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Abstract--To improve the Superheater Steam Temperature 

(SST) control of a large-scale supercritical coal-fired boiler 
generating unit, this paper presents an inverse compensation 
control scheme based on dynamic recurrent neural network 
(NN) inverse process models for the multi-stage water-spray 
desuperheating controllers. With proper analysis of the boiler 
design and operational characteristics, the inputs and outputs of 
the NN inverse models are determined. Then two NN inverse 
dynamic models of the superheater system are trained and 
validated with historical operating data over a wide-range of 
loading conditions. The trained NN inverse models are then 
employed as internal model controllers to improve the SST 
control effect by providing real-time supplementary signals to 
the original cascade PID controllers. The real-time steam 
temperature signals are fed back to adjust the input reference 
values of the NN controllers automatically. The controller is 
programmed in MATLAB and communicates with a full-scope 
simulator of a 600MW supercritical coal-fired power generating 
unit. Detailed simulation tests are carried out, which shows the 
new compensation control scheme can dramatically improve the 
SST control of the supercritical boiler.1 
 

Index Terms— Dynamic recurrent neural network, inverse 
model, supercritical boiler, superheater steam temperature 
control,  compensation control. 

I.  INTRODUCTION 
N the 21st century, while promoting new energy power 
generation technologies, it is envisioned by China's energy 

infrastructure that the coal-dominated electricity generation 
trend will not change in a foreseeable future. With the 
purpose of energy saving, consumption reduction and 
environmental protection, large-scale supercritical and ultra 
supercritical large-scale coal-fired power generation 
technology with high efficiency and advanced environmental 
index has become the direction of leading international 
development. Thus far, 600MW supercritical power 
generating units have become the main power units in 
China’s power grid and a growing number of 1000MW ultra-
supercritical units are being put into operation successively. 
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Superheater Steam Temperature (SST) is one of the key 
parameters in boiler operation which must be strictly 
controlled; either too high or too low will significantly 
influence the safety and efficiency of the boiler unit. For a 
supercritical or ultra-supercritical boiler unit with 
steam/water once-through circulation characteristics, any 
change in fuel flow, feedwater flow, or turbine governor 
valve opening will lead to change of unit power, main steam 
pressure and temperature, which is a typical three-input 
three-output multi-variable control system with strong 
coupling and nonlinearities. Its SST control is more 
complicated compared to that of a subcritical boiler. 
Therefore, it is very important for a supercritical boiler to 
regulate the fuel/water ratio well to ensure a relatively stable 
steam temperature (or Superheat Degree) near the water 
separator in order to facilitate the final SST control. 
Furthermore, multi-stage water-spray desuperheating devices 
are used to control the SST.  

Generally, cascade PID control schemes are adopted to 
satisfy the steam temperature control quality requirements 
[1]. Since the SST has very strong nonlinear characteristics 
under different load, the PID controllers should be set with 
different optimized parameters to achieve good control effect 
over a wide range of loading conditions. It often costs a lot 
of time and effort, and is often very difficult to realize in 
actual operation. Thus it is always an important issue to 
develop more effective superheater steam temperature 
control methods in power station control. 

In recent decades, with the development of intelligent 
control, artificial neural network has been extensively 
applied in performance prediction, modeling and control in 
various industrial processes due to its excellent 
approximation and learning ability to complicated nonlinear 
systems ， strong adaptive ability, robustness and fault-
tolerance ability [2-6]. Many research on neural networks for 
power station steam temperature control have also been made 
[7-10]. Adaptive inverse control method is with clear 
physical concept, and is intuitive and easy to understand. It 
receives widespread attention since it was first introduced 
and has been applied in many fields [11-15]. Specifically, 
when inverse system method is combined with neural 
network, it overcomes its own bottleneck, which is the  
difficulty in solving the inverse model; thus paves the way 
for neural network inverse method in applications to complex 
industrial processes [16-21]. 

To improve the SST control of a supercritical or an ultra-
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supercritical boiler unit, this paper presents an inverse 
compensation control scheme based on dynamic recurrent 
neural network inverse system models for the multi-stage 
water-spray desuperheating controllers. A typical recurrent 
network is used to construct the dynamic inverse models for 
the superheater system. Large amount of historical 
operational data over a wide-range of loading conditions are 
used for model training and validation. The trained NN 
inverse models are then employed as internal model 
controllers to improve the SST control effect by providing 
real-time supplementary signals to the original cascade PID 
controllers. The real-time steam temperature signals are fed 
back to adjust the input reference values of the NN 
controllers automatically. The aforementioned controller is 
programmed in MATLAB and it communicates 
bidirectionally with a full-scope simulator of a 600MW 
supercritical coal-fired power generating unit. Detailed 
simulation tests are made to verify the improvement of the 
new inverse compensation control scheme to explore relevant 
control rules for further engineering application. 

II.  BOILER SYSTEM DESCRIPTION 
The investigated boiler unit is a 600MW supercritical 

boiler, DG-1900/25.4-II type, manufactured by Dongfang 
Boiler Co. ltd, China. The main steam process of the boiler is 
shown in Fig. 1. 

 

 
Fig. 1. Steam flow chart of a 600MW supercritical boiler. 
 

The superheater system of the boiler is composed of 
four parts following the steam flow direction: 1) the roof 
tubes, the walls and midfeather of the real vertical flue path; 
2) the Low-temperature Superheater (LSH), installed in the 
rear path; 3) the Platen Superheater (PSH) at the top of 
furnace; 4) The Final Superheater (FSH), located at above 
the furnace arch. The whole superheater system has a left-to-
right cross before the final superheater to reduce the width-
side effects induced by the uneven flue gas. 

The superheater steam temperature of the supercritical 
boiler is controlled by both fuel/feedwater ratio and the two-
stage water-spray desuperheating devices. The first-stage 
desuperheater is introduced to the connecting pipe between 

the LSH export and PSH import in order to control the PSH 
outlet steam temperature. The second-stage desuperheater is 
introduced between the PSH export and FSH import, to 
control the final superheater steam temperature. According to 
the operation manual, the final superheater steam 
temperature should be maintained at rated value (571 ℃) 
between 35% and 100% loading range with allowed 
deviation of ±5℃. The layout of the desuperheating system 
is shown in Fig. 2. 

 

 
Fig. 2. Water-spray desuperheating system layout. 

III.  NEURAL NETWORK INVERSE SYSTEM PRINCIPLE 

A.  Neural Network Structure 
Artificial Neural networks can be divided into 

feedforward networks and recurrent networks in structure 
[3]. The information flow of a feedforward network is one-
way, transmitted from the input layer to the output layer, 
such as in BP network and RBF networks. A recurrent neural 
network differs from other conventional feedforward 
networks in that it includes recurrent or feedback 
connections [5,9,16]. The delays in these connections store 
values from the previous time step, which makes it sensitive 
to the history of input and output data and fit for dynamic 
system modeling. For convenience, the Elman network is 
often used for a recurrent neural network, which has tansig 
neurons in its hidden (recurrent) layer, and purelin neurons 
in its output layer [22-24]. This combination is special in that 
a three-layer network with these transfer functions can 
approximate any function (with a finite number of 
discontinuities) with arbitrary accuracy if the hidden layer 
has enough neurons. The structure of an Elman recurrent 
network is shown in Fig. 3. 

 

 
Fig. 3.  Structure of the Elman recurrent network model. 

 
As shown in Fig. 3, the outputs in each layer of an Elman 

network are given by: 
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where, 
jiW ,1  is the weight that connects node i in the input 

layer to node j in the hidden layer; jiW ,2  is the weight 
that connects node i in the hidden layer to node j in the 
output layer; jiW ,3  is the weight that connects node i in 

the context layer to node j in the hidden layer; and f(·) 
and g(·) are the transfer functions of hidden layer and 
output layer, respectively. 

An Elman neural network can be created and trained 
according to the back-propagation algorithm with MATLAB 
Neural Network Toolbox. When the entire input sequence is 
fed to the network, its outputs are calculated and compared 
with the target sequence to generate an error sequence. For 
each time step, the error is back propagated to find gradients 
of errors for each weight and bias. This gradient is actually 
an approximation, because the contributions of weights and 
biases to errors via the delayed recurrent connection are 
ignored [22-24]. However, more accurate gradient can be 
evaluated by including the contributions through the 
recurrent neurons [5]. This gradient is then used to update the 
weights with the chosen back-propagation training algorithm 
[25]. Since Levenberg-Marquart method is fast and has 
robust convergence property in the off-line training, it is used 
for training the Elman network in this paper. 

B.  Neural Network Inverse Model 
The inverse system modeling is a method easy-to-

understand among nonlinear system control methods. It has 
been applied to different industrial processes [6,8,10-5]. 

If the inverse model u= f-1(y) of a typical single-input 
single-output (SISO) nonlinear system y=f(u) can be 
approximated by a neural network model and this NN 
inverse model is cascaded into the original system, then a 
quasi-linearization system y=g(y*) can be constructed and 
solved with linear system methods. As shown in Fig. 4, this 
kind of NN inverse model only includes the control input and 
the controlled variable. Therefore, it is called the basic-
structure inverse system model [21]. 

 

 
Fig. 4. Basic-structure inverse system. 

 
To enhance the adaptability and anti-interference 

performance of the inverse system model, and to widen its 
operation range, some important process variables and 
disturbances in the original system can be added to the inputs 
of the basic-structure neural network inverse system model. 

In this way, an expanded-structure neural network inverse 
system model is constructed [21], as shown in Fig. 5. 

 

 
Fig. 5. Expanded-structure inverse system model. 
 

After the NN inverse process model shown in Fig. 5 is 
trained with high accuracy, it can be used as a NN controller 
for the original system to improve its control effect.  

IV.   INVERSE MODEL DEVELOPMENT FOR SUPERCRITICAL 
BOILER UNIT 

A.  Determination of Inputs and Outputs 
For the boiler superheater system shown in Fig. 2, from 

analysis of the factors affecting superheater steam 
temperature, eight variables are selected as the inputs of the 
1st-stage NN inverse process model, and nine variables are 
selected as the inputs of the 2nd-stage NN inverse process 
model. The output of each neural network is its 
corresponding control input, i.e., the spray-1 or spray-2 
control valve opening, as shown in Table 1. 

TABLE I 
INPUTS/OUTPUTS SELECTION OF THE NN INVERSE MODELS  

Inverse 
model 

1st-stage water-spray desuperheating 
system 

2nd- stage water-spray 
desuperheating system 

Inputs 
 

(1) Coal flow (Kg/h) 
(2) Air flow (Km3/h) 
(3) Feedwater flow to waterwall 
(Kg/h) 
(4) Feedwater press. (MPa) 
(5) Feedwater temp. (C) 
(6) Main steam press. （MPa） 
(7) LSH out steam temp. (left) (C) 
(8)PSH out steam temp.(left)（C） 

(1) Coal flow (Kg/h) 
(2)Air flow (Km3/h) 
(3)Feedwater flow to waterwall 
(Kg/h) 
(4)Feedwater press. (MPa) 
(5)Feedwater temp.(C) 
(6)Main steam press.（MPa） 
(7)Spray-1 water flow (left) (Kg/h) 
(8)PSH out steam temp(left)（C） 
(9)FSH steam temp (right) （C） 

Output (1)Spray-1 valve opening (left)
（%） 

(1)Spray-2 valve opening (left)（%） 

B.  Training of the NN Inverse Models 
In order for the model to fully reflect the static and 

dynamic features of the system, the network training data 
should be as extensive as possible, covering different steady-
state load conditions and dynamic loading-up and loading-
down process data. In this paper, 25,314 groups of data 
(sampling time 1s) are collected, including steady-state data 
at 600MW, 540MW, 480MW, 4200MW load levels, and the 
dynamic transition data when loading-up or loading-down 
between the four load levels with load changing rate of 
10MW/min and pressure changing rate of 0.5MPa/min. 
During data collection process, the feedwater pumps, 
superheated steam temperature, airflow, etc. are all put in 
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auto state, controlled by the original control system units. 
Fig. 6(a) shows the load demand and the actual load curves 
in data extraction process, 6(b) is final superheater steam 
temperature change curves. 

 

 
(a) Load(load demand) 

 
(b) Final superheater steam temperature 

Fig. 6. Training sample data acquisition. 
 

To reduce the sample size used for neural network 
training and facilitate model convergence within shorter 
time, one out of ten samples among the 25,314 groups of 
data are extracted and used for network training (interval 
10s). Then the Elman neural network models are built using 
MATLAB and trained with improved Levenberg-Marquardt 
algorithm [14]. The training process is illustrated in Fig. 7. 

 

 
Fig. 7. Training process of the inverse dynamic process model. 
 

Hidden layer neuron numbers of the two neural network 
models are optimized through trial-and-error search. The 
structure of the two models is finally determined as 9-17-1, 
8-16-1. With 50 epochs of training cycles, the networks 
achieved the mean-square error (MSE) of 3.17e-5 and 5.44e-
5, respectively. The outputs of the trained neural networks 
are compared with the training data in Fig. 8. It can be seen 
the two neural network inverse models have very higher 
fitting precision. 

 

 
(a) Opening of the spray-1 control valve 

 
(b) Opening of the spray-2 control valve 

Fig. 8. Outputs of the trained NN models.  

C.  Validation of the NN Inverse Models 
In order to validate the trained models under other 

working condition, changing unit load continuously between 
600MW, 540MW, 480MW, 420MW with a different loading 
rate of 5MW/min., 12926 groups of data are gathered 
(sampling period 1s) and, again, one out of ten samples 
(1293 groups of data) are extracted and used for model 
validation. The results are shown in Fig. 9. It can be seen that 
the trained inverse process models also have very good 
prediction performance for the validating data. 

 

 
(a)Spray-1 valve opening 
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(b)Spray-2 valve opening 

Fig. 9. Model validation under different work condition.  

V.  NN INVERSE MODEL BASED CONTROL  

A.  Inverse Compensation Control  
After the off-line training has been finished with 

sufficient accuracy, two NN inverse controllers can be 
constructed based on the trained models，which can directly 
replace the original cascade PID controllers to control the 
spary-1 and spray-2 valves. For the control action to take 
place, the last input of each model needs to be replaced with 
desired reference output of the corresponding steam 
temperature. The direct inverse control scheme is shown in 
Fig. 10. 

 

 
 
Fig. 10. Direct inverse control scheme for SST. 
 

As illustrated in Fig. 5 and Table 1, the setpoint for 
spray-1 should be the expected value of the PSH outlet 
temperature. The setpoint for spray-2 should be the expected 
value of the final superheater steam temperature. All other 
inputs for both inverse dynamic process models are the 
endogenous inputs coming from real-time simulation of the 
plant. 

For complex power generating units, out of operation 
safety and reliability consideration, it is often not allowed to 
abandon the original control logic. Because of this, the best 
compromising solution is to provide a supplementary signal 
to the original control demand to improve the steam control 
effect. In our work, the inverse compensation control scheme 
is adopted by adding supplementary signal coming from the 
NN inverse controller to the original cascade controller’s 
output, as shown in Fig. 11. 

 

1−Z
∑

∑

 
Fig. 11. Inverse compensation control schematic. 

B.  Steam Temperature Reference Value Calculation 
Neural network inverse model itself is a kind of 

approximation of the inverse system. The imperfection of the 
model structure and the incomplete training sample will both 
lead to modeling error. When the NN models are used as 
real-time controllers, the actual operating condition also will 
be different from the model training or validating condition, 
thus producing control error. In addition, the SH outlet steam 
temperature cannot be changed instantaneously when the 
difference between the setpoint and current temperature is 
big. Therefore, the use of fixed steam temperature setpoints 
in NN controllers not necessarily bring good control effect. 
As a solution, real-time steam temperature signals are 
introduced to adjust the input reference values of the NN 
controllers automatically [8]. The reference SH outlet 
temperatures at time k for the 2 inverse NN controllers 
T1ref(k) and T2ref(k) are adjusted by: 

T1ref(k)= T1(k)+sat[T1sp-T1(k)]                         (4) 

T2ref(k)= T2(k)+sat[T2sp-T2(k)]                         (5) 

where, T1(k) and T2(k) are the outlet temperatures at time k 
for the PSH and the FSH, respectively; T1sp and T2sp are the 
setpoints of the outlet temperatures for the PSH and the FSH, 
respectively; sat[.] is the saturation function defined by the 
ramp rate, which limits the change of the reference value to 
be within the ramp rate. 

For simplicity's sake, the saturation function may take a 
simple linear form, thus (4) and (5) can be rewritten as: 

T1ref(k)= T1(k)+K1sat* [T1sp-T1(k)]                   (6) 

T2ref(k)= T2(k)+ K2sat* [T2sp-T2(k)]                   (7) 

where K1sat and K2sat are called saturation factors. The  
function of a saturation factor is similar to the proportional 
coefficient of a PID controller. Its value has significant effect 
on the control quality of a NN inverse model controller, thus 
should be set reasonably through experiments. 

VI.  CONTROL SIMULATION TESTS 

A.  Control Tests for Two Different Conditions 
Based on the neural network inverse compensation 

control scheme shown in Fig. 11, the control procedure 
developed in MATLAB realizes SST real-time control by 
communicating with the full-scope simulator of a 600 MW 
coal-fired supercritical unit. Detailed control simulation tests 
are made. In the tests, the saturation factors for 1st-spray and 
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2nd-spray NN controllers are given fixed values, i.e., K1sat = 
1 and K2sat = 10. 

Firstly, the control test is made for the same load-
changing condition as the condition under which the NN 
model training data are extracted. The control result is 
compared with that of the original cascade PID controllers in 
Fig. 12. 

 
（a）Load(Load demand) 

 
（b）Superheated steam temperature 

Fig. 12. Control test under the training condition. 
 

It can be seen from Fig. 12, with the original cascade 
PID controllers, the superheated steam temperature changes 
between 567 and  575℃ during the whole load-changing 
process. The deviation from the setpoint is about ±4℃.  The 
overshoot is big, the stabilizing time is long and the control 
quality differs at different loading points. Especially, under 
420MW, the steam temperature stabilization needs quite long 
time. While, with the NN inverse compensation control 
scheme, the steam temperature always keeps between 570 
and 572 ℃ during  the whole loading process. The deviation 
from the setpoint never  exceeds ±1℃ , and the steam 
temperature stabilization is very fast. 

For further validation of the control scheme, a different 
loading condition is tested. The load is changed with load 
changing rate of 5MW/min and pressure changing rate of 
1MPa/min, in turn, from 600MW to 500MW, to 420MW, to 
550MW, then to 600MW, et al. The control results with two 
different schemes are compared in Fig. 13. As before, in the 
whole loading range the neural network compensation 
control has far better control quality than the original cascade 
PID controllers. 

 

 
（a）Load(Load demand) 

 
（b）Superheated steam temperature 

Fig. 13. Control test under different loading conditon (load rate 
5MW/min, pressure rate 1MPa/min). 
 

To sum up, under different test conditions, the NN 
inverse compensation control scheme gets bigger 
improvement both from overshoots and stabilization time 
than the original cascade PID controllers, which validates the 
excellent performance of the inverse compensation control 
scheme. 

It is worth mentioning that the data used for training of 
the neural network inverse models are gathered by changing 
the unit load with the original cascade PID controllers, but 
the results of the inverse compensation control are much 
better than those of the original cascade PID controllers 
when the NN models are used for real-time control, which 
highlights the significance and meaningfulness of this 
research. 

B.  NN Controller Performance Tests  with Different 
Saturation Factors 

It is pointed out in Section V that the values of the 
saturation factors in (6) and (7) have great influence on the 
performance of the neural network controllers. Therefore, 
control tests with different saturated factors are further made. 
In the following tests, the saturation factor of the lst-stage 
NN controller,  K1sat, is  fixed to 1, and only the saturated 
factor value for the 2nd-stage NN controller, K2sat, is changed. 
Tests are made in turn when K2sat takes values 1, 5, 10 and 20.  
The control results for the SST over different load scope are 
compared with that of the original cascade PID controllers in 
Fig. 14. 
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（a）Loading-down from 600MW to 540MW. 

 
（b）Loading-down from 480MW to 420MW 

Fig. 14. Performance of the NN controllers under different 
saturation factor values. 
 

From  Fig. 14 we can observe the following: 1) When 
K2sat value is 1, NN compensation control gets very  poor 
control result, even worse than the original cascade PID 
controllers.  Under this situation, T2ref (k) always equals T2sp 
and takes fixed setpoint value 571 ℃ , thus the steam 
temperature real-time feedback signal does  not play any 
role. 2) With the K2sat value increasing, NN compensation 
control effect is more and more obvious. When K2sat takes 
value 10 or so, the control effect is the best. 3) When K2sat is 
further increased to 20, oscillation appears for the 
superheater steam temperature for a part of the loading 
section, indicating that the compensation is too strong and 
K2sat should be appropriately reduced. 

VII.  CONCLUSION 
To improve the superheater steam temperature (SST) 

control of a 600MW supercritical boiler unit, the expanded-
structure inverse dynamic process models for the 2-stage 
water-spray desuperheating system are established based on 
typical dynamic recurrent neural network.  The trained NN 
inverse models are then employed as inverse model 
controllers to improve the SST control effect by providing 
real-time supplementary signals to the original cascade PID 
controllers. The real-time steam temperature signals are fed 
back to adjust the input reference values of the NN 
controllers automatically. It is verified through control 

simulation tests with the full-scope simulator of a 600MW 
supercritical boiler unit that the proposed control scheme is a 
great improvement both in control speed and overshoot 
compared to the original cascade PID controllers. 

The superheater system in a large-scale supercritical 
boiler unit is a very complex nonlinear system. There are 
many factors influencing the SST. Selection of the input 
variables, the neural network structure and the training data 
for the inverse system models, all have influence on the final 
control effect, needing further study. In addition, some other 
factors leading to changes in SST characteristics are not 
considered during the inverse process model development, 
such as the changes in the coal characteristics, in the boiler 
structure during maintenance, in the boiler performance over 
time, etc. Finally, on-line tuning or correction of the inverse 
system models needs further study. 

ACKNOWLEDGMENT 
The authors would like to thank the support of the 

Fundamental Research Funds for the Central Universities 
(09MG21).  

VIII.  REFERENCES 
[1] I. Benyo, Cascade generalized predictive control-applications in 

power plant control. Oulu University Press, Finland, 2006. 
[2] H. M. Azlan, "Review of the applications of neural networks in 

chemical process control—simulation and online implementation," 
Artificial Intelligence in Engineering,  no.13, pp. 55-68, 1999. 

[3] R. Gencay and T. Liu. "Nonlinear modeling and prediction with 
feedforward and recurrent networks," 1997, Physica D 108, pp. 119-
134. 

[4] G. Irwin, M. Brown,, B. Hogg, and E. Swidenbank, " Neural network 
modelling of a 200MW boiler system," IEE proceedings-Control 
theory and Applications, 1995, 142(6), pp. 529-536. 

[5] C.-C. Ku and K. Y. Lee. "Diagonal recurrent neural network for 
dynamic systems control," IEEE Trans. Neural Networks, 1995, 6(1), 
pp. 144-156. 

[6] K. Y. Lee, L. Y. Ma, C. J. Boo, W.-H. Jung, and S.-Ho Kim, "Inverase 
dynamic neuro-controller for superheater steam temperature control of 
a large-scale ultra-supercritical (USC) boiler unit," Proc. of the IFAC 
Symposium on Power Plants and Power Systems Control, in Tampere, 
Finland, July 5-8, 2009. 

[7] K. Y. Lee, L. Y. Ma, C. J. Boo, W.-H. Jung, and S.-Ho Kim, 
"Intelligent modified predictive optimal control of reheater steam 
temperature in a large-scale boiler unit," Proc. of the IEEE Power & 
Energy Society General Meeting, in Calgary, Canada, July 26-30, 
2009. 

[8] L. Y. Ma, Y. J. Lin, and K. Y. Lee. "Superheater steam temperature 
control for a 300MW boiler unit with inverse dynamic process 
models," Proc. of the  IEEE Power & Energy Society General Meeting, 
in Minneapolis MN, USA, July 25-29, 2010.  

[9] C.-C. Ku, K. Y. Lee, and R. M. Edwards. "Improved nuclear reactor 
temperature control using diagonal recurrent neural networks," IEEE 
Trans. Nuclear Science, 1992, 39(6), pp. 2298-2308.  

[10] B. Widrow, J. McCool, and B Medoff, "Adaptive control by inverse 
modelling," 12th Asimolar conference on Circuits, Systems and 
Computers, 1978. 

[11] B. Widrow, "Adaptive inverse control," in Proc. of Second IFAC 
Workshop on Adaptive Systems in Control and Signal Processing, 
Lund Institute of technology, Lund, Sweden, pp:1-5, 1986. 

[12] B. Widrow and Gregory L. Plett, "Nonlinear adaptive inverse control," 
in Proc. of the 36th Conf. on Decision & Control. San Diego, 
California USA, pp. 1032-1037, 1997. 

[13] B. Widrow and E. Walach, Adaptive Inverse Control. Prentice Hall 
PTR, Upper Saddle River, NJ, 1996. 



 8

[14] F. M. Dias and A.M.Mota, "Direct inverse control of a kiln," 4th. 
Portuguese Conference on Automatic Control, Guimares, Portugal, 
2000. 

[15] H. Ch-Li-Ma and K. Y. Lee, "Free-model based adaptive Inverse 
neuro-controller for dynamic systems," Proceedings of the 37th IEEE 
Conference on Decision & Control, Tampa, Florida USA, 1998, pp. 
507-512. 

[16] I. M. Galvan and J. M. Zaldivar, "Application of recurrent neural 
networks in batch reactors, Part II: Nonlinear inverse and predictive 
control of the heat transfer fluid temperature," Chemical Engineering 
and Processing, 37:149-161, 1998.  

[17] A. Malinowski, J. M. Zurada, and J. H. Lilly "Inverse control of 
nonlinear systems using neural network observer and inverse mapping 
approach," Proc. of IEEE International Conference on Neural 
Networks, Perth, Western Australia, 1995, vol. 5, pp. 2513-2518.  

[18]  J. H. Zhang, G. L. Hou, and J. F. Zhang, "Adaptive neuro-control 
system for superheated steam temperature of power plant over wide 
range operation," Sixth International Conference on Intelligent Systems 
Design and Applications (ISDA'06), 2006, pp. 138-141.  

[19] A. Malinowski, J. M. Zurada, and J. H. Lilly "Inverse control of 
nonlinear systems using neural network observer and inverse mapping 
approach," Proc. of IEEE International Conference on Neural 
Networks, Perth, Western Australia, 1995, vol. 5, pp. 2513-2518.  

[20]  J. H. Zhang, G. L. Hou, and J. F. Zhang, "Adaptive neuro-control 
system for superheated steam temperature of power plant over wide 
range operation," Sixth International Conference on Intelligent Systems 
Design and Applications (ISDA'06), 2006, pp. 138-141. 

[21] X. Dai, D. He, T. Zhang, and K. Zhang, “ANN generalized inversion 
for the linearization and decoupling control of nonlinear systems.” IEE 
Proc.-Control Theory and Applications, 2003, 150(3), 267-277. 

[22] J. Elman, "Finding structure in time," Cognitive Science, 1990, vol. 14, 
pp. 179-211. 

[23] X. Z. Gao, X. M. Gao, and S. J. Ovaska. "A modified Elman neural 
network model with application to dynamic systems Identification," 
Proceedings of IEEE International Conference on Systems, Man and 
Cybernetics, Beijing, China, 1996,  pp.1376-1381. 

[24] Y. C. Cheng, W. M. Qi, and W. Y. Cai, "Dynamic properties of Elman 
and modified Elman neural networks," Proceeding of the 1st 
International Conference on Machine Learning and Cybernetics, 
Beijing, 2002, pp. 637-640. 

[25] H. Demuth, M. Beale, and M. Hagan. Neural Network ToolboxTM 6 
User’s Guide. The Math Works, Inc., 1997. 
 

IX.  BIOGRAPHIES 
 

Liangyu Ma received the B.S. degree in 
Thermal Power Engineering in 1993 from 
North China Electric Power University 
(NCEPU), Baoding, China. He received the 
M.S. and Ph. D. degrees in 1996 and 2004, 
respectively, from NCEPU. 

Now he works as an associate professor with 
Automation Department, School of Control and 
Computer Engineering, NCEPU. He was a 
visiting scholar at Baylor University, Waco, 

Texas, USA, from March 2008 to February 2009. His special fields of 
research interest include power plant modeling and simulation, condition 
monitoring and intelligent fault diagnosis for power station thermal 
facilities and systems, intelligent control and application to power plants. 
 

 
Kwang Y. Lee received the B.S. degree in 
Electrical Engineering in 1964 from Seoul 
National University, Seoul, Korea, M.S. degree 
in Electrical Engineering in 1968 from North 
Dakota State University, Fargo, ND, USA, and 
Ph. D degree in Systems Science in 1971 from 
Michigan State University, East Lansing, MI, 
USA. He was selected as a Fellow of  IEEE in 
January 2001 for his contributions to the 
development and implementation of intelligent 

system techniques for power plants and power systems control.  
He has been working in the area of power plants and power systems 

control for over thirty years at Michigan State, Oregon State, University 
of Houston, the Pennsylvania State University, and Baylor University, 
where he is Professor and Chairman of the Department of Electrical and 
Computer Engineering.  

His research interest includes control, operation, and planning of power 
systems, computational intelligence, intelligent control and their 
applications to power and energy systems, and modeling, simulation and 
control of renewable and distributed energy sources. 

 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (None)
  /CalCMYKProfile (None)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /OK
  /CompatibilityLevel 1.5
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00333
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00333
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00167
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /FRA <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
    /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


