
 

  
Abstract—This paper presents a methodology for long-term 

electric power demands using a semigroup based system-type 
neural network architecture. The assumption is that given 
enough data, the next year’s loads can be predicted using only 
components from the previous few years. This methodology is 
applied to recent load data, and the next year’s load data is 
satisfactorily forecasted. This method also provides a more in 
depth forecasted time interval than other methods that just 
predict the average or peak power demand in the interval.  
 

Index Terms—Decomposition, load forecasting, neural 
network,  system-type architecture. 

I.  INTRODUCTION 
CCURATE load forecasting is very important for electric 
utilities in a competitive environment created by the 

electric industry deregulation. In order to supply high quality 
electric energy to the customer in a secure and economic 
manner, an electric company faces many economical and 
technical problems in operation, planning, and control of an 
electric energy system [1]. Load forecasting helps an electric 
utility to make important decisions including decisions on 
purchasing and generating electric power, load switching, and 
infrastructure development. Load forecasting is also important 
for energy suppliers, financial institutions, and other 
participants in electric energy generation, transmission, 
distribution, and markets [2]. 

Load forecasting can be divided into three categories: 
short-term forecasting which is usually from one hour to one 
week, medium-term forecasting which is from a week to a 
month, and long-term forecasting which can extend to several 
months or years. The short-term forecast is needed for control 
and scheduling of power system, and also as inputs to load 
flow study or contingency analysis [1]. In addition, short-term 
load forecasting can help to estimate load flows and to make 
decisions that can prevent overloading. The long-term and 
medium-term forecasts are used to determine the capacity of 
generation and transmission, distribution system additions, 
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and the type of facilities required in transmission expansion 
planning, annual hydrothermal maintenance scheduling, etc.  

The load is a non-stationary process which is affected by 
two main factors: time of the day and weather conditions. The 
time dependence of the load reflects the existence of a daily 
load pattern, which may vary for different weekdays and 
seasons. Temperature is the primary weather factor affecting 
the load. Humidity and wind speed are some of the other 
factors that may also influence power consumption. For the 
models including weather variables, the total load may be 
decomposed into the weather sensitive load and the non-
weather sensitive load. The weather sensitive load is mostly 
predicted using correlation techniques [1]. 

Most forecasting methods use statistical techniques or 
artificial intelligence algorithms such as regression, neural 
networks, fuzzy logic, and expert systems [1]. A variety of 
methods, which include various regression models, time 
series, neural networks, statistical learning algorithms, fuzzy 
logic, and expert systems, have been developed for long-term 
forecasting. The downside to these methods is that they 
usually only predict a single value; average, peak, or total 
power, for any given month or time interval. The proposed 
method, however, provides broader feel for the forecasted load 
in that it predicts every hour of every day for the next year. 

 In general, the load has two distinct patterns: weekday and 
weekend patterns. Weekday patterns include Tuesday through 
Friday and weekend patterns include Sunday through Monday. 
In addition, holiday patterns are different from non-holiday 
patterns. In this paper there is no distinction made between 
holidays and non-holidays. 

Section II of this paper provides the general background to 
the load forecasting problem. Section III describes the 
proposed method. Section IV applies the method to the 
forecasting problem, and in section V general conclusions are 
drawn from the results. 

II.  GENERAL BACKGROUND 
Forecasting methods can generally be divided into two 

broad categories: parametric methods and artificial 
intelligence based methods. The parametric methods formulate 
a mathematical or statistical model of load by examining 
qualitative relationships between the load and the factors 
affecting the load. The assumed model parameters are then 
estimated from historical data and the adequacy of the model 
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is verified by analysis of forecast errors. Artificial intelligence 
based methods use artificial neural network as a load model. 
For either of these methods, to perform long-term load 
forecasting, several factors should be considered, such as the 
time factor, weather data, and possible customers’ classes. The 
time factors include the season of the year, the day of the 
week, and the hour of the day. There are differences in load 
between weekdays and weekends. For example, Mondays and 
Sundays being adjacent to weekends, may have structurally 
different loads than Tuesdays through Fridays. Obviously the 
electric loads are very much dependent upon weather 
conditions. The load models, however, which include weather 
variables, are limited in use by problems such as inaccuracy of 
weather forecasts and difficulties in modeling the weather-
load relationship [12]. In this paper, the weather effects on the 
electric load are not explicitly considered. 

Most long-term forecasting is done using artificial 
intelligence techniques. Many methods have previously been 
proposed using artificial neural networks (ANN), fuzzy logic, 
or some combination of the two [6]. Neural networks have 
become increasingly popular in the past few years because of 
their abilities to model non-linear and very complex systems. 
Other proposed methods propose modeling the overall load 
pattern by multiple linear regression models [7]. Still others 
have proposed methods that decompose the systems using 
wavelet decomposition with very good results [9]. However, 
most of these approaches only forecast the average, total, or 
peak values for a given interval of time. 

III.  THE PROPOSED METHOD 
Recently, a shift has occurred in the overall architecture of 

neural networks from simple or component-type networks to 
system-type architectures. The most popular architecture 
seems to be the one advocated by Jacobs and Jordan [11], 
called the “Modular Connectionist Architecture”. The most 
serious flaw in the design of system-type neural networks is 
the lack of a cohesive discipline in the architectural design and 
in the design of the learning algorithm. Virtually, the entire 
design is done on an intuitive basis. To illustrate the lack of a 
cohesive discipline, in [14], the partitioning of components 
corresponds to separation of variables, which works if the 
variables are separated and does not work if the variables are 
not separated [3]-[5]. 

A.  The System-type Neural Network Method 
In previous papers [3]-[5], a system type neural network 

was proposed which implemented extrapolation. In this 
method, the distributed parameter system (DPS) surface 
determined by a given data set was expanded along one axis. 
Rather than thinking of the load as, 

( , , ,  )Load f Day Hour Weather Customer classes= , this 
approach considers the ( , )Load f Day Hour= , parameterized 
by weather and customer classes. Other parameters might be 
population growth and special events such as Olympics. That 
is, the role of the parameters is that they determine the 
transformation form one load surface to another surface. In the 

next section, it will be shown that the load for any year can be 
represented in the following form:  

 
( , ) ( ) ( )L Day Hour C Day E Hour=         (1) 

 
This entire method hinges on the assumption that the basis 

vector set remains very similar from year to year. On account 
of this, a basis set can be chosen and used for multiple years. 
Thus, only the coefficient vector for any other year must be 
known in order to reconstruct the electric power demand. 

Neural networks are being used for systems described by 
PDE’s [8]. The system-type attribute of the neural network 
architecture is shown in Fig.  1, implementing an arbitrary 
function ( )HDL , . Unlike conventional neural network 
architectures that would attempt to achieve the mapping 

( )HDL ,  with one neural network, the proposed architecture 
reflects a system-type approach using two neural network 
channels, a Function Channel and a Semigroup Channel, in an 
adaptation of the connectionist architecture (Fig.  1). During 
use, the Semigroup Channel supplies the function channel 
with a coefficient vector ( )DC  as a function of the index D. 
The coefficient vector, when applied to the basis set ( )HE  of 
the function channel, causes the function channel to operate as 
one specific function from within a vector space of functions. 
Jointly, these two channels realize a semigroup-based 
implementation of the mapping ( )HDL , .  

 

C(0)

Function Channel
(NN1)

Semi-group Channel
(NN2)

H

D

( , ) ( ) ( )TL D H C D E H=

( )C D

 
Fig.  1: System-type architecture. 
 

The function channel can have a Radial Basis Function 
(RBF) architecture [11]. It consists of n RBF networks, each 
one of which implements one orthonormal vector of an n-
dimensional basis set of vectors, ( )HE . The dimensionality, 
n, is chosen as the minimum number of vectors which, when 
recombined with the coefficient vectors, will result in a 
reconstructed load demand within a given error tolerance. The 
outputs of the orthonormal vectors are (internally) linearly 
summed so that the channel spans an n-dimensional function 
space. The coefficients, which determine the linear sum and 
thereby define the specific function being implemented is 
supplied by the Semigroup Channel. Up to this point, the 
operation of the RBF channel parallels the idea used by Phan 
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and Frueh [15]. 
One of the essential differences between their approach and 

the present proposed approach is that the former requires prior 
engineering knowledge for selecting the basis vectors, and the 
latter approach requires no such knowledge. One advantage 
that RBF networks have over other architectures is that their 
functionality can be given an explicit mathematical expression 
in which the neuron activation functions act as Green’s 
functions. This makes these networks amenable to design 
rather than training. Another advantage is that they function as 
universal approximators [16]. The Semigroup Channel can be 
adapted from the Diagonal Neural Network (DRNN) or the 
Elman architecture [13], in which the input is split into a 
dynamic scalar component D and one static vector component, 
the vector ( )0C . The output is a vector, ( )DC , which is 
related to the dynamic input D and to the static input ( )0C  by 
the semigroup property: 

  ( ) ( )0)( CDDC Φ= , where ( ) ( ) ( )2121 DDDD ΦΦ=+Φ      (2) 

B.  Learning Algorithm of the Proposed System-type NN  
The first component of the system, namely the Function 

Channel, since it is composed of RBF components, can be 
designed, rather than trained. The second component, the 
Semigroup Channel, can be trained in the new way illustrated 
in Fig.  2. During training, the Semigroup Channel receives as 
input a preliminary coefficient vector ( )DC  and produces a 

smoothed coefficient vector, )(~ DC . That is, the primary 
objective of training is to replicate (and, if necessary, to 
smoothen) the vector ( )DC  with a vector )(~ DC  which has 
the following semigroup property:  

( ) ( )0~)(~ CDDC Φ= ,                   (3) 

where and ( )DΦ  is an nxn matrix that satisfies:  

( ) ( ) ( )2121 DDDD ΦΦ=+Φ                      (4) 

 However, there is a secondary objective of training; the 
channel must also “replicate” the semigroup property of the 
trajectory by gradually acquiring a semigroup property of its 
own, in the weight space. The existence of this acquired 
semigroup property in the weight space becomes the basis for 
extrapolation [3]. In order to elicit this gradual acquisition of 
the semigroup property, it is necessary that the training in this 
second step (semigroup tracking) occur in a gradual manner, 
as shown in Fig.  2.  In  Fig.  2, the entire trajectory is split 
into successively-longer sub-trajectories. The network is 
trained on each of these consecutive sub-trajectories until the 
weights converge. 

1W
2W

3W 4W N. . .Look for weight convergence

data point  
Fig.  2: Overview of new training algorithm. 

 

IV.  SIMULATION AND COMPARISON 
Since each day has its own unique load pattern, the load 

data from 2000 – 2004, provided by Korea Electric Power 
Corporation (KEPCO), was separated into different days of 
the week. Wednesday was arbitrarily chosen for extrapolation 
and each year of Wednesday data was decomposed into a 
primary basis set and coefficient set of dimensionality n, 
where n is set to six. Dimensionalities of four and eight were 
also tried. Four basis vectors did not provide satisfactory 
computed loads, while eight vectors did not result in 
significant improvement over six vectors. A common basis set 
was obtained from the year 2000 and was used as the basis for 
the other years as well. The data from the year 2004 was set 
aside for later comparison with forecasted data obtained by 
extrapolating the first three years. To illustrate the validity of 
the basis vectors and coefficient vectors, the empirical data for 
the year 2004 is shown, Fig.  3, for comparison with the 
computed load, Fig.  4 which was obtained using the rule: 

( , ) ( ) ( )L Day Hour C Day E Hour= .            (5)  

Here, Day is a sequential number for a day of the week 
within the year, where 52...1=Day , as there are generally 
52 of a given day of the week in a year. 
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Fig.  3: Empirical load data for year 2004. 
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Fig.  4: Load computed from primary vector sets. 
 

Ordinarily, when using the proposed method, extrapolation 
of the coefficient vectors from the year 2003 would have been 
attempted. After the coefficient vectors had been extended by 
the number of Wednesdays in the year 2004, they would have 
been recombined with the primary basis set of the year 2003, 
and the year 2004 would have been forecasted. However, it 
was found when the empirical data was decomposed that the 
coefficient vectors were highly non-smooth. This non-smooth 
property of coefficient vectors, Fig.  5, made it impossible to 
directly extrapolate the coefficient vectors. 
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Fig.  5: Sample primary coefficient vector trajectories illustrating non-
smoothness. 

 
It was seen that all the coefficient vectors from each year 

were well correlated with their counterparts in the other years 
(for example, see Fig.  1 for the primary coefficient vector 
trajectory). Therefore, each coefficient vector trajectory from 
each year is stacked with its counterparts from the remaining 
years. This created new three dimensional data sets, iC , 
where i represents the  set of stacked coefficient vectors 
trajectories i. The new data sets can also be decomposed into a 
secondary basis and coefficient set. Furthermore, because of 
the correlation it is expected that the secondary coefficient 
vectors will be smooth. This new DPS is decomposed as: 

( ) ( )DayEYearCDayYearC iii
22),( = ,            (6) 

where the superscript two indicates that this is the secondary 
decomposition. Each these new three dimensional data sets 
was decomposed into a set of four basis vectors, ( )DayEi

2 , 

and four coefficient vectors, ( )YearCi
2 . By choosing the 

appropriate basis vectors, smooth secondary coefficient 
vectors were obtained, and their extrapolation became 
possible. Now, as a result of the secondary decomposition, it is 
not the day which is being extrapolated. Rather, it is the year 
that is being extrapolated. That is, by extrapolating the 
secondary coefficient vectors from the set, ( )YearCi

2 , along 
the year axis, the primary coefficient vector, i, for the next 
year is being predicted.  

Training a simple recurrent network (SRN) with the 
proposed progressive training algorithm, a good fitting 
smoothed vector was found, shown in Fig.  6, and the 
semigroup channel acquired a semigroup property of its own. 
Thus the weights of the neural network were replaced with a 
weight change sequence calculated from the actual weight 
changes of the neural network within the observation window.  

 

 
Fig.  6: Comparison of original and smoothed secondary coefficient vectors. 

 
Note that these continuous coefficient vector trajectories 

represent discrete data points. In order for the weight changes 
to converge, however, the neural network needed a continuous 
training path. Thus, the continuous curves were fit to the 
discrete points. In other words, the coefficient vector 
trajectories are only valid at the points 2003, 2004, and 2005 
on the year axis. The data used in training the network 
included only data from the last half of the year 2002 and all 
the data from the year 2004. 

  Extrapolating the smoothed coefficient vectors from the 
observation window into the test window confirmed that the 
weight change sequence was valid. The differences, as seen in 
Fig.  7, between the smoothed vectors and the extrapolated 
vectors are minimal. Extending the weight change sequence 
into the next region the final extrapolated vectors were 
obtained and shown in Fig.  8. 
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Fig.  7: Extrapolation tests for secondary coefficient vectors from primary 
coefficient vector set  1C .  

 

 
Fig.  8: Extrapolation for secondary coefficient vectors from primary 
coefficient vector set 1C . 

 

This extrapolation testing and final extrapolation was then 
performed for each coefficient vector set within the secondary 
decomposition. The extended secondary coefficient vectors, 
when recombined with their respective basis sets, result in a 

predicted coefficient vector for the year 2004, Fig.  9. 

Fig.  9: Comparison of actual and predicted primary coefficient vectors for the 
year 2004. 

For this paper only primary coefficient vectors one and 
three were shown. They were selected, because they were the 
most non-smooth, and thus the hardest to predict. As can be 
seen from Fig.  9, the predicted coefficient vector is very 
similar to the actual coefficient vector. Since the proposed 
method of extrapolation was successful for both these, it is 
expected that it will also be successful for the rest of the 
primary coefficient vectors. 
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Fig.  10: Forecasted load for year 2004. 

 

The forecasted load shown, Fig.  10, is very similar in 
shape to the empirical load demand in Fig.  3. Though there 
appears to be significant error around day 40. Fig.  11 shows a 
graphical representation of the data in Table 1. 
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Fig.  11: Relative percent error. 

 

The maximum relative error was 31.32%, and the average 
was 6.21%. Note that in the original load, Fig.  3, there is a 
significant negative peak on days 36 and 37. These are likely 
holidays and certainly deviations from the normal Wednesday 
load pattern, which results in a high error. Though the error is 
relatively high compared to that of short term forecasting, 
which is generally below 2%, it must be remembered that the 
purpose of long-term forecasting is not to precisely predict the 
load at any given time, but rather to predict the general trend 
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in the demands over an interval of time. The proposed method 
has several advantages over other long-term forecasting 
techniques. First, by using the proposed method, the load 
pattern can be seen for many different times of day, seasons of 
the year, etc. This is a distinct advantage over methods which 
only predict the average, peak, or total demand for a month.  
Secondly, the proposed method provides the viewer with a 
more intuitive grasp of the overall load pattern. 

To summarize the procedure, data from any day of the 
week is algebraically decomposed into a basis set and a 
coefficient set. Since the n vectors comprising the coefficient 
set are most likely non-smooth, n new three dimensional 
functions are built by stacking the ith coefficient vector from 
each year. These in turn are decomposed in an attempt to find 
a smooth secondary coefficient set. If they are found, the 
vectors are extrapolated using the neural network system to 
predict the next year’s coefficient vector. Once all n 
coefficient vectors have been predicted, they are combined 
with the primary basis set and the forecasted year is obtained. 

V.  CONCLUSIONS 
In this paper, a methodology was proposed to perform 

long-term electric power demand forecasting. This method 
was then applied to an empirical data set, and the year 2004 
was forecasted by predicting its primary coefficient vectors. It 
was shown that the proposed method achieved satisfactory 
results although there was no attempt to separate holidays 
from non-holidays. If the holidays were separated out, it is 
expected that the error would be significantly lower. This 
method also provides a more in depth forecasted time interval, 
rather than just predicting the average or peak power demand 
in the interval.  

This paper also addressed the problem of extrapolating 
highly non-smooth coefficient vectors, by a secondary 
decomposition. 

This method, though applied to Wednesday in this paper, 
can be applied to any other day of the week including 
weekends. Moreover, it is expected that similar results can be 
obtained for any day.  
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TABLE  I:   RELATIVE  PERCENT ERROR OF FORECASTED RESULTS

D     Hr 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 

1 21 21 21 20 20 20 20 20 22 24 24 24 23 24 24 24 24 23 22 22 24 24 21 21 
2 2.0 2.1 2.6 1.3 0.8 0.3 0.1 0.2 0.1 1.8 1.4 2.3 0.2 0.6 1.4 1.1 1.7 0.0 0.3 0.4 1.9 2.5 0.0 1.0
3 5.0 2.1 0.3 3.3 6.2 8.0 7.6 7.6 7.2 5.7 4.0 0.0 4.8 1.3 0.4 1.7 3.1 11 8.7 3.0 0.7 0.2 6.5 8.3
4 8.4 8.9 8.9 7.2 6.4 5.5 5.2 5.3 6.2 9.0 8.7 9.1 7.9 8.5 9.3 8.8 8.5 5.3 6.4 6.4 8.9 9.6 7.3 6.9
5 7.1 7.5 7.0 5.5 5.2 4.7 4.3 4.2 4.8 7.5 7.5 8.5 7.2 7.6 8.3 7.8 7.7 4.5 4.7 5.3 7.4 8.1 6.0 6.4
6 2.8 2.7 2.3 1.1 0.6 0.2 0.8 0.6 0.5 1.2 0.7 1.0 0.1 0.3 0.9 0.2 0.3 2.2 1.4 1.0 1.0 1.8 0.1 0.9
7 8.6 9.7 10 11 11 12 13 13 14 13 13 13 14 15 14 15 15 17 16 16 13 12 13 11 
8 5.1 4.4 3.6 2.4 2.6 2.3 1.6 1.1 2.0 3.1 3.4 3.7 3.1 3.7 3.8 3.6 3.8 0.2 0.7 1.7 3.6 3.4 2.2 3.7
9 10 9.5 9.2 8.2 8.0 7.3 7.2 7.7 8.3 11 11 12 12 12 13 12 12 8.6 8.0 9.1 11 11 8.9 9.8
10 9.3 8.3 7.3 6.0 6.3 6.2 5.8 6.2 7.2 8.8 9.3 10 10 10 11 9.9 11 7.5 6.0 7.9 9.8 9.3 7.2 7.7
11 5.7 6.7 7.3 6.8 4.8 4.0 5.4 5.2 6.9 7.2 7.0 6.4 6.2 7.3 6.9 7.3 6.1 7.2 8.5 8.5 7.3 7.1 6.3 2.1
12 9.6 8.4 6.9 6.6 7.6 7.9 7.0 7.1 7.6 9.2 9.5 10 11 10 11 9.8 9.8 8.2 6.2 7.1 9.6 8.9 8.0 9.2
13 6.0 4.5 3.1 2.6 3.8 4.3 3.6 3.2 2.7 4.2 4.8 5.0 5.2 4.8 5.8 4.4 4.1 3.3 1.2 2.8 4.8 3.9 3.7 5.1
14 6.9 5.2 4.0 3.3 4.5 4.6 3.9 3.8 3.7 5.3 5.7 6.3 6.4 6.3 6.6 5.4 5.9 4.6 1.9 3.9 5.8 5.0 4.7 5.5
15 4.3 3.2 2.7 2.5 4.1 4.9 4.0 3.1 3.0 3.9 5.0 4.1 4.7 4.6 5.0 4.0 4.3 4.2 1.8 3.2 4.0 3.1 4.0 5.2
16 4.3 2.2 1.4 1.6 2.6 3.5 2.4 1.9 1.3 2.4 3.4 3.7 2.5 2.8 3.8 2.9 3.9 3.1 1.2 3.4 3.7 2.0 2.2 2.3
17 0.0 1.8 3.5 4.3 3.6 3.8 4.7 5.3 6.1 4.9 4.3 3.9 4.8 4.6 4.2 6.6 5.5 6.9 10 7.2 3.8 4.3 4.2 3.2
18 0.8 2.1 4.0 5.2 4.7 5.1 6.5 7.7 7.7 5.1 3.0 2.4 3.7 3.5 3.0 4.5 5.2 7.8 11 8.0 2.6 3.6 3.8 5.0
19 3.9 3.3 3.3 3.6 4.6 4.9 4.3 4.2 3.5 3.6 4.7 4.7 4.3 4.0 4.5 3.7 4.6 4.1 2.9 3.1 3.8 3.6 4.0 5.6
20 11 9.8 9.0 9.1 9.8 9.5 9.0 9.3 9.3 11 12 12 12 11 11 10 11 11 8.3 8.6 11 10 10 10 
21 2.9 4.9 6.2 6.6 6.8 7.6 8.1 9.5 10 8.8 7.4 7.1 8.6 8.6 8.2 9.1 9.9 11 12 11 6.5 7.0 7.2 7.9
22 0.1 0.4 1.0 0.3 0.0 0.3 0.3 0.4 1.8 1.0 0.2 0.2 0.7 0.8 0.5 1.5 0.1 0.9 2.7 2.3 0.4 0.7 0.3 1.0
23 11 10 9.7 9.8 10 10 9.5 10 9.9 11 12 12 12 11 12 11 12 11 9.4 9.5 11 11 11 11 
24 5.1 4.1 3.6 3.6 4.0 3.6 3.4 3.6 3.1 4.2 5.2 5.0 5.0 5.1 5.1 4.4 5.0 4.0 2.3 3.3 4.3 4.6 4.2 5.0
25 3.7 2.7 2.5 3.1 3.2 3.2 2.4 2.8 2.8 3.1 3.5 3.8 3.3 3.1 3.4 3.1 4.5 3.4 2.2 3.1 3.6 3.0 2.7 3.7
26 3.0 3.5 4.2 3.9 3.5 3.8 4.2 3.1 3.9 3.4 2.8 2.6 2.4 2.7 2.5 2.9 2.1 3.0 4.6 3.7 3.2 3.0 3.3 2.5
27 1.3 0.7 0.8 0.9 1.3 1.2 0.9 1.1 0.2 1.2 1.3 0.7 1.0 0.5 0.7 0.3 1.4 0.9 0.0 0.4 1.1 0.7 0.8 1.5
28 6.7 6.2 6.0 6.0 6.2 6.1 5.7 6.6 5.9 7.1 7.5 7.5 7.7 7.7 7.6 7.1 8.1 6.8 5.5 6.3 7.0 6.8 6.7 7.4
29 9.1 9.9 11 10 9.9 9.9 10 10 12 10 8.7 8.4 9.1 9.4 10 9.9 8.5 9.9 12 11 9.7 9.4 9.4 8.6
30 2.3 3.1 3.4 3.5 2.9 3.5 3.8 3.5 4.0 2.7 2.0 2.0 1.8 2.4 2.3 2.5 2.0 3.2 4.8 4.0 3.8 2.1 2.6 1.7
31 6.3 4.5 3.1 2.4 2.6 3.1 3.5 3.8 2.3 3.1 3.6 3.4 4.1 3.6 3.3 3.5 3.0 2.4 1.3 2.9 3.6 3.5 3.0 3.3
32 6.5 7.7 8.1 8.5 8.5 8.8 8.7 9.2 9.7 7.8 6.8 6.5 7.0 7.7 8.2 7.6 6.5 7.9 10 8.4 7.9 7.2 7.9 8.0
33 6.1 6.4 6.6 7.0 6.6 7.4 7.6 8.5 9.3 7.4 7.1 7.2 7.7 8.3 8.7 8.5 7.5 8.9 10 8.5 8.9 8.0 7.0 7.7
34 5.9 6.4 6.7 6.8 6.4 6.4 7.1 5.4 8.9 8.1 7.4 7.1 8.0 7.6 7.8 7.5 6.6 7.9 8.9 6.2 7.7 8.0 7.3 6.3
35 6.0 4.9 4.0 3.8 4.6 5.4 4.8 4.7 3.8 5.3 6.4 6.2 5.9 6.3 6.9 6.1 7.3 5.9 4.3 6.7 5.3 5.3 5.5 5.0
36 17 16 16 15 16 17 16 17 16 18 18 19 18 19 19 19 20 18 18 20 18 17 16 16 
37 30 29 29 29 30 31 30 31 29 30 30 30 28 29 30 30 30 30 30 31 29 28 28 29 
38 5.8 6.9 7.3 6.9 6.0 5.2 5.7 6.5 9.2 9.4 9.6 9.7 11 10 9.6 10 9.3 9.9 8.2 6.9 8.5 9.4 8.8 7.2
39 0.8 2.6 4.4 4.4 4.4 2.3 2.2 3.4 4.6 5.3 3.7 3.6 4.7 3.4 3.1 2.9 3.6 4.2 0.9 1.7 1.2 2.9 4.6 4.9
40 3.3 4.4 4.8 4.5 3.0 1.9 2.6 3.3 5.7 5.7 5.9 5.9 7.5 6.5 5.6 6.6 5.7 6.3 2.8 3.9 5.1 5.5 5.3 4.8
41 5.5 6.4 6.5 6.3 4.8 3.6 3.9 5.0 7.3 7.3 7.2 7.6 8.7 8.4 7.4 8.4 7.1 7.9 4.1 6.5 6.5 7.0 6.8 5.9
42 2.3 1.9 1.7 1.8 3.5 4.3 4.3 3.6 2.4 3.1 3.3 3.5 3.0 3.0 4.0 3.0 3.2 3.1 5.4 2.9 2.8 3.2 2.8 3.2
43 2.7 2.1 1.4 1.6 3.5 4.7 4.0 3.4 2.4 2.8 3.2 3.2 2.1 2.9 3.6 2.6 2.7 3.5 5.2 3.0 3.5 3.1 2.2 2.7
44 0.9 0.1 0.0 0.0 1.9 2.9 2.1 1.7 0.9 1.1 1.5 1.5 0.3 0.5 1.1 0.3 1.8 2.6 3.0 1.1 1.8 1.7 0.1 1.2
45 1.9 2.5 2.5 1.9 0.1 1.6 0.5 0.5 1.4 1.1 0.8 1.0 2.0 1.6 1.3 2.1 0.0 0.7 0.1 0.7 1.1 1.3 1.5 0.1
46 0.6 0.8 1.5 1.3 0.5 1.3 0.4 1.2 1.6 0.5 0.5 0.5 2.2 2.4 1.8 2.5 1.3 0.3 0.6 1.8 0.7 0.2 1.3 0.6
47 10 9.5 9.2 9.1 11 11 11 11 11 13 13 13 13 12 13 12 13 14 13 12 13 13 10 10 
48 0.3 0.4 0.7 0.9 0.1 0.3 0.3 0.7 1.3 0.3 0.5 0.4 1.6 2.0 1.2 2.1 0.6 0.4 0.9 1.3 0.1 0.1 1.7 0.4
49 2.3 2.7 2.7 3.2 2.2 1.9 2.7 3.1 3.4 2.2 2.6 2.5 3.8 4.2 3.7 4.5 2.6 1.1 3.1 3.4 2.5 1.6 3.7 3.0
50 0.7 0.3 1.5 1.7 0.7 0.5 1.4 1.6 2.1 1.1 1.4 1.0 2.1 2.4 1.8 2.6 0.9 0.9 2.7 2.0 1.3 0.8 2.2 0.6
51 3.0 2.4 3.1 3.6 3.1 3.1 4.1 4.6 4.5 4.3 4.3 3.9 5.2 5.4 5.0 5.3 4.2 4.7 5.9 5.5 4.6 3.6 4.8 2.5
52 8.5 7.8 7.9 9.2 9.4 9.7 10 11 11 10 10 9.4 11 11 11 11 10 11 13 12 11 9.7 10 9.4
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