
 

 Abstract – A Modified Predictive Optimal Control (MPOC) 
scheme based on neural network modeling and Particle Swarm 
Optimization (PSO) techniques is proposed in this paper for 
Reheater Steam Temperature (RST) control of a large-scale 
boiler unit. A recurrent neural network is trained to directly 
model the temperature dynamic response of the reheater system. 
The neural network direct model is then used to evaluate the 
performance of the MPOC in search of the optimal control, 
where optimization is carried out with the PSO. A simplified PSO 
algorithm with search direction control is designed to find the 
nearest and optimal controls for the reheater steam temperature. 
To further improve the optimal search accuracy, each last-step 
prediction error between the direct model output and the actual 
RST is added to the current-step cost function to compensate for 
the model error. Control tests on a full-scope simulator of a large 
scale power generating unit have shown the validity of the 
proposed method.  
 

Index Terms – Large-scale boiler, reheater steam 
temperature, modified predictive optimal control, neural 
network, particle swarm optimization. 

I.  INTRODUCTION 

TEAM temperature is among the several most important 
variables which must be controlled tightly within narrow 

margins to ensure higher operating efficiency and material 
safety of a large-capacity fossil fuel power generating unit. 
But steam temperature is often not controlled very well 
because a large-capacity boiler is a complex multi-input multi-
output (MIMO) nonlinear system consisting of many 
strongly-coupled sub-systems, which brings a large time delay 
and big inertia to steam temperature response. To acquire 
good control results, often several different types of controls 
are applied just to control one steam temperature, and several 
cascaded PID controllers are included in each sub-system. 
The gains and time constants of these PID controllers have to 
be tuned frequently under different loads and changing 
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environment due to the high nonlinearity of the boiler unit, 
and this often costs considerable amount of effort and time 
[1]. Therefore, it is a logical choice to take advantages of 
intelligent system techniques in improving the steam 
temperature control.  

Artificial neural network is an attractive method for 
identifying nonlinear processes, due to its good modeling 
capability and its ability to learn complex dynamic behavior 
of a physical system [2],[3]. Recently, various applications of 
neural networks have been widespread in process control, 
both in simulation and on-line implementation, including 
predictive optimal control, inverse-model-based control and 
adaptive control [4]-[8].  

The main focus of this paper is to design a Modified 
Predictive Optimal Control (MPOC) scheme based on neural 
network modeling and particle swarm optimization (PSO) 
techniques for Reheater Steam Temperature (RST) control of 
a large-scale boiler unit [4]. A recurrent neural network is 
trained to directly model the temperature dynamic response of 
the reheater system [9]-[11]. The neural network direct model 
is then used to evaluate the performance of the MPOC in 
search of the optimal control, where optimization is carried 
out with a heuristic optimization technology, Particle Swarm 
Optimization (PSO). The PSO is based on the analogy of a 
flock of birds and a school of fish [12], [13]. The PSO has 
been well known for providing accurate solutions with fast 
convergence and simple implementation in many engineering 
applications, such as economic dispatch and predictive 
optimal control. [14]-[16]. A simplified PSO algorithm with 
search direction control is designed and used to find the best 
and nearest controls. Detailed control tests are made on a full-
scope simulator to validate the method. 

II.  MODIFIED PREDICTIVE OPTIMAL CONTROL SCHEME FOR 

THE REHEATER SYSTEM OF A LARGE-SCALE BOILER 

A.  System Introduction  

The power plant under investigation is a large-scale coal-
pulverized power generating unit. The feedwater pumped into 
the boiler will travel through several sub-systems before it 
becomes qualified superheated steam and is sent to the high-
pressure (HP) turbine. The steam leaving the HP turbine is 
reheated in the boiler using the primary reheater (RH) and the 
final RH. The primary superheater (SH) and primary RH are 
respectively installed in the rear silo and front silo of the 
boiler’s vertical gas pass. The flue gas exiting the furnace 

Kwang Y. Lee, Fellow, IEEE, Liangyu Ma, Chang-Jin Boo, Won-Hee Jung, and Sung-Ho Kim 

Intelligent Modified Predictive Optimal Control of 
Reheater Steam Temperature in a Large-Scale Boiler Unit 

S

978-1-4244-4241-6/09/$25.00 ©2009 IEEE

Authorized licensed use limited to: Baylor University. Downloaded on January 26, 2010 at 18:22 from IEEE Xplore.  Restrictions apply. 



 

travels through the division SH, the platen SH, the final SH, 
the final RH and then passes through the paratactic primary 
RH and primary SH. The sketch of the boiler unit is shown in 
Fig. 1. 

 

 
 
Fig.1. Sketch of the  large -scale boiler unit. 

 
For the reheater system of the boiler, a gas damper is used 

to adjust the reheater steam temperature by changing the flue 
gas proportion flowing through the primary RH and primary 
SH. The RST responds with larger time delay and bigger 
inertia after the reheater damper position is changed due to 
slower heat transfer between gas and steam. Thus, a steam 
bypass line is adapted to control the reheated steam 
temperature. With this steam bypass valve the RST can be 
controlled more quickly and accurately. An emergency water-
spray valve is also added before the final reheater to avoid the 
over temperature of the final reheater steam under emergency 
case.   

For the above large scale boiler unit, the RST setpoint value 
is fixed as 624 ℃. The emergency spray valve acts when the 
steam temperature is rising too fast and over 624℃ which 
endangers the structural safety. Under normal stable condition 
the emergency spray has very little opening or keeps fully 
closed. Thus, the reheater damper and the bypass valve will 
be the two control objects with the proposed MPOC scheme.  
However, the emergency spray valve still uses its original PID 
controller. 

B.  Structure of Reheater Steam Temperature MPOC Scheme 

The overall structure of the proposed Modified Predictive 
Optimal Control (MPOC) scheme for RST control is shown in 
Fig. 2. The Unit Load Demand (ULD) and other variables 
needed by the MPOC will be sent from the power unit to the 
MPOC control program via a data interface program. The 

neural network direct model for the reheater system will be 
used as a system identification model to evaluate the 
performance of the MPOC in search of the optimal control, 
where optimization is carried out with the PSO in finding the 
best controls for the bypass valve and the reheater damper 
with iterative search. The control outputs (inputs to the 
reheater system) will be optimized by minimizing the 
tracking-error between the given RST set-point and the direct 
model estimation.   

 

 
Fig. 2.  Structure of the MPOC for reheated steam temperature control. 
 

In order for the PSO to find optimal solutions against time 
with less iteration, the concept of search window is often used. 
A search window for a control output is a band with the 
possible maximum and minimum control values under 
different loads. The unit load (power output) is used for 
establishing a control window for the reheater damper based 
on historical data. For the given large scale boiler the control 
window for the reheater damper during loading-down process 
is shown in Fig. 3.  As for the bypass valve, since it may 
change through 25-65% during the whole load scope 
according to its original control logic, we simply use 25% and 
65% as its lower and upper limits during PSO control search.  

 

    
 Fig. 3. Reheater damper control search window for loading-down process. 
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III.  DEVELOPMENT OF NEURAL NETWORK-BASED DIRECT 

MODEL FOR REHEATER SYSTEM 

A.  Recurrent Neural Network  
A recurrent neural network is used to build the direct model 

for the reheater system of the large-scale boiler unit. 
Recurrent neural network differs from other conventional 
feedforward networks in that it includes recurrent or feedback 
connections [7], [9]-[12]. The delay in this connection stores 
values from the previous time step, which makes it sensitive 
to the history of input data and fit for dynamic system 
modeling. For convenience, the Elman network is often used 
as a recurrent neural network, which has tansig neurons in its 
hidden (recurrent) layer, and purelin neurons in its output 
layer.  This combination is special in that a three-layer 
network with these transfer functions can approximate any 
function (with a finite number of discontinuities) with 
arbitrary accuracy if the hidden layer has enough neurons. 
The structure of an Elman network is shown in Fig. 4. 

 

 
 
Fig.4. Structure of the Elman network model. 

 
As shown in Fig. 4, the outputs in each layer of the Elman 

network can be given by: 
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Where,  
jiW ,1  is the weight that connects node i in the input 

layer to node j in the hidden layer; 
jiW ,2  is the weight that 

connects node i in the hidden layer to node j in the output 
layer; 

jiW ,3  is the weight that connects node i in the context 

layer to node j in the hidden layer; f(·) and g(·) are the 
transfer functions of hidden layer and output layer, 
respectively.  

An Elman network can be created and trained according to 
back-propagation algorithm with MATLAB Neural Network 
Toolbox [18]. When the entire input sequence is presented to 
the network, its outputs are calculated and compared with the 

target sequence to generate an error sequence. For each time 
step, the error is back propagated to find gradients of errors 
for each weight and bias. This gradient is actually an 
approximation, because the contributions of weights and 
biases to errors via the delayed recurrent connection are 
ignored. However, more accurate gradient can be evaluated by 
including the contributions through the recurrent neurons 
[10]. This gradient is then used to update the weights with the 
chosen back-propagation training function. Since Levenberg-
Marquart method is fast and has robust convergence property 
in the off-line training, it is used for training the Elam 
network.  

The inputs and outputs of a direct model for the reheater 
system can be determined by analyzing the system structure 
and the problem carefully. Then a neural network-based direct 
model can be built and trained with enough historical 
inputs/outputs data sequence.  

B.  Reheater System NN Direct Model  
By isolating the reheater system from the rest of the boiler 

unit and analyzing the most important peripheral influence 
variables of the RST carefully, the inputs/outputs of the direct 
model were determined as shown in Table 1. It shows that the 
reheater system is not a simple SISO system. There are many 
variables which influence the reheater steam temperature, 
such as air, feedwater, coal flow, reheater damper position, 
bypass valve opening and emergency water-spray 
attemperator, etc. Therefore, the reheater system direct model 
should consider all these important factors.  

 
TABLE 1.  STRUCTURE OF THE REHEATER SYSTEM DIRECT MODEL 

Inputs (9) 

(1) Boiler demand 

(2) Turbine demand 

(3) Forced draft fan demand 

(4) Primary air fan demand 

(5) Coal feeder demand 

(6) Feedwater pump demand 

(7) Emergency Water-Spray valve demand 

(8) Reheater damper demand 

(9) Bypass valve demand 

Output (1) 

(1) Final reheated steam temperature 

 
The NN direct model will be used to predict RST under 

different inputs. Thus, we need data of different steady-state 
conditions and dynamic transient processes to train the 
network. If the data used for network training are not 
sufficient we can not count on the direct model to give an 
accurate temperature prediction over a wide-range operation. 
Therefore, data selection is a very important factor during the 
model development. In this work, following conditions are 
included in the original training data, totaling 2664 groups: (1) 
different steady-state conditions (100%, 95%, …, 60% load 
levels); (2) different dynamic load-changing conditions (load 
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change from 100% to 95%,  from 95% to 90%, …, from 65% 
to 60%).  

For the designed direct NN model with 9 inputs and 1 
output, its optimal hidden neuron number can be determined 
with a MATLAB optimal search program, which is fixed as 
15.  Then the network is trained with the above 2664 groups 
of the original data. With 75-epoch training the final mean-
squared error (MSE) of the direct model is 6.3681e-5. The 
training result is shown in Fig. 5. 
 

 
Fig. 5.  Neural network direct model training results. 

IV.  OPTIMAL CONTROL SEARCH WITH PARTICLE SWARM 

OPTIMIZATION (PSO) 

A.  Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO) algorithm was 
created based on the simulation of birds flocking in two-
dimensional space [13]. The position and velocity of each 
particle represents the position and velocity of a bird. The 
position and velocity vectors are both represented by X-Y 
coordinates. The flocking of birds around food is used as a 
model to represent the optimization of a function. Each 
particle (bird) saves its best value so far (called pbest) and its 
current position. Also each particle knows the best pbest 
among the group (called gbest), which is the best value any 
particle in the group has had so far. By knowing its own best 
value (pbest), the particle knows its own personal experience. 
With knowledge of the group’s best (gbest), the particle 
knows the overall performance of the group. Each particle 
modifies its position by changing its velocity. The velocity of 
each particle can be updated by  
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where k
iv is velocity of particle i at iteration k, w is weighting 

function, 1c  and 2c are weighting factors, 1rand and 2rand   are 

random numbers between 0 and 1, k
iu  is current position of 

particle i at iteration k, ipbest  is the pbest of particle i, and 

gbest is the best value so far in the group among the pbests of 
all particles 

The weighting function in (4) is usually adjusted as 

( )* /max max min maxw w w w iter iter= − −          (5) 

where maxw   is the initial weight, minw  is the final weight, 

maxiter is the maximum iteration number and iter is the 

current iteration number. Using the above equations, a certain 
velocity, which gradually brings the particles close to pbest 
and gbest can be calculated. The current position (search 
point in the solution space) can be modified by  

1 1k k ku ui i iν+ += +                                  (6) 

The model using (4) is called the Gbest model. The model 
using (5) in (4) is called the Inertia Weights Approach (IWA).  
Fig. 6 shows the concept the search point by the PSO.  

 

 
 
Fig. 6. Concept of modification of a search point by the PSO. 

 
The above basic particle swarm optimization (bPSO) has 

some disadvantages, such as relapsing into local extremum, 
slow convergence in velocity and low convergence in 
precision in the later evolution. Recently, a simplified PSO is 
proposed to overcome the disadvantages of the bPSO [17]. 
The simplified PSO (sPSO) discards the concept of particle 
velocity and reduces the bPSO from the second order to the 
first order difference equation. The evolutionary process is 
only controlled by the variables of the particles position. The 
experimental results of some classic benchmark functions 
have shown that the sPSO greatly improves the convergence 
velocity and precision in the evolutionary optimization [17]. 
With this new sPSO the position of each particle is updated by  
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The simplified Particle Swarm Optimization (sPSO) 
algorithm will be used in search of the best controls for the 
reheater damper and the bypass valve of the boiler unit.   

B.  Optimal Control Search with sPSO 

The sPSO procedure runs 10 iterations with 10 particles 
before the optimal controls are sent to the reheater system 
[4],[16]. The operation of sPSO is outlined in Fig. 7.  

 

Authorized licensed use limited to: Baylor University. Downloaded on January 26, 2010 at 18:22 from IEEE Xplore.  Restrictions apply. 



 

 
 
Fig. 7.  Operation of the sPSO section of the MPOC. 

 
The candidate control actions are provided to the direct 

model, with which the reheater steam temperature of the 
boiler unit is estimated. The estimated output Te is compared 
with the current set-point SP_RST in a cost function, the 
Mean Square Error (MSE) between Te and its set-point 
SP_RST, which is  

2)_( RSTSPTCost e −=                        (8) 

To make further efforts to reduce the single-step RST 
prediction error of the neural direct model, each of the last-

step error 'Δ  between the network’s predictive output '
eT  and 

the actual reheater steam temperature '
aT  is calculated and 

added to the cost function for current-step search of the best 
controls with PSO. The modified cost function with error 
compensation is: 

2'' )_( RSTSPTCost e −Δ+=                   (9) 

It is noted that the reheater damper and the bypass valve 
have very clear control direction in an actual power plant 
operation, which is based on the relationship between actual 
RST Ta and its setpoint SP_RST.  If Ta >SP_RST, the damper 
will go down and the bypass will go up from the current 
position. On the other hand, if Ta <SP_RST, the damper will 
go up and the bypass will go down from the current position. 
In fact, there are many combinations of controls for reheater 
damper and bypass valve in each step which can meet the 
temperature control demands. In order to avoid oscillation 
during the search a special search direction control factor Dir 
can be added to (7) to obtain an optimal combination for the 
reheater bypass and the damper, which are the nearest to their 
last-step positions. With this new directional sPSO, the 
position of each particle is updated by  
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where Dir is the directional control vector, whose value takes 
either [1, -1]T or [-1, 1]T under different cases.  

V.  CONTROL SIMULATION TESTS 

After the neural network direct model has been trained, it is 
used as a system online identification model for performance 
evaluation of the MPOC, in which the sPSO searches for the 
optimal controls for reheater damper and bypass valve.  

In order to test the above MPOC scheme some simulation 
tests have been made on a full-scope simulator for the large 
scale power generating unit. The control results with the 
original control logic in the simulator and the proposed 
MPOC scheme are compared by changing the unit load from 
100% to 90% load and from 100% to 75% load, with 
respective results shown in Figs. 8 and 9. 

 

 
(a) The original PID control 

 

 
(b) The MPOC control 

 
Fig. 8. Damper, bypass and RST responses due to load change from 100% to 
90%. 
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(a) The original PID control 

 
(b) The MPOC control 

 
Fig. 9. Damper, bypass and RST responses due to load change from 100% to 
75%. 
 

From Figs. 8(a) and 8(b) it can be seen that both the 
original PID control and MPOC schemes give similar control 
results for the reheater steam temperature (curve 4) after the 
unit load is changed form 100% to 90%. However, the 
reheater damper’s opening (curve 1) with MPOC is smaller 
than that with the original control, which leads to smaller 
amount of water-spray flow (curve 3) and better economical 
efficiency of the unit. It can be also seen that the bypass valve 
responses faster and gets stabilized in shorter time with the 
MPOC. 

 From Figs 9(a) and 9(b) it can be seen that the MPOC 
scheme gives a better control result for the reheater steam 
temperature than the original control over time when the unit 
load is changed significantly, from 100% to 75%. This 
improvement is acquired by faster and optimized adjustments 
for the reheater damper and the bypass valve with the PSO 
optimal search. It has been noticed that the maximum 
transient RSTs in Figs. 9 (a) and 9(b) are too high to be true in 

an actual load-changing process, which shows that the 
reheater model of the simulator needs further improvement.  

VI.  CONCLUSIONS 

A Modified Predictive Optimal Control (MPOC) scheme is 
proposed for and applied to Reheater Steam Temperature 
(RST) control of a large-scale power generating unit. A neural 
network-based direct model is built and trained with enough 
historical operating data of the unit. The neural network direct 
model is used as a system on-line identification model in 
evaluating the performance of the MPOC and for optimal 
control search with the Particle Swarm Optimization 
technology. A simplified PSO algorithm with directional 
control vector is designed in search of optimal controls for 
reheater damper and bypass valve.  

Control tests on a simulator for the large-scale power 
generating unit have shown that the MPOC works well for 
RST control by giving faster and optimized controls for the 
reheater damper and bypass vlave than the original control in 
the simulator.  However, because the reheater system of the 
large-scale boiler unit is so complex and influenced by many 
factors, the MPOC scheme used for reheater steam 
temperature control needs further study and more tests in 
future work.  

Another thing should be mentioned.  Since the MPOC uses 
PSO to search for optimal controls in each step, it needs more 
calcualtion than other control schemes, such as a traditional 
PID controller, an inverse controller, etc.  In this simulation 
tests the data acquisition and data sending period of the 
simulator is 1s. In order for the MPOC to have enough time to 
finish the PSO search, a computer of higher performance is 
recommended to run the control program.   
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