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Abstract - Composite load model is developed for 1-24 hours 
ahead prediction of hourly electric loads. The load model is 
composed of three components : the nominal load, the type load 
and the residual load. The nominal load is modeled such that 
the Kalman filter can be used and the parameters of the model 
are adapted by the exponentially weighted recursive least squares 
method. The type load component is extracted for weekend load 
prediction and updated by an exponential smoothing method. 
The residual load is predicted by the autoregressive model and 
the parameters of the model are estimated using the recursive 
least squares method. Test results are shown using a utility data 
for two different years. 

keywords - Load forecasting, adaptive filters. 

1. INTRODUCTION 

In order to supply high quality electric energy to the cus- 
tomer in a secure and economic manner, an electric company 
faces many economical and technical problems in operation, plan- 
ning, and control of an electric energy system. For the purpose of 
optimal planning and operation of this large scale system, mod- 
ern system theory and optimization techniques are being applied 
with the expectation of considerable cost savings. In achieving 
this goal, the knowledge of future power system load is the first 
prerequisite; therefore, long and short term load predictions are 
very important subjects. 

The load prediction period may be month or year for the 
long- and the medium-term forecasts(l], and day or hour for the 
short-term forecast(2-71. The long- and the medium-term fore- 
casts are used to determine the capacity of generation, trans- 
mission, or distribution system additions, and the type of fa- 
cilities required in transmission expansion planning, annual hy- 
drothermal maintenance scheduling, etc. The short-term forecast 
is needed for control and scheduling of power system, and also 
as inputs to load flow study or contingency analysis. 

There are two classes of load forecasting models reported in 
literature[8]. Some load models which use no weather informa- 
tion have been represented by time sequences(2-41. The other 
load models have included the effectas of weather variables on the 
power system load(5-71. The former is based on the extrapolation 
and the load behavior is represented by Fourier series or trend 
curves in terms of time functions[2]. More recently state variable 
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models[3] and autoregressive-moving average(ARMA) models[4]' 
have also been developed to describe the load behavior. For the 
models including weather variables, the total load is decomposed 
into the weather sensitive load and the non-weather sensitive 
load[5-7]. The weather sensitive load is mostly predicted using 
the correlation techniques and the non-weather sensitive load is 
modeled by the method mentioned above. Each load component 
is predicted separately and the sum gives the forecast of the total 
load. 

Obiously the electric loads are very much dependent upon 
weather conditions. But the load models which include weather 
variables are limited in use by problems such as inaccuracy of 
weather forecasts and difficulties in modeling the weather-load 
relationship. The response of the electric loads to changes in 
weather conditions is observed to be rather slow in Korea and 
appears in the past load data. In this paper the weather effects on 
the electric load are not explicitly considered, but small changes 
in weather will be somewhat reflected by the adaptive prediction 
algorithm. However, for severe weather changes more accurate 
weather-sensitive component should be included in future. 

A new algorithm is developed to identify the load model 
which reflects the stochastic behavior of the hourly load demand. 
The load is decomposed into three components: the nominal 
load, the residual load, and the type load. The parameters of 
the model are adapted to the load variations. 

2. CLASSIFICATION AND 
CHARACTERISTICS OF LOADS 

Fig. 1 illustrates the hourly load curves for January 9-22, 
1983 and February 8-21,1987. The figure shows daily and weekly 
load variations; the load behavior for weekdays (Tuesday through 
Friday) has a same pattern but small random variations from var- 
ing industrial activities, weather conditions, etc. The weekday 
load pattern is different from Saturday, Sunday, and Monday 
load patterns. Comparing weekday loads with Saturday loads, 
the level of Saturday loads is relatively low during p.m.. The 
level of Monday loads during a.m. influenced by Sunday is very 
low. Also the 1st and 3rd Sunday loads are lower than the 2nd, 
4th, and 5th Sunday loads due to reduction in industrial or com- 
mercial activities observed in Korea. These phenomena equally 
affects Monday loads during a.m.. Therefore daily load curves are 
classified as six patterns : weekdays, Saturdays, the 1st and 3rd 
Sundays, the 2nd, 4th, and 5th Sundays, the 1st and 3rd Mon- 
days, the 2nd, 4th, and 5th Mondays, except special holidays. 
For convenience, weekend-days will include Saturdays, Sundays, 
and Mondays. 

Annual loads variations are shown in Fig. 2 at  0 a.m. (base 
load) and 6 p.m. (peak load) for 1983 and 1987. Seasonal load 
variations, load characteristics for special holidays (New Years, 
Thanksgiving days, etc.), and those of weekend-days are clearly 
seen. The weekday loads at  the same hours are similar to each 
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Fig. 1 Hourly load curve over two weeks 

other due to daily periodic patterns of the customers, but vary 
slowly during the year. Factors changing loads are economical, 
sociological, seasonal and meteorological effects. However, since 
load variations are slow, loads are sufficiently predicted by the 
adaptive technique in prediction algorithm. 

3. DEVELOPMENT OF LOAD MODELS 
AND FORECAST METHODOLOGY 

A utility load data are analyzed in developing suitable load 
models. The load is decomposed into three load components. 
The prediction method for each load component is developed in 
this section. 

3.1 Development of Load Models 

If we note that load curves for weekdays are similar to  each 
other in Fig. 1, time series can be composed of the load data for 
weekdays taken at the same hour of a day for a number of days, 
resulting in 24 time series. The nominal load is defined from 
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Fig. 2 Daily load curve at  the same hour over one year 
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Fig. 3 Autocorrelation of hourly load 

load data for ordinary weekdays. For the load prediction of the 
weekend pattern, time series are composed of the load data which 
are the differences between the nominal load and the actual load 
of the weekend pattern. These differences are called the type 
load and therefore, the load components for the weekend days 
are found by subtracting the type load from the norminal load. 

Another important characteristic of load is shown in Fig. 
3 which gives the autocorrelation function of hourly load over 
four weeks. The function shows peaks at  the multiples of 24 
hour lags indicating that loads at the same hours have strong 
correlation with each other independent of the day of the week 
including weekend-days. Therefore the weekend load data is also 
used in predicting the nominal load for weekdays. Thus the load 
is modeled as shown below. 
Weekdays. 

is the sum of the nominal load and the residual load: 
The loads of weekday pattern are expressed by eq. (1) which 

where 
y( i ,  t )  ! the actual load at  day i and hour t 
y n ( z ,  t )  : the nominal load at  day i and hour t 
y r ( i , t )  : the residual load at day i and hour t 

Weekend-days. 
When the forecasted day is either Saturday, Sunday or Mon- 

day, the actual load is represented by eq. (2) which is the nominal 
load minus the type load and plus the residual load: 

y ( i , t )  = Yn(i, t)  - Y d ( i r t )  + Yr(i, t) ,  (2) 

where 
Y d ( i ,  t )  : the type load at day i and hour t 

d=l  for Saturday 
d=2 for the 1st and 3rd Sunday 
d=3 for the 2nd, 4th, and 5th Sunday 
d=4 for the 1st and 3rd Monday 
d=5 for the 2nd, 4th, and 5th Monday 

The nominal load yn (2, t )  is defined as the customer demand 
under normal conditions of factors, such as economics, busi- 
ness cycle, and meteorological factors, when no special events 
or blackouts are occurred. This load component is updated with 
seasonal influences, yearly trends, and weather variations. 
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The residual load yr (i, t) corresponds to the modeling error. 
This error is largely due to the modeling procedure that does 
not include load data of the preceeding hours of the day. The 
load models should be identified such that this residual load is a 
stationary zero mean random process. 

The type load yd(i, t) represents the difference between the 
weekday loads and the Saturday, Sunday, or Monday loads, which 
includes the characteristics of the day of the week. 

The nominal load is estimated by the Kalman filter to re- 
move random load components from the actual load data. Adap- 
tive prediction technique is applied such that the nominal load is 
updated with changing conditions. The type load is predicted by 
the simple exponential smoothing method. Finally, the residual 
load is predicted by the autoregressive (AR) model using correla- 
tion with the load data of preceeding 1-23 hours ( the time series 
at  the same hours with time lag of 24 hours have already been 
exploited in extracting the nominal load ). 

3.2 The Nominal Load Model 

3.2.1 State variable model 

To extract the nominal load components from the actual 
load data y(i,t), the time series are obtained as below. The 
time series 2, consisting of load data at the same hours can be 
expressed as a p-th order AR model. That is, 

P 

Z, = okZ,--k + a,, (3) 
k= 1 

where Z, is the load demand for day 2 ,  e k  is the parameter of 
the AR model, and a, is the white noise, which accounts for the 
modeling error. To predict the nominal load at hour t ,  the load 
demand 2, is defined as shown below : 

2, = y( i , t ) .  (4) 

Here, normally the weekday load data is used to find the nominal 
load model(case 1). However, as mentioned before, the weekend 
load data can also be used together with the weekday data to 
improve accuracy(case 2). In order to estimate the nominal load 
components, the load data must be filtered to reduce the effect of 
random load fluctuation. Therefore eq. (3) needs to be expressed 
by the discrete state equation: 

~ ( i )  = A ( i  - l ) ~ ( i  - 1) + ~ ( i )  
y(i) = Cz(2) + v ( i ) ,  

(5) 

where 

w f i )  = ( a ,  0 ... O ) *  

C = ( l  0 0 . . .  0 )  

The system dynamic equation (5) is applicable for all hours 
and the parameters, e l ( i ) , e z ( i ) , . . . , e ~ ( i ) ,  should be estimated 
for each hour. 

3.2.2 State estimation and forecasting algorithm 

It will be assumed that the noise vector ~ ( i )  and v ( i )  are 
independent zero-mean white Gaussian sequences and their CO- 

variance matrices are Q ( i )  and R(i ) ,  respectively. The estimate 
of the system load vector can be obtained via the Kalman filter 
algor itm: 

?(i/i - 1) = A ( i  - l)?(i - l / i  - 1) 

?(i/i) = e( ; / ;  - 1) + K(i)[y(i) - G(i/i - I)] 
G(i/i - 1) = cqi/i - 1). 

(6) 
(7) 

(8 )  

The ?(i/i) denotes the estimate of the state z ( i )  based on 
measurements up to day i and the ?(Z/z-l) indicates the estimate 
of the state z ( i )  based on measurements up to day i - 1. The 
scalar y(i) - Q(i/i - I) ,  which is multiplied by the gain vector 
K ( i ) ,  is called innovation at  day i. The vector K ( i )  is given by 

K ( i )  = P ( i / i  - l )CT[CP(i / i  - 1)CT + q q 1 - 1 .  (9) 

The matrix P(z / i  - 1) is the covariance of the estimation error 
z ( i )  - ?(i/i - 1) and is computed as 

~ ( i / i  - 1) = ~ ( i ) ~ ( i / i ) ~ ~ ( i )  + Q ( ;  - 1) 
P ( i / i )  = [ I  - K ( i ) C ] P ( i / i  - 1). 

(10) 

(11) 

If the values of ?(O/O) and the error covariance P(O/O) are given, 
the forecasted load $(i/i - 1) can be calculated. If there is no 
prior information for matrix Q ( i )  and R(i ) ,  they can be updated 
through the following formula [9]: 

Q(2) = $2 - 1)Q(i - 1) + K(i)y(i)yT(i)KT(i) 
(12) 

+ P(i/Z) - A(i )P( i  - l / i  - l ) A T ( i ) ]  

i(;) = :[(i - I)I?(z' - 1) + y(i)yT(i) + CP(z / i  - l ) C T ] .  (13) 

Since the parameters of the AR model are updated to the 
load variations, the parameter estimation must be done by the 
adaptive algorithm. If we let 

then eq. (6) and eq. (8) can be written as 

fj(i/i  - 1) = OT( i  - 1)?(i - l / i  - 1). (15) 

The unknown parameter vector e( ; )  is identified by the mini- 
mization of the following exponentially weighted cost function: 

N 

J~ = xiy(;) - eT( i  - 1 ) q i  - I/; - 1)lZaN-', (16) 
i=l 

where N is the number of data and a is a weighting factor between 
0 and 1. Then the adaptive estimator is obtained as follows [lo]: 

B(i  - l)?(i - l / i  - 1) 
a: + i T ( i  - l / i  - l )B(i  - l)?(i - l/i - 1) 

i(i) = Bl(i - 1) + 

B(i) =- :, 1 B(i - 1)- 

(18) 
U L  

CY + ? T ( i  - l / i  - l ) B ( i  - l)?(i - l / i  - 1) I ' B(i  - 1)?(i - l / i  - I ) P ( i  - l / i  - l )B ( i  - 1) 

7r-r - -  
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where initial value I(&) and B(i0) are estimated from the fol- 
lowing equations: 

load is given by 

If the forecasted day is not a weekday, from eq. (2) the residual 
load is given by k=l 

k = l  

If no prior information is availble, the most common choice is 
to take O(0) = 0 and B(0) = c l ,  where c is a large number. 
Therefore the prediction of the nominal load at day i and hour t 
Cn ( 2 ,  t )  is given by 

$,(i,t) = $(i/i- 1). (21) 

Thus far, the correlation of a load with the loads of the proceed- 
ing 1-23 hours has not been considered because the nominal load 
is modeled by the load data at  the same hours. To reflect this, 
time series rt,  rt--l,. . . of yr(i ,  t )  arrayed in time sequence can be 
written by the q-th order AR model, that is, 

a 

(25) 
The adaptive prediction of the nominal load can be constructed 
as shown in Fig. 4. 

where pk is the parameter of the AR model and bt is the white 
noise. Since the time series rt can be assumed to be a zero mean 
stationary process, the parameters pk can be estimated by the 
recursive least squares(RLS) method. 
Let 

I 1 

h Exponentially Weighted least rl square parameter estimation 

P =  (l'), f $ ( t - l ) =  ( f t y l ) ,  (26) 
pcLp rt-q 

then eq. (25) can be written as 

Fig. 4 Adaptive prediction of nominal load 

The estimates p are computed by minimizing 

N 3.3 The Type Load Model 

Since the raw load data is filtered through the Kalman fil- 
ter in predicting the nominal load, another filtering to predict 
the type load is not needed. The load variation on Saturdays, 
Sundays and Mondays are larger than those on weekdays. Also, 
the load data for the weekend is available every week(for Satur- 
days) or two weeks(for Sundays or Mondays). In this case, the 
exponential smoothing method can be used as a good estimator 
because of its simplicity, computational efficiency, and reasonable 
accuracy. Therefore the type load is modeled as shown below : 

Cd(id,t) = Pd$d(&,t) + (1 - Pd)[Yn(i,t) - ?l( i , t )] ,  (22) 

In type load mode1(22), for each d, id represents a type d day and 
id represents the previous type d day. For example, i l  represents 
the day i of the year which coincides with the Saturday ; iz for 
the day i of the year which coincides with either the 1st or 3rd 
Sunday ; is for the day i of the year which coincides with the 
2nd, 4th, or 5th Sunday, etc. Also, &(id,t) is the prediction 
of the type load at  day i and hour t ,  and P d  is a smoothing 
constant. The smoothing constants should be between 0 and 1. 
Smaller values of P d  give weight to the more recent load data. 
The constant P d  for each type is chosen such that the sum of the 
forecast error is minimized. 

t=1  

Then the RLS estimate[ll] is given by 

. [ f t  - bT(t - l)f$(t - l)] 

S ( t  - l)+(t  - l ) d ( t  - l )TS( t  - 1) 
S ( t )  = S( t  - 1) - 1 + r$(t - 1)TS(t - l)f$(t - 1) ' (30) 

where initial values may be chosen as p(0) = 0 and S(O)=cI with 
a large number c. To predict the residual load at  time t for lead 
time e ,  from eq. (27) the residual load rt+e can be written as 1121 

(31) rt+e = pirt+e-i + ~ ~ z r t + e - z  + . . . + pqrt+e-q + bt+e. 

Taking conditional expectations at  time t in eq. (31), we obtain 

where the brackets imply that the conditional expectation at  
time t is to be taken. The conditional expectation Et[rt+e] is the 
expectation of the time series for time t + e  based on the residual 
load data r t ,  r t -1 , .  . .. Let Et[rt+e]k i t ( C ) ,  then the prediction 
of the residual load at time t for lead time e is given by 

3.4 The Residual Load Model 

If the forecasted day is a weekday, from eq. (1) the residual 
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t?= 1, . . . ,24  
where 

Et [ r t  -j] = rt-j 
Et[Tt+jl = + t ( j )  
Et[bt+j] = 0 

j = 0,1,2,. . . , t - 1 
j = 1,2 ,3 , . . . ,24  
j = 1,2,3, .  . . ,24 

Therefore the prediction of the residual load at  day i and hour t 
&(i, t )  is given by 

&(a, t )  = ?,(e) e = 1, * .  * ,24. (34) 

Finally, the prediction of the total load at  day i and hour t 
$(i, t )  is obtained as shown below : 
Weekdavs. 

$(Z7t)  = $n( i , t )  + $ r ( i , t ) .  (35) 

Weekenddays. 

4. TEST AND DISCUSSION 

Case studies from the proposed algorithm were carried out 
for a one-day-ahead prediction of hourly electric loads using the 
data of Korea Electric Power Company(KEPC0) from January 1 
to July 31,1983 and 1987. The load data for one month(January) 
were processed to update the parameters of the model. Test 
results were obtained for the period of Feburary to July. To 
compare with other papers, the results were evaluated by the 
following three indices: 

(i) Standard deviation U = d h  C L I [ y ( i ,  t )  - c(z, t)I2 

(ii) Root mean square error 

€1 = 4% E,"=, [{Y(i,t) - $ ( w / Y ( ; , t ) ] 2 .  100 
(iii) Percent relative error 

where N is the number of predictions. 
To determine the order of the nominal load model, the initial 

values of the filter were given by R(0) = 1,&(0) = I,P(O) = 
lOOI ,?(O/O)  = the mean values of the loads at  each hour, and 
CL = 1. The order of the model is determined such that the 
prediction error of the norminal load has minimum variance. As 
the result of the simulation, the 2nd order AR model is used. 
Also, minimum variance was achieved when the weighting factor 
(Y of the norminal load model is equal to 0.95 and in this case 
the autocorrelation of the forecast error is shown in Fig. 5. Thus 
the nominal load was extracted such that the residual load was 
random component. 

In prediction of the nominal load, the case of using the week- 
day data only(case 1) is compared with the case of using both 
weekday and weekend data(case 2). In 1983, the standard de- 
viation and percent relative error of case 1 are 97.041MWI and 
1.35%, respectively; but for case 2, 96.6[MW] and 1.32%, respec- 
tively. Similarly in 1987, the standard deviation and percent 
relative error of case 1 are 143.96[MW] and 1.24%, respectively; 
but for case 2, 142.30[MW] and 1.23010, respectively. The use 
of weekend data in the prediction of the nominal load gave the 
smaller forecast error. Comparison between the nominal load 

€2 = +E,"=, lY(i,t) - G(i , t ) l  . 100/Y(i,t), 

: 1987 
: 1983 

Fig. 5 Autocorrelation of percent prediction error 
at  12 p.m. 

and the actual load for weekdays is shown in Fig. 6. 
of the type load 

model for weekend, the minimum standard deviations were found 
by increa.sing /3d from 0.1 to 1. The results are /31 = 0.9,pn = 
0.9,/33 = 0.8,p4 = 0.7, and /35 = 0.8. To predict the residual 
load, the time series are rearranged in a time sequence and the 
standard deviation of prediction error is calculated by increasing 
the order of the residual model, where the 4th order AR model 
has the minimum. The type load and residual load are combined 
with the nominal load to yield the total load forecast and com- 
pared with the actual load in Fig. 7 .  Percent prediction errors 
are shown in Fig. 8. 

Table 1 shows the standard deviations and percent rela- 
tive errors of the prediction errors for each hour and for all 
types in 1987. Table 2 shows the summary of the standard 
deviations and percent relative errors of the prediction errors 
for 1983 and 1987. Test results for a one-day-ahead predic- 

To determine the smoothing constants 
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Fig. 6 Comparison of actual load and nominal load 
for weekdays at 12 p.m. 
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Fig. 7 Comparison of actual load and forecasted load 
at  12 p.m. 

tion over a period of six months in 1983 were given as U = 
104.05[MW], E I  = 1.97%, €2 = 1.50%. Similarly, test results 
for a one-day-ahead prediction over a period of six months were 
given as 0 = 156.76!MW],~1 = 1 . 9 1 % , ~ ~  = 1.40%. These are 
comparable with accuracies reported in other papers[2-71. The 
CPU time for six months simulation performed on a VAX 11/780 
system is 5.39 sec. 

5. CONCLUSION 

A new algorithm is developed for a one-day-ahead prediction 
of hourly electric loads. The load model is decomposed into three 
components: the nominal load, the type load and the residual 
load. 

The nominal load is extracted from data in such a way that 
the time series of the residuals obtained with this model can be 
considered as a stationary process. The nominal load is modeled 

1 ° 7  1987 , 

r 
0 
r 

0 

Feb. Mor. A p r .  

Month 

Fig. 8 Percent error at  12 p.m. 

by the AR model, which is expressed in the state variable form 
to exploit the Kalman filter technique for filtering random load 
components. The states of the system load are estimated for 
a different number of the order of the nominal model, and the 
model parameters are updated to load variations by the expo- 
nentially weighted least squares method. 

The type load for weekend-days is predicted by a relatively 
simple exponential smoothing method, where the smoothing con- 
stants are chosen to minimize prediction errors. The time series 
of residual load are composed of prediction errors occurring when 
hourly loads are predicted by the time series of the load data 
at every same hour. This load is predicted by the AR model, 
whose parameters are estimated using the recursive least squares 
method. 

In predicting a weekday pattern, the additional use of week- 
end data shows smaller forecast error. The weather effects on 
the electric load are not explicitly considered, but small changes 
in weather will be somewhat reflected by the adaptive prediction 
algorithm. An advantage of this algorithm is that the load model 
is automatically adapted with seasonal changes because the nom- 
inal and the type loads are updated by the adaptive prediction. 

The accuracy of the proposed algorithm is shown in the test 
results over a period of six months of the data which are compa- 
rable with those of load models in literahre. 
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Table 1 % Relative Error and Standard Deviation of the Prediction Errors 

Weekday Saturday 1, 3rd Sunday 2,4,5th Sunday 1,3rd Monday 2,4,5th Monday Type 
MW 9'0 MW Yo MW % MW % MW % MW % 

Relative S.D. Relative S.D. Relative S.D. Relative S.D. Relative S.D. Relative S.D. 
(a) error (a) error (a) error (0) error (0) Error error (a) error 

Mean 

Mean 
(1983) 1.32 90.84 1.27 94.91 2.41 158.26 1.90 124.13 1.59 105.33 1.77 111.09 

Total 
% 
Relative S . D , 
error 

MW 

(0 ) 

1.50 104.05 
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(1987) 1.23 142.30 1.U 144.77 2.23 203.42 2.05 216.95 1.68 183.43 
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Discussion 

A. K. Deb (Innova Corporation, Fremont, Ca): The authors have devel- 
oped a new method for short term (1-23 hour ahead) electric load 
forecasting using the state variable approach with Kalman filter and the 
recursive least square estimation theory. We are working on a related 
problem of forecasting the overhead transmission line ampacity [ 11 using a 
similar technique and hence the interest in this paper. We have a few 
questions which may help in further clarification of the forecasting method 
used by the authors and the results that are presented. 
1. Weather Modeling 

In the introduction it is mentioned that the weather forecasts are 
inaccurate. We would like to inform that by using the technique of 
recursive least square estimation and hourly ambient temperature data 
from two different =&E locations in California we obtained satisfactory 
forecasts of ambient temperature 1-24 hours ahead [l]. 
2. 24 Time Series Models 

The forecasting algorithm requires 24 time series for each hour of the 
day. From these time series the daily variations in load are obtained by 
extracting the nominal component of load Yn from load measurements 
Ym. The hourly variations of load are obtained by modeling the residuals 
Yr = Ym - Yn. While this is a novel approach a more simpler approach 
would be to consider the hourly and daily variations by the Box-Jenkins 
multiplicative model (page 322 Box-Jenkins 1976), 

Between 24 Hour Period 

*?.(B")V,zf = B q ( B v %  (1) 

+p(B)vat = @q(B)% (2) 

Within 24 Hour Period 

where, B is the backward shift operator and B"z, = zf-" 

V is the backward difference operator 

so that 

VNZ, = ( 1  - B * ~ ) z ,  

If the authors have considered the above model I would like to request 
them to show a comparison of the standard deviations of forecast errors 
with both methods. 
3. Memory of AR(p) and AR(q) Models 

To understand the storage requirements for this algorithm and its 
feasibility for implementation in real time it is useful to know the order of 
the AR(p) and -((I) model in equation (3) and (25) of the paper 
respectively. Can the authors please provide this information if possible? 
4. Exponential Weighting 

Exponential weighting of data is usefuI, allowing greater weight to 
recent data and less weight to older data. In Equations (16), (17), (18) an 
exponential weighfing function aN-' was used to estimate the parameters 
of the AR(p) model. Would the authors please discuss why exponentual 
weighting was considered in this case and not considered in the estimation 
of the parameters of the AR((I) model of the residuals given by the 
equations (29), (30)? 
5. Results of Forecast Errors 

In Table 1 page 7, the results of the standard deviations of forecasts 
errors are shown to be less than 2.02 96 relative error which is excellent. 
It is important to clarify they are 24 hour ahead prediction errors for each 
hour of the day. Since the algorithm is designed for 1-23 hours load 
prediction it would be interesting to know the SDs and X relative errors of 
prediction errors at shorter lead hours. 
6. Bad and Missing Data 

implementation of the algorithm? 
7. Typographic Error 

In Page 4 para 2 it is stated " . . . loads of the proceeding 1-23 
hours. . . ", obviously it is a typographic error and should be " , . . loads 
of the preceding 1-23 hours. . . ". 

The authors are congratulated for presenting a well written paper. 

Can the authors please discuss the impact of bad and missing data in the 
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J. H. Park, Y. M. Park, and K. Y. Lee: The authors thank 
the discussor for his interest in the paper and his comments. 

Weather forecasts are in general known to be inaccurate. 
However, special efforts can be made to predict accurate weather 
variables in the expense of additional resourses. Certainly the 
paper suggested by the discussor will be a welcome toward im- 
proved forecasting. Currently we are developing a load-weather 
model to use in the event that an accurate weather forecasting is 
available. In this case, beside temperature, humidity and wind 
speed may also have to be included. 

The discussor mentioned about the use of the Box-Jenkins 
model which is more simpler than the adaptive prediction model 
in the paper. An important motivation behind this new ap- 
proach is to forecast load uduptively in spite of the fact that 
parameters are varying and weather variables are not used. Be- 
cause of this adaptive nature the % relative error is less than 
2.02% and 1.50% (1.40%) in the average for 1983(1987) as shown 
in Tables 1 and 2. 

The orders of AR(p) and AR(q) models in equations (3) 
and (25), respectively, are determined optimally by increasing 
the order in an off-line simulation and finding the value which 
gives the smallest standard deviations(S.D.) in forecasting er- 
ror. The orders determined are 2 and 4 for AR(p) and AR(q), 
respectively, as were mentioned in Section 4 of the paper. 

The discussor correctly observed that exponential weight is 
used in the nominal load model, but not in the residual load 
model. As can be seen in Fig.6 in the paper, the nominal load is 
nonstationary and changes slowly with seasonal and yearly vari- 
ations, and exponential weighting is useful in estimating slow- 
moving system parameters. The residual load, on the other 
hand, reflects the modeling error as the difference between ac- 
tual load and the nominal load. Since the nominal load is ex- 
tracted in such a way that the residual load is a zero mean 
random process, the residual load is a stationary process, and 
hence exponential weighting is not necessary. 

The discussor mistakenly interpretes the forecasting error 
in Table 1. Our model is for 1-24 hour ahead load prediction. At 
zero hour, as the reference, the loads for the next 24 hours are 
forecasted. Consequently, the load at  hour 1 is the 1-hour ahead 
prediction, the load at  hour 2 is the 2-hour ahead prediction, etc. 
Therefore, the % relative errors and the standard deviations in 
Table 1 are for all hours, including shorter load hours. 

Although the load data is smoothed by Kalman filter to es- 
timate model parameters, bad data can cause the model param- 
eter to change abnormally. Therefore in implementation, when 
the absolute % error of the filtered data is 5%(for weekday) or 
lO%(for weekend) from the actual data, the model parameters 
are not updated. Similarly, for missing data the identification is 
not performed and parameters are not updated. 

Manuscript received September 23, 1990. 


