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Abstrac t -  This paper discusses the application 
of a genetic algorithm to control system design for 
a boiler-turbine plant. In particular we study the 
ability of the genetic algorithm to  develop a 
proportional-integral (PI) controller and a state 
feedback controller for a non-linear multi- 
input/multi-output (MIMO) plant model. The plant 
model is presented along with a discussion of the 
inherent  d i f f i c u l t i e s  in such  contro l l er  
development. A sketch of the genetic algorithm 
(GA) is presented and its strategy as a method of 
control system design is discussed. Results are 
presented for two different control systems that 
have been designed with the genetic algorithm. 
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I. INTRODUCTION 

A practical control problem that has received a great deal 
of attention lately, is the robust control of power plants [l]. 
It is well known that automatic control is deemed a necessary 
condition for safe operation which minimizes material fatique, 
the number of staff, and enables efficient plant management 
[2]. However, the design of controllers for power plants is 
not a trivial task. The challenge in controller design for these 
plants exists because they are typically non-linear and multi- 
variable with multiple control objectives. While 
conventional controls such as PID compensators yield an 
acceptable response, they do not have the flexibility necessary 
to provide a good performance over a wide region of 
operation. Application of modem optimal control techniques 
yields system performances that are optimal’ at only one 
operating point. 

Recent applications o 
models have yielded quite 
robust controllers perform 
operation. Howeve 
methodologies require 
addition to a linearized m 
intelligent control design is to obtain a control 
input/output information only. The genetic alg 
is a method that holds promise for such a control system 
design. 

natural genetics and survival-of-the-fittest. 
efficient and general method of searching a CO 
the GA has had success in many areas. The 
successful in obtaining a solution to the traveling salesman 
problem [5 ] ,  optimal control of an aircraft autopilot system 
[6 ] ,  multivariate curve-fitting, and game-playing [ 
number of these achievements suggest the potential U 
the GA as a method for control system design. In this paper 
we explore this potential. 

This paper is divided into 5 sections. In section I1 the 
non-linear, multi-input/multi-output (MIMO) boiler-turbine 
model is presented. Section IIi presents the principal ideas 
underlying the use of the GA as a method for control system 
design. Section IV presents the results of two control 
structures that are designed using the GA. Finally, s 
contains the main conclusions of this paper. 

The GA is a search technique based on the mech 

11. THE BOILER-TURBINE MODEL 

The boiler-turbine model used in this paper was first 
developed by Bell and htrom [7]. The model is a 3rd order, 
non-linear MIMO system with hard constraints and rate limits 
imposed on the actuators. 

A. The Non-Linear Model 
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Since 1969, the model has undergone a number of 
alterations. Subsequent improvements in the plant model 
have resulted in better models that yield improved predictive 

at the Sydvensb Kraft AB plant in ~ a l ~ o ,  sweden. The 

0885-8969/95/$04.00 0 1995 IEEE 



753 

abilities for the plant. Astrom and Eklund originally used 
test data from the 1969 data logs to perform crude parameter 
estimation used in their model [8]. This resulted in a 2nd 
order non-linear system of differential equations with fuel 
flow and control valve setting as the control variables and 
drum pressure and power Output as the Output In 
1977, Morton and Price updated the boiler model in an 
attempt to include drum water level deviation by introducing 
evaporation rate dynamics [9]. Their model did not include 
power output, though, and the water level prediction was poor 

(1 - 0. O01538pf)( 0 . 8 ~  - 25.6) 

qe = (0.854% - 0.147)~ + 4 5 . 5 9 ~ ~  - 2.5 14u, - 2.096, (3c) 

where qe is the evaporation rate (kg/s) and acs is the steam 

(3b = ~~(1 .0394  - 0.0012304p) 

quality. 

B. The Linear Model 
for certain inputs. Their model was extended to include the 
power, and Bell and Astrom combined it with their work to 
produce a 3rd order non-linear MIMO model with fuel flow, 
control valve position, and feedwater flow as control inputs, 
and drum pressure, power output, and drum water level 
deviation as outputs. It was found that the inclusion of the 

The performance of the control systems designed with the 
GA will be compared to the linear quadratic regulator designed 
from the linearized model. At a load level of 66.65 Mw, 
pressure of 108 kg/cm2, and fluid density of 428 kg/m3, the 
nominal inputs are found to be U' = E0.34 0.69 O.436lT. 

evaporation equation and fluid density dynamics in Bell and 
AstrOm's model yielded a reasonable depiction of the drum 
water level dynamics. Although the model is of low order, it 
is capable of illustrating some of the complex dynamics 

system are [8] 

From these nominal values, a linearized model is obtained 
from a truncated Taylor series expansion of the non-linear 
equations. The non-linear dynamics are of the form 

(44 
associated with the real plant [7]. The dynamics for the dx 

dt - = f ( x , u )  

9 Y = g ( x , u ) ,  (4b) 

and linearization of the system about the nominal operating 
point, (x" ,U"), requires calculating the linear system 

(la) -=--O.018u2pT dP +0.9~1-0.15~3 

dpr ( 1 4 1 ~ ~  -(l.lu2 -0.19)~) mat r ices  A =  

dt 

- dP0 - - (0.073~2 - 0 . 0 1 6 ) ~ ~  - O.lPo 
dt 

dt 85 

9 

(lb) 

, (14 -= 

where p=drum pressure (kg/cm2), P,=power output (MW), = [ qxO,uO) * a n d  ~=M1(xO,uO) for  

and pf=fluid density (kg/m3). The normalized inputs to the - - 
system are ul=fuel flow valve position, u2=steam control 
valve position, and u3=feedwater flow valve position. The 
following limitations are imposed on the valves: 

xo = [lo8 66.65 4281' and U" = [0.34 0.69 0.4363' . 
The linear approximation to the system is 

131 5 0.007 1 sec 

du2 -2 1 sec I - 50.02 1 sec 
dt lTl du3 5 0.05 I sec,  

where . T = x - x o ,  Y=y-yo,  and ii=u--u". The linear 
system matrices are found to be 

(2b) 

(2) 
* .  

-2 .509~10-~ 0 0 
and all valve position variables are constrained to lie in the A = 6-94 10-2 , 

[ - 6 . 6 9 ~ 1 0 - ~  0 (I] interval [0,1]. The outputs to the system are p (drum 
pressure), Po (output power), and X ,  (drum water level in 
meters). Pressure and power output are just the first two state 
variables, whereas water level is found through the auxiliary 
relationships (0.9 -0.349 -0.15) 

( 9 0 -1.389 1.659 O J. B =  0 14.155 I X,,, = 0.05 0.13073pf + 100acs +a - 67.975) (3a) 
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1 0 ],and 

6 . 3 4 ~ 1 0 - ~  0 4 . 7 1 ~ 1 0 - ~  
0 0 

0.253 0.512 -0.014 

Table I shows the various operating points of the plant. 

III. THE GA CONTROL SYSTEM DESIGN 

In this section the GA is discussed and its application to 
control system design is presented. 

A. The Genetic Algorithm 

The GA used in this paper is very similar to the 
algorithm that can be found in the standard literature on the 
topic [lo], [41, [ l l ] ,  [12], also known as the simple genetic 
algorithm. We used the three-operator GA with only minor 
deviations from the original. 

In this scheme, an initial population of binary strings is 
created randomly. Each of these strings represents one 
possible solution to the search problem. This binary 
representation is certainly not unique but it is simple to 
implement. Next the solution strings are converted into their 
decimal equivalents and each candidate solution is tested in its 
environment. The fitness of each candidate is evaluated 
through some appropriate measure. The algorithm is driven 
towards maximizing this fitness measure. For example, in a 
function maximization problem the fitness measure might be 
the function evaluation itself. Application of the GA to an 
optimal control problem entails minimizing the integral- 
squared error @SE) of the input and states. After the fitness of 
the entire population has been determined, it must be 
determined whether or not the termination criterion has been 
satisfied. This criterion can be any number of things. One 
possibility is to stop the algorithm at some finite number of 
generations and designate the result as the best fit from the 
population. Another possibility is to test if the average 
fitness of the population exceeds some fraction of the best fit 
in the population. If the criterion is not satisfied then we 
continue with the three genetic operators. Next, the three 
genetic operations of reproduction, crossover, and mutation 
are invoked. Fitness-proportionate reproduction is effected 
throught the simulated spin of a weighted roulette wheel. 

The roulette wheel is biased with the fitnesses of each of 
the solution candidates. The wheel is spun N times where N 
is the number of strings in the population. This operation 
yields a new population of strings that reflect the fitnesses of 
the previous generation's fit candidates. The next operation, 
crossover, is performed on two strings at a time that are 
selected from the population at random. Crossover involves 
choosing a random position in the two strings and swapping 
the bits that occur after this position. In one generation the 
crossover operation is performed on a specified percentage of 

TABLEI 

the population. This proportion of the population is specified 
at the initialization stage of the algorithm. The final genetic 
operator in the algorithm is mutation. Mutation is performed 
sparingly, typically every 100- 1000 bit transfers from 
crossover, and it involves selecting a string at random as well 
as a bit position at random and changing it from a 1 to a 0 or 
vice-versa. After mutation, the new generation is complete 
and the procedure begins again with fitness evaluation of the 
population. 

In a control system design using the GA the parameters 
that are represented as binary strings are the relevant control 
parameters. In the design of the proportional-integral (PI) 
control system, the parameters are the 12 proportional, 
integral, and cross-coupling gains in the coupled controller 
illustrated in Fig. 1. In the linear quadratic regulator (LQR) 
controller the parameters are the 9 state feedback gains in the 
standard LQR configuration. In each of the control designs 
the quadralc performance index is selected 

J = I'f((y-yref)TQ(y-y"f)+ u'Ru)dt, (6) 
to 

X I +  J)' 
and a fitness measure is designated as f = 

B. PI Controller Design 

In the coupled PI controller design the gains are trained in 
5 stages. The first stage consists of training the proportional 
gains in the PI controller only and leaving the others fixed at 
zero. The initial gains are selected at random between some 
coarse upper and lower bounds and tuned through each genetic 
iteration. Once some pre-specified convergence criterion has 
been achieved, the best fit triplet of proportional gains is 
designated as the result for the stage. Stage 2 extends the 
strings in the population to include the next three integral 
gains. The bounds on the first three values in the string (the 
proportional gains) are between k 25% of the result from the 
previous stage. This constrains the first three gains to be 
around their previous best value, and yet allows fine-tuning 
with the introduction of the new integral gains. The integral 
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gains are set initially to random values between some come 
upper and lower bounds and tuned through each genetic 
iteration. Again, this is executed until some convergence 
criterion has been attained. This procedure is repeated in the 
same manner with the string lengthened by two more bits to 
represent the coupling of the first input error to the other two. 
This is done two more times to train the final four coupling 
gains. The training cycle is tabulated in table 11. 

Each stage of training entails an alternating reference 
demand change in pressure and power. After the system has 
been trained to perform well with one reference change, it is 
then trained to perform well with a different reference demand 
change. This is done until some convergence criterion has 
been attained. By training the controller gains in this manner 
the gains are tuned to some average performance between two 
high-performance results. The goal of this method is a 
controller that performs well at different operating points. 

A pressure demand change between 100% and 120% of 
the nominal operating point is used in the first training cycle 
while the other inputs are held fixed at their nominal 
operating points. This sequence is illustrated below. 

y r f  = 108 

+(118.8 - 108)l+(r - 200) + (129.6 - 118.8)l+(t - 600) 
+(118.8 - 129.6)1+(# - 1OOO) + (108 - 118.8)l+(t - 1400) 

y;f = 66.65, yj'l = 0, 

TABLE II 
Training schedule for coupled PI gains. 

where l'(t) is a step function starting at t=O. The second 
demand change in the cycle is the power demand change. As 
in the pressure change, the power demand is changed between 
100% and 120% of the nominal operating point while 
holding pressure and level futed. 

This demand is given below. 

y y f  = 66.65 + (85.063 - 66.65)1+ (t - 200) 

+(105.8- 85.063)1+(t - 600) 

+(85.063- 105.8)l+(t- 1OOO) 

+(66.65 - 85.063)1+(t - 1400) 
y y f  = 108, yFf = O .  

The goal of the controller is to track step demands in 
To achieve this the following power and pressure. 

performance index is selected to be minimized: 
J = J, + J,,, 
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where J ,  is defined by (6). In addition, we penalize the 
steady-state error through computation of 

3 

i=l 
J, = Zei( t f ) ,  

Where 

ei (t) = yi(t) - y r f  (t). 

The weighting matrices are selected as 

Q=13x3, R =  0 141 0 . r 1 :1 
The values of these matrices can be determined from the 
relative importance of the variables and from the relationships 
of the outputs to the inputs in the steady-state. Since the 
order of the system has been increased by including the 
integral action in the controller, we weigh the steady-state 
error heavily in the hopes of achieving perfect steady-state 
tracking. 

The following GA parameters are selected for the training 
cycle: 

Population size 64 
Crossover rate 0.9 
Mutation rate 0.001 
Parameter resolution 9 bits per substring 

Each training cycle is executed until either 30 generations 
have elapsed or 95% convergence has been achieved. In this 
paper 95% convergence was the condition that was met first. 
Finally, the fitness function used in this training cycle is 
10715. 

C.  LQR Controller Design 

The goal of the genetic algorithm is to determine the 
matrix gains in the feedback path to ensure tracking of the 
reference signal over a wide operating range. The controller 
structure is simply a state feedback matrix in the feedback 
path and a feedforward gain matrix to ensure tracking. This 
feedforward matrix is found using the transfer function from 
the input to the output [13]. To obtain reasonable tracking 
over a wide operating range, the GA trains the gains of the 
feedback matrix with a demand that covers the nominal load 
level as well as a large load change. We select a demand 
change in power while attempting to maintain drum pressure 
and drum water level. These demands are: 

Ylref = 108, Y3Rf = 0% 
yzKf = 66.65+ (105.8-66.65)~ l+(t - 100) 

+(129.89-105.8)~1'(t-300). 

The genetic algorithm is implemented with a number of 
different genetic parameters (i.e., crossover rate, mutation 
rate, population number, etc.). In an effort to improve 
convergence, the individual matrix elements' resolutions are 
all increased at a specified generation of the run. At this 
specified time, all of the substrings are lengthened by two 
bits. The old matrix element values are retained but at a 
greater precision. We select this lengthening of the bits to 
occm one-third of the way through the optimization run. We 
choose the fokwing parameters: 

Population size 100 
Crossover rate 0.8 
Mutation rate 0.2 
Terminating generation 30 
Matrix element interval [-1,1] 
Initial resolution 
Resolution after 10 gen. 

15 bits per substring 
17 bits per substring 

In addition to these parameters, the initial population is 
seeded with 3 members from a previous run's "best fit" 
population with the remainder of the population constructed 
at random. This is another attempt to obtain quicker 
convergence. 

In the GA optimization runs, the fitness function is 
selected as lOO/(l+J) where J is identical to (6). In addition, 
the weighting matrices are identical to those in the PI 
controller design. 

IV. GA DESIGN RESULTS 

The performance of each of the control systems is tested 
with the following inputs to the system, 

yId(t) = 108+ (120 - 108) x l+(t - 200) 

yzref (t) = 66.65 + (120 - 66.65) x 1+( t - 600) 
Y 3ref ( 0  = 0. 

This reference change in pressure and power represents a 
relatively Large demand change in both variables and 
illustrates the merits and weaknesses of each design. 

A. GAiPi Controller Results 

The performance of the system with the GA-designed 
coupled PI controller is illustrated in Figs. 2-4. Table I11 
contains the controller gains at each stage of training. The 
drum pressure is very oscillatory with a large overshoot. 
This response settles out with a steady-state error of 0.175. 
The power response is good during the first change in 
pressure at 200 seconds. As can be seen, the change has little 
influence on power. When the demand in power steps up to 
120 MW the power output overshoots by about 5 MW for a 
duration of less than 200 seconds. This overshoot can be 
attributed to the saturation of the control valve for that period 
of time (not shown). Again, the change in power has little 
effect on pressure at 600 seconds. The steady-state error of 
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the power is 0.0004 MW. The drum water level deviation is 
acceptable during both transitions in pressure and power. The 
largest deviation of the level occurs during the power demand 

Table III 
Gains at each training stage. 

Drum Pressure 
130 

f i  125 
“E 
$120 24 
W 

5 115 
w 

k 110 

105 
0 200 400 600 800 IO00 

t i e  (s) 

Fig. 2. GA/PI pressure response. 

Power Output 

t i e  (s) 

Fig. 3. GAP1 power response. 

change at 200 seconds when the level exceeds 0.15 meters 
from the nominal level. The steady-state error for the level is 
0.000243 meters. 

Dmm Water Level Deviation 
0.2 1 

0 200 400 600 800 1O00 
time (s) 

Fig. 4. GA/PI level response. 

B. GAILQR Controller Results 

The performance of the system with the GA-designed 
LQR controller is shown in Figs. 5-7. The result of the 
GA/LQR design is the state feedback matrix, 

1 0.0354 0.2236 4.1451 
-0.0430 0.0588 0.0039 . 
0.1609 -0.6316 0.4275 

It should be noted that, to ensure steady-state tracking, that a 
feedforward gain matrix is added to the system. This is 
obtained by calculating the system transfer function and 
finding a suitable matrix, F, so that the system tracks step 
demands in the steady-state. The values of the matrix are 
found to be [ 131 

0.0341 0.0018 0.6567 
-0.0051 0.0903 -1.3537 
-0.4234 -0.4088 94.3416 

The pressure tracks the initial demand change well and there is 
a 5 kg/cm2 pressure bump when the power demand is stepped 
up. The steady-state error in pressure is 0.252 kg/cm2. The 
power response shows a large drop (25 MW) when the 
pressure demand is stepped up at 200 seconds. The power 
tracks the step demand at 600 seconds well achieving a steady- 
state error of 0.68 MW. The drum water level deviation 
undergoes relatively large deflections at each demand change 
in pressure and power. The largest of these is a level drop of 
0.25 meters. The steady-state error in level is 0.0425 meters, 
due in large part from the deviation from the nominal 
operating point. 
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C .  Optimal Controller Results 

Figs. 8-10 illustrate the performance of the standardLQR 
optimal controller. This controller is of state-feedback form 
that is designed from the model linearized at the 100% 
nominal operating point. The controller is developed using 

Drum Pressure 

t i e  (s) 
Fig. 5. GA/LQR pressure response. 

Power Output 

2o0 200 400 600 800 10(10 
time (s) 

Fig. 6. GA/LQR power response. 

Drum Water Level Deviation 

0 200 400 600 800 loo0 

the following infinite time horizon quadratic performance 
index with the same state and input weighting matrices as 
discussed in section lII.B: 

The result of the design is the state feedback matrix, 

0.0359 0.0011 0.0031 
-0.0057 0.0770 -0.0064 
-0.0413 0.0232 0.4444 

The drum pressure shows good tracking at the first 
pressure demand change and a small bump of 1.5 kg/cm2 at 
the power demand change at 600 seconds. The steady-state 
error in pressure is 0.046 kg/cm2. The power output tracks 
the demand very well at both the pressure demand change and 
the power demand change. The steady-state error in power is 
0.34 h W .  The drum water level deviation shows a persistent 
cptterhg beginning at the pressure demand change at 200 
seconds. This is a non-linear effect due to the saturation and 
rate limiting of the plant inputs. Examination of the poles of 
the system linearized at this particular operating point support 
that this is a non-linear effect since the poles lie in the left 
half of the complex plane. The persistent chattering in this 
output is detrimental to the actuators and is highly 
undesirable in a control system. We expect that the optimal 
control system would not be optimal at this deviation from 
the nominal operating point at which it was designed. 

Drum Pressure 

time (s) 
Fig. 8. LQR pressure response. 

time (s) 
Fig. 7. GA/LQR level response. 
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Power Output 

'0 200 400 600 800 lo00 
time (s) 

Fig. 9. LQR power response. 

Dm Water Level Deviation 
0.2 r I 

i j .............. i ..............! ............ _........._... 

-0.05 

time (s) 
Fig. 10. LQR level response. 

V. Conclusions 

In this paper, a control system design methodology for a 
boiler-turbine plant was presented. The non-linear, MIMO 
plant was discussed as well as the associated linearized plant 
model. A brief summary of the GA was presented and its 
application to power plant control system design was 
discussed. The results of the GA design of a coupled PI 
controller and state feedback controller were presented. These 
results were compared to the results of a standard linear 
quadratic regulator control system. It was found that the 
GAP1 control system achieved good steady-state tracking but 
oscillations due to the integral action were prevalent. The 
GA/LQR control system performed well but at the cost of 
small but finite steady-state error. 
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