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Abstract - The static voltage stability and the dynamic 
voltage stability are integrated. To consider a shunt compen- 
sator and/or a more general load which is dependent on voltage, 
a modified criterion for the static voltage stability is developed 
and the system is controlled to satisfy this static Stability crite- 
rion. For an accurate analysis of the dynamic voltage stability, 
the system model includes excitation systems. tap-changers, ca- 
pacitors and power system stabilizers in addition to network 
equations. -4 parameter optimization technique with a modal 
performance measure is developed to determine optimal control 
parameters for dynamic voltage stability enhancement. 

Kevwords - Voltage stability. static voltage stability. dy- 
namic voltage stability, voltage collapse, voltage security. 

1. INTRODUCTION 

Many large interconnected power systems are increasingly 
experiencing abnormally high or low voltages or voltage collapse. 
Abnormal voltages and voltage collapse pose a primary threat to 
power system stability: security and reliability. Excessive voltage 
decline can occur following some severe system contingencies and 
this situation could be aggravated, possibly leading to voltage 
collapse, by further tripping of more transmission facilities, var 
sources. or generating units due to overloading. 

Kwatny et al. [I! studied the problem by applying the bi- 
furcation analysis to the load flow equations. They showed that 
a static bifurcation associated with voltage collapse exists and 
at that point the load voltages are infinitely sensitive to  param- 
eter variations. Liu et al. [2] presented a dynamic description of 
the voltage collapse by characterizing the voltage stability region 
in terms of the continuous tap-changer model. Schlueter et al. 
:3,4! introduced PQ and PV stabilities and controllabilities for 
the static voltage stability and presented a unified theoretical 
foundation for determining tests for voltage security conditions. 
Lee et al. [j] used these conditions for P Q  stability and con- 
trollability as security constraints for the economic operation 
and demonstrated their usefulness for security voltage stability. 
Chang et al.[Sj explained the dynamics of voltage collapse as a 
dynamic consequence of the bifurcation by using a simple mod- 
el: including a load of a dynamic induction motor. Rajagopalan 
et al. [7;  primarily considered a brief dynamic voltage stability 
of a system with excitation model by investigating the eigenval- 
ues of the linearized system matrix. Lee and Lee [8: presented a 
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mechanism of the dynamic phenomenon of voltage collapse from 
the physical point of view and showed that an iterative reaction 
of voltage drop between a dynamic load and the system network 
can cause voltage collapse. 

In this paper, the dynamic voltage stability and the stat- 
ic voltage stability problems are integrated. For more accurate 
analysis of the dynamic voltage stability, the system model in- 
cludes excitation systems, under-load-tap-changers, capacitors 
and power system stabilizers in addition to network equation- 
s. When considering a more general load which is dependent on 
voltage, a modified criterion for the static voltage stability is de- 
veloped and the system is controlled to satisfy this static stabil- 
ity criterion. Then, the system is further controlled for dynamic 
voltage stability. For dynamic voltage stability enhancement, 
a parameter optimization technique with a modal performance 
measure is used to determine optimal control parameters. 

2. STtSTIC VOLTAGE STABILITY ENHlNCEMENT 

In general, loads are dependent on bus voltage. Also, it is 
known that load dynamics greatly affect the voltage stability. 
In [3], only the constant P Q  loads that are independent on bus 
voltage were considered. Since the voltage dependent loads play 
very important role in voltage stability, more suitable constraints 
need to be developed. 

For a fast load flow the modified Jacobian J can be obtained 

where J r .  E V 3  is the matrix with Vj% as its i-th row 
and j - t h  column entry. Then, the diagonal elements of are 
rewritten as follows: 

where 

!-i 

Q ;  = T;;T’,E;,sin(B; - B j  - 6’ij)3 B;; = Y,,sin(B;;), 
j = 1  

1,; and Bi are the magnitude and phase angle of the voltage at 
the bus i, respectively; I ; z j  and B; j  are the magnitude and phase 
angle of the i j - the element of Ybu6 matrix, respectively; and 
QL~(I /? )  is real and reactive loads, respectively, which depend 
on the voltage magnitude. 

2.1. Static Voltage Stability Criterion 

Kwatny [l! has shown that a static bifurcation exists that 
will result in voltage collapse when J;. is singular, where J;. is 
a sensitivity matrix for coupled Jacobian J in equation (2.1), 
and J;. = J r .  when the decoupling approximation is made, i.e., 
the off-diagnol blocks are zero in (2.1). Schlueter [3] has shown 
that in order for the system to be PQ stable Jr- for P Q  (load) 
buses should be as M-matrix. Since many matrices may have 
all eigenvalues stable, and yet fail to  meet the M-matrix crite- 
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rion, this criterion can be  unduly conservative. Nevertheless, 
for operational planning purpose the decoupling approximation 
is a reasonable assumption in establishing an explicit stability 
criterion. For ,TI. to  be a n  M-matrix, the diagonal entries of Jr- 
need to  be positive and J1- is required to be strictly diagonally 
dominant, i.e., the diagonal term in equation (2.2) is larger than 
the sum of the absolute values of the off-diagonals. Hence, the 
following constraints are imposed: 

j#i  

where L is the set of load(PQ) buses and Qij are off-diagonals 
of Jr-, which can be expressed as follows: 

Qij  = KVjKjsin(Oi - 0, - Oij), (2.4) 

where Q;j is negative in  a general power system since 90" 5 
8ij 5 110". Thus, equation (2.3) is rewritten as follows: 

The minimum value of equation (2.5) is a lower bound on eigen- 
values of ,TI., and thus when it is equal to  zero a static bifurca- 
tion exists to  cause a voltage collapse. The minimum eigenvalue 
of Jr- also needs to  be greater than a certain threshold to  as- 
sume the convergence of a load flow program, hence a positive 
constraint constant k is imposed. Thus, the constraint can be 
expressed as follows: 

where k is defined as the stability margin. The constraint 
proposed in [3] does not include the variable load term, V,  . 
a Q L ,  (v)/av,, in the above equation (2.6). If the left-hand side 
of equation (2.6) can be increased above the stability margin 
H ,  the voltages in the network will be more controllable. The 
value of H is a positive threshold, which can be determined ar- 
bitrarily by the decision maker depending on the condition of a 
power system and the weight on the static voltage stability. The 
above voltage stabality criterion will play an important role in 
designing controls for static voltage stability, and a proper sta- 
bility margin can be suggested in order to  maintain the overall 
voltage profile within the normal range. 

2.2. Static Voltage Stability Control 

The capacitive compensator and the tap-changer are the 
most important control devices for enhancing the voltage sta- 
bility. The above voltage stability criterion, equation (2.6), is 
directly applicable in modeling the roles of these equipments for 
control purpose. 

1) Shunt capacitor 
Since the reactive power of a capacitance C is wCV2,  with 

this load alone the constraint for static voltage stability in equa- 
tion (2.6) can be expressed as follows: 

Here, the term -V:B,, is the largest term and dominates the 
left-hand side of the inequality. The term -V,*Bt2 is positive 
because B,, is negative in a general power system. As the value 
of the capacitor increases, the bus voltage increases and so does 
the value of -V,'BEt in proportion to the square of the voltage 
magnitude. Therefore, the value of the left-hand side of the 
above inequality will be increased as the capacitor increases. 
Thus, we conclude that a shunt capacitor can be used to control 
static voltage stability. 
2) Tap-chanaer 

Besides capacitive power compensators, the under-load-tap- 
changer (ULTC) is also a control equipment for static voltage 
stability. Since bus voltage can be increased very effectively by 
ULTC, the term -V:B,, increases in the constraint equation 
(2.6) and, thus, the static voltage stability is improved. Since it 
controls voltages relatively, when the voltage of one bus increases 
other bus voltage decreases. Thus, the static voltage stability 
may be improved at  one bus at  the expense of another bus. 

3. THE DYNAMIC VOLTAGE STABILITY MODEL 

The dynamic voltage stability model includes the following 
components: the nonlinear machine model with a 2-axis repre- 
sentation of the generator [ 7 ] ,  the IEEE type 1 excitation system 
171, the  power system stabilizer of two cascaded lead stages, and 
the continuous model for the tap-changing transformer. 

In general, the direct axis internal transient voltage E& is 
very small compared t o  the quadrature axis internal transient 
voltage El,, and the armature resistance R, is very small com- 
pared to the direct and quadrature axis synchronous reactances 
A'd and X,. Thus, the effects of these can be neglected for the 
simplicity of analysis and the complicated stator algebraic equa- 
tions are simplified [8]. In addition to  [SI, the dynamic voltage 
stability models of PSS and ULTC are obtained as follows: 

PSS model: 

where UE is the stabilizing signal as an output of the PSS, and 
X p , ,  and U E ~  are the state variables of the PSS system. 

ULTC model: 

da; 
-Tti- dt = (T'ref, - K),  i = 1, ..., n (3.4) 

where the model is a continuous approximation of the discrete 
under-load-tap-changer [2], a is the turns ratio, V and Vr,f are 
the secondary voltage measurement and the reference voltage, 
respectively, and T+ is the time constant of the ULTC. 

4. DYNAMIC VOLTAGE STABILITY ENHANCEMENT 

4.1. Problem Formulation for Dynamic Voltage Stability 

The mathematical model for dynamic voltage stability in 
equations can be shown to be of the differential-algebraic type 
of x = f (x ,y)  and 0 = g(x,y), where x represents the state vari- 
ables and y represents network variables, such as the voltages 
and angles a t  each of the network buses [SI. In the case of smal- 
l disturbance around an equilibrium point xu, the differential- 
algebraic equations are linearized to  give 



AX = AAx + BAY 

0 = C A x  + D A Y ,  

(4.1) 

(4.2) 

where A ,  B ,  C :  and D are matrices of appropriate dimension 
defined by -4 = , B = F] C = 3~ and D = g' Dxlxll DJ I x u l  8 X i x u !  I XC,. 

Xote that if D is singular, it can be shown that the Jacobian 
J in equation (2.1) is singular and thus a static bifurcation exists 
to cause voltage collapse. Thus, we assume nou D is nonsingu- 
lar, then the incremental algebraic variables can be eliminated 
and the final dynamic system is 

AX = (A - B D - ' C ) A ~  = AAX, 

Ay = -D- 'CAx =  AX, 

(4.3) 

(4.4) 

where A x  = x( t )  - x,, Ay = y ( t )  - yc ,  and x, and y B  are the 
steady state values of x( t )  and y ( t ) ,  respectively. 

Here, the control variables are model parameters in the sys- 
tem matrix A,  hence the control problem becomes non-conven- 
tional and the usual linear optimal control theory cannot be 
applied. Since the objective of dynamic voltage stability can 
be achieved by minimizing oscillations of the state and network 
variables, we define a new performance measure which will limit 
the magnitude or envelope of oscillations. 

Let ~ ( t )  = y ( t )  - y T .  where y p  is the reference value of 
y.  Then the objective of the control problem is to  minimize 
the error z ( t )  with respect to  system parameters, where from 
equation (4.4): z ( t )  can be expressed as the output vector: 

z ( t )  = CAX + yc - y7.  (4.5) 

Without the loss of generality, we assume that the A matrix 
has distinct eigenvalues. (Since we are in the process of changing 
eigenvalues this is a realistic assumption). Then A x  is expressed 
by modes as follows: 

n 

~ x ( t )  = C(V~AX,,)U~ . e z p ( s j t ) ,  (4.6) 
J=1 

where s j  is the the j - th  eigenvalue of 3, u j  and v j  are the 
corresponding n x 1 right and 1 x n left eigenvectors, respectively, 
Ax,, is the initial value of Ax,  and n is the dimension of Ax. 

Let Azj ( t )  be the j - th  state of the vector Ax(t) ;  z j ( t )  be the 
component of z ( t )  that depends on the j - t h  state of the vector 
Ax( t ) ;  z j . ;  be the i-th mode of z j ( t ) ;  ut , j  be the i-th entry of 
the j - t h  right eigenvector uj; and 6j be the j - th  column vector 
of the matrix 6. 

Then the output in equation (4.5) becomes 

where zu = ys - y., and 

n n 

z 3 ( t )  = 1 z3 t ( t )  = 6, c ( v , A x ~ ) u ~  . e z p ( s , t ) .  (4.8) 

The error trajectory z ( t )  is now decomposed into a number of 
system modes. The envelopes of its component trajectories are 
to  be minimized in a way similar to the work of Jung et al. [9] 

The area under each envelope can be represented by the modal 
p e r f  oTmance  m e a s u T t ,  defined as follows: 

,= I  2=1 

j=( l  

where 
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(4.9a) 

J,, = l T z u ' v - ( , z u *  dt  for constant term, (4.9c) 

where T is an integration time interval, T4; is a weighting ma- 
trix for 3-th state. and superscripts t and * denote transpose 
and conjugate. respectively. The characteristics of the voltage 
at each bus depends only on the states of the internal voltage 
and rotor angle. Here. equation (4.9b) is newly suggested in 
order to consider only the modal components corresponding to  
the related states, reducing the amount and time for compu- 
tation considerably compared to 191. The minimization of the 
performance measure is to be achieved with respect to system 
parameters which are contained in the matrix 2. 

4.2. Gradient Approach for Optimization 

The modal performance measure J (  p) can be minimized by 
evaluating its sensitivity with respect to the parameter vector 
p. By applying the chain rule, the gradient TJ is 

where (s)k 
and 5 k . r  is the (k:l) entry of matrix 2. 

is the (k,Z) entry of the sensitivity matrix (z) 
8.4 

From equations (4.8) and (4.9b), we have 

The sensitivity of the performance J,,,, with respect to ele- 
ments of the matrix -3, can be derived by linearizing the perfor- 
mance measure J,,[. Suppose that AJ,,. ACT,, Au, , and AV, 
are the increments of J , , ,  ut.  U ,  and v , ,  respectively, due to 
the increments of the elements of the matrix A. Then the incre- 
mental performance defined by AJ,, J,(A T AA) - J,(A)  
can be shown to be 

Here it is required to express the increments Au, I ,  AV, and 
These incremental values are 

evaluated following the eigenvalue and eigenvector sensitivities 
of Crossley and Porter [ lo , .  

in terms of A6k / or AA. 
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a J ,  
7 = C(C;WmC;) 
a.4 1=1 

By substituting these incremental values into equation 
(4.13), the incremental performance becomes 

Line 
number 

where R e  means a real part, and 

From bus To bus Line impedance (P.u.) 
number number R I X 

D; = diag[l/(si -SI), * - - ,  l / ( ~ i  - si-]), 0, 
1 / (S ;  - ~ i + 1 ) ,  ' ' ' 7  l / ( S i  - ~ n ) ]  

U = [U1 U, ." U,] 

v = [v; v; . ' .  v:J' 

- U = U' = [U, U, . ' .  U,]. 

In order to  obtain the sensitivity matrix 3, the following 
trace properties are used: 

T T ( B C )  = TT(CB) = CB, (4.15) 

(4.16) 
d J  
dA 

A J = T T ( M A A )  ==+ - = M t ,  

Bus 
number 

5 .  ANALYSIS AND CONTROL OF STATIC AND DYNAMIC 
VOLTAGE STABILITY 

P Q Voltage Voltage 
magnitude angle 

5.1.  Analysis and Control of Static Voltage Stability 

The analysis and control methodologies for both static and 
dynamic voltage stabilities are applied to a six-bus power system 
model shown in Figure 1. Buses 1 and 2 are generator buses, and 
others are load buses. A shunt capacitor, in the form of static 
var controller (SVC), is at bus 5 and a tap-changer transformer 
is also connected at  bus 5 through the transmission line from bus 
5 to bus 6 and its turns ratio of bus 5 side to  bus 6 side is 1 : a. 
The line data  and the initial data  for generation and load of the 
power system are given in Table 1 and Table 2 ,  respectively. It 
is assumed that constant power, constant current and constant 
impedance loads at  each PQ bus occupy 90%, 5% and 5% of the 
total load at its bus, respectively. 

When there is no control, i.e., the capacitor and tap-changer 
not being utilized, the results of load flow and the stability 
margins for static voltage stability a t  each bus are given in 
Table 3. Here, the voltage of bus 5 is the lowest and the stabili- 
ty margin at bus 5 is also the lowest. Bus 5 is the weakest node 
that can cause voltage collapse and, thus, the main objective 
of control is to  improve the voltage of this bus. The minimum 
stability margzn k can be assigned as an arbitrary positive value 
and 0.5 is selected as its value so as to  maintain the bus volt- 
age within 10% voltage drop. The selection of a relatively small 
value causes some buses t o  have low voltage, while a relatively 
large value causes some other buses to  have high voltage or the 
control to  be excessive. 

to  the parameter vector p is expressed as follows: 

It remains to  evaluate the gradient for the steady-state per- 
formance % in equation (4.10). The value of this partial deriva- 
tive can be determined numerically by the load flow about the 
small perturbation of parameter vector p. 

Thus, the gradient of the modal performance measure V J 
in equation (4.10) has been evaluated. Then one of the hill- 
climbing or gradient methods can be used to  determine the min- 
imum of the performance measure J .  In this paper, the steepest 
descent method is used for the parameter optimization problem 
and the results are the optimal values of parameters that not 
only decrease the dynamical oscillations of the output y ( t ) ,  but 
also make the values of y ( t )  close to  its reference value y r .  

0.102 
0.110 
0.120 
0. I90 
0.368 
0.1 15 
0.080 

0.4 I3 
0.480 
0.516 
0.820 
1.490 
0.510 
0.360 

Table 2. Initial data  for generation and load of the system 

I .0 
1 .0 

0.0 
0.4 

-0.38 
-0. IO 
-0.30 
-0.30 

-0.05 
-0.02 
-0.05 
-0.03 
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BUY 
number 

Voltage Voltage p(p,u,) Q(P,U,) Value of static voltage 
magnitude (p.u angle (rad) stability constraint 

0.718 1 1 /:( I -0.079 O n  1 0.400 
0929 -0.198 4.380 

-0 144 4.100 
0852 -0.329 4.300 

6 0915  -0 175 -0.300 

*no tap control: a=l.  

0.218 
0.175 
-0.050 1.570 
-0 020 I725 
-0 050 

1) The case with tap-changing transformer 

In order to improve the static voltage stability, the tap- 
changer is controlled since it is very effective in controlling static 
voltage stability. If the control of the tap-changer is not suffi- 
cient. the capacitor can be also controlled for the enhancement 
of the static voltage stability. It is assumed that the minimum 
and maximum tap-settings of tap-changer are 0.85 and 1.15, re- 
spectively. The results of the control action are given in Table 4. 
IVhen the turns ratio of the tap-changer is controlled to be 0.9, 
the voltage magnitude at  bus 5 is increased from 0.852 P.U. to  
0.902 P.u.. which is within 10% voltage drop. The tap-changer 

relatively controls the voltage magnitudes of two buses connect- 
ed at each end. In Table 4, it is shown that the voltage mag- 
nitude at bus 5 is increased from 0.852 p.u. to 0.902 p.u, while 
the voltage magnitude of bus 6 decreased from 0.915 to 0.905. 
After the tap-changer is controlled. the voltage magnitudes of all 
buses are within 10% voltage drop. Furthermore. the stability 
margin for static voltage stability of bus 5 was improved from 
0.39 to 0.509. It is shown that the stability margins for static 
voltage stability of other buses decrease by a small amount s- 
ince the voltage magnitudes of other buses decrease somewhat 
after the tap-changer is controlled. However. it is important to 
note that the stability margin of the weakest node, bus 5, which 
can cause voltage collapse. is improved with the increase of its 
voltage magnitude after the control. 

Table 4. The results of load flow with control of 
static voltage stability (a=O.9) 

0.924 
0.931 
0.902 

-0.214 

-0 117 
-0.178 

-0.100 

Q ( P U )  

0.223 
0 152 
~0.050 
a.020 
-n.oso 
-0.030 

Value of static voltage 
stability constraint 

0509 * 
1.785 

*tap control: a 1 0 9 0  

2) The case x i th  shunt capacitor 

The capacitor is also controlled in order to improve the 
static voltage stability. The control value of capacitor is 0.030 
p.u. reactance with a=0.92 and the results are shown in Table 5. 
Similarly with the above case l), the stability margin for static 
voltage stability of bus 5 was improved from 0.39 to 0.501 and 
the voltage magnitudes of all buses are within 10% voltage drop. 
The results in Table 4 and Table 5 show that the increase of the 
minimum stability margin improves the overall voltage profile of 
the power system preventing the severe voltage decline. 

It was shown that the stability margin due to  the values of 
tap-setting or capacitor varies almost linearly within the range 
of their practical values, and thus, both the tap-setting and ca- 
pacitor can be used effectively for static voltage stability en- 
hancement. 

Table 5 .  The results of load flow with control of static 
voltage stability (C=0.030 P.u., a=0.92) 

iiuniter magiutude (p u.) aigle (rad) p(p'u') 

0.09 I 0.400 

4 0.914 4 IS0 -0 100 
0.9 14 -0 135 4 3 0 0  

6 0.9 I2 -0 178 4.300 

'capacitor control: C=(1.030 p u ( a4 .92 )  

0926 -0213 4.380 

Q(p.u.) 

0.232 
0.141 

-0.020 
-0.050 

-0.050 

a 0 3 0  

Value of static voltage 

5.2. Analvsis and Control of Dynamic Voltage Stability 

It is assumed that the data for the generators at buses 1 
and 2 are same and the data for dynamic voltage stability study 
are shown in Table 6. The parameter optimization technique 
developed in Section 4 is applied for dynamic voltage stability. 
The three cases are considered as follows: 

1) The case of generator and excitation systems without PSS 

The performance measure is on bus voltages such that the 
oscillation of the bus voltages is small and bus voltages remain 
close to desired values. 

Table 6. Data for dynamic voltage stability of the system 

Variable Value 

00498 p u .  
00053 PI'. 
0.22 pu.  

I28  RC 

165 RC 

0.02 sec 

n j x  P U .  

Variable 

K F  

B E  

Value 

0.35 sec 
60. sec 
25. pu. 

-0.0582 P.U. 

0.105 p.u. 
0.00 IS 
1.5833 

From the control for the static voltage stability, the turns 
ratio of the tap changer. a ,  is set to 0.90. Through the optimiza- 
tion method in Section 4. the optimal value of the capacitor is 
found to be 0.0337 p.u. reactance. Assume that the system is 
disturbed by the small load change at bus 3 from -0.36 per unit 
to -0.38 per unit, where the negative power represents load. 

The dynamic stability model with the optimal capacitor 
value was simulated using the 5-th order Runge-Kutta method 
and the trapezoidal rule. The trajectories of states and bus 
voltages for different values of the capacitor are also shown in 
Figures 2-4 for comparison. In Figure 2, it is shown that the 
steady state value of the rotor angle increases as the value of 
the capacitance C increases. but change in oscillation is very 
small. Figure 3 shows that the steady state value of the internal 
voltage E: decreases as the value of the capacitance C increases. 
In Figure 4,  the trajectories of 1; are compared according to the 
values of the control parameter C .  The steady state value of Vj 
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I 

I 
c=o.o p,u .  

1 
. 00 

0 . 0  2 . 5  5.0 7.5 10.0 12.5 15.0 
Time (sec) 

Figure 2. Comparison of trajectories of 62 for 
different values of C (a=0.90) 

1 . 0 4 5 7  

A 
- 
? 

- 1  

w - 0  

4 \ -  

C=0.04.52 p.u. 
1.030 

Figure 3. Comparison of trajectories of E: for 
different values of C (a=O.901 

0.94 

I? 

C=0.0337 p.u. 

4 

c=o.o p.u. 

0.90 t~ 
Figure 4. Comparison of trajectories of Vj for 

different values of C (a=0.90) 

changes significantly by the value of C. The change in oscillation 
is relatively small compared to the steady state value. However, 
the close examination shows that oscillation is minimum when 
the value of C is optimum, and the further increase in C tends 
to increase the oscillation. 

2) The case with PSS included in the system 

In this case the power system stabilizer (PSS) is added to 
the dynamic voltage stability model of the above system. The 
parameter optimization method is used to determine the param- 
eter values of PSS and the optimal parameter values found are 
T,=5.0, K,=0.0654, T1=0.951, and T2=0.088. In Figure 
5, the trajectories of 6, are compared according to the different 
values of PSS parameters. 

In order to see the effects of PSS, the state trajectories of the 
system with PSS are drawn and compared to the case without 
PSS. The oscillation of the rotor angle has been decreased dras- 
tically due to the optimal parameter values for PSS. However, 
this resulted in a slight increase of the oscillations of the internal 
voltage. The supplementary signal of PSS damps the sustained 
low frequency oscillation of rotor speed, but it can give a side 
effect on the voltage control of an excitation system since this 
supplementary signal is not introduced for the purpose of con- 
trolling voltage. However, it is shown that the oscillation of bus 
voltage V, for the system with PSS is decreased slightly. This 
is because the bus voltage depends on the rotor angle, which is 
heavily dumped by the PSS, and, furthermore, the modal per- 
formance measure is designed to minimize the oscillation of the 
bus voltage. 

When considering the PSS, the performance measure in- 
cludes both voltage magnitude and rotor angle. In this case, 
the optimal value of the capacitor is 0.0277 p.u. reactance. 
The trajectories of states and bus voltages at the optimal value 
are shown in Figures 6-7 along with those for the case of non- 
optimum values of the capacitor for comparison. In Figure 6, the 
oscillation of'the rotor angle 6 is the minimum at the optimum 
capacitor value, but its steady state value increases as the value 
of the capacitance C increases. The trajectories of Vj are shown 
in Figure 7 for different values of the capacitor. The steady s- 
tate value of the voltage magnitude Vs increases significantly as 
the capacitance C increases. However, here again its oscillation 
is minimized at the optimum capacitor value; and the further 
increase of capacitor makes the dynamic voltage stability worse. 

Figure 5. Comparison of trajectories of 62 for different 
PSS parameters (a=O.90, C=O.O P.u.) 
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i 

C=0.0415 p . ~ .  
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Figure 6. Comparison of trajectories of 62 for different 
values of C in case 2 (a=0.90) 
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Figure 7. Comparison of trajectories of Vs for different 
values of C in case 2 (a=0.90) 

3) The case witli ULTC included in the system 

Discrete tap settings: The parameter optimization technique 
is applied to this case in a similar way, with a tap-changer as an 
additional controller for dynamic voltage stability. The reference 
voltage of the tap-changer. in this case. is assumed to be 0.92 
p.u. Through the optimization method. the optimal value of 
tap-setting is found to  be 0.912. In order to compare the effects 
of tap-setting, the trajectories of the state variables for different 
tap-settings. ~ ~ 0 . 8 8 .  0.912 or 0.95, are shown in Figures 8-9. 
In Figure 8, the oscillation of the rotor angle 6 increases as the 
tap-setting decreases from 1 to its minimum value. This means 
that the tap-changer gives a negative effect to  the conventional 
power system stability. The trajectory of 1; is shown in Figure 
9. The oscillations of voltage 1.1 are similar to  one another, 
but its steady state values are different significantly. Its steady 
state value increases as the tap-setting decreases from 1 to its 
minimum value. The steady state value of i> is near 0.92 p.u. 
when the tap-setting is the optimum value of 0.912. 

Continuous tap settings: The taps of ULTC are in discrete 
steps. However, in practice, a step size in the tap position con- 
tributes a relatively small amount of voltage correction. The 
continuous model of the ULTC [Z]  was often used to  study volt- 
age stability. With the use of the continuous ULTC model, 
which operates automatically with a time constant of 60 sec, 
the trajectories of the states are shown to be almost identical 
to  the case of discrete tap-settings. This is because the time 
constant of ULTC is very long compared to the time constants 
of the excitation system. 

0 9 4 T  

- O glT 
a=0.95 

0.89 
0 . 9 0 ~ . 0  0 0  Time (sec) 

Figure 8. Comparison of trajectories of 62 for different 
tap settings in case 3 (C=0.0277 p...) 

a=0.88 

i 

Figure 9. Comparison of trajectories of Vz for different 
tap settings in case 3 (C=0.0277 p.u.) 
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6. CONCLUSION 

For control of static voltage stability, the shunt capaci- 
tor and tap-changer were used. From the simulation result, 
it was shown that the control of the shunt capacitor and the 
tap-changer can increase the stability margin for static voltage 
stability and the increase of the stability margin improves the 
overall voltage profile of the power system, preventing a severe 
voltage decline. It is shown that the static voltage stability cri- 
terion developed in this paper is a useful tool in preventing a 
severe voltage drop. 

A parameter optimization technique with a new perfor- 
mance measure is developed to  determine optimal control pa- 
rameters for dynamic voltage stability enhancement. For the 
control of dynamic voltage stability, a capacitor and a tap- 
changer were also used in addition to  PSS. The control of the 
capacitor is very efficient in increasing the steady state value of 
the voltage magnitude, but some care should be given since ex- 
cessive value of the capacitor can cause much oscillation of the 
voltage magnitude. PSS reduces the sustained low frequency 
oscillations of the rotor, but it can give a side effect on a n  exci- 
tation system. The steady state values of both the rotor angle 
5 and the voltage magnitude Vj increase as the capacitance C 
increases; however their oscillations are minimized at  the opti- 
mum value of C. When the tap-changer is controlled, the steady 
state value of the bus voltage can be increased significantly, but 
its oscillation changes very little. However, the oscillation of 
the rotor angle 6 increases giving a negative effect on the con- 
ventional power system stability as the tap-setting decreases. 
Through numerical simulations, it is shown that the parameter 
optimization method is a very useful technique in reducing the 
oscillation and enhancing dynamic voltage stability. 
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