
 

 

 

  

Abstract—Neural networks have been applied in various new 
ways to the manifold problems in power systems. The great 
majority of neural network designs attempt to model a dynamic 
mapping with one neural network.  Recently, attempts have 
been made at using system-type neural networks for distributed 
parameter systems, where the system dynamics is distributed 
over a spatial-temporal domain. In this paper, system-type 
neural networks is illustrated, which are designed using 
semigroup theory. The objective will be either to achieve 
extrapolation of functional patterns along one axis, or to achieve 
a forecasting of functional patterns in multiple axes. 

 

I. INTRODUCTION 
OWADAYS, a shift has occurred in the overall architecture 
of neural networks from simple or component-type 

networks to system-type architectures for distributed 
parameter systems. There are three reasons for the shift in 
emphasis from component-type to system-type neural 
networks. First, in the interests of advancing science, 
system-type neural networks are seen as the next step. Second, 
very concrete flaws have been seen in component-type neural 
networks [1]. Third, there is a need for learning data in 
multidimensional space or spatial-temporal domain. In such 
cases, it is necessary to use a system-type neural network 
where one or more components learn individual functions, 
and another component synthesizes their contributions. Other 
classes of neural networks have their own problems, which 
also motivate a move to system-type neural networks. 

The first attempts at system-type neural networks used a 
variety of ad-hoc approaches based mainly on intuition. Very 
recently, efforts have been made to develop a disciplined 
approach in this area. The most popular architecture seems to 
be the one advocated by Jacobs and Jordan [2], called the 
“Modular Connectionist Architecture”, which is shown in Fig. 
1.  It consists of a collection of expert components, each being 
trained independently, tied together by a component called 
the “gating logic” element, whose function is to decide on the 
relative contributions to be made by each expert component, 
such that when they are added, they provide the correct output 
for a given input. The most serious flaw in system-type neural 
networks is the lack of a cohesive discipline in the 
architectural design and in the design of the learning 
algorithm. Virtually, the entire design is done on an intuitive 
basis. As a contrast to intuition, the proposed method relies 
on semigroup theory. To illustrate the lack of a cohesive 
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discipline, in [3], the partitioning of components corresponds 
to separation of variables, which works if the variables are 
separated and does not work if the variables are not separated. 
As another example, in [4], after experiencing failures with 
one neural network emulating a complex chemical system, 
the authors use a multi-component architecture in which 
switching logic simply selects which particular component’s 
output to use. As still another example, in [5], the author 
explicitly raises the issue of whether or not it is possible to 
develop a coherent basis for the architectural design of a 
multi-component neural network system, and then proceeds 
to improvise a multi-component solution for modeling the dry 
and viscous torque within a clutch by mapping components to 
subsets of the inputs, where the segregation process is based 
on first principles. In both of these cases, the design is based 
primarily on the designer’s intuition. 

In recent years, among many other applications, semigroup 
theory has been widely used in the study of control and 
stability of distributed parameter systems, or systems 
governed by differential equations on an abstract Banach 
space. It is well known that differential equations form a 
major tool in the study of pure and applied sciences including 
engineering and many areas of social sciences. Depending on 
the problem, these equations may take various forms, such as 
functional differential equations, partial differential equations 
(PDE’s), and sometimes combination of interacting systems 
of ordinary and partial differential equations. In general, 
under broad assumptions, many of these equations can be 
reformulated as ordinary differential equations on abstract 
spaces, for example, Banach spaces [4]. This is where 
semigroup theory plays an important role and provides a 
unified and powerful tool for the study of existence, 
uniqueness, and continuous dependence of solutions on 
parameters and their regularity properties. Semigroup theory 
has also found extensive applications in the study of Markov 
process, ergodic theory, approximation theory and control 
and stability theory [6].  
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In Section II, we describe the system-type neural networks. 
In Section III, we consider applications to the following 
areas: temperature distribution in the boiler furnace, enthalpy 
extrapolation in the delivery section of a power plant, 
prediction of mass unbalance at different speeds for a rotating 
machine, and short-term load forecasting. The first three 
applications involve extrapolation and the fourth application 
involves a forecasting. In Section IV, the simulation results 
are shown. Finally, we make conclusions in Section V.  

II. SYSTEM TYPE NEURAL NETWORK 

A. Proposed System Type Neural Network Architecture 
Neural networks are being used for systems described by 

PDE’s [7]. The system-type attribute of the neural network 
architecture is shown in Fig. 2, implementing an arbitrary 
function ( , )T z r . Unlike conventional neural network 
architectures that would attempt to achieve the mapping 

( , )T z r  with one neural network, the proposed architecture 
reflects a system-type approach using two neural network 
channels, a Function Channel and a Semigroup Channel, in 
an adaptation of the connectionist architecture, which 
implements a mapping of the following form:  
 

( , ) ( ) ( ) ( )T
zT r z T r C z E r= =            (1) 

 

During use, the semigroup channel supplies the function 
channel with a coefficient vector ( )C z  as a function of the 
index z. The coefficient vector, when applied to the basis set 

( )E r of the function channel, causes the function channel to 
operate as one specific function from within a vector space of 
functions. Jointly, these two channels realize a 
semigroup-based implementation of the mapping ( , )T z r . 
The similarity between the proposed architecture (Fig. 2) and 
that of Fig. 1 arises from the fact that the Function channel is 
implemented as N “expert” systems.  

The function channel can have a Radial Basis Function 
(RBF) architecture [8]. It consists of n RBF networks, each 
one of which implements one orthonormal vector of an 
n-dimensional basis set of vectors ( )E r . The outputs of the 
orthonormal vectors are (internally) linearly summed so that 
the channel spans an n-dimensional function space. The 
coefficients which determine the linear sum and thereby 

define the specific function being implemented is supplied by 
the semigroup channel. Up to this point, the operation of the 
RBF channel parallels the idea used by Phan and Frueh [9]. 
One of the essential differences between their approach and 
the present proposed approach is that the former requires 
prior engineering knowledge for selecting the basis vectors, 
and the latter approach requires no such knowledge. One 
advantage that RBF networks have over other architectures is 
that their functionality can be given an explicit mathematical 
expression in which the neuron activation functions act as 
Green’s functions [10]. Another advantage is that they 
function as universal approximators [8]. Still another 
advantage that RBF networks have is that they can be 
designed rather than trained.   

The semigroup channel can be adapted from the Diagonal 
Neural Network (DRNN) [11] or the Simple Recurrent 
Network (SRN) architecture [12], in which the input is split 
into a dynamic scalar component z and one static vector 
component, the vector (0)C . The output is a vector ( )C z , 
which is related to the dynamic input z and to the static input 

(0)C  by the semigroup property:  
 

( ) ( ) (0)C z z C= Φ                (2) 
where 

1 2 1 2( ) ( ) ( )z z z zΦ + = Φ Φ              (3) 
      

B. Learning Algorithm of Proposed System-Type Neural 
Network 

The first component of the system, namely the Function 
Channel, can be designed, rather than trained. The design 
consists of determining the algebraic dimensionality of ( )E r , 
say n, of then choosing n sample functions from the given 
data, of then orthonormalizing the n functions, and finally of 
training n neural networks to emulate those n functions. For 
each z, a coefficient vector ( )C z  is then formed which 
expresses the linear dependence of the zth sample function on 
the basis set.    

The second component, the Semigroup Channel, can be 
trained in the new way illustrated below. During training, the 
semigroup channel receives as input a preliminary coefficient 
vector ( )C z  and produces a smoothened coefficient vector 

( )C z .  That is, the primary objective of training is to replicate 
(and, if necessary, to smoothen) the vector ( )C z  with a 

vector ( )C z  which has the following semigroup property 
[13]:  
 

( ) ( ) (0)C z z C= Φ                (4)  
 
where 1 2( ) [ ( ), ( ), ..., ( )]  T

NC z c z c z c z≡ , ( )zΦ : an nxn matrix 
that satisfies (3). 

However, there is a secondary objective of training; the 
channel must also “replicate” the semigroup property of the 
trajectory by gradually acquiring a semigroup property of its 
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Fig. 2. System-type architecture. 
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own, in weight space. In terms of control theory, the idea is to 
get the semigroup channel to gradually behave as an observer 
of the reference model, which is producing the coefficient 
trajectory.  When this observer behavior finally evolves, the 
output of the semigroup channel then tracks the output of the 
reference model. (The existence of this acquired semigroup 
property in weight space becomes the basis for 
extrapolation.)  In order to elicit this gradual acquisition of 
the semigroup property, it is necessary that the training in this 
second step (semigroup tracking) occur in a graduated 
manner, as shown in Fig. 3, where l is the length of coefficient 
vector. It must be noted that there are two concepts of 
convergence that occur. First, to acquire a given weight, for 
example, weight W3, requires conventional training 
convergence, which in turn may require 500 training 
iterations. Second, after all weights (W1, W2, …, Wn) have 
been obtained, a search begins for a convergence within this 
weight stream alone.  

C. Extrapolation 
 Extrapolation involves only the coefficient vector and the 
Simple Recurrent Network (the semigroup channel). At the 
uppermost level, the idea is to train the neural network to 
replicate the coefficient vector (produced by the previous 
system modeling effort) in such a way that it is additionally 
replicating the semigroup property, which is responsible for 
generating the coefficient vector by acquiring a semigroup 
property of its own in weight space. This idea requires a 
gradual training approach in which the sequence of weight 
changes reaches a point of weight convergence, after which 
only that portion of the weight changes that are connected to 
the extrapolating variable experience any subsequent changes. 
This convergence is accompanied by a linearization of the 
original nonlinear SRN behavior in which the rule for weight 
change (for the extrapolating variable) generates a semigroup 
property. 

D. Forecasting 
By replacing the semigroup channel with a comparator, a 

slight variation of the above functionality is achieved, where 
the goal of extrapolation is replaced with a new goal of 
creating an entire new surface based upon a relationship 
between parameters which is shown in Fig. 4. Considering 
the family of functions shown in the Fig. 4, if for general m, 

( , ) ( ) ( )m mF x y C x E y= , and if the basis set E(y) is common 
to all members of family, and finally if a relationship exists 
between the parameters ξ1, ξ2,…, and ξm, then a relationship 

will exist between the coefficient vectors of the family. That 
is using F1 as a reference, there is a mapping from the 
coefficient vector of F1 to the coefficient vector of Fm:  
 

1( ) ( ) ( )m
mC x T C xξ=               (5) 

III. APPLICATIONS 
Three applications of extrapolation and one application of 

load forecasting will be considered. 

A. Monitoring of Temperature in Boiler Furnace 
The electric utility industry is charged to deliver power as 

inexpensively and as reliably as possible.  Meeting these dual 
obligations has become increasingly difficult over the past 30 
years. Environmental and economic concerns pressed the 
utility industry to develop clean and efficient ways of burning 
coal and oil. This has required major improvements in 
instrument, data management, and control of electric power 
plant components such as boilers. It has become a challenge 
to measure high temperature distributions of high-pressure 
liquids, steam, combustion gases, and heat transfer 
components in extremely adverse power plant environments. 
Traditional sensors have not exhibited sufficient stability and 
long-term accuracy without requiring expensive maintenance 
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and recalibration. Additionally, each sensor only provides 
one reading so that only a limited number of readings are 
obtained. 

Fig. 5 shows the Penn State down-fired combustor (DFC), 
which is an advanced pilot-scale furnace designed to evaluate 
the combustion performance of various fuels (natural gas, 
coal, coal-water slurry fuel) including emissions monitoring.  
The combustor has a 20-inch internal diameter, is 10 feet high, 
and is designed for a thermal input of 350,000 Btu/h 
(nominal), but this can be varied from 200,000 to 500,000 
Btu/h. The proposed boiler furnace-monitoring model 
addresses the estimation of spatial temperature distribution 
continuously for any operating condition.  

As an alternative to the above model-based estimation 
techniques, such as infinite dimensional extended Kalman 
filtering, an intelligent monitoring scheme will be developed 
for 3D temperature estimation by using the proposed 
system-type neural networks. An intelligent algorithm will be 
developed to adaptively tune the monitoring system in 
real-time to implement in the experimental boilers. The 
previous emphasis on the application of computational 
intelligence for control and diagnostic will be shifted to state 
estimation and prediction problems. 

B. Enthalpy 
The electric utility industry is confronted with the task of 

estimating the steam enthalpy at various points in the 
water-steam cycle in a power plant. The two prominent 
estimation points are at the boiler, where water is converted 
into steam, and also in the delivery section which precedes 
the turbine where the energy of the steam is extracted and 
converted into mechanical power. It is very important to have 
functions which are able to accurately describe the 
correlations between enthalpy and temperature for the 
water/steam because the enthalpy provides the best 
description of the energy content for a compressible gas. In 
the literature, there are numerous works which present 
mathematical functions of enthalpy vs. temperature, but in 
many cases they provide insufficient approximation with 
experimental data or have a good approximation only over a 
small temperature range [14]. In addition, these methods have 
no provision for extending (extrapolating) accurate readings 
into a higher temperature range in which the readings become 
questionable. In this paper, a new method of extrapolating the 
enthalpy is proposed using a system-type neural network 
architecture. Essentially, rather than relying on questionable 
temperature readings to calculate the enthalpy, this method 
extrapolates a set of reliable enthalpy readings directly. 

Considering the general power plant as shown in Fig. 6, 
and referring to the delivery section from points 2 to 3, which 
precedes the turbine in a power plant, there is a need for 
tracking the steam enthalpy, since it is this function which 
ultimately determines the mechanical power delivered by the 
turbine. From the conservation of energy principle, the 
turbine work per mass of airflow is equal to the change in the 
enthalpy of the flow from the entrance to the exit of the 
turbine. Therefore, if we can measure the enthalpy among the 
delivery section and turbine, we can determine the 
mechanical power which then becomes the electrical power. 
The difficulty is that the enthalpy is derived from the 
temperature and, in the usual cases, these involve very high 
temperatures, and accurate readings of high temperature 
steam in the presence of high pressures are very difficult to 
achieve. At present, various temperature compensation 
schemes are employed but, even with these, the resulting 
temperature readings are questionable. Therefore, the 
resulting enthalpy estimations are questionable [15]. The 
proposed method suggests an alternative, namely, to obtain a 
small (sparse) set of reliable temperature-pressure readings at 
the front end of the delivery section, forming the enthalpy 
from those readings, and then extrapolating those enthalpy 
readings directly.   

C. Mass Unbalance 
Avoiding destructive vibration is of major importance in 

the turbine-generator of a power plant. Mass unbalance is the 
most common source of vibration in machines with rotating 
parts. Balancing of rotors prevents excessive loading of 
bearings and avoids fatigue failure, thus increasing the useful 
life of machinery. There are many studies on the vibration 
subject and most of those studies are based on linear 
modeling.  It was found, however, that linear rotor dynamics 
cannot account for an unbalance as it had occurred. In 
addition, a linear model is not sufficient at high frequencies 
[16]. During transient loads, furthermore, extreme conditions 
have been observed and efficient methods and tools to 
analyze such cases are of primary interest to the industry. 
Vibration has been notoriously difficult to measure, and most 
reported measurements have used accelerometers attached to 
a stationary housing carried by a retrofitted bearing mounted 
on the shaft of interest.  

To illustrate the proposed procedure, the most elementary 
physical model will be assumed. The physical system consists 
of a shaft carrying a mass at its midspan and having a small 
mass unbalance, as shown in Fig. 7. In general, the resulting 
vibrations can be complex, depending primarily on the 
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geometry of the system. In this case only the simplest forms 
of transverse vibrations along the longitudinal axis of the 
shaft are being considered. In general, it takes a long time to 
start-up the turbine in a power system. That is, the start-up 
proceeds in a series of steps, along each of which the speed is 
held constant. The total start-up time may take up to 18 hours. 
Therefore, if at any point during the start-up, we can 
anticipate the mass unbalance at a future step, we can balance 
it to avoid vibration at higher speeds.  

For simulation purposes, the simple mass unbalance 
system will be considered to be one integral mass, M, which 
represents the rotor mass, along with a small mass unbalance 
offset (mr) mounted on a stubby shaft and supported at the 
two ends by its own bearings which have nonlinearity, as 
shown in the Fig.7. The damping (C) is assumed linear. 

D. Load Forecasting 
The proposed method uses artificial neural networks with 

three significant features. One, the influence of the day of the 
week and of the season of the year are combined into one 
variable. Further, the recognized influence of weekdays 
versus weekends must be expanded to a day-by-day 
influence. Therefore, the approach begins by introducing a 
new variable for each day of the week and each week of the 
year. For example, Mondays are grouped into one variable, 
number of Mondays, which ranges from 1 to 52. The load for 
a Monday is then represented as a function of the hour of the 
day and Monday number. The second significant feature of 
the approach is that this load must be able to be represented as 
the product of a coefficient vector and a basis set. This, in its 
general form, has been established [17]-[19]. Therefore, one 
of the assumptions in this paper is that the general load can be 
represented in the following form. 

 
( , ) ( ) ( )L Day Hour C Day E Hour=         (6) 

 
The third significant feature of the approach is that the coe

fficient vector for the forecasting year is related to the coeffi
cient vector from the reference year.  
 

( ) ( , ) ( )forecast referenceC Day T C Dayα β=       (7) 

IV. SIMULATION RESULTS 

A. Monitoring of Temperature in Boiler Furnace 
The following illustrates simulation results of the 

application of the proposed method to the prediction 
(extrapolation) of temperature data from a boiler furnace of 
dimensions comparable to that found in a power plant. The 
data represents “raw data” furnished by the Penn State Energy 
Institute. The geometry of the furnace is cylindrical with the 
z-axis along the furnace axis, and with r going from one wall 
to the other wall. (Note that r is a diameter, not a radius.) A 
simulation will be performed on the configuration below, 
where there are 25 probes, each one providing 11 readings as 
shown in Fig. 8. The extrapolation will be simulated in the 
region occupied by probes 25 to 30. The results of the 

extrapolation will be compared to given raw data in that 
region. The empirical and computed temperature 
distributions are shown in Fig. 9 and Fig. 10. The preliminary 
(rough) coefficient vector and the basis vectors produced by 
the RBF network are shown in Fig. 11. The use of this rough 
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Fig. 8. Temperature probe configuration for the furnace. 

 
Fig. 9. Temperature distribution for the furnace. 
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Fig. 11. Preliminary coefficient vector set. 
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coefficient vector together with the basis set of vectors can 
produce the computed temperature distribution shown in Fig. 
10. The possibility for extrapolation begins by checking for 
weight convergence as training is performed along the 
coefficient vector. In this case, weight convergence occurs as 
this training is repeated over successively longer intervals 
(refer Fig. 3). It is this weight convergence, which becomes 
the basis for extrapolation. These are shown in Fig. 12. In this 
case, because of the smoothness, the possibility for 
extrapolation exists and the next step is to apply an 
extrapolation test in which the trailing end of the weight 
change sequence (produced by training) is replaced by an 

equivalent weight change sequence based on a rule that 
generates a semigroup. Based upon an observation of the 
weight change sequence on the interval from 15 to 20, a 
semigroup-based rule for weight change is formulated and 
applied to the interval from 20 to 25, as a test. Extrapolation 
(to the region where no data were assumed) consists of the 
autonomous continuation of the rule for weight change, 
which was derived during the extrapolation test. These results 
are shown in Fig. 13a and 13b below (only the first two 
coefficients are shown). 

B. Enthalpy 
The steam enthalpy corresponding to the temperature and 

pressure is obtained from the NIST Chemistry WebBook [20]. 
The range of temperature is 800°F to 1200°F and the range of 

pressure is 800 psi to 1500 psi. The proposed method will be 
applied to the extrapolation of the enthalpy of steam for 
temperature-pressure distributions which typically exist in 
the power plant after the water has exited the boiler and the 
superheater and travels through the delivery section to the 
turbine (dry stream – points 2 to 3 in Fig. 6). The steam 
enthalpy is first re-expressed as the vector product: 

( , ) ( ) ( )h T P C T E P=  and extrapolation is performed along 

 
Fig. 13a. Extrapolation results for C1. 
 

 
Fig. 13b. Extrapolation results for C2 

Fig. 14. Error between empirical and computed enthalpies. 
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Fig. 12. Integral of input weight change sequence 
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the temperature axis. Fig. 14 displays the error between the 
given empirical enthalpy and the computed enthalpy. Fig. 15 
displays the extrapolated coefficient vector. Based upon an 
observation of the weight change sequence on the interval 
from 1040°F to 1090°F, a semigroup based rule for weight 
change is formulated and applied to the interval from 1090°F 
to 1140°F, as a test. Extrapolation consists of the autonomous 
continuation of the rule for weight change, which was derived 
during the extrapolation test. Extrapolation is performed from 
1140°F to 1200°F where no data were assumed 

C. Mass Unbalance 
In its simplest form, the nonlinear mass unbalance problem 

can be described by the following classic Duffing equation: 
 

3 2( )x x x x F cos tγ α β ω ω+ + + =             (8)  
 
where ω = engine speed, F = mr = normalized mass 
unbalance. It can be shown that Eq. (8) has the following 
approximate solution [21]. 

 

( ) ( )
2

22 3

2
4

3
4( , )

A A A
F A

α ω β γ ω
ω

ω

⎡ ⎤− + +⎢ ⎥⎣ ⎦=      (9) 

 
where, ω = engine speed, , ,α β γ = constant, and A = 
vibration magnitude. This will be simulated on the 
domain: [100,150] 2 ;    [0.01,0.10]Aω π∈ × ∈ , using the 
following parameter values: 900;    0.75;    0.75α β γ= = =  
[22]. 

The mass unbalance raw data profile is shown in Fig. 16. 
The error between empirical and computed unbalance profile 
is shown in Fig. 17. Based upon an observation of the weight 
change sequence on the interval from 125 to 130 rad/sec, a 
semigroup-based rule for weight change is formulated and 
applied to the interval from 130 to 135 rad/sec, as a test. 
Extrapolation consists of the autonomous continuation of the 
rule for weight change, which was derived during the 
extrapolation test. These results are shown in Fig. 18. 

D. Load Forecasting 
The proposed forecasting procedure was tested using the 

past load data obtained from Korea Power Exchange (KPX). 
For the simulation, 2004 load data was chosen as a forecast 
year. Also the reference year was arbitrarily chosen as the 
previous year (2003). The simulation results are shown in 
Table I. For each day, the percent error is obtained as the 
average of 52 days for each day of the week (over the entire 
year). Also, the unit of standard deviation is MW. Among the 
daily forecasting, Sunday shows the best forecasting results 
and Thursday shows the worst forecasting results. For Sunday, 
the average error is 0.89% and the highest error is 1.35% and 
the lowest error is 0.5%. For Thursday, the average error is 
1.79% and the highest error is 2.72% and the lowest error is 
1.07%. The total average error for daily forecasting is 1.35% 
and average standard deviation is 657.6 MW. Monday, 
Wednesday, Thursday, and Friday errors are above the total 
average with respective errors 1.61%, 1.54%, 1.79%, and 
1.49% and Tuesday, Saturday, and Sunday errors are below 
the total average with respective errors 1.01%, 1.14%, and 
0.89%.  

V. CONCLUSIONS 
In this paper, we investigate a mathematical approach to 

extrapolation of distributed parameter systems with various 
examples in power systems, such as boiler facility, steam 
enthalpy, and mass unbalance problem using a combination 

0
0.02

0.04
0.06

0.08
0.1

100

120

140

160
0

0.02

0.04

0.06

0.08

0.1

Vibration Amplitude

Mass Unbalance Vibration Analysis

Frequency (rad/sec)

M
as
s 
U
nb
al
an
ce

 
Fig. 16. Mass unbalance profile. 
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Fig. 17. Error between empirical and computed unbalance profile. 
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of a modified neural network architecture and semigroup 
theory. Given a set of empirical data in spatial-temporal 
domain with no analytic expression, we first develop an 
analytic description with available data and then extend that 
model along a single axis for extrapolation. From the results, 
we conclude that the proposed system-type neural network 
architecture works well for the examples presented for both 
extrapolation and load forecasting. The concept of the 
proposed system-type neural network architecture and 
training method can be applied to other engineering and 
non-engineering problems. 
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TABLE I 
STATISTICS OF DAILY FORECASTING RESULTS 

  Mon. Tue. Wed. Thr. Fri. Sat. Sun. 

Hour Err. Std. 
Dev. Err. Std. 

Dev.  Err.  Std. 
Dev.  Err. Std. 

Dev. Err. Std. 
Dev.  Err. Std. 

Dev. Err. Std. 
Dev. 

1 2.1 901 1.37 654 1.39 691 1.57 752 1.49 712 1.42 717 1.35 630 
2 2.26 887 1.13 503 1.65 772 1.88 900 1.6 721 1.34 599 1.05 466 
3 2.58 979 1.17 515 1.87 838 2.18 1042 1.84 794 1.46 603 1 414 
4 2.37 996 0.92 433 2.02 871 2.36 1107 1.81 757 1.2 522 0.7 288 
5 2.52 1055 0.93 446 2.27 982 2.61 1212 1.73 797 1.09 481 0.52 233 
6 2.51 1083 1.17 494 2.4 1063 2.72 1289 2 885 1.39 583 0.96 375 
7 2.32 998 1.24 536 2.37 1091 2.62 1190 1.96 901 1.55 630 1.15 446 
8 1.87 809 0.89 420 1.62 789 1.89 829 1.51 687 1.38 580 0.93 362 
9 1.16 608 0.85 415 1.17 674 1.21 727 1.05 479 1.13 604 0.87 333 

10 1.44 799 0.91 505 1.44 769 1.32 856 1.28 631 1.05 607 0.8 318 
11 1.47 785 0.96 617 1.72 839 1.82 915 1.62 823 0.95 509 0.71 283 
12 1.44 803 1.05 705 1.79 916 1.82 913 1.53 786 0.86 445 0.59 258 
13 1.48 684 1.4 672 1.38 684 1.72 808 1.51 708 1.22 552 0.76 343 
14 1.13 561 0.96 475 1.04 549 1.23 643 0.68 362 0.83 396 0.83 338 
15 0.85 479 0.65 345 1.11 595 1.07 617 1.3 638 0.68 373 0.84 357 
16 0.84 443 0.68 356 1.11 551 1.23 676 1.33 656 0.67 347 0.65 277 
17 1.07 536 0.9 519 0.99 507 1.27 739 1.2 599 0.9 436 0.76 303 
18 1.14 575 1.08 542 0.93 487 2.43 1254 1.57 810 1.23 626 0.5 203 
19 1.36 765 1.03 552 1.8 890 1.54 826 1.03 541 1.33 637 1.05 442 
20 1.1 592 0.83 500 0.79 436 1.5 804 1.65 866 0.8 400 0.76 364 
21 1.26 667 0.69 363 1.55 864 1.78 958 1.5 813 1.22 650 0.79 395 
22 1.42 717 0.87 488 1.54 821 1.8 1025 1.51 756 0.86 439 0.74 371 
23 1.72 876 1.53 787 1.98 1055 1.95 1041 1.83 946 1.59 769 1.7 754 
24 1.29 672 1.12 624 1.11 603 1.34 707 1.22 642 1.13 598 1.33 629 

Avg 1.61 761 1.01 519 1.54 764 1.79 909 1.49 721 1.14 546 0.89 383 
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