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Abstract—This paper presents a new approach to Economic 

Dispatch (ED) problems with nonconvex cost functions using 
Shuffled Frog Leaping (SFL) algorithm. The practical ED 
problems have nonconvex cost functions with equality and 
inequality constraints that makes the problem of finding the 
global optimum difficult using any optimization approaches. In 
this paper, the standard SFL is improved to deal with the 
equality and inequality constraints in the ED problem.  To 
validate the results obtained by proposed SFL, a modified SFL is 
adopted from the literature and applied for comparison.  Also, 
the results obtained by the SFL algorithms are compared with 
other approaches reported in the literature. The results show that 
the proposed SFL produces better solutions for two study 
systems due to extra diversification provided by the algorithm. 

 
Index Terms—Shuffled Frog Leaping algorithm, economic 

dispatch, nonsmooth cost functions.  

I.  INTRODUCTION  
VER the last decades there has been a growing interest in 
algorithms inspired by the observation of natural 

phenomenon. It has been shown by many researchers that 
these algorithms are good replacement tools to solve complex 
computational problems. Various heuristic approaches have 
been adopted by researchers including genetic algorithm, tabu 
search, simulated annealing, ant colony, immune system, 
particle swarm optimization (PSO), gravitational search 
algorithm, Shuffled Frog Leaping (SFL) algorithm, etc. 

The SFL can be classified as a swarm intelligence, which 
was developed by Eussuf and Lansey in 2000 in determining 
the optimal discrete pipe sizes for new pipe networks and for 
network expansions [1].  Due to its advantages, the SFL is 
being researched and utilized in different subjects by 
researchers around the world. Some researchers have shown 
that the standard SFL cannot converge properly and several 
modifications are proposed to overcome the difficulty 
associated with the standard SFL in [2]-[7]. The PSO and SFL 
are combined to form a new mimetic algorithm in [2]. To 
enhance the stability and global search ability of the SFL 
algorithm, a cognition component is introduced by Zhang, et 
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al. in [3].  To improve the performance of the SFL algorithm, 
a chaos search is combined with SFL by Li, et al. in [4]. In 
[5], a new frog leaping rule is introduced and the direction and 
the length of each frog’s jump are extended by emulating 
frog’s perception and action uncertainties. Zhen, et al. in [6], 
introduced a new leaping rule as well as giving a new way for 
dividing the population.  

To overcome the difficulties with the SFL, in this paper, a 
modified SFL (MSFL) is presented by increasing the local 
search ability of the algorithm. The issue of exploration and 
exploitation is taken into account by a frog leaping rule for 
local search and a mimetic shuffling rule for global 
information exchange. To show the effectiveness of the 
proposed algorithm, MSFL is tested on economic dispatch 
(ED) problem which is one of the most important problems to 
be solved in the operation and planning of a power system [7]. 
The primary objective of ED problem is to determine the 
optimal combination of power outputs of all generating units 
so that the required load demand at minimum operating cost is 
met while satisfying system equality and inequality 
constraints. In the traditional ED problem, the cost function 
for each generator has been approximately represented by a 
single quadratic function and is solved using mathematical 
programming based on the optimization techniques such as 
lambda-iteration method, gradient method, and dynamic 
programming method, etc. However many mathematical 
assumptions such as convex, quadratic, differentiable and 
linear objectives and constraints are required to simplify the 
problem. 

The practical ED problem with ramp rate limits, prohibited 
operating zones, valvepoint effects and multi-fuel options is 
represented as a non-smooth or nonconvex optimization 
problem with equality and inequality constraints and this 
makes the problem of finding the global optimum difficult and 
cannot be solved easily by conventional methods. 

Since ED is a problem with high complexity, a considerable 
amount of work has been adopted by researchers to solve a 
practical ED problem by considering different nonconvex cost 
functions using various heuristic approaches such as genetic 
algorithm (GA) [8]-[12], simulated annealing   [13], artificial 
neural network [14]-[16], tabu search [17], evolutionary 
programming [18]-[22], PSO [23]-[27], ant colony 
optimization [28]-[29], and differential evolution  [30]-[31]. 

This paper uses MSFL as an alternative approach to solve 
the nonconvex ED problems. The results obtained by MSFL 
are compared with those obtained by other approaches 
reported in the literature which shows the superiority of the 
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proposed method over the other approaches reported in the 
literature. 

The paper is organized as follows: to make a proper 
background, the standard SFL and the proposed SFL are 
explained in Section II.  The optimization problem is 
formulated in Section III and the study systems are given in 
Section IV. The results of the MSFL applied in study systems 
are given in Section V and conclusions are drawn in Section 
VI. 

II.  OVERVIEW OF SFL ALGORITHMS 
The SFL is motivated from the simulation of natural 

mimetic. This optimization approach updates the population of 
frogs by applying an operator according to the fitness 
information obtained from the environment so that the 
population of frogs can move towards better solution spaces. 
The standard SFL and the proposed MSFL are explained 
below. 

A.   Standard SFL Algorithm 
In the SFL the population of the frogs is divided into 

different groups referred to as memeplexes [1]-[6]. Each 
memeplex has different culture by performing a local search. 
Each frog has its own idea and can be influenced by the ideas 
of other frogs during the iterative shuffling process of mimetic 
evolution following by passing the ideas among memeplexes 
in a shuffling process. The principle of SFL can be 
summarized in Figs. 1-2.  

As Fig. 1 shows at the first step, n  frogs ( 
},,,{ 21 nXXXP K= ) are generated randomly within the 

search space. For d-dimensional problems (d variables), the 
position of the i-th frog in the search space is represented 
as T

idiii xxxX ],,,[ 21 K= . The frog’s position is evaluated 
using a suitable objective (fitness) function. After evaluating, 
the frogs are sorted in a descending order according to their 
fitness.  The frog with the global best fitness is identified as 

gX . The entire group can be divided into m memeplexes, 
each of which consisting of q frogs, which satisfy qmn ×= .  
The strategy of division is as follows: the first frog goes to the 
first memeplex, the second frog goes to the second  
memeplex, the m-th frog goes to the m-th memeplex, and (m 
+1)-th frog goes back to the first memeplex, etc. Within each 
memeplex, the frogs with the best and the worst fitness are 
identified as bX  and wX , respectively.  The local search block 

of Fig. 1 is shown in Fig.2. 
According to Fig.2, during memeplex evolution, the worst 

frog wX  leaps toward the best frog bX , based on the 

following leaping rule: 

)(() wbi XXrandD −×=     (1) 

maxmin)()( DDDDoldXnewX iiww ≤≤+=  (2) 

where ()rand  is a uniformly distributed random number in the 
interval [0, 1]. If the repositioning process produces a frog 
with better fitness, it replaces the worst frog. Otherwise, the 
process is repeated with respect to the global best frog ( gX ) 

with the best fitness across the memeplexes ( gX replaces 

bX ). In case of no improvement, a new frog within the 
feasible space is randomly generated to replace the worst frog.  
Based on Fig. 1, the evolution process is continued until the 
termination criterion is met. The termination criterion could be 
the number of iterations or when a frog of optimum fitness is 
found. 

 

 
Fig. 1.  General principle of the SFL algorithm. 

  

B.     The proposed MSFL Algorithm 
In the population based heuristic algorithms two common 

aspects should be taken into consideration: exploration and 
exploitation. The exploration is the ability to investigate the 
search space for finding new and better solutions, whereas the 
exploitation is the ability of finding the optima around a good 
solution. To have a high performance search, an essential key 
is having a suitable tradeoff between exploration and 
exploitation.  

The SFL may fell into a local optimum early in a run on 
some optimization problems. In other words, the algorithm 
approaches the neighborhood of the global optimum but for 
some reason it fails to converge to the global optimum.  The 
stagnation could be due to the following reason: 

In the standard SFL, only the position of the worst frog of 
each memeplex is changed according to (1)-(2).  This issue 
makes the algorithm having an insufficient learning 
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mechanism. In other words, the better frogs have fewer 
learning chances, unless that the worse frog catches up on 
them. This learning mechanism leads the algorithm to be 
trapped in a local optimum easily.    

 

 
  

Fig. 2.  Local search block of Fig. 1. 

To overcome the above problem, a suggestion is given 
below.  This suggestion is based on the modification in [5], 
where the authors define an uncertainty terms since in nature, 
the worst frog cannot jump exactly to its target position. Due 
to imperfect perception, a modified frog leaping rule is 
defined as: 

WXXcrD wb +−××= )(    (3) 
T

dd wrwrwrW ],,,[ max,max,22max,11 K=   (4) 
0

maxmax WW iterationiteration λ=    (5)
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where r is a uniformly distributed random number in the 
interval [0, 1]; c is a constant chosen in the range between 1 
and 2; ri ( di ≤≤1 ) are uniformly distributed random numbers 
in the interval [-1, 1]; max,iw ( di ≤≤1 ) is the maximum 
allowed perception and action uncertainties in the i-th 
dimension of the search space, the maximum uncertainties are 
exponentially decreased according to (5) where λ is a decay 
factor in the range between 0 and 1;  0

maxW   is the initial 
maximum uncertainties that can be chosen equal to 10-20 
percent of the initial range of each dimensions  and 

 
Dmax is the 

maximum allowed distance of one jump.  
The rest of the algorithm is similar to the standard SFL as 

explained in the previous subsection.  
With the above given modification in [5], the algorithm may 

trap in the local optimum since there is a still insufficient 
learning mechanism (as it is evident in Section V Table I). In 
this paper, learning mechanism is improved while keeping the 
uncertainty term the same, which are defined in (4)-(5). 

Instead of learning from the best frog, all the frogs are 
considered based on the following equation: 

WXXcrD wii +−××= )(      (7) 

Then, the new position of the frog is obtained as follows:  

maxmin)()( DDDDoldXnewX iiww ≤≤+=  (8)
 

If the repositioning process produces a frog with better 
fitness, it replaces the worst frog. Otherwise, the process is 
repeated with respect to the global best frog ( gX ) with the 

current flog iX . In the case of improvement, it replaces the 
worst frog. In the case of no improvement, the algorithm goes 
toward stagnation and it needs a new movement to explore the 
new position in the search space. First, a new frog within the 
feasible space is randomly generated to replace the worst frog. 
Then, iX  is leaped to explore a new position as follows: 

WXXcrD igi +−××= )(    (9) 

Then, the new position of the frog is obtained based on the 
following equation: 

start 
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If the repositioning process produces a frog with better 
fitness, it replaces Xi.  Otherwise the algorithm goes to the 
next jump and the evolution process is continued until the 
termination criterion is met. The termination criterion could be 
the number of iterations or when a frog of maximal fitness is 
found.   The principle of the MSFL  is given by Fig. 3. 

III.  PROBLEM FORMULATION  
For convenience in solving the ED problem, the unit 

generation output is usually assumed to be adjusted smoothly 
and instantaneously. Practically, the operating range of all 
online units is restricted by their ramp-rate limits for enforcing 
the units’ operation smooth between two adjacent specific 
operation periods. In addition, the prohibited operating zones, 
valve-point effects and multi-fuel options must be taken into 
account. The traditional and practical ED is explained below:  

A.  Traditional ED Problem with Smooth Cost Functions  
In the traditional ED problem, the cost function for each 

generator has been approximately represented by a single 
quadratic function. The primary objective of the ED problem 
is to determine the optimal combination of power outputs of 
all generating units so that the required load demand at 
minimum operating cost is met while satisfying system 
equality and inequality constraints. Therefore, the ED problem 
can be described as a minimization process with the following 
objective: 

 ∑∑
==

++==
GG N

i
iGiiGiiGi

N

i
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1

2

1
)()(min   (11) 

subject to 

lossload

N

i
Gi PPP

G

+=∑
=1

    (12) 

GGiGiGi NiforPPP ,2,1maxmin K=≤≤  (13) 

 
where  F is the total generation cost ($/hr), Fi is the fuel-cost 
function of generator i ($/hr), NG is the number of generators, 
PGi is the real power output of generator i  (MW), and  ai, bi 
and  ci are the fuel-cost coefficients of generator  i,Pload  is the 
total load in the system (MW), Ploss is the network loss (MW) 
that can be calculated by the B-matrix loss formula, 

minGiP and maxGiP  are respectively the minimum and 
maximum power generation limits of generator i . 

 

Fig. 3  The proposed MSFL.     

B.  Practical ED Problem with Nonsmooth Cost Functions  
As it is mentioned, a practical ED must take ramp-rate 

limits, prohibited operating zones, valve-point effects, and 
multi-fuel options into consideration to provide the 
completeness for the ED formulation. The resulting ED is a 
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nonconvex optimization problem that has multiple minima, 
which makes the problem of finding the global optimum 
difficult: 

1) Generator ramp-rate limits. By considering the generator 
ramp rate limits, the effective real power operating limits are 
modified as follows: 

G

iGiGiGiiGiGi

Ni

URPPPDRPP

,,2,1

),min(),max( 0
max

0
min

L=

+≤≤−

G

iGiGiGiiGiGi

Ni

URPPPDRPP

,,2,1

),min(),max( 0
max

0
min

L=

+≤≤−  (14) 

where 0
GiP   is the previous operating point of generator i, 

iDR and iUR  are respectively the down- and up-ramp limits of 
the generator i. 

2) Prohibited operating zones. A generator with prohibited 
regions (zones) has discontinuous fuel-cost characteristics. 
The discontinuous fuel-cost characteristics of the generators 
by considering prohibited zones are shown in Fig. 4.  

Taking into account the prohibited operating zones, the 
following constraint is considered in the ED problem: 
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where LBk
Gi

P and UBk
Gi

P are respectively the lower and upper 
boundaries of prohibited operating zone  k of generator i  in 
(MW); PZiN is the number of prohibited operating zones of 
generator i; and GPZN  is the number of generators with 
prohibited operating zones.   

 
Fig.  4.  Input–output curve with prohibited operating zones. 
 

3) Valve-point effects: A generator with multi-valve steam 
turbines has very different input-output curve compared with 
the smooth cost function. As each steam valve starts to open, 
the valve point results in ripples as shown in Fig. 5. To 
consider the valve-point effects, sinusoidal functions can be 
added to the quadratic cost functions as follows: 

))(sin()( min(
2

GiGiiiiGiiGiiGii PPfecPbPaPF −+++=  (16) 

where ei and fi are the coefficients of generator reflecting 
valve-point effects. 
 

 
Fig. 5.  Piecewise input–output curve under valve-point loading. 
 

 

IV.  STUDY SYSTEM 
To assess the efficiency of the proposed MSFL, it has been 

applied to ED problem by considering two test systems having 
nonconvex solution spaces.  

1) The first study system.  This study system consists of six 
generators with ramp-rate limit and prohibited operating 
zones.  The input data for 6-generator system are given in [25] 
and the total demand is set as 1263 MW. All the generators are 
having ramp-rate limits. The network losses are calculated by 
the B-matrix loss formula.  It was reported in [27] that the best 
generation cost reported until now is 15443.0925 $/h. 

2) The second study system.  This study system consists of 
15 generators with ramp rate limit and prohibited operating 
zones. The input data of this system are given in [24] and has 
a total load of 2630 MW. Also, the network losses are 
calculated by the B-matrix loss formula. The main difference 
of the study systems 1 and 2 is that the system 2 has many 
local minima compared to system 1. Thus, the ability of the 
proposed algorithms is investigated on this larger system.  The 
best generation cost reported until now is 32738.41 $/h [27]. 

V.  IMPLEMENTATION OF MSFL 
In order to find the effectiveness and superiority of the 

MSFL, the test results are compared with the results obtained 
by other algorithms available in the literature. Therefore, to 
make the results comparable, the same number of population 
and iterations available in the literature are used in this paper. 
Furthermore the suggested SFL in [5] is adopted and applied 
on the ED problem for comparison with the MSFL. The 
implementation of MSFL for ED problem of the study systems 
are given below:  

For the study system 1 with six generators, the goal of the 
optimization is to find the best generation for the six 
generators.  Therefore, each frog is a d -dimensional vector, in 
which 6=d .   Initialization is randomly made based on the 
position of each frog.  Population of n frogs is generated 
randomly, where n is selected to be 20, and m and q are set to 
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be 4 and 5, respectively. The number of iterations is 
considered to be 50, which is the stopping criterion. Based on 
the previous experience, c and D are set to 2 and infinity, 
respectively. 

Each frog in the population is evaluated using the objective 
function defined by (11) subject to (12)-(15) searching for the 
frogs associated with 

best
F .  

To find the minimum cost, the algorithms are run for 50 
independent runs under different random seeds.  The results 
obtained by the MSFL and the adopted SFL [5] are shown in 
Table I, in the first two columns.  The rest columns of the 
table show the obtained results by GCPSO and MPSO 
reported in [27], binary version of GA, PSO, a modified (new) 
version of  PSO having local random search (NPSO-LRS) 
reported in [25] and a self-organizing hierarchical PSO 
(SOH_PSO) reported in [26]. This table shows that the MSFL 
is performing better than other algorithms in terms of the best 
generation schedule with minimum network loss in addition to 
minimum generation cost.  Also, the obtained generation 
schedule is within the generation limits.  

The best-so-far of each run is recorded and averaged over 
50 independent runs for the MSFL and the adopted SFL. To 
have a better clarity, the convergence characteristics in finding 
the minimum cost are given in Fig. 6. This figure shows that 

the MSFL algorithm performs better due to the extra 
diversification provided by equations (7)-(10). 
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Fig. 6. Convergence characteristics of MSFL and adopted SFL on the average 

best-so-far in finding the solution in Study System 1.  
 

 
TABLE I.  

COMPARISON OF SIMULATION RESULTS WITH OTHER METHODS (6-GENERATOR SYSTEM). 

 
SOH_PSO[26] 

NPSO-
LRS [25] PSO [25] GA [25] MPSO 

[27] 
GPSO 
[27] 

 Adopted 
SFL [5] 

 
MSFL unit 

438.21 446.9600 447.4970 474.8066 446.48690 444.88819 443.1332 445.0140 P1 
172.58 173.3944 173.3221 178.6363 168.66127 168.14553 178.9638 175.5156 P2 
257.42 262.3436 263.4745 262.2089 265 265 262.9462 264.2614 P3 
141.09 139.5120 139.0594 134.2826 139.49275 129.47514 136.4721 137.3012 P4 
179.37 164.7089 165.4761 151.9039 164.0036 173.02991 167.3992 162.7899 P5 
86.88 89.0162 87.1280 74.1812 91.74655 95.0435 86.5589 90.4992 P6 

1275.55 1275.94 1276.01 1276.03 1275.3911 1275.5823 1275.47 1275.38 Total 
generation 

12.5 12.9361 12.9584 13.0217 12.37368 12.64113 12.446 12.389 Loss 

1263.05 1263.0039 1263.0516 1263.0083 1263.01746 1263 1263.024 1262.991 Load 
demand 

15446.02 15450 15450 15459 15443.0925 15443.97 15443.3014 15442.5911 Cost 
 

To investigate the ability of the MSFL in finding the 
solution and convergence characteristics of the algorithm, the 
same study is carried out on the second study system which is 
a larger system. The number of population is considered to be 
100 and the number of iteration is considered to be 200, and m 
and q are set to be 5 and 20, respectively. Also, c and D are set 
to 2 and infinity, respectively. 

The results obtained by the MSFL and SFL are given in 
Table II, in the first two columns. The rest of the columns of 
the table show the obtained results by GCPSO and MPSO 
reported in [27], binary version of GA and PSO reported in 
[24] and SOH_PSO reported in [26]. The results obtained by 
all algorithms (listed in Table II) reveals that the best found 
solution by MSFL is better than other algorithms. In other 
words, it is clear that dimensionality is not the key factor and 
the MSFL still outperforms other approaches significantly. 
The convergence characteristics in finding the minimum cost 
are given in Fig. 7.  
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TABLE II.  

COMPARISON OF SIMULATION RESULTS WITH OTHER METHODS (15-GENERATOR SYSTEM). 

SOH_PSO 
[26] PSO[24] GA[24] MPSO 

[27] 
GCPSO 

[27] 
Adopted 
SFL [5] MSFL unit 

455.000 439.1162 415.3108 455 449.89252 455.0000 455.0000 P1 
380.000 407.9727 359.7206 380 366.99066 380.0000 380.0000 P2 

  130.000 119.6324 104.4250 130 130 130.0000 130.0000 P3 
  130.000 129.9925 74.9853 130 130 130.0000 130.0000 P4 
  170.000 151.0681 380.2844 170 170 170.0000 170.0000 P5 

459.96 459.9978 426.7902 460 460 460.0000 460.0000 P6 
430.00 425.5601 341.3164 430 430 430.0000 430.0000 P7 
117.53 98.5699 124.7867 92.7278 75.88460 60.0000 71.8386 P8 
77.90 113.4936 133.1445 43.0282 50.22689 68.8952 59.0111 P9 
119.54 101.1142 89.2567 140.1938 160 160.0000 160.0000 P10 
54.50 33.9116 60.0572 80 80 80.0000 80.0000 P11 
80.00 79.9583 49.9998 80 77.87063 80.0000 80.0000 P12 
25.00 25.0042 38.7713 27.6403 25 25.0000 25.0000 P13 
17.00 41.4140 41.9425 20.7610 15.8312 15.0000 15.0000 P14 
15.00 35.6140 22.6445 22.2724 39.66146 17.0261 15.0000 P15 

2662.29 2262.4 2668.4 2661.6235 2661.35806 2660.9213 2660.8497 Total generation 
32.28 32.4306 38.2782 29.978 30.86593 30.699 30.857 Loss 

2630.01 2230.03 2630.1218 2631.6455 2630.4921 2629.5923 2629.9927 The total load 
32751.39 32858 33113 32738.41778 32764.4616 32710.589 32706.5726 cost 

 
TABLE III.  

AVERAGE, MAXIMUM AND MINMUM COST  AND STANDARD DEVIATIONS (SD) OF OBJECTIVE  FUNCTION AMONG THE INDEPENDENT RUNS FOR TWO  
STUDY SYSTEMS. 

  Adopted SFL     MSFL  

System / methods SD Average _cost Max_cost Min_cost SD Average _cost Max_cost Min_cost 

System study 1 4.78 15451.11 15471.11 15443.3014 4.07 15447.60 15460.29 15442.5911 

system study 2 19.19 32729.32 32828.40 32710.5869 13.90 32727.03 32761.92 32706.5726 

 
 
The comparison of the robustness (consistency) and the 

quality of the solutions obtained by adopted SFL and MSFL is 
illustrated in Table III.  An algorithm is said to be robust, if it 
gives consistent result during all the independent runs. Table 
III gives the standard deviations (SD), the average-cost, the 
worst solution found (Max-cost) and the best solution found 
(Min-cost) in the results obtained on the independent runs for 
the study systems 1 and 2. This table illustrates that the MSFL 
not only provides better solutions but also it is more robust in 
producing repeatable solutions than the SFL.  
 

VI.  CONCLUSIONS 
In this paper a Modified Shuffled Frog Leaping (MSFL) 

algorithm, is proposed to enhance the performance of standard 
SFL.  In SFL, the local search is done through the evolution in 
memeplexes. The issue of exploration and exploitation is 
taken into account by a frog leaping rule for local search and a 
mimetic shuffling rule for global information exchange. In this 
paper, instead of learning from the best frog, learning 
mechanism is improved for all the frogs in the population.  
With the aid of comparisons of the results obtained by MSFL 
and the results of earlier methods available in the literature, it 
has been shown that the proposed MSFL is able to find a new 
optimum solution for the study systems.   
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