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Abstract--With a Neural Network-based Combined Model 

(NNCM) for a power plant, a Modified Predictive Optimal 
Control (MPOC) system can be developed based on predictive 
control algorithms and intelligent techniques. During the NNCM 
simulation, an On-Line Identification (OLID) system is updated 
every few steps to provide information from the model to the 
MPOC. Moreover, the MPOC will use the OLID as a test process 
to optimize the control actions, minimizing tracking-error. To 
search for the best control action, the MPOC utilizes a heuristic 
optimization technique, Particle Swam Optimization. With the 
proposed MPOC system the only input to the NNCM will be the 
unit load demand. Finally, major outputs of NNCM will be 
shown using the proposed approaches, validating the procedure 
as a means to design a control system for a new power plant. 
 

Index Terms-- Once-through type boiler, super-critical boiler, 
neural networks, modeling, modified predictive optimal control, 
particle swam optimization, power plant control, distributed 
large-scale power plant. 

I.  INTRODUCTION 

HE development of large capacity power plants requires 
new approaches for control. The fact that power plants 

are complex dynamic systems with significant uncertainties, 
has led to a departure from conventional control methods [1]. 
Specifically, for optimal power plant operation, many control 
algorithms have been introduced using intelligent techniques. 
In general, the challenge in optimizing power plant operation 
is to produce optimal control actions for minimizing load-
tracking errors. The predictive control system can utilize an 
identification system to find the optimal control actions. For 
both predictive control and identification, the classic control 
algorithms provide the means to design a control system with 
a clearly defined mathematical model. However, while power 
plants are getting larger and more complex, conventional 
control methods, which minimize quadratic objective 
functions, have a large computational burden which precludes 
generating an optimal solution in real-time.  

In conventional PID control systems, a single logic failure 
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in a control loop can cause an entire system to go unstable. 
Moreover, under a changing environment, PID control 
systems have to properly tune gains and time constants 
continuously. As an evolution of conventional PID 
algorithms, intelligent control systems have been extensively 
studied in recent years. In order to produce optimal control 
action, neural network-based identifiers and heuristic 
optimization techniques have been used for handling non-
model-based control system design and reducing the 
computational complexity in large-scale distributed systems. 

As a practical approach, Model-based Predictive Controls 
(MPCs) which initially use open-loop optimal control, had 
attracted much attention until the introduction of Generalized 
Predictive Control (GPC). The GPC algorithm uses closed-
loop optimal control within a moving horizon [2]. However, 
both approaches require a mathematical model and much 
computational time to find an optimal solution. By using 
intelligent techniques such as neural networks, fuzzy logic, 
and evolutionary algorithms, an intelligent predictive optimal 
control system was developed using neuro-fuzzy 
identification [3]-[5]. Without using a mathematical model, 
the intelligent identification system, by updating on-line, can 
provide plant information to the control system. Although 
intelligent predictive optimal control systems are designed 
without using models they require a great deal of time to find 
an optimal solution. In order to reduce the computation time, 
a new optimization technique is required to be embedded into 
the control system. This paper presents Particle Swarm 
Optimization (PSO) as a modern heuristic method for an on-
line predictive optimal control system. The PSO algorithm is 
based on the analogy of a flock of birds and a school of fish 
[6]. It has been well known in many engineering applications 
that PSO techniques provide accurate solutions with fast 
convergence and simple implementation [6]-[9]. However, the 
performance of PSO in a predictive optimal control system is 
yet to be investigated. 

Predictive control in general requires a repetitive 
simulation of the plant model. However, in practice, this is an 
impossible task for a large-scale plant. Therefore, the Neural 
Network Combined Model (NNCM) was developed to ease 
the simulation. The NNCM is made of a number of neural 
network models, each representing subsystems of the plant. 
Using NNCM, a Modified Predictive Optimal Control 
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(MPOC) system can be developed based on predictive control 
algorithms and intelligent techniques. During the NNCM 
simulation, an On-Line Identification (OLID) system is 
updated every few steps to provide information from the 
model to the MPOC. Moreover, the MPOC will use the OLID 
system as a virtual model to optimize the control actions, 
minimizing tracking-error. To search for the best control 
action the MPOC utilizes a heuristic optimization technique, 
Particle Swarm Optmization (PSO). Since the NNCM requires 
external inputs other than the control action, an External 
Neural Network (ENN) is developed to provide the external 
data, such as the feedwater inputs and the sprays for the 
superheaters and reheaters. With the proposed MPOC and 
ENN systems the only input to the NNCM will be the unit 
load demand. Finally, major outputs of NNCM will be shown 
using the proposed approaches. Thus the proposed 
approaches provide the means to design a control system for a 
new power plant. 

Following the introduction, the 500 MW once-through type 
super-critical boiler power plant is described in Section II. 
Section III describes the development of the Modified 
Predictive Optimal Control systems. Section IV shows 
simulation results to demonstrate the feasibility of the 
proposed approach. The final section draws some conclusions 
and presents future works. 

II.  ONCE-TROUGH TYPE BOILER POWER PLANT 

A.  Description of Power Plant 

The power plant under investigation is a 500 MW coal-
pulverized once-through type boiler-turbine-generator unit. 
The controlled once-through type boiler is capable of 
delivering steam at a pressure of 35 MPa and a temperature of 
595°C. Two forced draft fans supply air to the burner and 
furnace, two primary fans provide air to the pulverizers, and 
two induced draft fans are controlled to maintain furnace 

pressure at a desired value. Economizers are arranged before 
and after a Selective Catalytic Reduction (SCR) to improve 
denitrification and net efficiency. The superheater consists of 
three parts, division, platen, and finish. The steam is reheated 
after the High Pressure (HP) turbine using the primary 
reheater and the reheater finish. There is a separator on top of 
the furnace which supplies high pressure steam to the 
superheater division. The waterwall is around furnace 
vertically and spirally. Flue gas is supplied to the furnace 
through the pulverizers and burners. Finally, the turbine 
generates power from the tandem compound triple turbines, 
which consist of three parts: a HP turbine, an Intermediate 
Pressure (IP) turbine, and Low Pressure (LP) turbine. A 
depiction of the power plant is shown in Fig 1. 

Each subsystem inside the furnace has common inputs and 
outputs: mass flow rate, temperature, pressure, and enthalpy 
of fluid. In addition to these inputs, there are control variables 
involved in driving each subsystem to the desired state. The 
model, which is based on the ANN, uses the predefined 
control action as feedforward control. 

B.  Neural Network-based Combined Power Plant Model 

Each subsystem of the boiler depicted in Fig. 1 was 
modeled using a NN. By combining the models of the 
individual subsystems the NN-based Combined Model 
(NNCM) was developed. To reduce the complexity and 
provide better information the primary air, forced draft fan, 
induced draft fan, and air preheater are clustered into a single 
subsystem, called air systems. The waterwall and furnace are 
also clustered into the furnace/waterwall subsystem. The 
resulting sixteen subsystems will be connected with 
corresponding subsystem inputs and outputs; in addition, 
there are several external inputs for air, water, coal, oil, and 
control actions. Fig. 2 shows the NNCM. 

 
Fig. 1.  A 500 MW once-through type boiler power plant. 
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III.  DEVELOPMENT OF MODIFIED PREDICTIVE OPTIMAL 

CONTROL SYSTEMS 

A.  Modified Predictive Optimal Control (MPOC) System 

General Predictive Optimal Control (POC) calculates a 
sequence of future control inputs on a prediction horizon [2]. 
For large-scale power plants, the calculation of a long range of 
the input sequence demands an extraordinary amount of 
computations and therefore requires a long time to produce 
results. The period of prediction time makes it difficult to 
apply POC directly in real-time applications. 

In a similar manner the proposed MPOC system will 
calculate future control inputs. However, instead of a long 
range of the input sequence, the set of control inputs will be 
produced only for the next time step (one-step ahead 
prediction). This approach will reduce calculation time to 
allow for real time applications. Fig. 3 shows the overall 
structure of the control system.  

From the Unit Load Demand (ULD) the MPOC calculates 
feedforward control action and the External NN (ENN) 
system generates external inputs. The feedforward control is 

used by the On-Line Identification System (OLID) system as 
initial candidate control inputs. The OLID system estimates 
outputs from the control action, and feeds them to the MPOC. 
The MPOC then updates the control values and returns them 
to the OLID. This process is repeated for a given number of 
iterations before the optimal control action and external inputs 
are sent to the NNCM. 

B.  On-line Identification (OLID) System 

The OLID is used in the MPOC as a simplified model of 
the NNCM to estimate the outputs that would be generated by 
a set of control inputs. The OLID system is made up of 4 NNs 
which use control values to estimate set-points the NNCM 
would produce. Because the OLID has many fewer NNs and 
they are decoupled, the OLID system considerably reduces 
calculation time. Morover, by using the OLID as a test 
process for the MPOC, the OLID allows for the stability of 
the NNCM to be preserved. 

There are eleven stages in the NNCM where steam 
properties are changed. Each of these stages corresponds to 
the output of a different subsystem. The OLID approximates 
the output of each of these subsystems using control values as 
inputs. For each subsystem the OLID provides three set point 
values: temperature, pressure, and enthalpy, for a total of 
thirty three set points. There are thirteen control inputs used 
to drive the outputs of the plant to the desired set-points. This 
gives a total of thirteen inputs and thirty three outputs. 
Because of the large number of inputs and outputs, training a 
NN of this size requires a large amount of memory. For this 
reason the inputs and outputs were divided into four smaller 
networks that would require less memory for training and 
produce more accurate results. The order in which the inputs 
and outputs are grouped is important. The outputs must 
depend upon the inputs they are grouped with, otherwise the 

 
Fig. 2.   NN-based Combined Model. 

Fig. 3.  Structure of the MPOC. 
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NN cannot accurately predict the correct outputs. Table I 
shows how the control inputs and outputs are separated for 
the OLID. Each output represents temperature, pressure, and 
enthalpy. Before the OLID can be implemented the NNs must 
be trained off-line with a wide range of data. Data from the 
same ULD used to train the NNCM subsystems is also used 
for off-line training of the OLID networks.  

When in run mode, the OLID system shown in Fig. 4, uses 
the optimized control inputs from the MPOC to generate 
estimated outputs. The estimated outputs are compared with 
the NNCM outputs and the error is fed back to the OLID. 
Using this error the weights of each NN are updated every 5th 
data point for more accurate results. In search mode the 
estimated outputs are fed to the MPOC where candidate 
control actions are calculated and given to the OLID. The 
OLID returns a new set of estimated outputs to the MPOC, 
where the process continues for the given number of 
iterations. When the MPOC has completed all iterations, the 
OLID returns to run mode, and the optimized control actions 
are sent to the NNCM. 

C.  External Neural Network (ENN) System 

The boiler system of the power plant consists of 28 inputs 
that originate from external sources. The water provided to 
the feedwater system (Eu1, Eu2), the air inputs to the air gas 
system (Eu3, Eu4), the water for the reheater spray (Eu5, 
Eu6), and all control inputs are generated from other 
processes in the power plant. The MPOC calculates the 13 
control inputs, but another process is required to provide the 
15 external inputs to the NNCM.  

It was determined that the external inputs were dependant 
on the ULD. Therefore the external inputs to the NNCM can 
be accurately estimated using NNs with the ULD as the input. 
For this section a recurrent NN is also used because of its 
ability to capture the dynamic behavior of the inputs. 

There are a total of six non-constant external inputs which 
are labeled Eu1 through Eu6 in Fig. 5. To improve the 
accuracy of the NNs the time varying external inputs were 
divided into three groups, each group corresponding to a 
single NN. The first NN has two outputs, the second has three 
outputs and the third has a single output. The remaining 
external inputs are constant for the whole operating range of 
the power plant. They are simply supplied to the NNCM from 
prior knowledge of their values. 

D.  Modified Predictive Optimal Control (MPOC) 

The MPOC can be developed using the proposed OLID, 
ENN, and NNCM. This design will preserve the stability of 
the NNCM while minimizing the tracking-error. Based on the 
ULD, the MPOC uses a mapping function to find the 
feedforward control actions from a lookup table. The solution 
space the MPOC uses to search for the optimal control inputs 
is then defined. Multiobjective optimization by Particle 
Swarm Optimization (PSO) is then used to find the control 
action that will produce the most desirable outputs. Fig. 6 
shows the three procedures of the MPOC. 

1) Mapping Function: Because the training ULD covers a 
wide range of operation, the control inputs for the training 
ULD are used as a feedforward control for the MPOC. To 
find the feedforward control inputs that correspond to the 
correct power output, a mapping function that relates the new 
ULD with the training ULD must be used. The training ULD 
can be approximated as a straight line from 100% to 50% and 
therefore a linear relationship can be used to estimate the 
feedforward control inputs based upon the power demand at 

Fig. 5.  Structure of the External NN system. 

TABLE I 
DIVISION OF INPUTS AND OUTPUTS FOR OLID 

 
 Control Inputs Outputs 

On-line ID#1 feedwater (u1,u2) feedwater 

On-line ID#2 

pulverizers (u3,u4,u5), 
induced draft fan a (u6), 

forced draft fan (u7), induced 
draft fan b (u8) 

economizer 1, 
economizer 2, furnace, 

superheater division 

On-line ID#3 

primary air fan(u9),  
superheater platen spray 

(u10), final superheater spray 
(u11) 

superheater platen, 
superheater finish 

On-line ID#4 
high pressure turbine valve 

(u12),  
reheater spray (u13) 

high pressure turbine, 
primary reheater, final 
reheater, intermediate 

pressure turbine 

 
Fig. 4.  Block diagram of the On-line Identification System (OLID). 
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any point. The mapping function uses a new ULD to find 
feedforward control inputs corresponding to the same power 
output from the lookup table. The feedforward control inputs 
are then used as a starting point for the PSO search. 

2) Solution Space: Before PSO begins searching for the 
optimal control inputs, a solution space is needed as a 
boundary for the search. In order to generate the solution 
space, the control input windows use the feedforward control 
input as the center of the solution space or boundary gap. The 
boundary gap, used to restrict the range of the solution space, 
expands the search window as the ULD increases from 50% 
to 75%, and decreases the search window as the ULD moves 
from 75% to 100%. The varying limiting function restrains 
the optimized controls from departing too far from the 
feedforward control, which is the center of the solution space. 
A plot of the boundary function is shown in Fig. 7. The 
boundary gap size for all control inputs is measured in percent 

of the total range for that control input.  
3) Multiobjective Optimization Using PSO: The operation 

of PSO for a single step of the NNCM is outlined in Fig. 8. 
Using the solution space from the control input windows, PSO 
provides candidate control inputs to the OLID. The OLID 
estimates the outputs that would be generated by the 
candidate control inputs and feeds them to PSO. The 
estimated outputs are compared with the given set-points and 
an error is calculated. This error is used in the cost function 
shown below, where some control inputs are weighted to give 
them a higher priority than others: 

( ) ( ) ( ) (1)           
11

0

222

∑
=

−+−+−=
i

iiiiiiiii
EHHcEPPbETTaCost

In (1) Cost is the value which is to be minimized, i ranges 
from one to eleven because there are eleven subsystems for 
which set-points are generated, ai, bi, and ci are weights that 
can be adjusted for multiobjective optimization, Ti, Pi, and Hi  
are known set-points of subsystem i for temperature, pressure, 
and enthalpy, respectively, and, ETi, EPi, and  EHi are the 
respective outputs of subsystem i estimated by the OLID 
system. By weighting the differences between the set-points 
and the outputs of the OLID, PSO can simultaneously 
optimize the set of control inputs for multiple criteria. The 
PSO algorithm uses the cost function (1) to update the control 
values which are again used as inputs to the OLID. This 
procedure is repeated for the given number of iterations 
before the optimal control values are used as inputs to the 
NNCM. For the next time step the ULD is used to find the 

feedforward control and solution space. These parameters are 
given to PSO and the process is repeated. 

IV.  SIMULATION RESULTS 

A.  Modified Predictive Optimal Control (MPOC) 

For validation of Neural Network-based Combined Model 
(NNCM), a new Unit Load Demand (ULD) is applied to the 
MPOC. For validation purposes the new ULD should allow 
the plant to reach steady-state for several different power 
demands. Once steady-state has been reached the ULD should 
maintain that value for at least 30 minutes. A ULD with these 
characteristics replicates a typical ULD that would be seen in 
real applications. Fig. 9 shows the ULD that was used to 
validate the NNCM. The ULD begins at 100% and decreases 
to 65% then increases to 80% and finally back to 100% of the 
MGR. In the decreasing section in Fig. 9, the ULD is 
changing at a rate of 3 MW/minute, in the increasing sections 
the rate of change is 2 MW/minute. 

 
Fig. 7.  Function used to constrain the solution space for the PSO. 
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Fig. 8.  Operation of the PSO section of the MPOC. 

 
Fig. 6.  Block diagram of the MPOC. 
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The results of the MPOC simulation for the new ULD are 
shown in the following subsections. The four subsections 
correspond to the four processes involved in the MPOC 
simulation: On-line identification (OLID), External Neural 
Network (ENN), Modified Predictive Optimal Control 

(MPOC), and Neural Network-based Combined Model 
(NNCM). 

1) On-line Identification (OLID): Fig. 10 shows selected 
outputs of the OLID system. Fig 10 (a) shows the superheater 
finish steam temperature. Fig. 10 (b) shows the primary 
reheater steam pressure. The OLID data is prescaled so that 

the range is between -1 and 1. By observing the differences 
between the estimated outputs of OLID and the outputs of 
NNCM, the accuracy of the OLID can be seen. The OLID 
generates the estimated outputs very well by continuous 
updates. 

2) External Neural Networks (ENN): The water 
temperature output of the ENN for the primary reheater spray 
is shown in Fig. 11. By comparing outputs of the ENN with 
filtered data from the plant simulator, the ENN generates 

external inputs appropriately to produce power and operate 
the NNCM simulation. 

3) Modified Predictive Optimal Control (MPOC): Sample 
control inputs, found using PSO, are shown in Fig. 12. Fig. 12 
(a) shows the primary reheater spray control, and Fig. 12 (b) 
shows the superheater platen spray control. It is obvious that 
the MPOC generates control inputs that are quite different 
from the filtered control input from the plant simulator. 

4) Neural Network Combined Model (NNCM) with MPOC: 
The results from major outputs of the NNCM are shown in 
Fig. 13: the total power output, the superheater finish steam 
temperature, the final reheater steam temperature, and the 
division superheater steam pressure. Observing the error 
between the simulation data and the NNCM output gives a 
good idea of the accuracy of the MPOC. The primary goal of 
following the ULD has been achieved by the MPOC, while 
maintaining the secondary objectives of keeping the pressure 
and temperatures within the operating windows. 

With the proposed Neural-Network based combined 
model, the Modified Predictive Optimal Control system 
generates the optimal control action very efficiently. Since the 
PID-based plant simulator has many control loops, the failure 
of a single loop could adversely effect the operation of the 
rest of the system. Moreover, under a changing environment, 
PID control systems have to properly tune gains and time 
constants continuously. However, the MPOC generates 
optimal control action by minimizing load-tracking error 
without consideration of complicated control loops or 
adjusting of gains and time constants. The MPOC also 
preserves stability by predicting the outputs of the plant using 
the OLID, while PID control uses the actual error from the 
real plant. Therefore the MPOC can be used as an advanced 

 
(a) Superheater finish steam temperature 

 
(b) Primary reheater steam pressure 

Fig. 10.  On-line identification result and target values for two outputs. 

 
Fig. 9.  New ULD used for validation of the NNCM. 

 
Fig. 11.  Water temperature for primary reheater spray. 
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control methodology for use in real applications. 

V.  CONCLUSION 

Using the NN-based Combined Model (NNCM), a 
Modified Predictive Optimal Control (MPOC) system is 
developed. The MPOC consists of an On-line Identification 
(OLID) system, and an External Neural Network (ENN). The 
On-line Identification (OLID) system allows stability to be 
preserved during the search for optimal control inputs. The 
External Neural Network (ENN) provides external inputs to 
the NNCM using the given unit load demand. The proposed 
approach provides a means to efficiently search for optimal 
control inputs during on-line operation. The simulation results 
show that the proposed MPOC follows the set-points and 
power outputs, and therefore can be applied in real time to 
large scale power plants. 

For future work, with the developed NNCM and MPOC, a 
reference governor will be developed to provide optimal set-
points and optimal feedforward control inputs for the MPOC.  
Moreover, applicability to larger capacity power plants such 
as an Ultra Super Critical (USC) boiler power plant will be 
investigated. 
 
 
 

 
(a) Total power output 

 
(b) Superheater finish steam temperature 

 
(c) Final reheater steam temperature 

 
(c) Superheater division steam pressure 

 
Fig. 13.  Results of the NNCM compared with data from simulator. 

 
(a) Primary reheater spray control 

 
(b) Superheater platen spray control 

Fig. 12.  Superheater platen spray control. 
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