
 

 

Abstract— Predictive optimal control (POC) combined with 

artificial neural networks (ANNs) modeling and advanced 

heuristic optimization is a powerful technique for intelligent 

control. But actual implementation of the POC in complex 

industrial processes is limited by its known drawbacks, 

including the oscillation resulting from random search direction, 

difficulty in meeting the real-time requirement, and unresolved 

adaptability and generalization ability of the ANN predictive 

model. In resolving these problems, an improved Intelligent 

Predictive Optimal Controller (IPOC) with elastic search space 

is proposed in this paper. A new simpler and high-efficiency 

Particle Swarm Optimization (PSO) algorithm is adopted to 

find the optimal solution in fewer epochs to meet the real-time 

control requirements. The system output error in each control 

step is fed back to adjust the search space dynamically to 

prevent control oscillation and also make it easier to find the 

optimal solution. An improved recurrent neural network with 

external delayed inputs and outputs is constructed to model the 

dynamic response of the highly nonlinear system. The proposed 

IPOC is used to superheater steam temperature control of a 

600MW supercritical power unit. Extensive control simulation 

tests are made to verify the validity of the new control scheme in 

a full-scope simulator.  

I.  INTRODUCTION 

Superheater Steam Temperature (SST) is one of the key 

variables closely related to the safety and efficiency of a 

large-scale coal-fired power generating unit, which must be 

tightly controlled within design limits during boiler operation. 

To meet the temperature control requirements, multi-stage 

water-spray de-superheaters are usually used to control the 

SST, and several groups of cascaded PID controllers are 

adopted for temperature control [1]. Since SST has strong 

nonlinear characteristics under different load levels, several 

different groups of PID parameters should be found for these 

controllers to achieve good control performance over a wide 

range of loading conditions. This often costs much time and 

effort and is not easy to realize in actual operation. Therefore, 

it is a logical choice to take advantage of intelligent system 

techniques in improving the superheater steam temperature 

control [2-9].  
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Among different intelligent control strategies, Predictive 

Optimal Control (POC) is a powerful technique which 

combines the Artificial Neural Networks (ANNs) modeling 

capability and advanced heuristic optimization algorithms, 

such as Particle Swarm Optimization (PSO) or Genetic 

Algorithm (GA) [5-9]. But the practical implementation of 

POC in complex industrial processes is seriously curtailed by 

its apparent drawbacks [10-13]: (1) The optimal solution 

search with PSO (or GA) is often time-consuming and thus 

hard to meet the real-time control requirement; (2) The PSO 

is with certain randomness in its solution space and apt to 

oscillation; and (3) The POC requires high accuracy of the 

neural network predictive model since it is used to find the 

search direction by evaluating the optimization results. 

However, finding a satisfactory ANN predictive model, with 

high precision, strong adaptability to a wide-range of 

operating conditions and strong generalization ability, is still 

unresolved and needs further investigation.  

Aiming in resolving the above-mentioned problems, this 

paper proposes an Intelligent Predictive Optimal Controller 

(IPOC) with dynamic elastic search space. A simpler high-

efficiency PSO algorithm which cleverly discards the 

velocity concept is adopted to find the optimal solution with 

less time and fewer epochs to better meet the real-time 

control requirement [14]. The system output error in each 

step between the process variables and their set points are fed 

back to adjust the search space dynamically to prevent 

control oscillation and also make it easier to find the optimal 

solution. An improved recurrent network with external 

delayed inputs and outputs is constructed to model the 

dynamic response of the highly nonlinear system based on a 

wide range of operating data, resulting in faster convergence 

in fewer training epochs with high precision and good 

generalization ability to meet the wide-range of loading 

conditions [19-21].  

As a case study, the IPOC is used to improve the SST 

control of a 600MW supercritical coal-fired power 

generating unit in a full-scope simulator. The simulator is a 

commercial-grade product developed by Baoding Sinosimu 

Technology Co. Ltd., a power plant simulator provider in 

China, who has developed more than 200 power plant 

simulators for different users, both home and abroad. The 

simulator has been tested and validated by power plant 

engineers with its high steady-state accuracy and authentic 

load-changing dynamic performance and has been put into 

operation for several years. In this work, the data used for 

ANN model training are generated by the simulator and the 

control tests are also performed in the same simulator. The 

proposed control scheme is implemented in MATLAB, 
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which communicates in a bi-directional way with the 

simulator. Extensive control simulation tests are made to 

verify the effectiveness of the IPOC scheme. 

II.  IPOC WITH ELASTIC SEARCH SPACE 

The proposed IPOC scheme with elastic search space is 
illustrated in Fig. 1.  

 

Figure 1.  IPOC scheme with elastic search space. 

As shown, for a given control system with a control input 

vector u and a system output vector y, the search space for u 

is dynamically updated in each step based on the real-time 

error feedback between the system output y and its setpoint 

yset. The elastic search space Ω=[umin, umax] is defined by a 

hypercube in the input space, which can be updated 

component-wise by: 

)()()1(max  yyZuu setiii                         (1) 

)()()1(min  yyZuu setiii                         (2) 

Where, ui is the i-th component of the input vector and Zi is 

the corresponding expansion factor, which should be 

predefined through tests. It is easy to see from (1) and (2) 

that the width of the search space is adjusted automatically 

according to the real-time control error between the system 

output y and its setpoint yset. If the output error is small, the 

search space will be small; if the error is big, the search 

space will be enlarged. By introducing real-time error 

feedback to the elastic search space, the oscillation of POC 

with PSO search can be avoided and also the optimal 

solution can be found in shorter time. 

After the search space is determined, a PSO algorithm 

will be applied to search for the optimal control demands. 

Thus a fitness function should be defined to evaluate the 

control performance and guide the search direction [10-14]. 

A good fitness function should consider both the system 

output error and the cost of the actuator moves. Different 

fitness function can be formed for different applications. For 

the system shown in Fig. 1, the fitness function is defined as 

])()1('[)1( 21    iiiset uuSRyyRFit      (3) 

where R1 and R2 are the weights on the predicted output error 

and that on the total cost of the actuator moves, 

respectively；Si is the respective weight on the cost of the i-

th actuator move ui; )1(' 
i

u  is the temporary control output 

during PSO search at each iteration, and )1(' y  is the 

predicted system output with the neural network nonlinear 

system model.        

III.  SIMPLIFIED PARTICLE SWARM OPTIMIZATION (SPSO)  

A.  Basic Particle Swarm Optimization (bPSO) Algorithm 

The Particle Swarm Optimization (PSO) algorithm is 

based on the simulation of birds flocking in two-dimensional 

space [10]. The position and velocity of each particle 

represents the position and velocity of a bird. The position 

and velocity vectors are represented by X-Y coordinates. 

Each particle (bird) saves its best position so far (called pbest) 

and its current position. Also, each particle knows the best 

pbest so far among the group (called gbest). Each particle 

modifies its position by changing its velocity. The velocity of 

each particle is updated by 
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where, k

iv is the velocity of particle i at the k-th iteration, 1c  

and 2c are weight factors, 
1rand and

2rand are random 

numbers between 0 and 1, k

iu  is the current position of 

particle i at the k-th iteration, ipbest  is the personal best 

position of particle i, and gbest is the best value so far in the 

group among the pbest of all particles, and w in (4) is a 

weight function, which is usually adjusted with the Inertia 

Weights Approach (IWA)  by 

maxminmaxmax
/)( iteriterwwww             (5) 

where wmax is the initial weight, wmin is the final minimum 

weight, itermax is the maximum iteration number and iter is 

the current iteration count.   

The position at iteration k+1 is updated by  
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B.  A Simplified High-Efficiency PSO Algorithm 

The above basic particle swarm optimization (bPSO) has 

some disadvantages, such as relapsing into local extremum 

and slow convergence in velocity in later iterations, making 

the bPSO not favorable for real-time control of a complex 

industrial process. Therefore, many researchers have 

suggested different measures for improvement [10-13]. 

Recently, an effective simplified PSO is proposed to 

overcome the disadvantages of the bPSO [14]. The 

simplified PSO (sPSO) cleverly skips the velocity calculation 

and thus reduces the PSO algorithm from the second-order to 

the first-order difference equation. Thus, the evolutionary 

process of the sPSO is controlled only by the particle’s 

position. The position of each particle is updated by  

)(      

)(

22

11

1

k

i

k

ii

k

i

k

i

ugbestrandc   

upbestrandcwuu






                           (7)  

7025



 

 

The tests with some typical benchmark functions have 

shown that the sPSO can greatly improve the convergence 

speed and precision in the evolutionary optimization [14]. 

Thus, this sPSO is favorable for real-time control and it will 

be used to search for the best controls in the proposed IPOC 

scheme.   

IV.  IMPROVED RECURRENT NEURAL NETWORK MODEL 

A.  Basic Elman Recurrent Neural Network 

Based on the direction of information flow, artificial 

neural networks can be grouped into feedforward networks 

and recurrent networks. A recurrent neural network differs 

from the conventional feedforward networks (such as BP or 

RBF neural networks) in that, it includes recurrent or 

feedback connections [15-23]. The delay in these 

connections store values in the previous time-step and use 

them as inputs in the current step, which makes the network 

sensitive to the history of input and output data and suitable 

for dynamic system modeling.  

A popular recurrent neural network is the Elman 

network [17-20]. The basic structure of an Elman network 

with M inputs and N outputs is shown in Fig. 2, where the 

recurrent neurons are in the context layer.  A special case of 

the Elman network is the Diagonal Recurrent Neural 

Network (DRNN), where the context layer is collapsed to the 

hidden layer, thus eliminating the cross talks and reducing 

the number of weights between the context layer and the 

hidden layer [18]. 

 

Figure 2.  Basic Elman neural network model.  

As shown in Fig. 2, the outputs in each layer of an Elman 

network are given by: 

))()(()(

1 1

3

,

1

, 
 



M

i

R

i

ijiijij
kcWkuWfkx                 (8) 

)1()(  kxkc
ii

                                    (9) 

))(()(

1

2

,




R

i

ijij
kxWgky                             (10) 

where, 1

, ji
W  is the weight that connects node i in the input 

layer to node j in the hidden layer; 2

, ji
W  is the weight that 

connects node i in the hidden layer to node j in the output 

layer; 3

, ji
W  is the weight that connects node i in the context 

layer to node j in the hidden layer; and )(f  and )(g  are the 

transfer functions of the hidden layer and the output layer 

neurons, respectively, where )(f  mostly takes logsig or 

tansig function and )(g often takes purelin function [24].  

B.  Improved Neural Network Structure 

Compared with a feedforward network, an Elman neural 

network is better suited for nonlinear dynamic system 

modeling. But due to the existence of the recursive layer a 

basic Elman network is sensitive to its data sampling time 

and its real-time prediction accuracy is not very good.  

After a series of experiments, the first-order time-delayed 

values of the input and output variables are added to the 

input layer of the basic Elman neural network. Thus the input 

layer of the modified network includes N+2M neurons, as 

shown in Fig. 3. This modified NN model structure is used 

for the model development of nonlinear plants in this work.  

Compared to the basic Elman network, this modified 

recurrent network can converge with higher precision in less 

time and fewer training epochs. It can better adapt to the 

changes in the sampling time and provide real-time 

predictions with higher precision. 

 

Figure 3.  Modified neural network structure. 

V.  CASE STUDY:  BOILER SUPERHEATER STEAM 

TEMPERATURE CONTROL   

A.  Boiler Superheater System  

The boiler unit investigated is a 600MW supercritical 

boiler, type DG-1900/25.4-II, manufactured by Dongfang 

Boiler Co. Ltd., China [4]. The steam flow of the boiler is 

shown in Fig. 4. 

The superheater system of the boiler is composed of four 

subsystems along the steam flow direction: 1) the roof tubes, 

walls and midfeather of the vertical flue path in the rear 

furnace; 2) the primary Low-temperature Superheater (LSH), 

installed in the rear path; 3) the Platen Superheater (PSH) at 

the top of the furnace; 4) the Final Superheater (FSH), 

located above the furnace arch. The whole superheater 

system has a left-to-right cross before the final superheater to 

reduce the temperature deviation effect across the width 

induced by uneven flue gas. 
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Figure 4.  Steam flow chart of a 600MW supercritical boiler. 

 

Figure 5.  De-superheater system layout. 

The SST of the supercritical boiler is controlled by both 

fuel/feedwater ratio and the two-stage water-spray de-

superheating valves. The first-stage de-superheater is 

introduced to the connecting pipe between the LSH export 

and the PSH import in order to control the PSH outlet steam 

temperature. The second-stage de-superheater is introduced 

between the PSH export and the FSH import to control the 

final superheater steam temperature. The layout of the de-

superheating system is shown in Fig. 5, where each de-

superheater (spray) has two control valves, left- and right-

sides. 

According to the boiler operation manual, the final 

superheater (FSH) outlet steam temperature should be 

maintained at its rated value (571℃) for 35% to 100% 

loading range with allowed deviation of ±5℃. In order to 

meet the above control requirement, cascaded control scheme 

is used both for the 1st- and the 2nd-stage de-superheaters, 

each with two PID controllers. Thus there are totally 4 PID 

controllers for the superheater system. Two independent 

temperature control objectives exist, i.e., the PSH outlet 

temperature control and the FSH outlet temperature control. 

The whole control system is rather complex and tuning of the 

parameters of the 4 PID controllers is not easy in ensuring 

good control quality for the wide-range loading condition.  

B.  Design of Intelligent Predictive Optimal Controller 

Based on the control scheme in Fig. 1, an IPOC is 

designed for SST control, which is shown in Fig. 6. Different 

from the original control scheme of the simulator, the new 

scheme treats the two superheaters (PSH and FSH) as one 

superheater system, using only one IPOC to control both the 

1st- and the 2nd-stage water-spray valves concurrently. The 

FSH outlet steam temperature is the dominant control 

objective. The cost of the two actuator movement is 

considered in the fitness function together with the FSH 

steam temperature error, as shown in (3).  The search space 

of input is dynamically updated according to (1) and (2). The 

improved Elman neural network is used for the superheater 

system nonlinear model development. The sPSO is used for 

searching the optimal controls and the results are evaluated 

iteratively by the fitness function (3).   

 

Figure 6.  IPOC structure for SST control. 

C.  Development of NN Prediction Model for Superheater  

1) Selection of Input and Output Variables  

For control purpose, the input and output variables for 

the superheater neural network model can be determined by 

isolating the system from the rest of the boiler unit, and 

analyzing carefully the most important exogenous variables 

of the SST. It can be seen that many variables have influence 

on the SST of a supercritical boiler unit, such as coal flow, 

air flow, feedwater flow, the 1st-
 
and the 2nd-stage water-

spray control valve openings, etc. Moreover, feedwater 

pressure, temperature and main steam pressure are closely 

related to the de-superheating water flow and temperature for 

the 1st- and the 2nd-stage de-superheating valves. All these 

important variables are included in the superheater system 

model and the input and output variables of the model are 

listed in Table 1. 

TABLE 1.  INPUT/OUTPUT VARIABLES OF THE SUPERHEATER  MODEL. 

Input 

Variables (9) 

 

(1)  Coal flow (Kg/h) 

(2)  Air flow (Km3/h) 

(3)  Feedwater flow to waterwall (Kg/h) 

(4)  Feedwater pressure (MPa) 

(5)  Feedwater temperature (℃) 

(6)  Main steam pressure (MPa) 

(7)  LSH out steam temperature. (left) (℃) 

(8)  Spray-1 valve opening demand (left) (%) 

(9)  Spray-2 valve opening demand (left) (%) 

Output 

Variables  (2) 

(1)  PSH out steam temperature (left) (℃) 

(2)  FSH out  steam temperature (right) (℃) 

2) Training Data Preparation  

In order for the model to fully reflect the static and 

dynamic features of the system, the training data should be as 

extensive as possible, covering different loading conditions 

and dynamic transient processes. In our work, 25,314 sets of 

data are collected from the simulator with sampling period of 

1s, including steady-state data for 600MW, 540MW, 
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480MW and 420MW load levels, and the dynamic transient 

data between the above four load levels with the load 

ramping rate of 10MW/min. During data collection, the 

Coordinated Control System (CCS) of the simulator is all in 

auto mode, thus the whole unit is controlled by the original 

control system units.  

3) Model Training and Validation  

The superheater system model with the modified neural 

network (as shown in Fig. 3) includes 20 inputs and 2 outputs. 

It is trained using half of the original data above (taken at 

every other sampling time) with modified Levenberg-

Marquardt algorithm [24]. The optimal number of hidden 

neurons is fixed to 16 by trial and error. The Mean Squared 

Error (MSE) of the network reaches 9.6444e-7 after only 9 

epochs of training.  

To validate the generalization ability of the trained model, 

data of  a different loading condition with the sampling time 

of 2s are used to test. The validation data is obtained by 

loading the plant from 600MW to 500, 420, 550, 600, 540, 

then to 480MW with the load ramping rate of 5MW/min. 

The NN results are shown in Fig. 7. It is demonstrated that 

the trained model has very good generalization ability for 

different loading conditions.  
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Figure 7.  NN model validation test. 

After the neural network model has been trained and 

validated, it is then used as a system online prediction model 

to evaluate the performance of the predictive controller, in 

which the sPSO algorithm is used to search for the optimal 

controls of the two-stage water-spray control valves.  

D.  Control Simulation Tests 

Based on the proposed control scheme, the control 

program developed in MATLAB is executed real-time by 

communicating with the full-scope simulator of the 600MW 

supercritical power generating unit. Then detailed control 

simulation tests are made.  

During following tests, the sPSO parameters in (7) are set 

as: c1=c2=1.7, wmax=0.9, wmin=0.4, itermax=5, and the 

population size takes 10. The weights in fitness function (3) 

are: R1=10 and R2= 0. The expansion factor Zi in (1) and (2) 

takes 5 by trial and error. 

Firstly, the control tests are made for loading-down 

process from 600MW to 420MW with the load changing rate 

of 10MW/min. The IPOC control results are compared with 

those of the original cascaded PID controllers in Fig. 8.  
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(a) Superheated steam temperature. 
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(b) Water-spray control valves action 

Figure 8.  Control tests during loading down process. 

Similarly, control results are made for loading-up process 

from 420MW to 600MW with a different loading rate of 

20MW/min. The IPOC control results are compared with 

those of the cascaded PID control scheme in Fig. 9.  
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(a) Superheated steam temperature. 
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(b) Water-spray control valves action 

Figure 9.  Control tests during loading up process. 
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It can be seen from Figs. 8 and 9 that the SST changes 

between 567 and 575℃ during the whole process with the 

original cascaded PID controllers. The maximum deviation 

from the setpoint is about ±4℃. The overshoot is big, the 

stabilizing time is long and the control quality differs at 

different loading points. On the other hand, with the new 

IPOC, the deviation of the SST from its set point is always 

less than ±1℃ and the steam temperature stabilizes very fast. 

By analyzing the action of the two-stage control valves in 

Figs. 8(b) and 9(b), it is easy to see that the good control 

result of IPOC is achieved by providing faster 1st-stage 

control valve response and smoother 2nd-stage control valve 

response compared with the original cascade controllers. The 

action of the two-stage water-spray control valves with the 

IPOC is good and acceptable in engineering practice. 

VI.  CONCLUSIONS 

An Intelligent Predictive Optimal Controller (IPOC) with 

elastic search space is proposed and applied to Superheater 

Steam Temperature (SST) control of a large-scale power 

generating unit. To overcome the known drawbacks of the 

POC scheme based on NN model and PSO algorithm, several 

important improvements are made in the work. A new 

simpler and high-efficiency PSO is adopted to find the 

optimal solution in fewer epochs to meet the real-time 

control needs. The system output error in each control step is 

fed back to adjust the elastic search space dynamically to 

prevent oscillation and make it easier to find the optimal 

solution. An improved recurrent neural network utilizing 

external delayed inputs and outputs is constructed to model 

the dynamic response of the control system.  

Extensive control tests with a commercial-grade full-

scope simulator for a 600MW supercritical power generating 

unit show that the IPOC can dramatically improve the SST 

control effect by giving faster and optimized controls for the 

1st- and the 2nd-stage water-spray valves compared with the 

original cascade PID control scheme.  

The work presents a prospect for good engineering 

application of the IPOC by overcoming the known 

drawbacks of the POC based on neural network modeling 

and PSO search. For future research, the on-line adaptation 

of the neural network identification model with DRNN, the 

optimal choice of the PSO parameters, the weights in the 

fitness function and the expansion factors for the dynamic 

elastic search space will be further investigated. Finally, the 

concept of the IPOC will be extended to control the entire 

power plant operation. 
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