to show the effectiveness of the pro-
posed algorithm, where the computation time of both methods
is in the average of ten trails for a fair comparison.

As shown in Table III, the proposed methodology performs
better than the conventional simulated annealing. The polyno-
mial-time cooling schedule asymptotically leads to an optimal
solution in the complex solution surface, and the proposed per-
turbation mechanism, by considering system topology and tem-
perature, is more efficient in large-scale distribution systems.
Moreover, the smoothing strategy enables simulated annealing
to escape local minima. It is clear that the proposed method-
ology improves the convergence property and the computation
time in large-scale distribution systems, and the improvement
in convergence property will be more significant as the system
size increases.

VI. CONCLUSION

In this paper, we propose an improved simulated annealing al-
gorithm for network reconfiguration in large-scale distribution
systems. To improve the performance of simulated annealing,
thepolynomial-time cooling scheduleis used which is based on
the calculation of the statistics during the search. The proposed
topology-based perturbation mechanismgenerates a network
configuration related to the system topology and temperature,
which allows solution space to be diversified at high tempera-
tures and intensified at the attraction region at a lower tempera-
ture. Moreover, we use cost function with a smoothing strategy
that enables the simulated annealing to escape more easily from
local minima and to reach rapidly to the vicinity of an optimal
solution. The proposed methodology is effective in large-scale
distribution systems, and its search capability becomes more
significant as the system size increases. The validity and effec-
tiveness of the proposed methodology was demonstrated in a
148-bus system and a real distribution system of the Korea Elec-
tric Power Corporation.
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