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Abstract--The neural network (NN) supervisor is developed for 
online estimation of optimal feedforward (FF) control inputs and 
setpoints for hybrid fuel cell/gas turbine power systems. The 
approach consists of determining a neural network structure 
suitable for predicting FF control inputs and setpoints based on 
optimal operating trajectories.  The optimal trajectories were 
obtained in a previous study via nonlinear dynamic optimization 
based on a dynamic power plant model.  Determination of the 
NN structure involves an a priori decision of the type of NN, the 
overall topology of input/output pairing, definition of a training 
epoch, as well as an identification of the number of hidden layer 
neurons and the number of iterations for the training epochs.  
This allows for straightforward training of the NN using the 
global training method, which includes all power profiles to 
define an epoch. In addition to training the NN with all available 
data, the network’s prediction capabilities were tested by 
training it with all but one dataset and then determining the 
prediction results based on the untrained dataset.  Results from 
eighteen case studies show that the developed NN supervisor is 
capable of predicting the optimized FF and setpoint trajectories 
satisfactorily. 
 

Index Terms—Fuel cell, MCFC, hybrid fuel cell turbine power 
plants, dynamic optimization, neural network supervisor, 
setpoints, feedforward control, scheduling. 

I.  INTRODUCTION 

UEL Cell/Gas Turbine (FC/GT) systems embody an 
approach to using fossil fuels efficiently, cleanly, and 

affordably for production of electricity [1]. The FC/GT power 
plants are expected to have negligible emissions while 
achieving projected efficiencies of 75% based on the fuel’s 
lower heating value (LHV) for natural gas [2]. As an 
alternative to natural gas, these systems can also be 
configured to operate on fuels such as coal gas or biomass 
derivatives (e.g., from wood gasification or waste-water 
treatment plants) [3]. 

FC/GT hybrid systems have a high degree of coupling 
between fuel cell, gas turbine, and heat recovery units. The 
overall dynamics are nonlinear with varying degrees of inter-
dependencies among the processes. The design of an FC/GT 
hybrid power plant has to address the operational constraints 
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and details of the component performance characteristics [4].  
Dynamic simulation has proven to be a powerful design 

tool for the study of the transient behavior of FC/GT hybrid 
systems [5].  Additionally, dynamic modeling provides a 
platform for investigating the advanced control algorithms 
and dynamic optimization routines during the design phase. 
The utility of dynamic simulation of fuel cell systems in the 
design of various fuel cell power plants has been explored 
elsewhere [6]. 

The dynamic operation and control of FC/GT hybrid power 
plants requires a synergy of operation among subsystems, 
increased reliability of operation, and reduction in 
maintenance and downtime. The control strategy plays a 
significant role in system stability and performance as well as 
ensuring the protection of equipment for maximum plant life 
[7,8]. In particular, optimal control of load changes is 
required for dynamic scheduling of setpoints and feedforward 
control inputs for the system controllers, as well as estimation 
of disturbances and data reconciliation. 

A nonlinear programming framework was developed to 
determine optimal operating policies for hybrid fuel cell/gas 
turbine power systems [9,10]. Formulation of the dynamic 
optimization problem was focused on determination of 
optimal operating trajectories for tracking power plant load 
variations. Efficiency measures were also included to 
maximize efficiency while tracking the desired load profile.  
Results from eighteen case studies show that the dynamic 
optimization can be performed quickly − albeit not in real-
time − with excellent results. 

The primary objective of this paper is the development, 
implementation/solution, and documentation of a neural 
network (NN) supervisor for FC/GT hybrid power plants.  
Because dynamic optimization is computationally expensive, 
it is not feasible for real-time optimization of FC/GT systems.  
Instead, a neural network will be trained with data provided 
by the dynamic optimization. Once trained, the NN supervisor 
will be able to provide FF control inputs and setpoints to the 
power plant almost instantaneously. Due to the 
interpolation/extrapolation properties of neural networks, the 
NN supervisor will also be able to provide operating data for 
previously untrained trajectories. 

A.  Process Description 

FC/GT systems are combined cycles composed of 
integration of a high temperature (>873 K) fuel cell, either a 
Molten Carbonate Fuel Cell (MCFC) or Solid Oxide Fuel Cell 
(SOFC), and a gas turbine.  The FC/GT cycle based on a 
variant of MCFC technology with internal reforming 
capability (under the trade names Direct FuelCell®/Turbine 
and DFC/T®) has taken a lead in responding to the recent 
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demands for increased fuel-to-electric power conversion 
efficiency.  Recently, the factory tests of an Alpha DFC/T 
hybrid power plant, fabricated by integration of a 250kW 
Direct FuelCell® (DFC®) stack with a 60kW Capstone 
MicroTurbineTM, was successfully concluded with a near 
record setting performance [11].  The Alpha DFC/T hybrid 
power plant achieved a power generation level of greater than 
320 kW at 56% (LHV) while operating on natural gas.  Figure 
1 shows a simplified process flow diagram. 

 

  
 
Fig. 1. Flow diagram of FuelCell Energy’s Direct FuelCell/Turbine® (DFC/T®) 

hybrid system. 
 

The key feature of this process is a high level of integration 
between the fuel cell subsystem and the turbine subsystem.  
The turbine provides process air to the fuel cell, while the fuel 
cell provides heat to the turbine.  Both subsystems produce 
electric power.  Power from the turbine is produced in a high-
speed generator; DC power from the fuel cell is inverted to 
AC prior to being sent to the utility grid. 

In the fuel cell subsystem, feed water humidifies natural 
gas in a humidifier/heat exchanger (HH) prior to entering the 
fuel cell anode.  In the anode methane is reformed into 
hydrogen and carbon dioxide and its chemical potential is 
converted to electrical energy.  The anode exhaust, which 
contains some unreacted fuel, is mixed with hot air and 
oxidized completely in the anode gas oxidizer (AGO).  An 
oxidizer bypass (dotted line) facilitates temperature control of 
the oxidizer.  Hot effluent from the oxidizer heats the turbine 
inlet, enters the fuel cell cathode, preheats the compressor 
outlet, and finally provides heat to the humidifier [12,13]. 

In the turbine subsystem, ambient air is first compressed 
and then preheated in a low temperature recuperator (LTR) 
using fuel cell waste heat.  The compressed hot air is heated 
further using a high temperature recuperator (HTR) located 
between oxidizer and fuel cell cathode.  An HTR bypass 
(dotted line) facilitates temperature control of the cathode 
inlet temperature.  Hot air leaving the HTR is expanded 
through the turbine section before being sent to the AGO.  
The turbine drives both the compressor and a permanent 
magnet generator.  During system startup additional heat is 
provided by an electric heater (EHTR) and the generator 
works as a motor as long as the turbine cannot provide 
sufficient torque to operate the compressor. 

B.  Overview 

The organization of this paper is as follows; Section II 
gives a summary of the previously performed dynamic 
optimization studies for FC/GT power systems. Based on the 
optimization results, a NN supervisor is developed in Section 
III and NN structures are explained in detail. Section IV 
presents simulation results obtained using developed NN 
structures, and conclusions are drawn in Section V.  

II.  SUMMARY OF DYNAMIC OPTIMIZATION RESULTS 

To enable dynamic optimization of hybrid FC/GT systems, 
a simultaneous problem formulation was implemented and 
coupled to a large-scale nonlinear programming algorithm 
[9,10]. A generalized optimization framework for off-line 
trajectory planning was implemented. The optimization is 
constrained by the plant dynamics, as well as input and output 
constraints. This problem formulation was considered for two 
types of dynamic optimization problems for optimal process 
operation. First, in power tracking, we determined control 
inputs so that desired load trajectories are tracked. We have 
determined control inputs for both ramp and step profiles over 
various power regimes.  

Second, we maximize efficiency while tracking load 
changes. To facilitate this task, we have included an 
efficiency measure into the objective function, and we track 
the same load profiles as in the previous cases. The effect of 
the efficiency measure is controlled via the weight �.  
Maximization of efficiency can be turned off by setting ε = 0. 
For a value of ε =10-3, the best trade-off between maximizing 
efficiency and tracking the desired power is achieved [10]. 

III.  DEVELOPMENT OF NN SUPERVISOR 

Development in the control area has been fueled by three 
major needs: the need to deal with increasingly complex 
systems, the need to meet increasingly demanding design 
requirements, and the need to attain these requirements with 
less precise advanced knowledge of the plant and environment 
[14].  Increasingly complex dynamic systems with significant 
uncertainty have led to a revolution from conventional control 
methods.  The importance of studying neural networks-based 
control architectures is revealed in fundamental difficulties of 
the current adaptive control techniques.   

The recent revival in neuroengineering research, which 
started in the early 1980’s, has focused mainly in the field of 
pattern recognition and signal processing. Only a few efforts 
have dealt with applications to control engineering [15]. It is 
well known that the ability to learn is one of the main 
advantages that make the neural networks so attractive.  
Neural networks (NNs) can also provide, in principle, 
significant fault tolerance, since damage to a few links need 
not significantly impair the overall performance. The massive 
parallelism, natural fault tolerance and implicit programming 
of neural network computing architectures suggest that they 
may be good candidates for implementing real-time 
controllers for large-scale, nonlinear dynamic systems [16]. 

Several neural network models and neural learning schemes 
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were applied to system controller design during the last three 
decades, and many promising results are reported. Most 
people used the feedforward neural network (FNN), combined 
with tapped delays, and the backpropagation training 
algorithm to solve the dynamic problems; however, the 
feedforward network is a static mapping and without the aid 
of tapped delays it does not represent a dynamic system 
mapping. On the other hand, recurrent neural networks have 
important capabilities not found in feedforward networks, 
such as attractor dynamics and the ability to store information 
for later use. Of particular interest is its own natural temporal 
operation. Thus the recurrent neural network (RNN) is a 
dynamic mapping and is better suited for dynamic systems 
than the feedforward network. 

The desire for a simple RNN and a shorter training time for 
the neural network model has led to the development of 
diagonal recurrent neural networks (DRNN) [18]. It can be 
shown that the DRNN model is a dynamic mapping in a way 
the fully connected recurrent neural network (FRNN) is 
dynamic [19]. Since there are no interlinks among neurons in 
the hidden layer, the DRNN has considerably fewer weights 
than the FRNN and the network is simplified considerably. 
The DRNN was used successfully for nuclear reactor 
temperature control, load forecasting, and synchronous 
machine control [17-19]. In view of the complexity of the 
hybrid fuel cell/gas turbine system, we adopt the DRNN as a 
possible candidate architecture for the neural network 
controller. 

A.  Neural Network Supervisor 

The NN supervisor is proposed to mimic the function of the 
nonlinear dynamic optimization function block in generating 
the setpoint profiles and FF control inputs for the FC/GT. The 
high computational cost of dynamic optimization can be 
avoided by replacing it with a NN supervisor for fast on-line 
computations. The NN supervisor can be trained offline with 
dynamic optimization data. Once the network is trained it can 
be used for real-time application. Based on the power profile, 
the NN supervisor computes the required outputs almost 
instantaneously. The output includes the setpoints of the 
system and FF control inputs for the plant. 

In addition to the speed of the computation, another key 
advantage of neural networks is their learning ability and their 
interpolation/extrapolation properties. In contrary to dynamic 
optimization which needs to be performed for all possible 
loads, the NN supervisor can provide output for a load which 
may not have been included in the training data set [20-22]. 

The NN supervisor will provide two kinds of outputs, the 
setpoints and the FF control inputs for a corresponding load 
profile.  Various NN structures will be explored to determine 
suitable structures for the NN supervisor. After finding 
optimal values, NNs are trained and performances are 
evaluated.  

B.  Determination of Setpoints and FF Control Inputs 

In a first step, the setpoints and feedforward control inputs 
to be predicted by the NN supervisor have to be determined. 
The following data are required for operation of the FC/GT 
power plant [10]: 

1) The plant setpoints are: 
a. Anode gas oxidizer (AGO) outlet temperature, TAGO in 

[°F] 
b. Micro-turbine speed, N in [kRPM] 
c. Stack power, Pstack in [kW].  
d. Cathode inlet temperature, TCI in [°F] 

2) The feedforward control inputs are:  
a. Stack current, iStack in [mA/cm2],  
b. Split fraction for the high temperature recuperator, 

fHTR  
c. Split fraction for anode gas oxidizer, fAGO 
d. Split fraction of for the micro-turbine, fC60 
e. Methane flowrate in [mol/s] 

The number of items in this list can be reduced by 
recognizing that the cathode inlet temperature setpoint and 
methane flow FF control input can directly be computed from 
available look-up tables as a function of stack current [10].  
This reduces the problem size to three setpoints and four 
inputs. 

A total of eighteen power profiles is available from the 
dynamic optimization. Each nine profiles with and without 
optimization of efficiency: Five ramp rates {0.5, 2, 10, 20, 
40} kW/min and four step profiles  {[5,75], [75,150], 
[150,225], [225,300]} kW.   

C.   Design of  NN  Structures 

The NN supervisor provides two kinds of outputs for a 
given load profile: setpoints and FF control inputs.  Various 
neural network structures were explored to determine suitable 
structures for the NN supervisor.  If a single NN with one 
input (power profile) and seven outputs (three setpoints and 
four FF control signals) is used, the performance result is not 
satisfactory due to the complexity of the NN computation.  
Since the NN supervisor requires two outputs, it was found 
that better results can be obtained by employing two simpler 
neural networks instead as shown in Figure 2.   
 

 
 

Fig. 2. Structure of the NN Supervisor. 
 

The first NN generates setpoints and the second NN 
generates feedforward control signals according to the power 
profile as discussed in subsection B above.  Both NNs were 
investigated separately to determine the best configuration for 
each NN structure. 

D.   Data Preparation and Evaluation Criteria  

Since input and output data contain variables of different 
magnitudes, they need to be scaled prior to designing and 
training the NNs. Input and output data Xi,j are normalized in 
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the range [–1, 1], according to: 
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where i ∈ [1,18] are the eighteen datasets obtained from 
dynamic optimization and j ∈ [1,7] are the seven setpoints 
and FF control inputs discussed in subsection B above. 

The results of training were evaluated based on the 
following indices for the normalized values: 
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E.  Optimal Number of Hidden Layer Neurons 

In the neural network structure, more hidden neurons are 
needed as the function being fitted increases in complexity 
[23]. To determine the best number of hidden neurons, the 
prediction error was plotted as a function of the number of 
neurons. Four different cases with different numbers of 
iterations {100, 200, 300, 500} are tested. As the number of 
iterations is increased from 100 to 500, performance results 
improve slightly, showing different values according to the 
number of hidden layer neurons. The best performance is 
achieved with, 70 hidden neurons for NN1 and 75 hidden 
neurons for NN2.  

F.  Optimal Number of Iterations for an Epoch 

An epoch is one sweep through all the records in the 
training set. The eighteen profiles determined by dynamic 
optimization will be divided into two sets {A,B}, the first one 
for data with zero efficiency weight (ε = 0), the second one 
for data with nonzero efficiency weight (ε =10-3). If only one 
power profile is used as an input, the NN can generate 
accurate output. However, if all nine power profiles of one set 
are used, the sequence training data affects the performance.  

Initially, random sequences of power profiles were used for 
the global training [18]. However, the quality of training 
results varied depending on the random sequence. Therefore, 
all 9 power profiles are used to define an epoch, i.e., one 
epoch consists of nine power profiles and the performance 
results were improved regardless of training sequences.  

Fig. 3 shows the performance trajectories of training error 
(MSE) for both NNs. The error performances converge fast 
within the first 500 iterations for both cases, and thus 500 
iterations could be used to reduce the computational time. 
However, the simulation results of AGO temperature setpoint 
and control input for 0.5 kW/min power profile were not 

satisfactory. Therefore, the number of iterations was 
increased to 20,000 until performances of AGO temperature 
setpoint and control input became satisfactory (Fig. 7). 
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(a) Training of NN1. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
4

10
-2

10
-1

10
0

10
1

20000 Epochs

T
ra

in
in

g-
B

lu
e

Performance is 0.0312415, Goal is 0 NN 2

 
(b) Training of NN2. 

 
Fig. 3. Performance trajectories of error with 20,000 iterations, ε = 0. 

 

IV.  SIMULATION RESULTS 

Using predetermined optimal NN structures, both NNs 
were trained and performances were evaluated with trained 
and untrained data. For the evaluation with trained data, all 9 
power profiles were used for training. For the evaluation with 
untrained data, only 8 power profiles were used for training, 
and the evaluation was made with the untrained power profile. 

A.  Evaluation with Trained Data 

Both NNs were trained with an epoch consisting of all nine 
power profiles of each set {A,B} and the trained NNs were 
evaluated for each power profile. Training data with 
efficiency weight (ε=10-3) show more variations than those 
with zero efficiency weight (ε=0), and worse performance 
results were obtained as shown in Table I. The evaluation 
results are compared in Figure 4 for each output. It shows that 
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the setpoint of stack power (Pstack) and control inputs of stack 
current (istack) and HTR split fraction (fHTR) perform better 
than other outputs. 

 

TABLE  I 
EVALUATION WITH TRAINED DATA 

NN1 (setpoints) NN2 (FF control inputs) Error Criteria 
TAGO N Pstack iStack fHTR fAGO fC60 

ε = 0 0.2266 0.3223 0.1481 0.1477 0.2091 0.4916 0.3011 MA
E ε =10-3 0.2534 0.3592 0.1815 0.1628 0.2265 0.4959 0.3331 

ε  = 0 0.0653 0.4067 0.0209 0.0262 0.2316 0.3982 0.3088 MS
E ε =10-3 0.2735 0.6393 0.1566 0.0315 0.2928 0.4095 0.3827 
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Fig. 4. Evaluation with trained data. 
 

B. Evaluation with Untrained Data 

For the evaluation with untrained data, both NNs are 
trained with an epoch which consists of all eight power 
profiles except one for each set. The trained NNs are then 
evaluated for the untrained power profile. For instance, eight 
power profiles except ramp 40 kW/min for evaluation are 
used for training, and the untrained ramp 40 kW/min power 
profile is used for evaluation in Figure 5.   

As in the evaluations using the trained data, two cases of 
data were tested: Case A for data with zero efficiency weight 
(ε =0) and Case B for data with nonzero efficiency weight (ε 
=10-3). Case A is quite similar to the case with the trained data. 
Case B is slightly worse than Case A as summarized in Table 
II. In most cases, evaluation results with untrained data show 
quite similar results as with trained data. Only the untrained 
[5,75] step power profile overpredicts the MT speed setpoint, 
caused by the lack of training data with lower power level. 

 
TABLE  II 

EVALUATION WITH UNTRAINED DATA 
NN1 (setpoints) NN2 (FF control inputs) Error Criteria 

TAGO N Pstack iStack fHTR fAGO fC60 
ε = 0 0.3084 0.4301 0.1451 0.1269 0.1142 0.5031 0.562 MA

E ε =10-3 0.3352 0.6712 0.2023 0.1809 0.2907 0.5542 0.686 
ε  = 0 0.2392 0.4957 0.0353 0.0261 0.0371 0.5099 0.536 MS

E ε =10-3 0.2966 0.7187 0.0592 0.0483 0.3029 0.5472 0.766 

 

Figs. 5-10 and Table III show the performance results for 
evaluation with trained data using 20,000 iterations for an 
epoch. Figs. 5-7 show the performance results for ramp power 
profiles and Figs. 8-10 show the ones for step power profiles. 
Training data with efficiency weight (ε=10-3) show more 
variations than the ones with zero efficiency weight (ε=0), and 

worse performance results were obtained as compared in 
Table 3.  
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(a) Setpoints. 
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(b) Control inputs. 

 
Fig. 5. Evaluation with ramp 40 kW/min. 
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(a) Setpoints.  
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(b) Control inputs. 

 
Fig. 6. Evaluation with ramp 2 kW/min. 

 
 

0 200 400 600 800 1000 1200

0
100
200
300

T
O

T
 P

ow
er

 [
kW

] 0.5 kW/min Setpoints: ε=0

0 200 400 600 800 1000 1200
1000

1500

A
G

O
 T

em
p.

 [o F
]

0 200 400 600 800 1000 1200

85

90

95

M
T

 S
pe

ed
[k

R
P

M
]

0 200 400 600 800 1000 1200

0
100
200
300

Time[min]

lo
ad

st
ac

k[
kW

]

desired

estimate

  
(a) Setpoints. 
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(b) Control inputs. 

 
Fig. 7. Evaluation with ramp 0.5 kW/min. 
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(a) Setpoints. 
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(b) Control inputs. 

 
Fig. 8. Evaluation with step 5-75 kW. 
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(a) Setpoints. 
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(b) Control inputs. 

 
Fig. 9. Evaluation with step 150-225 kW. 
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(a) Setpoints. 
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(b) Control inputs. 

 
Fig. 10. Evaluation with step 225-300 kW. 
 

 
TABLE  III 

EVALUATION WITH 20,000 ITERATION OF AN EPOCH  

ε = 0  ε = 0.001 

NN1 NN2 NN1 NN2 

MAE MSE MAE MSE MAE MSE MAE MSE 

0.2371 0.2578 0.3207 0.3271 0.3650 0.3493 0.3597 0.3904 

 

V.  CONCLUSIONS 

Based on structural considerations, a diagonal recurrent 
neural network (DRNN) was selected to model the NN 
supervisor for FC/GT hybrid systems.  Furthermore, rather 
than designing a single NN for the three setpoints and the four 
FF control inputs, it was found that dividing the supervisor 
into two separate NNs, one for setpoints, and one for FF 
control inputs, resulted in better predictions. Several NN 
structures were tested to find the optimal number of hidden 
layer neurons and the number of iterations for an epoch. After 
finding optimal values, NNs were trained and performances 
were evaluated.  

The NN supervisor has been developed to reduce the 
computational cost inherent to the dynamic optimization. 
Despite the limited data from the optimization studies, the 
performance results of the developed NN supervisor showed 
their potential for real-time application. As demonstrated, the 
NN Supervisor can generate outputs for an arbitrary load 
which was not used for training. When the plant experiences 
disturbances or change in plant parameters, the output of the 
system may not match the setpoint profile generated by the 
NN supervisor. In this case, the NN supervisor trained off-line 
can be trained adaptively for real-time adjustment. 

Future improvements of the NN supervisor are possible by 
generating additional nonlinear optimization results with input 
profiles which would generate richer information than the 
ones used in this study.  In addition, the training can be 
improved by training the NNS online together with the 
dynamic model.  
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