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5.1 Fuzzy Control 155

One relatively complex task that humans can perform is a feedback control
task. For instance, driving an automobile is a control task that humans regularly
perform. There, the driver senses lane markers, vehicles, obstacles, and other
cues to control the direction of travel by steering, and velocity via actuating the
throttle and brakes. Humans perform many other control tasks when employed
at, for example, chemical processing plants, manufacturing facilities, and in
vehicular applications. In this chapter, we study rule-based control by studying
the use of fuzzy and expert systems for control. These are probably the most
popular intelligent control methods for automating feedback control tasks that
have often been performed by humans in the past. The biomimicry here should
be thought of as “human-mimicry” as it was explained in Part I, but clearly
an accurate model of human reasoning and decision-making processes is neither
sought, nor obtained.
The design example for the tanker ship serves to illustrate the heuristic non-

linear control design methodology that fuzzy and expert control allows. Here,
there is a particularly important focus on design methodology for fuzzy con-
trollers, as there have been certain problems in the literature with proper design
methodology. We discuss effects of disturbances, noise, plant changes, stability,
and limit cycles. It is emphasized that sound control engineering methodology,
as outlined in Part I, should not be ignored.

5.1 Fuzzy Control

A block diagram of a fuzzy control system is shown in Figure 5.1. The fuzzy
controller is composed of the following four elements:

1. A rule base (a set of If-Then rules), which contains a fuzzy logic quantifi-
cation of the expert’s linguistic description of how to achieve good control.

2. An inference mechanism (also called an “inference engine” or “fuzzy in-
ference” module), which emulates the expert’s decision-making in inter-
preting and applying knowledge about how best to control the plant.

3. A fuzzification interface, which converts controller inputs into information
that the inference mechanism can easily use to activate and apply rules.

4. A defuzzification interface, which converts the conclusions of the inference
mechanism into actual inputs for the process.

We introduce each of the components of the fuzzy controller for the simple
problem of tanker ship heading regulation, as was shown in Figure 4.8.

5.1.1 Choosing Fuzzy Controller Inputs and Outputs

Consider a human-in-the-loop whose responsibility is to control the tanker ship
(i.e., the ship captain), as shown in Figure 5.2. The fuzzy controller is to be
designed to automate how a captain would control the system. First, the captain
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Figure 5.1: Fuzzy controller.

tells us (the designers of the fuzzy controller) what information she or he will
use as inputs to the decision-making process. Suppose that for the tanker ship,
the expert (this could be you, if you do not have the captain available) says that
she or he will use

e(t) = ψr(t)− ψ(t)

and
de(t)
dt

= ė(t)

as the variables on which to base decisions. Certainly, there are many other
choices (e.g., the integral of the error e could also be used) but this choice
makes good intuitive sense. Next, we must identify the controlled variable. For

Fuzzy controller
input/output choice
depends on what
variables the expert uses
and broadly affects the
design of the controller.

the tanker ship, it is assumed that we are only allowed to control the rudder so
the input is δ (i.e., we do not consider the use of the ship speed for helping with
steering).

Tanker
ship

δψ ψr Ship
captain

Figure 5.2: Human controlling a tanker ship.

For more complex applications, the choice of the inputs to the controller and
outputs of the controller (inputs to the plant) can be more difficult. Essentially,
you want to make sure that the controller will have the proper information
available to be able to make good decisions and have proper control inputs
to be able to move the system in the directions needed to be able to achieve
high-performance operation. Practically speaking, access to information and
the ability to effectively control the system often cost money. If the designer
believes that proper information is not available for making control decisions,
he or she may have to invest in another sensor that can provide a measurement
of another system variable. Alternatively, the designer may implement some
filtering or other processing of the plant outputs. In addition, if the designer
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5.1 Fuzzy Control 157

determines that the current actuators will not allow for the precise control of
the process, he or she may need to invest in designing and implementing an
actuator that can properly affect the process. Hence, while in some academic
problems you may be given the plant inputs and outputs, in many practical
situations you may have some flexibility in their choice. These choices affect
what information is available for making online decisions about the control of
a process and hence affect how we design a fuzzy controller. Once the fuzzy
controller inputs and outputs are chosen, you must determine the reference
inputs. For the tanker ship, we will simply use step changes in ship heading. In
general, the specification and generation of the reference input(s) can be more
challenging.
After all the inputs and outputs are defined for the fuzzy controller, we can

specify the fuzzy control system. The fuzzy control system for the tanker ship,
with our choice of inputs and outputs, is shown in Figure 5.3. Now, within this
framework we seek to obtain a description of how to control the process. We see
then that the choice of the inputs and outputs of the controller places certain
constraints on the remainder of the fuzzy control design process. If the proper
information is not provided to the fuzzy controller, there will be little hope for
being able to design a good rule base or inference mechanism. Moreover, even if
the proper information is available to make control decisions, this will be of little
use if the controller is not able to properly affect the process variables via the
process inputs. It must be understood that the choice of the controller inputs
and outputs is a fundamentally important part of the control design process for
many practical applications.

Tanker
shipd

dt

Σ
r e

Fuzzy
controller

+
δ ψ

ψ

Figure 5.3: Fuzzy controller for a tanker ship steering problem.

5.1.2 Putting Control Knowledge into Rule Bases

Suppose that the human expert (captain) shown in Figure 5.2 provides a descrip-
tion of how best to control the plant in some natural language (e.g., English).
Next, we characterize the expert’s description with “linguistics.”

Linguistic Descriptions

The linguistic description provided by the expert can generally be broken into
several parts. There will be “linguistic variables” that describe each of the
time-varying fuzzy controller inputs and outputs. For the tanker ship,
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158 Rule-Based Control

“error” describes e(t)
“change-in-error” describes de(t)

dt
“rudder-input” describes δ(t)

Note that we use quotes to emphasize that certain words or phrases are linguis-
tic descriptions, but emphasize that these variables do change over time. There
are many possible choices for the linguistic descriptions for variables. Some de-
signers like to choose them so that they are quite descriptive for documentation
purposes. However, this can sometimes lead to long descriptions. Others seek
to keep the linguistic descriptions as short as possible (e.g., using “e(t)” as the
linguistic variable for e(t)), yet accurate enough so that they adequately repre-
sent the variables. Regardless, the choice of the linguistic variable has no effect
on the way that the fuzzy controller operates; it is simply a notation that helps
to facilitate the construction of the fuzzy controller via fuzzy logic.
Just as e(t) takes on a value of, for example, 0.1 at t = 2 (e(2) = 0.1),

linguistic variables assume “linguistic values.” That is, the values that linguistic
Linguistic variables
represent the key
variables that the expert
uses to make decisions.

variables take on over time change dynamically. Suppose for the tanker ship ex-
ample that “error,” “change-in-error,” and “rudder-input” take on the following
values:

“neghuge”
“neglarge”
“negbig”
“negmed”
“negsmall”
“zero”

“possmall”
“posmed”
“posbig”
“poslarge”
“poshuge”

Note that we are using “negsmall” as an abbreviation for “negative small in size”
and so on for the other variables. Such abbreviations help keep the linguistic
descriptions short yet precise. For an even shorter description we could use
integers:

“−5” to represent “neghuge”
“−4” to represent “neglarge”
“−3” to represent “negbig”
“−2” to represent “negmed”
“−1” to represent “negsmall”
“0” to represent “zero”

“1” to represent “possmall”
“2” to represent “posmed”
“3” to represent “posbig”
“4” to represent “poslarge”
“5” to represent “poshuge”
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5.1 Fuzzy Control 159

This is a particularly appealing choice for the linguistic values since the descrip-
tions are short and nicely represent that the variable we are concerned with has
a numeric quality. We are not, for example, associating “−1” with any particu-
lar number of radians of error; the use of the numbers for linguistic descriptions
simply quantifies the sign of the error (in the usual way) and indicates the size
in relation to the other linguistic values. We shall find the use of this type of
linguistic value quite convenient when it comes to writing computer programs
to simulate or implement fuzzy control systems and hence will give it the special
name, “linguistic-numeric value.”
The linguistic variables and values provide a language for the expert to ex-

press her or his ideas about the control decision-making process, in the context
of the framework established by our choice of fuzzy controller inputs and out-
puts. Suppose that for the tanker ship ψr(t) = 45 deg. (ψr(t) = 45π

180 rad.) and
e = r − y so that

e =
45π
180

− ψ

and
de

dt
= −dψ

dt

since dψr

dt = 0. First, we will study how we can quantify certain dynamic
behaviors with linguistics. In the next subsection we will study how to quantify
knowledge about how to control the tanker ship using linguistic rules.
For the tanker ship, each of the following statements quantifies a different

configuration of the ship (refer back to Figure 4.8 on page 117):
Linguistic statements
characterize the status
of the plant.

• The statement “error is poslarge” can represent the situation where the
ship heading is at a significant angle counterclockwise to where it should
be heading.

• The statement “error is negsmall” can represent the situation where the
ship heading is just slightly clockwise of where it should be heading, but
not too close to the reference heading ψr to justify quantifying it as “zero”
and not too far away to justify quantifying it as “negmed.”

• The statement “error is zero” can represent the situation where the ship
heading is very near the desired heading (a linguistic quantification is
not precise, hence we are willing to accept any value of the error around
e(t) = 0 as being quantified linguistically by “zero” since this can be
considered a better quantification than “possmall” or “negsmall”).

• The statement “error is poslarge and change-in-error is possmall” can rep-
resent the situation where the ship heading is counterclockwise to where
it should be and, since dψ

dt < 0, the ship heading is moving away from the
desired heading (note that in this case, the ship is moving counterclock-
wise).

• The statement “error is negsmall and change-in-error is possmall” can
represent the situation where the ship heading is slightly clockwise of
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160 Rule-Based Control

where it should be heading and, since dψ
dt < 0, the ship heading is moving

toward the desired heading (note that in this case, the ship is moving
counterclockwise).

It is important for the reader to study each of the cases above to understand
how the expert’s linguistics quantify the current situation the ship is in (actually,
each partially quantifies the ship’s state).
Overall, we see that to quantify the dynamics of the process, we need to

have a good understanding of the physics of the underlying process we are
trying to control. While for the ship steering problem, the task of coming to a
good understanding of the dynamics is relatively easy, this is not the case for
many physical processes. Quantifying the process dynamics with linguistics is
not always easy, and certainly a better understanding of the process dynamics
generally leads to a better linguistic quantification. Often, this will naturally
lead to a better fuzzy controller provided that you can adequately measure the
system dynamics so that the fuzzy controller can make the right decisions at
the proper time.

Rules

Next, we will use the above linguistic quantification to specify a set of rules (a
rule base) that captures the expert’s knowledge about how to control the plant.
In particular, for the tanker ship in the three positions shown in Figure 5.4, we
have the following rules (notice that we drop the quotes since the whole rule is
linguistic):

Linguistic rules
represent a description
of the rules that the
expert uses in control.

1. If error is negsmall and change-in-error is negsmall Then rudder-input is
posmed

This rule quantifies the situation in Figure 5.4(a) where the ship has a
heading angle that is clockwise of the desired heading and is moving clock-
wise; hence, it is clear that we should apply a medium positive rudder angle
so that we can get the ship moving in the proper direction.

2. If error is zero and change-in-error is possmall Then rudder-input is
negsmall

This rule quantifies the situation in Figure 5.4(b) where the ship is nearly
moving in the proper direction (a linguistic quantification of zero does not
imply that e(t) = 0 exactly) and is moving counterclockwise; hence, we
should apply a small negative rudder angle to counteract the movement
so that it moves toward zero (a positive rudder angle could result in the
ship heading overshooting the desired angle).

3. If error is possmall and change-in-error is negsmall Then rudder-input is
zero

This rule quantifies the situation in Figure 5.4(c) where the ship is coun-
terclockwise of the desired heading and is moving clockwise; hence, we
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apply a near zero rudder angle since the ship is already moving in the
proper direction.

Specification of
increasingly good rules
generally requires
increasingly good
insights into the physics
of the plant.

ψr = desired ship heading is 45 deg., the dotted lines
ψ = ship heading, thin solid lines with arrow at end indicating direction of ship travel

Gray arrows indicate angular direction the ship is moving
Rudder angles shown are approximate

(a) (b) (c)

Figure 5.4: Tanker ship in various positions.

Each of the three rules listed above is a “linguistic rule” since it is formed
solely from linguistic variables and values. Since linguistic values are not precise
representations of the underlying quantities that they describe, linguistic rules
are not precise either. They are simply abstract ideas about how to achieve
good control that could mean somewhat different things to different people.
They are, however, at a level of abstraction that humans are often comfortable
with in terms of specifying how to control a process.
The general form of the linguistic rules listed above is

If premise Then consequent

As you can see from the three rules listed above, the premises (which are some-
times called “antecedents”) are associated with the fuzzy controller inputs and
are on the left-hand side of the rules. The consequents (sometimes called “ac-
tions”) are associated with the fuzzy controller outputs and are on the right-
hand side of the rules. Notice that each premise (or consequent) can be com-
posed of the conjunction of several “terms” (e.g., in rule 3 above, “error is
possmall and change-in-error is negsmall” is a premise that is the conjunction
of two terms). The number of fuzzy controller inputs and outputs places an up-
per limit on the number of elements in the premises and consequents. Note that
there does not need to be a premise (consequent) term for each input (output)
in each rule, although often there is.

Rule Bases

Using the above approach, we could continue to write down rules for the ship
steering problem for all possible cases (the reader should do this for practice, at
least for a few more rules). Note that since we only specify a finite number of
linguistic variables and linguistic values, there is only a finite number of possible
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162 Rule-Based Control

rules. For the ship steering problem, with two inputs and eleven linguistic
values for each of these, there are at most 112 = 121 possible rules (all possible
combinations of premise linguistic values for two inputs).
A convenient way to list all possible rules for the case where there are not

too many inputs to the fuzzy controller (less than or equal to two or three) is
to use a tabular representation. A tabular representation of one possible set
of rules for the fuzzy controller for the ship is shown in Table 5.1. Notice that
the body of the table lists the linguistic-numeric consequents of the rules, and
the left column and top row of the table contain the linguistic-numeric premise
terms. Then, for instance, the (+1,−1) position (where the “+1” represents
the row having “+1” for a numeric-linguistic value and the “−1” represents the
column having “−1” for a numeric-linguistic value) has a 0 (“zero”) in the body
of the table and represents the rule

If error is possmall and change-in-error is negsmall Then rudder-input is zero

which is rule 3 above. Table 5.1 represents abstract knowledge that the expert
has about how to control the tanker ship given the error and its derivative as
inputs.

Table 5.1: Rule Table for the Tanker Ship

ė
δ −5 −4 −3 −2 −1 0 1 2 3 4 5
−5 5 5 5 5 5 5 4 3 2 1 0
−4 5 5 5 5 5 4 3 2 1 0 −1
−3 5 5 5 5 4 3 2 1 0 −1 −2
−2 5 5 5 4 3 2 1 0 −1 −2 −3
−1 5 5 4 3 2 1 0 −1 −2 −3 −4

e 0 5 4 3 2 1 0 −1 −2 −3 −4 −5
1 4 3 2 1 0 −1 −2 −3 −4 −5 −5
2 3 2 1 0 −1 −2 −3 −4 −5 −5 −5
3 2 1 0 −1 −2 −3 −4 −5 −5 −5 −5
4 1 0 −1 −2 −3 −4 −5 −5 −5 −5 −5
5 0 −1 −2 −3 −4 −5 −5 −5 −5 −5 −5

Note that the other rules are also valid and take special note of the pattern
of rule consequents that appears in the body of the table. Notice the diagonal
of zeros. Viewing the body of the table as a matrix, we see that it has a certain
symmetry to it. This symmetry that emerges when the rules are tabulated is
no accident and is actually a representation of abstract knowledge about how to
control the ship heading; it arises due to a symmetry in the system’s dynamics.
Similar patterns will often be found when constructing rule bases for other
applications.
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5.1.3 Fuzzy Quantification of Knowledge

Up to this point we have only quantified, in an abstract way, the knowledge
that the human expert has about how to control the plant. Next, we will show
how to use fuzzy logic to fully quantify the meaning of linguistic descriptions
so that we may automate, in the fuzzy controller, the control rules specified by
the expert.

Membership Functions

First, we quantify the meaning of the linguistic values using “membership func-
tions.” Consider, for example, Figure 5.5. This is a plot of a function μ versus
e(t) that takes on special meaning. The function μ quantifies the certainty
that e(t) can be classified linguistically as “possmall.” In our discussion in this
chapter, do not confuse the term “certainty” with “probability” or “likelihood.”
The membership function is not a probability density function, and there is no
underlying probability space. By “certainty” we mean “degree of truth.” The
membership function does not quantify random behavior; it simply makes more
accurate (less fuzzy) the meaning of linguistic descriptions.
To understand the way that a membership function works, it is best to

perform a case analysis where we show how to interpret it for various values of
e(t):

Membership functions
numerically quantify the
meaning of linguistic
statements by the expert.

• If e(t) = − 4π
10 , then μ(− 4π

10 ) = 0, indicating that we are certain that
e(t) = − 4π

10 is not “possmall” (indeed, it is negative).

• If e(t) = 2π
20 , then μ(2π20 ) = 0.5, indicating that we are halfway certain that

e(t) = 2π
20 is “possmall” (we are only halfway certain since it could also

be “zero” with some degree of certainty—this value is in a “gray area” in
terms of linguistic interpretation).

• If e(t) = 2π
10 , then μ(2π10 ) = 1.0, indicating that we are absolutely certain

that e(t) = 2π
10 is what we mean by “possmall.”

• If e(t) = 8π
10 , then μ(8π10 ) = 0, indicating that we are certain that e(t) =

8π
10

is not “possmall” (actually, we will soon see that we will quantify it as
“poslarge”).

1.0

0.5

μ

e(t), (rad.)

“possmall”

π
10

π
10

2 4

Figure 5.5: Membership function for linguistic value “possmall.”
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The membership function quantifies, in a continuous manner, whether values
of e(t) belong to (are members of) the set of values that are “possmall,” and
hence it quantifies the meaning of the linguistic statement “error is possmall.”
This is why it is called a membership function. It is important to recognize
that the membership function in Figure 5.5 is only one possible definition of
the meaning of “error is possmall;” you could use a bell-shaped function, a
trapezoid, or many others, depending on what the expert means by “possmall.”
For instance, consider the membership functions shown in Figure 5.6. For

some applications someone may be able to argue that we are absolutely cer-
tain that any value of e(t) near 2π

10 is still “possmall” and only when you get
sufficiently far from 2π

10 do we lose our confidence that it is “possmall.” One
way to characterize this understanding of the meaning of “possmall” is via the
trapezoid-shaped membership function in Figure 5.6(a). For other applications,
you may think of membership in the set of “possmall” values as being dic-
tated by the Gaussian-shaped membership function (not to be confused with
the Gaussian probability density function) shown in Figure 5.6(b). For still
other applications, you may not readily accept values far away from 2π

10 as be-
ing “possmall,” so you may use the membership function in Figure 5.6(c) to
represent this. Finally, while we often think of symmetric characterizations of
the meaning of linguistic values, we are not restricted to these symmetric rep-
resentations. For instance, in Figure 5.6(d) we represent that we believe that
as e(t) moves to the left of 2π

10 , we are very quick to reduce our confidence that
it is “possmall,” but if we move to the right of 2π

10 , our confidence that e(t) is
“possmall” diminishes at a slower rate.

1.0

0.5

μ

e(t), (rad.)

“possmall”

1.0

0.5

μ

e(t), (rad.)

“possmall”
1.0

0.5

μ

e(t), (rad.)

“possmall”

1.0

0.5

μ

e(t), (rad.)

“possmall”

(a) Trapezoid (b) Gaussian

(c) Sharp peak (d) Skewed triangle

π
10

π
10

2 4 π
10

π
10

2 4

π
10

π
10

2 4 π
10

π
10

2 4 π
10
6

Figure 5.6: Some example membership function choices for representing “error
is possmall.”

Each of the membership functions in Figure 5.6 has a mathematical repre-
sentation and these are useful in simulation and implementation of fuzzy con-
trollers. For example, interval checking plus equations for lines can be used to
implement the membership function in Figure 5.6(a) and a Gaussian function
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5.1 Fuzzy Control 165

with an appropriate center, spread, and scale factor can implement the one in
Figure 5.6(b).
In summary, we see that depending on the application and the designer

(expert), many different choices of membership functions are possible. It is
important to note here, however, that for the most part, the definition of a
membership function is subjective rather than objective. That is, we simply
quantify it in a manner that makes sense to us, but others may quantify it in a
different manner.
The set of values that is described by μ as being “positive small” is called

a “fuzzy set.” Let A denote this fuzzy set. Notice that from Figure 5.5 we are
absolutely certain that e(t) = 2π

10 is an element of A, but we are less certain
that e(t) = 2π

40 is an element of A. Membership in the set, as specified by the
membership function, is fuzzy; hence we use the term “fuzzy set.” A “crisp” (as
contrasted to “fuzzy”) quantification of “possmall” can also be specified, but
via the membership function shown in Figure 5.7. This membership function
is simply an alternative representation for the interval on the real line 2π

20 ≤
e(t) ≤ 6π

20 , and it indicates that this interval of numbers represents “possmall.”
Clearly, this characterization of crisp sets is simply another way to represent a
normal interval (set) of real numbers.

1.0

0.5

μ

e(t), (rad.)π
10

π
10

2 4

Figure 5.7: Membership function for a crisp set.

While the vertical axis in Figure 5.5 represents certainty, the horizontal
axis is also given a special name. It is called the “universe of discourse” for the
input e(t) since it provides the range of values of e(t) that can be quantified with
linguistics and fuzzy sets. In conventional terminology, a universe of discourse
for an input or output of a fuzzy system is simply the range of values the inputs
and outputs can take on.
Now that we know how to specify the meaning of a linguistic value via a

membership function (and hence a fuzzy set), we can easily specify the mem-
bership functions for all 33 linguistic values (eleven for each input and eleven
for the output) of our ship steering example. See Figure 5.8 for one choice of
membership functions.
For our later convenience, we list both the linguistic and linguistic-numeric

values associated with each membership function. Hence, we see that the mem-
bership function in Figure 5.5 for “possmall” on the “error” universe of discourse
is embedded among several others that describe other sizes of values (so that, for
instance, the membership function to the right of the one for “possmall” is the
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e(t), (rad.)

“possmall”

“zero”

“negsmall”
“neglarge” -1

-2 0

1
2

“poslarge”

dt
d

“posmed”
“posbig” “poshuge”

3

0

4
5“negmed”

“negbig”“neghuge”
-3

-4
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Figure 5.8: Membership functions for a ship steering example.

one that represents “error is posmed”). Note that other similarly shaped mem-
bership functions make sense (e.g., bell-shaped membership functions). The
scale for the axis was chosen since |e(t)| can be at most π radians since it is the
difference between two angles and we use this fact to help define the relative
sizes in our membership quantification of our linguistics. Notice that for the ė
universe of discourse, we use a set of membership functions similar to the ones
on the e universe of discourse, but that the scale of the ė axis is different. This
scale was chosen since our expert captain felt that |ė(t)| ≥ 0.01 radians per
second (0.57 degrees per second) was a fast change in the ship heading. Notice
then that the meaning of the linguistics on the ė universe of discourse is different
from those on the e universe of discourse.
The membership functions at the outer edges of the e and ė universes of

discourse in Figure 5.8 deserve special attention. For the inputs e(t) and ė,
we see that the outermost membership functions “saturate” at a value of one.
This makes intuitive sense, as at some point the human expert would just
group all large values together in a linguistic description such as “poshuge”
(or “neghuge”). The membership functions at the outermost edges appropri-
ately characterize this phenomenon since they characterize “greater than” (for
the right side) and “less than” (for the left side). Study Figure 5.8 and convince
yourself of this.
It is important to have a clear picture in your mind of how the values of the

membership functions change as, for example, e(t) changes its value over time.
For instance, as e(t) changes from −π to π, we see that various membership
functions will take on zero and nonzero values indicating the degree to which the
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corresponding linguistic value appropriately describes the current value of e(t).
For example, at e(t) = −π we are certain that the error is “neghuge,” and as the
value of e(t) moves toward −8π/10, we become less certain that it is “neghuge”
and more certain that it is “neglarge.” We see that the membership functions
quantify the meaning of linguistic statements that describe time-varying signals.
Finally, note that often we will draw all the membership functions for one

input or output variable on one graph; hence, we often omit the label for the
vertical axis with the understanding that the plotted functions are membership
functions describing the meaning of their associated linguistic values. Also, we
will use the notation μzero to represent the membership function associated with
the linguistic value “zero” and a similar notation for the others.
Next, consider the choice of membership functions for the “rudder-input”

δ(t) universe of discourse in Figure 5.8. The horizontal scale was chosen since,
as you may recall, the rudder input can only be moved between ±80 degrees.
Converting to radians, this means that it moves between ±8π/18 radians and
this gives us the center values for the membership functions on the outer edges
for the δ universe of discourse. Next, note that for the output δ, the membership
functions at the outermost edges cannot be saturated for the fuzzy system to
be properly defined (more details on this point will be provided at the end of
Section 5.1.6 that starts on page 178). The basic reason for this is that in
decision-making processes of the type we study, we seek to take actions that
specify an exact value for the process input. We do not generally indicate to a
process actuator, “any value bigger than, say, ±8π/18, is acceptable.”

The Meaning of Membership Functions and Rules

Notice that the pattern of center positions (i.e., where the triangles peak at one)
for the output membership functions in Figure 5.8 is not uniform as it is for the
input universes of discourse. A uniform distribution (which with proper tuning
can work for this ship steering example also) would imply that the captain would
roughly make the rudder angle proportional to the error between the heading
and desired heading, and the change in the heading error (except when the error
and change in error are too big in magnitude, then she or he will simply move
the rudder to its maximum deflection). To get a uniform distribution of output
membership function centers you can choose the center values, which we denote
by bi where i is the linguistic-numeric index for the corresponding membership
function, as

bi =
8π
18

(
i

5

)
where i = −5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5 (and then use the same base widths
and rule base). For practice, draw the resulting membership functions on the
output universe of discourse.
The choice of having nonuniformly distributed membership functions in Fig-

ure 5.8 represents that for small heading errors, when the change in error is small
also, the captain will not put in as big a rudder angle. Why? Through expe-
rience the captain has found that if the heading is close to where it should be

Kwang_Y_Lee@baylor.edu



168 Rule-Based Control

and it is not moving away from where it should be fast, then small corrections
are more effective in heading regulation. While the captain may have learned
this through experience (or training), the basic reason for this arises from the
physics of the process. For example, since the heading sensor measurement is
noisy, for small heading errors this noise can have a relatively large impact on
the error so that for small errors the noise can make it appear that there is
a heading error when there is not. Now, for the case where, say, the error is
“poshuge” but the change in error ė is “neghuge” the captain also puts in a
zero rudder angle input (see Table 5.1). The expert captain specified this rule
since, while the heading is far from where it should be, the heading is moving
very fast to correct this condition. If the error is “poshuge” and the change in
error ė is “neglarge,” then the rudder input is “negsmall” and by Figure 5.8
this is only a small correction since the captain does not want to expend more
rudder movement than necessary; the ship is moving to correct its own error in
heading, why expend control energy (and wear out the rudder actuator) trying
to do something that is already in the process of happening?

It is important to gain
insights into the fuzzy
logic quantification of
the rule base to clearly
understand what control
expertise is being
implemented by the fuzzy
controller.

Next, note that from the pattern of output membership functions in the
body of Table 5.1, we see that the captain will saturate the rudder either positive
(upper left corner of the rule base) or negative (lower right corner of the rule
base) if the error and change in error are too big in magnitude. The choice
of when to saturate the rudder (i.e., to move it to its maximum deflection) is
made through the captain’s experience in heading regulation. If she or he is
not willing to saturate it soon enough, larger heading deviations may occur.
However, if the captain is too quick to saturate the rudder input, for example,
even for relatively small errors, she or he will wear out the rudder actuator faster
and will be continually moving the rudder.
With this discussion, it is important to note that the meaning of the lin-

guistic rule base is not clear until the membership functions for the linguistic
variables are all defined. The membership function definitions fully specify the
meaning of the linguistics. Note that while on the e and ė universes of dis-
course the meaning of the linguistics is similar, it is different by a scale factor
on the horizontal axes (scaling the horizontal axis changes the meaning of the
linguistics). Moreover, the meaning of the linguistics on the output universe of
discourse is quite different from meaning of the linguistics on the input universes
of discourse (e.g., for the membership functions at the outermost edges and in
the nonuniform spacing of the output membership function centers).
Due to the lack of clarity of the meaning of control rules in the linguistic

rule base shown in Table 5.1, schemes are often used which include membership
function information in the rule base table. While many schemes are possible, a
common one is shown in Table 5.2 where rather than listing the indices for the
output membership functions, the centers of the appropriate output membership
functions are listed, up to a scale factor, which in this case is 8π/18 (i.e., to get
the actual center from the rule base table you take the entry and multiply it by
8π/18).
Coupled with our understanding of the meaning of the linguistic-numeric in-

dices for the error and change in error, all the major components of the captain’s
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Table 5.2: Rule Table for the Tanker Ship (body of table holds the output mem-
bership function centers where each element should be multiplied by 8π/18).

ė
−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 1 1 1 1 1 1 .8 .6 .3 .1 0
−4 1 1 1 1 1 .8 .6 .3 .1 0 −.1
−3 1 1 1 1 .8 .6 .3 .1 0 −.1 −.3
−2 1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6
−1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8

e 0 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1
1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1
2 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1
3 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1
4 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1
5 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1 −1

knowledge of ship steering are directly evident from Table 5.2 in the following
manner:

One good way to gain
insights is to
characterize the abstract
patterns that often
emerge when a rule base
is constructed.

1. If the heading error and change in error are both too big (upper left and
lower right corners of the rule base shown in Table 5.2), then use the
appropriate maximum rudder input.

2. For zero e and ė, the rudder angle should be zero, but if e and ė move
positive, then the rudder should move negative (where if ė moves signifi-
cantly positive, then the rudder should move even more negative). Similar
reasoning is used for e and ė negative, where we then make the rudder
angle positive. For the case where e and ė have opposite signs and de-
pending on the magnitude of the signals, we will make the rudder input
either positive or negative.

3. For small e and ė, be conservative in making changes to the rudder position
since such corrections may cause heading deviations instead (i.e., lower the
“gain” of the controller near zero so that noise is not amplified). Also, if
the ship’s angular position is moving sufficiently fast to remove the heading
error, then be conservative in using the rudder to help move it since this
can require unnecessary control energy.

This provides a summary of the captain’s knowledge about ship steering.
The above three points can be thought of as “meta-rules,” that is, abstract
representations of control rules. Some designers use rules that are more abstract
in the sense that they describe what control actions should occur whenever e(t)
and ė(t) lie in a certain region. For example, the rule
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If (error is neghuge and change-in-error is neghuge)
or (error is neghuge and change-in-error is neglarge)
or (error is neglarge and change-in-error is neghuge)

Then rudder-input is poshuge

represents what action should be taken if e(t) and ė(t) take on values such that
any of the three rules in the upper left corner of the rule base in Table 5.2 are on.
In this sense, the above rule represents three of the rules of the form discussed
earlier. It achieves this apparently more compact representation via the use of
the “disjunction” (or) in the premise of the above rule. If you were to use the
above rule in the implementation you would use “maximum” to represent the
disjunction; however, if you are concerned with implementation complexity, you
must be careful to determine whether this approach is more or less complex
than simply treating each rule separately.
Returning to our discussion on the tanker ship, we must emphasize that

it is important in rule base construction that the control system designer can
clearly list the expertise that is represented in the rule base. Lack of a clear
understanding of the rule base is an indication that there is likely to be a later
problem in simulation or implementation. Fuzzy control is not a methodology
where you can haphazardly construct a rule base and expect in all cases for it
to work well; you must put good control knowledge in to get good closed-loop
system performance (it is not very often that you can get lucky and get good
performance from a poorly constructed rule base).
In summary, the rule base of the fuzzy controller holds the linguistic vari-

ables, linguistic values, their associated membership functions, and the set of
all linguistic rules (shown in Table 5.1 on page 162), so we have completed the
description of the rule base for the ship steering problem. Next we describe the
fuzzification process.

Fuzzification

It is actually the case that for most fuzzy controllers the fuzzification block in
Figure 5.1 on page 156 can be ignored since this process is so simple. The reader
should simply think of the fuzzification process as the act of obtaining a value of
an input variable (e.g., e(t)) and finding the numeric values of the membership
function(s) that are defined for that variable. For example, if e(t) = 2π/10 and
ė(t) = 0.001, the fuzzification process amounts to finding the values of the input
membership functions for these. In this case

μpossmall(e(t)) = 1

(with all others zero) and

μzero (ė(t)) = μpossmall (ė(t)) = 0.5

Some think of the membership function values as an “encoding” of the fuzzy
controller numeric input values. The encoded information is then used in the
fuzzy inference process that starts with “matching.”
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5.1.4 Matching: Determining Which Rules to Use

Next, we seek to explain how the inference mechanism in Figure 5.1 on page 156
operates. The inference process generally involves two steps:

1. The premises of all the rules are compared to the controller inputs to deter-
mine which rules apply to the current situation. This “matching” process
involves determining the certainty that each rule applies, and typically we
will more strongly take into account the recommendations of rules that
we are more certain apply to the current situation.

2. The conclusions (what control actions to take) are determined using the
rules that have been determined to apply at the current time. The con-
clusions are characterized with a fuzzy set (or sets) that represents the
certainty that the input to the plant should take on various values.

We will cover step 1 in this subsection and step 2 in the next.

Premise Quantification via Fuzzy Logic

To perform inference we must first quantify each of the rules with fuzzy logic.
To do this, we first quantify the meaning of the premises of the rules that
are composed of several terms, each of which involves a fuzzy controller input.
Consider Figure 5.9, where we list two terms from the premise of the rule

If error is zero and change-in-error is possmall Then rudder-input is negsmall

Above, we had quantified the meaning of the linguistic terms “error is zero” and
“change-in-error is possmall” via the membership functions shown in Figure 5.8.
Now we seek to quantify the linguistic premise “error is zero and change-in-error
is possmall.” Hence, the main item to focus on is how to quantify the logical
“and” operation that combines the meaning of two linguistic terms. While we
could use standard Boolean logic to combine these linguistic terms, since we have
quantified them more precisely with fuzzy sets (i.e., the membership functions),
we can use these.

e(t), (rad.)

“zero”
0

zeroμ

, (rad/sec)

“possmall”
1

dt
de

possmallμ

quantified with quantified with

and“error is zero change-in-error is possmall”

1

0.5
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2π
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Figure 5.9: Membership functions of premise terms.
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To see how to quantify the “and” operation, begin by supposing that e(t) =
π/10 and ė(t) = 0.0005, so that using Figure 5.8 (or Figure 5.9) we see that

μzero(e(t)) = 0.5

and
μpossmall (ė(t)) = 0.25

What, for these values of e(t) and ė(t), is the certainty of the statement

“error is zero and change-in-error is possmall”

that is the premise from the above rule? We will denote this certainty by
μpremise. There are actually several ways to define it:

• Minimum: Define μpremise = min{0.5, 0.25} = 0.25, that is, using the
minimum of the two membership values.

• Product: Define μpremise = (0.5)(0.25) = 0.125, that is, using the product
of the two membership values.

Do these quantifications make sense? Notice that both ways of quantifying
The premise of a rule is
true to a certain degree
and we think of rules
that are “more true” as
being more relevant to
the current plant
situation.

the “and” operation in the premise indicate that you can be no more certain
about the conjunction of two statements than you are about the individual terms
that make them up (note that 0 ≤ μpremise ≤ 1 for either case). If we are not
very certain about the truth of one statement, how can we be any more certain
about the truth of that statement “and” the other statement? It is important
that you convince yourself that the above quantifications make sense. To do so,
we recommend that you consider other examples of “anding” linguistic terms
that have associated membership functions.
While we have simply shown how to quantify the “and” operation for one

value of e(t) and ė(t), if we consider all possible e(t) and ė(t) values, we will ob-
tain a multidimensional membership function μpremise (e(t), ė(t)) that is a func-
tion of e(t) and ė(t) for each rule. For our example, if we choose the minimum
operation to represent the “and” in the premise, then we get the multidimen-
sional membership function μpremise (e(t), ė(t)) shown in Figure 5.10 (and if we
use product to represent the premise we get the premise membership function
shown in Figure 5.11). Suppose that we use minimum to represent the conjunc-
tion in the premise. Notice that if we pick values for e(t) and ė(t), the value of
the premise certainty μpremise (e(t), ė(t)) represents how certain we are that the
rule

If error is zero and change-in-error is possmall Then rudder-input is negsmall

is applicable for specifying the rudder input to the plant. As e(t) and ė(t)
change, the value of μpremise (e(t), ė(t)) changes according to Figure 5.10 (or
Figure 5.11 if we use product to represent the rule), and we become less or more
certain of the applicability of this rule.
In general we will have a different premise membership function for each of

the rules in the rule base, and each of these will be a function of e(t) and ė(t)
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Figure 5.10: Membership function of the premise for a single rule using minimum
to represent the conjunction.

Figure 5.11: Membership function of the premise for a single rule using product
to represent the conjunction.
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so that given specific values of e(t) and ė(t), we obtain a quantification of the
certainty that each rule in the rule base applies to the current situation. It is
important you picture in your mind the situation where e(t) and ė(t) change
dynamically over time. When this occurs, the values of μpremise (e(t), ė(t)) for
each rule change, and hence the applicability of each rule in the rule base for
specifying the rudder input to the ship, changes with time.

Determining Which Rules Are On

Determining the applicability of each rule is called “matching.” We say that a
rule is “on at time t” if its premise membership function μpremise(e(t), ė(t)) > 0.
Hence, the inference mechanism seeks to determine which rules are on to find
out which rules are relevant to the current situation. In the next step, the
inference mechanism will seek to combine the recommendations of all the rules
to come up with a single conclusion.

Generally, only a few
rules are relevant to
choosing the plant input
at any one time.

Consider, for the ship steering example, how we compute the rules that are
on. Suppose that

e(t) = 0

and
ė(t) = 0.0015

Figure 5.12 shows the membership functions for the inputs and indicates, with
thick black vertical lines, the e(t) and ė(t) values. Notice that μzero(e(t)) = 1
but that the other membership functions for the e(t) input are all “off” (i.e.,
their values are zero). For the ė(t) input we see that μzero (ė(t)) = 0.25 and
μpossmall (ė(t)) = 0.75 and that all the other membership functions are off. This
implies that rules that have the premise terms

“error is zero”
“change-in-error is zero”

“change-in-error is possmall”

are on (all other rules have μpremise (e(t), ė(t)) = 0). So, which rules are these?
Using Table 5.1 on page 162, we find that the following rules are on:

1. If error is zero and change-in-error is zero Then rudder-input is zero

2. If error is zero and change-in-error is possmall Then rudder-input is
negsmall

Note that since for the ship steering example we have at most two membership
functions overlapping, we will never have more than four rules on at one time
(this concept generalizes to many inputs). Actually, for this system we will
either have one, two, or four rules on at any one time. To get only one rule on
choose, for example, e(t) = 0 and ė(t) = 0.002. In this example, only rule 2
above is on. What values would you choose for e(t) and ė(t) to get four rules
on? Why is it impossible, for this system, to have exactly three rules on?
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Figure 5.12: Input membership functions with input values.

It is useful to consider pictorially which rules are on. Consider Table 5.3,
which is a copy of Table 5.2 on page 169 with boxes drawn around the conse-
quents of the rules that are on (notice that these are the same two rules listed
above). Notice that since e(t) = 0 (e(t) is directly in the middle between the
membership functions for “possmall” and “negsmall”), both of these member-
ship functions are off. If we perturbed e(t) slightly positive (negative), then
we would have the two rules below (above) the two highlighted ones on also.
With this, you should picture in your mind how a region of rules that are on
(that involves no more than four cells in the body of Table 5.3, due to how we
define the input membership functions) will dynamically move around in the
table as the values of e(t) and ė(t) change. This completes our description of
the “matching” phase of the inference mechanism.

5.1.5 Inference Step: Determining Conclusions

Next, we consider how to determine which conclusions should be reached when
the rules that are on are applied to deciding what the rudder input to the ship
should be. To do this, we will first consider the recommendations of each rule
independently. Then later we will combine all the recommendations from all
the rules to determine the rudder input to the tanker ship.

Recommendation from One Rule

Consider the conclusion reached by the rule

If error is zero and change-in-error is zero Then rudder-input is zero
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Table 5.3: Rule Table for the Tanker Ship with Rules That Are “On” (high-
lighted). (Body of table holds the output membership function centers where
each element should be multiplied by 8π/18.)

ė
−5 −4 −3 −2 −1 0 1 2 3 4 5

−5 1 1 1 1 1 1 .8 .6 .3 .1 0
−4 1 1 1 1 1 .8 .6 .3 .1 0 −.1
−3 1 1 1 1 .8 .6 .3 .1 0 −.1 −.3
−2 1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6
−1 1 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8

e 0 1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1
1 .8 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1
2 .6 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1
3 .3 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1
4 .1 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1
5 0 −.1 −.3 −.6 −.8 −1 −1 −1 −1 −1 −1

which for convenience we will refer to as “rule (1).” Using the minimum to
represent the premise, we have

μpremise(1) = min{1, 0.25} = 0.25

(the notation μpremise(1) represents μpremise for rule (1)) so that we are 0.25
certain that this rule applies to the current situation. The rule indicates that if
its premise is true, then the action indicated by its consequent should be taken.
For rule (1) the consequent is “rudder-input is zero” (this makes sense, for here
the ship is headed in the proper direction, so we should not apply a rudder
input that is different from zero since this would tend to move the ship heading
away from the desired heading). The membership function for this consequent
is shown in Figure 5.13(a). The membership function for the conclusion reached
by rule (1), which we denote by μ(1), is shown in Figure 5.13(b) and is given by

μ(1)(δ) = min{μpremise(1) , μzero(δ)}

(where μpremise(1) = 0.25 as determined above). This membership function de-
fines the “implied fuzzy set”1 for rule (1) (i.e., it is the conclusion that is implied
by rule (1)). The justification for the use of the minimum operator to represent
the implication is that we can be no more certain about our consequent than our

1This term has been used in the literature for a long time; however, there is no standard
terminology for this fuzzy set. Others have called it, for example, a “consequent fuzzy set” or
an “output fuzzy set” (which can be confused with the fuzzy sets that quantify the consequents
of the rules).
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premise. You should convince yourself that we could use the product operation
to represent the implication also (in Section 5.1.6 we will do an example where
we use the product).

δ(t), (rad.)

“zero”
0

(a)

δ(t), (rad.)

“zero”
0

(b)

0.25

16π
180

16π
180

16π
180

16π
180

Figure 5.13: (a) Consequent membership function and (b) implied fuzzy set
with membership function μ(1)(δ) for rule (1).

Notice that the membership function μ(1)(δ) is a function of δ and that the
minimum operation will generally “chop off the top” of the μzero(δ) membership
function to produce μ(1)(δ). For different values of e(t) and ė(t) there will be
different values of the premise certainty μpremise(1) (e(t), ė(t)) for rule (1) and
hence different functions μ(1)(δ) obtained (i.e., it will chop off the top at different
points).
We see that μ(1)(δ) is in general a time-varying function that quantifies

how certain rule (1) is that the force input δ should take on certain values.
It is most certain that the force input should lie in a region around zero (see
Figure 5.13(b)), and it indicates that it is certain that the force input should not
be too large in either the positive or negative direction—this makes sense if you
consider the linguistic meaning of the rule. The membership function μ(1)(δ)
quantifies the conclusion reached by only rule (1) and only for the current e(t)
and ė(t). It is important that the reader be able to picture how the shape of
the implied fuzzy set changes as the rule’s premise certainty changes over time.

Recommendation from Another Rule

Next, consider the conclusion reached by the other rule that is on:

If error is zero and change-in-error is possmall Then rudder-input is negsmall

which, for convenience, we will refer to as “rule (2).” Using the minimum to
Fuzzy control is
“democratic” in that in
deciding what input to
put into the plant, it
listens to the
recommendation from
each rule, to a degree
specified by “how true”
the premise of that rule
is.

represent the premise, we have

μpremise(2) = min{1, 0.75} = 0.75
so that we are 0.75 certain that this rule applies to the current situation. Notice
that we are much more certain that rule (2) applies to the current situation than
rule (1) does. For rule (2) the consequent is “rudder-input is negsmall” (this
makes sense, for here the ship is heading in the proper direction but is moving
in the counterclockwise direction with a small velocity). The membership func-
tion for this consequent is shown in Figure 5.14(a). The membership function
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for the conclusion reached by rule (2), which we denote by μ(2), is shown in
Figure 5.14(b) (the shaded region) and is given by

μ(2)(δ) = min{μpremise(2) , μnegsmall(δ)}

(where μpremise(2) = 0.75 as determined above). This membership function de-
fines the implied fuzzy set for rule (2) (i.e., it is the conclusion that is reached
by rule (2)). Once again, for different values of e(t) and ė(t) there will be dif-
ferent values of μpremise(2) (e(t), ė(t)) for rule (2) and hence different functions
μ(2)(δ) obtained. The reader should carefully consider the meaning of the im-
plied fuzzy set μ(2)(δ). Rule (2) is quite certain that the control output (process
input) should be a small negative value. This makes sense since if the ship has
some counterclockwise velocity, then we would want to apply a negative rudder
angle input. As rule (2) has a premise membership function that has higher
certainty than for rule (1), we see that we are more certain of the conclusion
reached by rule (2).

“negsmall”
-1

(a)

“negsmall”
-1

(b)

0.75

δ(t), (rad.) δ(t), (rad.)8π
180

24π
180

8π
180

24π
180

8π
180

8π
180

Figure 5.14: (a) Consequent membership function and (b) implied fuzzy set
with membership function μ(2)(δ) for rule (2).

This completes the operations of the inference mechanism in Figure 5.1 on
page 156. While the input to the inference process is the set of rules that are on,
its output is the set of implied fuzzy sets that represent the conclusions reached
by all the rules that are on. For our example, there are at most four conclusions
reached since there are at most four rules on at any one time (and even some

Converting decisions to
actions entails
combining the
recommendations of all
the relevant rules.

of these implied fuzzy sets may have a membership function that is zero for all
values of δ so that we may ignore it).

5.1.6 Converting Decisions into Actions

Next, we consider the defuzzification operation, which is the final component of
the fuzzy controller shown in Figure 5.1 on page 156. Defuzzification operates on
the implied fuzzy sets produced by the inference mechanism and combines their
effects to provide the “most certain” controller output (plant input). Some
think of defuzzification as “decoding” the fuzzy set information produced by
the inference process (i.e., the implied fuzzy sets) into numeric fuzzy controller
outputs.
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To understand defuzzification, it is best to first draw all the implied fuzzy
sets on one axis as shown in Figure 5.15. We want to find the one output,
which we denote by “δcrisp,” that best represents the conclusions of the fuzzy
controller that are represented with the implied fuzzy sets. There are actually
many approaches to defuzzification. We will consider two here.

“zero”
“negsmall”

-1 0

-10 δ(t), (rad.)16π
180

16π
180

Figure 5.15: Implied fuzzy sets.

Combining Recommendations

Due to its popularity, we will first consider the “center of gravity” (COG) de-
fuzzification method for combining the recommendations represented by the im-
plied fuzzy sets from all the rules. Let bi denote the center of the membership
function for the implied fuzzy set for the ith rule (i.e., where the membership
function for the ith rule reaches its peak for our example since the output fuzzy
sets are all symmetric about their peaks). For our example we have

b1 = 0.0

and

b2 = −0.1
(
8π
18

)
as shown in Figure 5.15. Let ∫

μ(i)

denote the area under the membership function μ(i). The COG method com-
putes δcrisp to be

δcrisp =
∑

i bi
∫
μ(i)∑

i

∫
μ(i)

(5.1)

This is the classical formula for computing the center of gravity. In this case
it is for computing the center of gravity of the implied fuzzy sets. Three items
about Equation (5.1) are important to note:

1. Practically, we cannot have output membership functions that have infi-
nite area since even though they may be “chopped off” in the minimum
operation for the implication (or scaled for the product operation), they
can still end up with infinite area. This is the reason we do not allow
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infinite area membership functions for the linguistic values for the con-
troller output (e.g., we did not allow the saturated membership functions
at the outermost edges as we had for the inputs shown in Figure 5.8 on
page 166).

2. You must be careful to define the input and output membership functions
so that the sum in the denominator of Equation (5.1) is not equal to zero
no matter what the inputs to the fuzzy controller are. Essentially, this
means that we must have some sort of conclusion for all possible control
situations we may encounter.

3. While at first glance it may not appear so,
∫
μ(i) is easy to compute

for our example. For the case where we have symmetric triangular output
membership functions that peak at one and have a base width of w, simple
geometry can be used to show that the area under a triangle “chopped
off” at a height of h (such as the ones in Figures 5.13 and 5.14) is equal
to

w

(
h− h2

2

)

Given this, the computations needed to compute δcrisp are not too signif-
icant (note that if w is the same for every output membership function,
then it cancels in Equation (5.1)).

We see that the property of membership functions being symmetric for the
output is important since in this case no matter whether the minimum or prod-
uct is used to represent the implication, it will be the case that the center of the
implied fuzzy set will be the same as the center of the consequent fuzzy set from
which it is computed. If the output membership functions are not symmetric,
then their centers, which are needed in the computation of the COG, will change
depending on the membership value of the premise. This will result in the need
to recompute the center at each time instant.
Using Equation (5.1) with Figure 5.15, we have

δcrisp =
(0)

(
0.25− (0.25)2

2

)
+
(−0.1 8π

18

) (
0.75− (0.75)2

2

)
(
0.25− (0.25)2

2

)
+
(
0.75− (0.75)2

2

) = −0.0952

as the input to the ship for the given e(t) and ė(t).
Does this value for a force input (i.e., −5.4545 degrees) make sense? Consider

Figure 5.16, where we have taken the implied fuzzy sets from Figure 5.15 and
simply added an indication of what number COG defuzzification says is the best
representation of the conclusions reached by the rules that are on. Notice that
the value of δcrisp is roughly in the middle of where the implied fuzzy sets say
they are most certain about the value for the force input. In fact, recall that
we had

e(t) = 0
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and
ė(t) = 0.0015

so the ship is at the desired heading at this time instant but is moving counter-
clockwise with a small velocity; hence, it makes sense to apply a small negative
rudder input, and the fuzzy controller does this.

“zero”
“negsmall”

-1 0

-10 δ(t), (rad.)16π
180

16π
180

δ
crisp

= -0.0952 rad.

= 0.2793 rad.

Figure 5.16: Implied fuzzy sets.

It is interesting to note that for our example it will be the case that

−8π
18
≤ δcrisp ≤ 8π

18

To see this, consider Figure 5.17, where we have drawn the output membership
functions. Notice that even though we have extended the membership functions
at the outermost edges past −8π/18 and +8π/18 (see the shaded regions), the
COG method will never compute a value outside this range.

“possmall”

“zero”

“negsmall”
“neglarge” -1

-2 0

1
2

“poslarge”“posmed”
“posbig” “poshuge”

3

0

4
5“negmed”

“negbig”“neghuge”
-3

-4
-5

1

(t) , (rad.)δ
8π
18

8π
18

8π
36

8π
36

Figure 5.17: Output membership functions.

The reason for this comes directly from the definition of the COG method
in Equation (5.1). The center of gravity for these shapes simply cannot extend
beyond −8π/18 and +8π/18. Practically speaking, this ability to limit the
range of inputs to the plant is useful in real applications since all real plant
inputs are limited to lie in a specific range. The other conclusion that we would
reach from this discussion is that in defining the membership functions for the
fuzzy controller, we must take into account what method is going to be used for
defuzzification.
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Other Ways to Compute and Combine Recommendations

As another example, it is interesting to consider how to compute, by hand, the
operations that the fuzzy controller takes when we use the product to represent
the implication or the “center-average” defuzzification method.
First, consider the use of the product. Consider Figure 5.18, where we have

drawn the output membership functions for “negsmall” and “zero” as dotted
lines. The implied fuzzy set from rule (1) is given by the membership function

μ(1)(δ) = 0.25μzero(δ)

shown in Figure 5.18 as the shaded triangle; the implied fuzzy set for rule (2)
is given by the membership function

μ(2)(δ) = 0.75μnegsmall(δ)

shown in Figure 5.18 as the dark triangle. The computation of the COG is easy
since we can use 1

2wh as the area for a triangle with base width w and height h
(and the factor 1

2w cancels in Equation 5.1). When we use product to represent
the implication, we obtain

δcrisp =
(0)(0.25) +

(−0.1 8π
18

)
(0.75)

0.25 + 0.75
= −0.1047

which also makes sense.

“zero”
“negsmall”

-1 0

-10 δ(t), (rad.)16π
180

16π
180

0.75

0.25

Figure 5.18: Implied fuzzy sets when the product is used to represent the im-
plication.

Next, as another example of how to combine recommendations, we will in-
troduce the “center-average” method for defuzzification. For this method we
let

δcrisp =

∑
i biμpremise(i)∑
i μpremise(i)

(5.2)

where bi once again denotes the center of the membership function for the im-
plied fuzzy set for the ith rule (i.e., where the membership function for the
ith rule reaches its peak for our example since the output fuzzy sets are all
symmetric about their peaks). To compute the μpremise(i) we use, for exam-
ple, minimum. We call it the “center-average” method since Equation (5.2)
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is a weighted average of the center values of the membership functions of the
implied fuzzy sets (and output membership function centers). Basically, the
center-average method replaces the areas of the implied fuzzy sets that are used
in COG with the values of μpremise(i) . This is a valid replacement since the area
of the implied fuzzy set is generally proportional to μpremise(i) since μpremise(i)

is used to chop the top off (minimum) or scale (product) the triangular out-
put membership function when COG is used for our example. For the above
example, we have

δcrisp =
(0)(0.25) +

(−0.1 8π
18

)
(0.75)

0.25 + 0.75
= −0.1047

which is the same value as above (for this special case). Some like the center-
average defuzzification method because the computations needed are generally
simpler than for COG because when the output membership functions are sym-
metric (the usual case), they are easy to store since the only relevant information
they provide is their center values (bi) (i.e., their shape does not matter, just
their center value, so this is all that needs to be stored). Moreover, the areas of
the implied fuzzy sets do not have to be computed.
Notice that while both values computed for the different inference and de-

fuzzification methods provide reasonable command inputs to the plant, it is
difficult to say which is best without further investigations (e.g., simulations
or implementation). This ambiguity about how to define the fuzzy controller
actually extends to the general case and also arises in the specification of all the
other fuzzy controller components, as we discuss below. Some would call this
“ambiguity” a design flexibility, but unfortunately there are not too many guide-
lines on how best to choose the inference strategy and defuzzification method,
so such flexibility is of questionable value.

Graphical Depiction of Fuzzy Decision Making

For convenience, we summarize the procedure that the fuzzy controller uses to
compute its outputs given its inputs in Figure 5.19. Here, we use the minimum
operator to represent the “and” in the premise and the implication and COG
defuzzification. The reader is advised to study each step in this diagram to
gain a fuller understanding of the operation of the fuzzy controller. To do this,
develop a similar diagram for the case where the product operator is used to
represent the “and” in the premise and the implication, and choose values of e(t)
and ė(t) that will result in four rules being on. Then, repeat the process when
center-average defuzzification is used with either minimum or product used for
the premise. Also, learn how to picture in your mind how the parameters of this
graphical representation of the fuzzy controller operations change as the fuzzy
controller inputs change.
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If   error is zero and  change-in-error is zero Then           rudder-input is zero

If error is zero and  change-in-error is possmall Then  rudder-input is negsmall

e(t), (rad.)

“zero”
0

zeroμ

, (rad/sec)

“possmall”
1

dt
de

possmallμ

1

0.5

2π
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180
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180
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16π
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-1 0

-10 δ(t), (rad.)16π
180

16π
180
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= -0.0952 rad.

= 0.2793 rad.

Figure 5.19: Graphical representation of fuzzy controller operations.

5.2 General Fuzzy Systems

In this section we introduce multi-input multi-output fuzzy systems, Takagi-
Sugeno fuzzy systems, and then show how to develop mathematical representa-
tions for these.

5.2.1 Multiple Input Multiple Output Fuzzy Systems

A fuzzy system is a static nonlinear mapping between its inputs and outputs
(i.e., it is not a dynamic system). Some people include the preprocessing of the
inputs to the fuzzy system (e.g., differentiators or integrators) in the definition
of the fuzzy system and thereby obtain a “fuzzy system” that is dynamic. In
this book, we adopt the convention that such preprocessing is not part of the
fuzzy system, and hence the fuzzy system will always be a memoryless nonlinear
map.
A general multiple input multiple output (MIMO) fuzzy system with inputs
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ui, i = 1, 2, . . . , n and outputs yj, j = 1, 2, . . . ,m is shown in Figure 5.20.
The inputs and outputs are “crisp;” that is, they are numeric values. The
fuzzification block converts the crisp inputs to fuzzy sets (i.e., it converts them
to “singleton” fuzzy sets, ones that have membership functions with zero width
and a unit pulse at the value of the input; an example singleton membership
function is shown in Figure 5.21). The inference mechanism uses the fuzzy rules
in the rule base to produce fuzzy conclusions (e.g., the implied fuzzy sets), and
the defuzzification block converts these fuzzy conclusions into the crisp outputs.
In this subsection we explain how to define a MIMO fuzzy controller.

Inference
mechanism

Rule-baseFu
zz

if
ic

at
io

n

D
ef

uz
zi

fi
ca

tio
n

u1

u2

un

y
1
y2

ym

Crisp
inputs

Crisp
outputs

Fuzzified
inputs

Fuzzy
conclusions

Figure 5.20: Fuzzy system (controller).

First, note that to define a MIMO fuzzy system you simply specify m multi-
ple input single output (MISO) fuzzy systems, where the output of the jth fuzzy
system is yj , j = 1, 2, . . . ,m. We already know how to specify a MISO fuzzy
system with n = 2 inputs so all we need to do is explain how to define a MISO
fuzzy system with n > 2 inputs (then the case for n = 1 will be clear). To do
this, note that for each input we define membership functions as we did for the
e and ė universes of discourse for the ship example. You form rules using the n
inputs in n premise terms. Next, fuzzification is the same as earlier—you just
compute the membership values on all the input universes of discourse. Next,
we need to compute the fuzzy logic quantification of the conjunction between
n premise terms rather than just two. To do this we take the same approach
as before, but take the minimum (or product) of n membership function values
to represent the conjunction of n premise terms. This will give us μpremise(i)

for the ith rule and we will compute this for all the rules. From this point on
the process is exactly the same as the two-input case since after the matching
process, the inference mechanism computations of the implied fuzzy sets and
the defuzzification computations only depend on μpremise(i) . Therefore, the ef-
fect of additional inputs to the fuzzy system is on the premise and hence the
computations needed to find μpremise(i) for all the rules.
The computations necessary for MISO fuzzy systems will be reviewed in

Section 5.2.3 where we explain how to develop mathematical representations of
fuzzy systems for n input MISO fuzzy systems.
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5.2.2 Takagi-Sugeno Fuzzy Systems

The fuzzy systems discussed in the previous sections will be referred to as a
“standard fuzzy system,” regardless of the particular choices for premise rep-
resentation, inference, defuzzification, etc. In this subsection we will define a
“functional fuzzy system,” of which the Takagi-Sugeno fuzzy system is a special
case. For the functional fuzzy system, we use singleton fuzzification and the
premise is defined the same as it is for the rule for the standard fuzzy system.
The consequents of the rules are different, however. Instead of a linguistic term
with an associated membership function, in the consequent we use a function
bi = gi(·) (hence the name “functional fuzzy system”) that does not have an
associated membership function (or you can think of it as a singleton member-
ship function whose position changes as specified by the function gi for the ith

rule). Notice that often the argument of gi contains the fuzzy system inputs
that are used in the premise of the rule, but other variables may also be used.
The choice of the function depends on the application being considered. Below,
we will discuss linear and affine functions but many others are possible. For
instance, you may want to choose

bi = gi(·) = ai,0 + ai,1(u1)2 + · · ·+ ai,n(un)2

or
bi = gi(·) = exp [ai,1sin(u1) + · · ·+ ai,nsin(un)]

Virtually any function can be used (e.g., a neural network mapping or another
fuzzy system), which makes the functional fuzzy system very general.
Let R denote the number of rules. For the functional fuzzy system we can

use an appropriate operation for representing the premise (e.g., minimum or
product), and defuzzification may be obtained using

y =
∑R

i=1 biμi(z)∑R
i=1 μi(z)

(5.3)

where μi(z) is the premise membership function (rather than μpremise(i) which
was used in our earlier discussion). It is assumed that the functional fuzzy
system is defined so that no matter what its inputs are, we have

∑R
i=1 μi(z) �= 0.

The vector z can be chosen in several ways. One common choice is to use
z = [u1, u2, . . . , un]�; however, sometimes z might hold other variables, or only
a subset of the ui values (with only a subset of the values, complexity of the
mapping generally decreases since the computations needed to find μi(z) are
simplified).

A Takagi-Sugeno fuzzy
system is an interpolator
between linear mappings.

In the special case where

bi = gi(·) = ai,0 + ai,1u1 + · · ·+ ai,nun

(where the ai,j are fixed real numbers) the functional fuzzy system is referred
to as a “Takagi-Sugeno fuzzy system.”

Kwang_Y_Lee@baylor.edu



5.2 General Fuzzy Systems 187

If ai,0 = 0, then the gi(·) mapping is a linear mapping and if ai,0 �= 0,
then the mapping is called “affine.” Often, however, as is standard, we will
refer to the affine mapping as a linear mapping for convenience. Overall, we see
that the Takagi-Sugeno fuzzy system performs a nonlinear interpolation between
linear mappings. In control applications, the linear mappings can each represent
a different linear controller and the Takagi-Sugeno fuzzy system interpolates
between these and applies combinations of the linear controller outputs (similar
in some cases to what is called “gain scheduled control” in conventional control).

5.2.3 Mathematical Representations of Fuzzy Systems

Notice that each formula for defuzzification in the previous sections provides a
mathematical description of a fuzzy system. There are many ways to represent
the operations of a fuzzy system with mathematical formulas. Next, we clarify
how to construct and interpret such mathematical formulas for the case where
center-average defuzzification is used for n-input MISO fuzzy systems. Simi-
lar ideas apply for other defuzzification strategies, MIMO fuzzy systems, and
Takagi-Sugeno fuzzy systems.

Two Different Approaches

Rules and Membership Functions: To represent linguistic rules, let ũi, i =
1, 2, . . . , n, and ỹ denote the linguistic variables that describe ui, i = 1, 2, . . . , n,
and y, respectively. Let Ãj

i denote the jth linguistic value for the ith input
universe of discourse (here, suppose that i = 1, 2, . . . , n, but that j can, for
instance, take on values that are equal to the linguistic-numeric values). Simi-
larly, let B̃p denote the pth linguistic value on the output universe of discourse
that has linguistic variable ỹ. With this, a linguistic rule may be described
mathematically by

If ũ1 is Ã
j
1

and ũ2 is Ãk
2

and · · ·
and ũn is Ãl

n

Then ỹ is B̃p

Suppose that there are R such rules.
Next, consider the mathematical quantification of membership functions.

Clearly, many other choices for the shape of the membership function are possi-
ble than the ones discussed so far, and these will each provide a different mean-
ing for the linguistic values that they quantify. See Figure 5.21 for a graphical
illustration of a variety of membership functions and Tables 5.4 and 5.5 for a
mathematical characterization of the triangular and Gaussian membership func-
tions, including the membership functions that are often used at the outermost
edges of the input universe of discourse when the “center” membership func-
tions are used at various positions along the input universe of discourse (other
membership functions can be characterized with mathematics using a similar
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approach). For practice, you should sketch the membership functions that are
described in Tables 5.4 and 5.5. Notice that for Table 5.4, cL specifies the “sat-
uration point” and wL specifies the slope of the nonunity and nonzero part of
μL. Similarly, for μR. For μC notice that c is the center of the triangle and w is
the base width. Analogous definitions are used for the parameters in Table 5.5.
In Table 5.5, for the “centers” case note that this is the traditional definition
for the Gaussian membership function. This definition is clearly different from
a standard Gaussian probability density function, in both the meaning of c and
σ, and in the scaling of the exponential function. Recall that it is possible that
a Gaussian probability density function has a maximum value at a value other
than one; the standard Gaussian membership function always has its peak value
at one.

μ

ui

Figure 5.21: Some typical membership functions.

Table 5.4: Mathematical Characterization of Triangular Membership Functions

Triangular and related membership functions

Left μL(u) =

{
1 if u ≤ cL

max
{
0, 1 + cL−u

0.5wL

}
otherwise

Centers μC(u) =
{
max

{
0, 1 + u−c

0.5w

}
if u ≤ c

max
{
0, 1 + c−u

0.5w

}
otherwise

Right μR(u) =

{
max

{
0, 1 + u−cR

0.5wR

}
if u ≤ cR

1 otherwise

Approach 1: Given Membership Functions, All Possible Rules: As-
sume that we use center-average defuzzification so that the formula describing
how to compute the output is

y =
∑R

i=1 biμi∑R
i=1 μi

(5.4)

where for convenience we use μi to represent the premise certainty for the ith rule
(rather than μpremise(i) which was more descriptive for our earlier discussion,
but a bit cumbersome).
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Table 5.5: Mathematical Characterization of Gaussian Membership Functions

Gaussian and related membership functions

Left μL(u) =

⎧⎨
⎩
1 if u ≤ cL

exp
(
− 1

2

(
u−cL

σL

)2
)

otherwise

Centers μC(u) = exp
(
− 1

2

(
u−c
σ

)2)

Right μR(u) =

⎧⎨
⎩ exp

(
− 1

2

(
u−cR

σR

)2
)

if u ≤ cR

1 otherwise

To be more explicit in Equation (5.4), we need to first define the premise
membership functions μi in terms of the individual membership functions that
describe each of the premise terms. Suppose that we use product to represent
the conjunctions in the premise of each rule. Suppose that we use the triangular
membership functions in Table 5.4 where we suppose that μL

j (uj) (μ
R
j (uj)) is

the “left-” (“right-”) most membership function on the jth input universe of
discourse. In addition, let μCi

j (uj) be the i
th “center” membership function for

the jth input universe of discourse. In this case, to define μL
j (uj) we simply

add a “j” subscript to the parameters of the “left” membership function from
Table 5.4. In particular, we use cLj and wL

j to denote the jth values of these
parameters. We take a similar approach for the μR

j (uj), j = 1, 2, . . . , n. For
μCi

j (uj) we use cij (w
i
j) to denote the ith triangle center (triangle base width)

on the jth input universe of discourse.
Suppose that we use all possible combinations of input membership functions

to form the rules, and that each premise has a term associated with each and
every input universe of discourse. A more detailed description of the fuzzy
system in Equation (5.4) is given by

y =
b1
∏n

j=1 μ
L
j (uj) + b2μ

C1
1 (u1)

∏n
j=2 μ

L
j (uj) + · · ·∏n

j=1 μ
L
j (uj) + μC1

1 (u1)
∏n

j=2 μ
L
j (uj) + · · ·

The first term in the numerator is b1μ1 in Equation (5.4). Here, we have called
the “first rule” the one that has premise terms all described by the membership
functions μL

j (uj), j = 1, 2, . . . , n. The second term in the numerator is b2μ2

and it uses μC1
1 (u1) on the first universe of discourse and the leftmost ones on

the other universes of discourse (i.e., j = 2, 3, . . . , n). Continuing in a similar
manner, the sum in the numerator (and denominator) extends to include all
possible combinations of products of the input membership functions, and this
fully defines the μi in Equation (5.4).
Overall, we see that because we need to define rules resulting from all possible

combinations of given input membership functions, of which there are three
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kinds (left, center, right), the explicit mathematical representation of the fuzzy
system is somewhat complicated. To avoid some of the complications, we first
specify a single function that represents all three types of input membership
functions. Suppose that on the jth input universe of discourse we number the
input membership functions from left to right as 1, 2, . . . , Nj , where Nj is the
number of input membership functions on the jth input universe of discourse.
A single membership function that represents all three in Table 5.4 is

μi
j(uj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if (uj ≤ c1j , i = 1) or (uj ≥ c

Nj

j , i = Nj)

max
{
0, 1 +

uj−cij
0.5wi

j

}
if uj ≤ cij and (uj > c1j and uj < c

Nj

j )

max
{
0, 1 +

cij−uj

0.5wi
j

}
if uj > cij and (uj > c1j and uj < c

Nj

j )

A similar approach can be used for the Gaussian case in Table 5.5.
Suppose we use the shorthand notation

(j, k, . . . , l; p)i

to denote the ith rule shown above. In this notation, suppose the indices in
(the “tuple”) (j, k, . . . , l) range over 1 ≤ j ≤ N1, 1 ≤ k ≤ N2, . . ., 1 ≤ l ≤ Nn,
and specify which linguistic value is used on each input universe of discourse.
Correspondingly, each index in the tuple (j, k, . . . , l) also specifies the linguistic-
numeric value of the input membership function used on each input universe of
discourse.
Let

b(j,k,...,l;p)i

denote the output membership function (a singleton) center for the ith rule.
Note that we use “i” in the notation (j, k, . . . , l; p)i simply as a label for each
rule (i.e., we number the rules in the rule base from 1 to R, and i is this number).
Hence, when we are given i, we know the values of j, k, . . ., l, and p. Because
of this, an explicit description of the fuzzy system in Equation (5.4) is given by

y =
∑R

i=1 b
(j,k,...,l;p)iμj

1μ
k
2 · · ·μl

n∑R
i=1 μ

j
1μ

k
2 · · ·μl

n

(5.5)

This formula clearly shows the use of the product to represent the premise.
Notice that since we use all possible combinations of input membership functions
to form the rules there are

R =
n∏

j=1

Nj

rules, and hence it takes
n∑

j=1

2Nj +
n∏

j=1

Nj (5.6)

parameters to describe the fuzzy system since there are two parameters for
each input membership function and R output membership function centers.
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For some applications, however, all the output membership functions are not
distinct. For example, consider the ship steering example where eleven output
membership function centers are defined, and there are R = 121 rules. To define
the center positions b(j,k,...,l;p)i so that they take on only a fixed number of given
values, that is less than R, one approach is to specify them as a function of the
indices of the input membership functions. What is this function for the ship
steering example?

Approach 2: Parameterization in Terms of Rules: A different approach
to avoiding some of the complications encountered in specifying a fuzzy system
mathematically is to use a different notation, and hence a different definition for
the fuzzy system. For this alternative approach, for the sake of variety, we will
use Gaussian input membership functions. In particular, for simplicity, suppose
that for the input universes of discourse we only use membership functions of
the “center” Gaussian form shown in Table 5.5. For the ith rule, suppose that
the input membership function is

exp

⎛
⎝−1

2

(
uj − cij

σi
j

)2
⎞
⎠

for the jth input universe of discourse. Hence, even though we use the same
notation for the membership function, these centers cij are different from those
used above, both because we are using Gaussian membership functions here, and
because the “i” in cij is the index for the rules, not the membership function
on the jth input universe of discourse. Similar comments can be made about
the σi

j , i = 1, 2, . . . , R, j = 1, 2, . . . , n. If we let bi, i = 1, 2, . . . , R, denote the
center of the output membership function for the ith rule, use center-average
defuzzification, and product to represent the conjunctions in the premise, then

y =

∑R
i=1 bi

∏n
j=1 exp

(
− 1

2

(
uj−cij
σi
j

)2
)

∑R
i=1

∏n
j=1 exp

(
− 1

2

(
uj−ci

j

σi
j

)2
) (5.7)

is an explicit representation of a fuzzy system. Note that we do not use the
“left” and “right” versions of the Gaussian membership functions in Table 5.5
as this complicates the notation.

It is possible to write
down the complete
mathematical description
of the mapping between
the input and output of
the fuzzy system.

There are nR input membership function centers, nR input membership
function spreads, and R output membership function centers. Hence, we need
a total of

R(2n+ 1)

parameters to describe this fuzzy system.
Now, while the fuzzy systems in Equations (5.5) and (5.7) are in general

different, it is interesting to compare the number of parameters needed to de-
scribe a fuzzy system using each approach. In practical situations, we often
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have Nj ≥ 3 for each j = 1, 2, . . . , n, and sometimes the number of member-
ship functions on each input universe of discourse can be 10 or more. From
Equation (5.6) we can clearly see that large values of n will result in a fuzzy
system with many parameters (there is an exponential increase in the number
of rules). On the other hand, using the fuzzy system in Equation (5.7), the
user specifies the number of rules. This, coupled with the number of inputs n,
specifies the total number of parameters. There is not an exponential growth in
the number of parameters in Equation (5.7) in the same way as there is in the
fuzzy system in Equation (5.5), so you may be tempted to view the definition
in Equation (5.7) as a better one. Such a conclusion, can, however be erroneous
for several reasons.
First, the type of fuzzy system defined by Equation (5.5) is sometimes more

natural in control design when you use triangular membership functions since
you often need to make sure that there will be no point on any input universe of
discourse where there is no membership function with a nonzero value (why?).
Of course, if you are careful, you can avoid this problem with the fuzzy system
also represented by Equation (5.7). Second, suppose that the number of rules
for Equation (5.7) is the same as that for Equation (5.5). In this case, the
number of parameters needed to describe the fuzzy system in Equation (5.7) is⎛

⎝ n∏
j=1

Nj

⎞
⎠ (2n+ 1)

Now, comparing this to Equation (5.6) you see that for many values of Nj ,
j = 1, 2, . . . , n, and number of inputs n, it is possible that the fuzzy system
in Equation (5.7) will require many more parameters to specify it than the
fuzzy system in Equation (5.5). Hence, the inefficiency in the representation in
Equation (5.5) lies in having all possible combinations of output membership
function centers, which results in exponential growth in the number of param-
eters needed to specify the fuzzy system. The inefficiency in the representation
in Equation (5.7) lies in the fact that, in a sense, membership functions on the
input universes of discourse are not reused by each rule. There are new input
membership functions for every rule.
Generally, it is difficult to know which is the best fuzzy system for a par-

ticular problem. In this book, we will sometimes use the mathematical rep-
resentation in Equation (5.7) because it is somewhat simpler, and possesses
some properties that we will exploit. At other times we will be implicitly using
the representation in Equation (5.5) because it will lend to the development of
certain techniques.
Finally, we would like to recommend that you practice creating mathematical

representations of fuzzy systems. For instance, it is good practice to create
a mathematical representation of the fuzzy controller for ship steering of the
form of Equation (5.5), and then also use Equation (5.7) to specify the same
fuzzy system. Comparing these two approaches, and resolving the issues in
specifying the output centers for the Equation (5.5) case, will help clarify the
issues discussed in this section.
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5.2.4 Relationships Between Neural and Fuzzy Systems

There are two ways in which there are relationships between fuzzy systems and
neural networks. First, techniques from one area can be used in the other.
Second, in some cases the functionality (i.e., the nonlinear function that they
implement) is identical. Some label the intersection between fuzzy systems and
neural networks with the term “fuzzy-neural” or “neuro-fuzzy” to highlight that
techniques from both fields are being used. Here, we avoid this terminology and
simply highlight the basic relationships between the two fields.
The multilayer perceptron should be viewed as a nonlinear network whose

nonlinearity can be tuned by changing the weights and biases. The fuzzy sys-
tem is also a tunable nonlinearity whose shape can be changed by tuning, for
example, the membership functions. Since both are tunable nonlinearities, it is
possible to use the methods of Part III to train either one (e.g., least squares, or
gradient methods can be used to train both fuzzy and neural systems). While
multilayer perceptron networks can take on a similar role to that of a fuzzy
system in performing the function of being a tunable nonlinearity, an advantage
that the fuzzy system may have, however, is that it often facilitates the incor-
poration of heuristic knowledge into the solution to the problem, which can, at
times, have a significant impact on the quality of the solution.
Some radial basis function neural networks are equivalent to some standard

fuzzy systems in the sense that they are functionally equivalent (i.e., given the
same inputs, they will produce the same outputs). To see this, suppose that in
Equation (4.12) we let nR = R (i.e., the number of receptive field units equal
to the number of rules), let the receptive field unit strengths be equal to the
output membership function centers, and choose the receptive field units as

Ri(x) = μi(x)

(i.e., choose the receptive field units to be the same as the premise membership
functions). In this case we see that the radial basis function neural network is
identical to a certain fuzzy system that uses center-average defuzzification. This
fuzzy system is then given by

y = Frbf (x, θ) = Ffs(x, θ) =
∑R

i=1 biμi(x)∑R
i=1 μi(x)

where θ holds the membership function parameters for the fuzzy system or
strengths and receptive field unit parameters for the radial basis function neural
network.
The equivalence between this type of fuzzy system and a radial basis function

neural network shows that all the techniques in this book for the above type of
fuzzy system work in the same way for the above type of radial basis function
neural network.
Due to the above relationships between fuzzy systems and neural networks,

some would like to view fuzzy systems and neural networks as identical areas.
This is, however, not the case for the following reasons:
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• There are classes of neural networks (e.g., dynamic neural networks) that
may have a fuzzy system analog, but if so, it would have to include not
only standard fuzzy components but some form of a differential equation
component.

• There are certain fuzzy systems that have no clear neural analog. Con-
sider, for example, certain “fuzzy dynamic systems.” We can, however,
envision how you could go about designing a neural analog to such fuzzy
systems.

• The neural network has traditionally been a “black box” approach where
the weights and biases are trained (e.g., using gradient methods like back-
propagation) using data, often without using extra heuristic knowledge
we often have. In fuzzy systems you can incorporate heuristic information
and use data to train them. This last difference is often quoted as being
one of the advantages of fuzzy systems over neural networks, at least for
some applications.

In Part III we will show how to train both neural networks and fuzzy systems
and will try to provide some insights into which is best to use for a particular
application.

5.3 Design Example: Fuzzy Control for Tanker
Ship Steering

As there is no general systematic procedure for the design of fuzzy controllers
that will definitely produce a high-performance fuzzy control system for a wide
variety of applications, it is necessary to learn about fuzzy controller design
via examples. Here, we continue with the ship steering example to provide an
introduction to the typical procedures used in the design (and redesign) of a
fuzzy controller. First, however, we discuss how to code the fuzzy controller for
the tanker ship.

5.3.1 Simulation of a Fuzzy Controller

Often, before you implement a fuzzy controller, there is a need to perform a
simulation-based evaluation of its performance. To perform a simulation, we
will need a model of the plant and a computer program that will simulate the
fuzzy control system (i.e., a program to simulate a nonlinear dynamic system).
We explained in the last chapter how to simulate a nonlinear system; hence, all
we need to do here is explain how to simulate the fuzzy controller.

Fuzzy Controller Arrays and Subroutines

The fuzzy controller can be programmed in C, Fortran, Matlab, or virtually
any other programming language. There may be some advantage to program-
ming it in C since it is then sometimes easier to transfer the code directly to
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an experimental setting for use in real-time control. At other times it may
be advantageous to program it in Matlab since plotting capabilities and other
control computations may be easier to perform there. Here, rather than dis-
cussing the syntax and characteristics of the multitude of languages that we
could use to simulate the fuzzy controller, we will develop a computer program
“pseudocode” that will be useful in developing the computer program in vir-
tually any language. For readers who are not interested in learning how to
write a program to simulate the fuzzy controller, this section will provide a nice
overview of the steps used by the fuzzy controller to compute its outputs given
some inputs.

Normalization and Scaling: We will use the ship steering example to illus-
trate the basic concepts on how to program the fuzzy controller. In particular,
we will explain how to simulate the fuzzy control system shown in Figure 5.22.
Notice that here we have added the gains g1 and g2 at the inputs to the fuzzy
controller and g0 at the output of the fuzzy controller. The reason for adding
these is that they are often useful in tuning since they scale the horizontal input
and output axes of the fuzzy controller. Hence, to simulate the fuzzy control
system developed in the last section, we first “normalize” the input and output
universes of discourse. For this example, this means that we simply change
the membership functions to those shown in Figure 5.23 (i.e., normalize to an
interval ±1). With the indicated scaling gains in Figure 5.23 (i.e., the ones in
the boxes) that are implemented as shown in Figure 5.22, we implement the
membership functions shown in Figure 5.8.

Tanker
shipd

dt

Σ
r e

δ ψ
Fuzzy controller g

0

g1

ψ

g2

Figure 5.22: Fuzzy controller for tanker ship with scaling gains g0, g1, and g2.

It is important to notice that a scaling gain g1 on the input is equivalent to
scaling the horizontal axis of the e universe of discourse by 1/g1 (yes, it is 1/g1;
think about the fact that increasing g1 changes, for instance, the meaning of
“possmall” so that it quantifies smaller values of the error input that is passed
through the gain g1). In more detail, the scaling gain g1 has the following effects:

• If g1 = 1, there is no effect on the membership functions and there is no
effect on the meaning of the linguistic values.

• If g1 < 1, the membership functions are uniformly “spread out” by a fac-
tor of 1/g1 (notice that multiplication of each number on the e universe
of discourse of Figure 5.23 by π which is 1/g1, gives you Figure 5.8 on
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Figure 5.23: Normalized universes of discourse for fuzzy controller for tanker
ship (and boxed values of the scaling gains give the original membership func-
tions shown in Figure 5.8).

page 166). This changes the meaning of the linguistics so that, for ex-
ample, “poslarge” is now characterized by a membership function that
represents larger numbers.

• If g1 > 1, the membership functions are uniformly “contracted.” This
changes the meaning of the linguistics so that, for example, “poslarge”
is now characterized by a membership function that represents smaller
numbers.

The scaling gain g2 has similar effects, but for the ė universe of discourse. How-
ever, for the output universe of discourse, the scaling is such that multiplying
the output by the gain g0 is the same as multiplying the horizontal δ axis by g0.
Here, we will implement the membership functions in Figure 5.23 with the

understanding that to get the membership functions in Figure 5.8 on page 166,
all we need to do is multiply by scaling gains

g1 =
1
π
, g2 = 100, g0 =

8π
18

We will use the minimum operation to represent both the “and” in the premise
and the implication (it will be obvious how to switch to using, for example, the
product). We will use center of gravity defuzzification. At first we will make
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no attempt to code the fuzzy controller so that it will minimize execution time
or minimize the use of memory. However, after introducing the pseudocode, we
will address these issues.

Subroutines: First, suppose that for convenience we use a different set of
linguistic-numeric descriptions for the input and output membership functions
than we used up till now. Rather than numbering them

−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5
we will renumber them as

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

so that we can use these as indices for arrays in the program. Suppose that we
let the computer variable x1 denote (notice that a different typeface is used for
all computer variables) e(t), which we will call the first input, and x2 denote
ė(t), which we will call the second input. Next, we define the following arrays
and functions:

• Let mf1[i] (mf2[j]) denote the value of the membership function associ-
ated with input 1 (2) and linguistic-numeric value i (j). In the computer
program, mf1[i] could be a subroutine that computes the membership
value for the ith membership function given a numeric value for the first
input x1 (note that in the subroutine we can use simple equations for lines
to represent triangular membership functions). Similarly for mf2[j].

• Let rule[i,j] denote the center of the consequent membership function
of the rule that has linguistic-numeric value “i” as the first term in its
premise and “j” as the second term in its premise. Hence rule[i,j] is
essentially a matrix that holds the body of the rule base table shown in
Table 5.2. In particular, for the tanker ship we have rule[i,j] as:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 0.8 0.6 0.3 0.1 0
1 1 1 1 1 0.8 0.6 0.3 0.1 0 −0.1
1 1 1 1 0.8 0.6 0.3 0.1 0 −0.1 −0.3
1 1 1 0.8 0.6 0.3 0.1 0 −0.1 −0.3 −0.6
1 1 0.8 0.6 0.3 0.1 0 −0.1 −0.3 −0.6 −0.8
1 0.8 0.6 0.3 0.1 0 −0.1 −0.3 −0.6 −0.8 −1
0.8 0.6 0.3 0.1 0 −0.1 −0.3 −0.6 −0.8 −1 −1
0.6 0.3 0.1 0 −0.1 −0.3 −0.6 −0.8 −1 −1 −1
0.3 0.1 0 −0.1 −0.3 −0.6 −0.8 −1 −1 −1 −1
0.1 0 −0.1 −0.3 −0.6 −0.8 −1 −1 −1 −1 −1
0 −0.1 −0.3 −0.6 −0.8 −1 −1 −1 −1 −1 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(recall that we will scale this matrix of centers by g0 = 8π
18 after we compute

the output of the fuzzy controller).

• Let prem[i,j] denote the certainty of the premise of the rule that has
linguistic-numeric value “i” as the first term in its premise and “j” as the
second term in its premise given the inputs x1 and x2.
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• Let areaimp[c,h] denote the area under the output membership function
with center c that has been chopped off at a height of h by the minimum
operator. Hence, we can think of areaimp[c,h] as a subroutine that is
used to compute areas under the membership functions for the implied
fuzzy sets.

Fuzzy Controller Pseudocode

Using these definitions, consider the pseudocode for a simple fuzzy controller
that is used to compute the fuzzy controller output given its two inputs:

1. Obtain x1 and x2 values
(Get inputs to fuzzy controller)

2. Compute mf1[i] and mf2[j] for all i, j
(Find the values of all membership functions given the values
for x1 and x2)

3. Let num=0, den=0
(Initialize the COG numerator and denominator values)

4. For i=1 to 11, For j=1 to 11,
(Cycle through all areas to determine COG)

prem[i,j]=min[mf1[i],mf2[j]]

num=num+rule[i,j]*areaimp[rule[i,j],prem[i,j]]
(Compute numerator for COG)

den=den+areaimp[rule[i,j],prem[i,j]]
(Compute denominator for COG)

5. Next i, Next j

6. Output ucrisp=num/den
(Output the value computed by the fuzzy controller)

7. Go to Step 1.

To learn how this code operates, define each of the functions and arrays
for the ship steering example and show how to compute the fuzzy controller
output for the same (and some different) inputs used in the previous section.
Following this, develop the computer code to simulate the fuzzy controller for the
ship steering problem and verify that the computations made by the computer
match the ones made by hand.2

We do not normally recommend that initially you use only the computer-
aided design (CAD) packages for fuzzy systems since these tend to remove you
from understanding the real details behind the operation of the fuzzy controller.

2One way to start with the coding of the fuzzy controller is to start with the code that is
available for downloading at the Web site described in the Preface.
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However, after you have developed your own code and fully understand the
details of fuzzy control, we do advise that you use (or develop) the tools you
believe are necessary to automate the process of constructing fuzzy controllers.
Aside from the effort that you must put into writing the code for the fuzzy

controller, there are the additional efforts that you must take to initially type in
the rule base and membership functions and possibly modify them later (which
might be necessary if you need to perform redesigns of the fuzzy controller). For
large rule bases, this effort could be considerable, especially for initially typing
the rule base into the computer. While some CAD packages may help solve this
problem, it is not hard to write a computer program to generate the rule base,
because there are often certain regular patterns in the rule base.
Also notice that since there is a proportional correspondence between the

input linguistic-numeric values and the values of the inputs, you will often find it
easy to express the input membership functions as a nonlinear function of their
linguistic-numeric values. Another trick that is used to make the adjustment of
rule bases easier is to make the centers of the output membership functions a
function of their linguistic-numeric indices.

Real-Time Implementation Issues

When it comes to implementing a fuzzy controller, you often want to try to
minimize the amount of memory used and the time that it takes to compute the
fuzzy controller outputs given some inputs. The pseudocode in the last section
was not written to exploit certain characteristics of the fuzzy controller that
we had developed for the ship; hence, if we were to actually implement this
fuzzy controller and we had severe implementation constraints, we could try to
optimize the code with respect to memory and computation time.

Computation Time: First, we will focus on reducing the amount of time it
takes to compute the outputs for some given inputs. Notice the following about
the pseudocode:

• We compute prem[i,j] for all values of i and j (121 values) when for
our fuzzy controller for the ship, since there are never more than two
membership functions overlapping, there will be at most four values of
prem[i,j] needed (the rest will have zero values and hence will have no
impact on the ultimate computation of the output).

• In a similar manner, while we compute areaimp[rule[i,j],prem[i,j]]
for all i and j, we only need four of these values.

• If we compute only four values for areaimp[rule[i,j],prem[i,j]], we
will have at most four values to sum up in the numerator and denominator
of the COG computation (and not 121 for each).

At this point, from the view of computational complexity, the reader may won-
der why we even bothered with the pseudocode of the last section since it
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appears to be so inefficient. However, the code is only inefficient for the chosen
form for the fuzzy controller. If we had chosen Gaussian-shaped (i.e., or some
other bell-shaped) membership functions for the input membership functions,
then no matter what the input was to the fuzzy controller, all the rules would
be on so all the computations shown in the pseudocode were necessary and not
too much could be done to improve on the computation time needed. Hence, if
you are concerned with real-time implementation of your fuzzy controller, you
may want to put constraints on the type of fuzzy controller (e.g., membership
functions) you construct.
It is important to note that the problems with the efficiency of the pseu-

docode highlighted above become particularly acute when there are many inputs
to the fuzzy controller and many membership functions for each input, since the
number of rules increases exponentially with an increase in the number of inputs
(assuming all possible rules are used, which is often the case). For example, if
you have a two-input fuzzy controller with 21 membership functions for each
input, you will have 212 = 441 rules, and you can see that if you increase the
number of inputs, this number will quickly increase.
How do we overcome this problem? Assume that you have defined your

To reduce computation
time, most of which is
used for finding which
rules are on, it is
important to recognize
that only a few rules
“near each other” are on
at any one time.

fuzzy controller so that at most two input membership functions overlap at any
one point, as we had for the ship example. The trick is to modify your code so
that it will compute only four values for the premise membership functions, only
four values for areas of implied fuzzy sets, and hence, have only four additions
in the numerator and denominator of the COG computation. There are many
ways to do this. For instance, you can have the program scan mf1[i] beginning
at position zero until a nonzero membership value is obtained. Call the index
of the first nonzero membership value “istar.” Repeat this process for mf2[j]
to find a corresponding “jstar.” The rules that are on are the following:

rule[istar,jstar]
rule[istar,jstar+1]
rule[istar+1,jstar]

rule[istar+1,jstar+1]

provided that the indicated indices are not out of range. If only the rules iden-
tified by the indices of the premises of these rules are used in the computations,
then we will reduce the number of required computations significantly, because
we will not be computing values that will be zero anyway (notice that for the
ship example, there will be one, two, or four rules on at any one time, so there
could still be a few wasted computations). Notice that even in the case where
there are many inputs to the fuzzy controller the problem of how to code effi-
ciently reduces to a problem of how to determine the set of indices for the rules
that are on. So that you may fully understand the issues in coding the controller
in an efficient manner, we challenge you to develop the code for an n-input fuzzy
controller that will exploit the fact that only a hypercubical block of 2n rules will
be on at any one time (provided that at most two input membership functions
overlap at any one point).
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Memory Requirements: Next, we consider methods for reducing memory
requirements. Basically, this can be done by recognizing that it may be possible
to compute the rule base at each time instant rather than using a stored one.
Notice that there is a regular pattern to the rule base for the ship; since there
are at most four rules on at any one time, it would not be hard to write the
code so that it would actually generate the rules while it computes the controller
outputs. It may also be possible to use a memory-saving scheme for the output
membership functions. Rather than storing their positions, there may be a
way to specify their spacing with a function so that it can be computed in
real-time. For large rule bases, these approaches can bring a huge savings in
memory (however, if you are working with adaptive fuzzy systems where you
automatically tune membership functions, then it may not be possible to use
this memory-saving scheme). We are, however, gaining this savings in memory
at the expense of possibly increasing computation time.
Finally, note that while we focus here on the real-time implementation issues

by discussing the optimization of software, you could consider redesigning the
hardware to make real-time implementation possible. Implementation prospects
could improve by using a better microprocessor or signal processing chip. An
alternative would be to investigate the advantages and disadvantages of using a
“fuzzy processor” (i.e., a processor designed specifically for implementing fuzzy
controllers). Of course, many additional issues must be taken into consideration
when trying to decide if a switch in computing technology is needed. Not the
least among these are cost, durability, and reliability.

5.3.2 Fuzzy Controller Tuning for the Tanker Ship

We will start out with the controller that we developed earlier and illustrate
some basic ideas (from conventional control) that are often used to tune fuzzy
controllers. In particular, note that increasing g1 is analogous to increasing
the proportional gain in a PD controller (i.e., it will often make the system
respond faster, but may cause overshoot). Increasing the gain g2 is analogous
to increasing the derivative gain in a PD controller which tends to give the
controller a better predictive capability and hence helps it avoid overshooting
constant reference set points. Notice, also, that increasing g0 has an effect of
increasing the “gain in the loop” so it can be used to speed up the response.

Performance for the First Guess

First, consider the implementation of the fuzzy controller for ship steering de-
veloped in the previous sections which we will refer to as our “first guess.” The
closed-loop response, using the ship model specified in the previous section, is
shown in Figure 5.24 (note that we use g0 = 8π

18 , g1 =
1
π , and g2 = 100 as scaling

gains for our membership functions, which were normalized to the interval ±1,
to implement the membership functions in Figure 5.8). Note that while the
response is at least tracking the step changes eventually, there is a significant
amount of overshoot.
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Figure 5.24: Response of fuzzy controller for tanker ship steering, g0 = 8π
18 ,

g1 = 1
π , and g2 = 100.

Tuning the Derivative Gain to Reduce Overshoot

Using standard ideas from tuning of conventional controllers (e.g., proportional-
integral-derivative (PID) controllers), to reduce the overshoot, we should in-
crease the gain on the derivative term (so that the controller gets more capa-
bility to “predict where the response is going”). To do this we choose g0 = 8π

18 ,
We often use standard
heuristic ideas from
tuning conventional
controllers for tuning
fuzzy controllers.

g1 = 1
π , and g2 = 200 and get the response in Figure 5.25, where we see that we

have indeed reduced the overshoot. Unfortunately, however, this also reduced
the response time of the system (i.e., it “slowed” the system).

Tuning the Proportional Gain to Decrease the Response Time: Find-
ing “Good” Scaling Gains

Next, we seek to choose a good set of scaling gains by speeding up the response
from the previous case. To do this we increase the gain on the proportional term
so that we increase the speed of the response and hence reduce the response time.
When we do this, however, this can cause some overshoot, so we also increase
the gain on the derivative term to avoid that. In particular, choose g0 = 8π

18 ,
g1 = 2

π , and g2 = 250 to get a faster response with very little overshoot as seen
in Figure 5.26. We take this set of gains as “good” values in that we consider
the response that results from them to be good. Notice that we achieved all
our tuning via the scaling gains, although this is certainly not possible in all
applications.
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Figure 5.25: Response of fuzzy controller for tanker ship steering, g0 = 8π
18 ,

g1 = 1
π , and g2 = 200.

The Resulting Nonlinear Control Surface

To achieve this performance, the fuzzy controller implements a nonlinearity
that is shown in Figure 5.27. Notice that this surface is another way to view the

The fuzzy controller
implements a nonlinear
input-output map. Rule
construction and tuning
shapes this map.

captain’s expertise in ship steering (compare the list of the captain’s steering
expertise developed earlier to the shape of the surface; for instance, explain why
the slope of the surface changes in the way it does).
Note that the control surface for a simple proportional-derivative (PD) con-

troller is a plane in three dimensions. With the proper choice of the PD gains,
the linear PD controller can be made to have basically the same shape as the
fuzzy controller near the origin. Hence, in this case the fuzzy controller will
behave similarly to the PD controller provided its inputs are small. However,
notice that there is no way that the linear PD controller can achieve a non-
linear control surface of the shape shown in Figure 5.27 (this is not surprising
considering the complexity difference of the two controllers).
It is useful to notice that there is a type of interpolation that is performed

by the fuzzy controller that is nicely illustrated in Figure 5.27. If you study the
plot carefully, you will notice that the rippled surface is created by the rules and
membership functions. For instance, if we kept a similar nonuniform distribu-
tion of membership functions for the input and outputs of the fuzzy system, but
increased the number of membership functions, the ripples would correspond-
ingly increase in number and the amplitude of the ripple would decrease. What
is happening is that there is an interpolation between the rules. The output is
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Figure 5.26: Response of fuzzy controller for tanker ship steering, g0 = 8π
18 ,

g1 = 2
π , and g2 = 250.

Figure 5.27: Nonlinear control surface implemented by the fuzzy controller,
g0 = 8π
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an interpolation of the effects of the four rules that are on for the ship’s fuzzy
controller. For more general fuzzy controllers, it is important to keep in mind
that this sort of interpolation is often occurring (but not always—it depends on
your choice of the membership functions).

5.3.3 Design Concerns

While designing fuzzy controllers for practical problems you will encounter a
whole variety of problems, not the least of which could be pragmatic issues in
interfacing and communicating with the plant. In this section we outline some
of these and offer ideas on how to solve them. Several of the design concerns we
list are not specific to fuzzy control, but apply to any control system, including
the ones considered later in this chapter. To illustrate several points we will use
the tanker ship steering problem studied in the last section.

Understand the Control Problem

One key to developing a good solution to any problem is to make sure that you
clearly understand the problem so that you are sure that you are solving the
right problem! For control problems this means that you must do the following:

• Obtain a good understanding of the plant: It is critical that you gain
a good understanding of the plant you are to control. Yes, this means
understanding the physics of the problem and this may demand that you
step outside your main area of expertise (e.g., to study thermodynamics,
fluid mechanics, mechanics, circuit theory, etc.). Aside from returning to
first principles, it may be beneficial to consult others who have operated
the plant in the past or who have already developed a controller for it. It
may be helpful to develop a simulation of the plant and study the effects
of, for example, some inputs or disturbances on the output variables. Now,
clearly one of the main advantages of fuzzy and expert control is that you
do not explicitly need a mathematical model of a specific form to develop
the controller; however, for some plants it is not too hard to develop an
approximate mathematical model that can be very helpful in gaining an
understanding of how to control the plant. Experience has shown that to
develop good control systems you must use all the information you have
about how to achieve good control. Some of this information may come
in the form of rules from a human operator (or engineer) but other useful
information can come from a mathematical model and this should not
be ignored. Indeed, such a mathematical model will be needed for the
implementation of a planning system.

• Pay attention to plant constraints: A particularly important part of the
problem of obtaining a good understanding of the plant is to understand
those plant characteristics that limit your ability to achieve high perfor-
mance operation. Some typical limitations include the following:
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– Actuator saturation limits: All actuators have limits in which they
can perform and these constrain the ways in which you can affect
plant behavior. These limits come in the form of saturation limits on
the magnitude of the input, limits on the rate of change of the input,
etc.

– Sensor noise: There is no perfect sensor. Better sensors cost more
money. Noise on sensors limits the quality of information you can
obtain about the plant and hence your ability to control the plant.

– Plant dynamics: Unstable, highly nonlinear, nonminimum phase, and
highly uncertain plants (i.e., those with significant noise and plant
parameter variations), or plants with delays all provide unique chal-
lenges in control. The way each of these problems is manifested
changes for different applications.

• Develop appropriate specifications: Sometimes the boss or customer is the
one to provide the specifications of what they want in terms of perfor-
mance. It is important to have a very clear understanding of the expec-
tations for the plant in terms of typical measures of performance like the
following:

– Rise-time (amount of time for the output to get from 10% of the
final value to 90% of the final value when there is a step input),
overshoot (the amount the output increases above the final value of
a step reference input), steady-state error (error between the plant
output and commanded input as time goes to infinity).

– Stability (e.g., for the ship steering problem, if you start the ship
heading near a desired constant heading, will it move toward the
reference heading and ultimately reduce the heading error to zero?),
limit cycles (oscillations).

– Performance robustness (e.g., how much can the plant be allowed to
change before control system performance degrades significantly?),
and stability robustness (e.g., how much can the plant be allowed to
change before the system goes unstable?).

If the requirements are unreasonable, you may have to return to the boss
or customer and negotiate a reasonable set of specifications. If you find
that more is possible than is being asked, then your company may have a
competitive edge with the customer.

• Consider if it is possible to redesign the plant: For some control problems
(e.g., aircraft control) there are significant efforts to design the plant so
that it is easy to control. If you study the control problem (plant dynamics
and control specifications) and find that the specifications cannot be met,
another option may be to go back and redesign the plant so that the
specifications can be met. This may entail adding a sensor, purchasing a
better actuator, or even making structural changes to the plant to remove
challenging nonlinearities.
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• Study similar problems: There is an ever-expanding literature on the de-
velopment of control systems and there may be some similar work done
that is in the public domain that could be useful to you.

• Try the simplest thing: Trying the simplest thing first is good engineer-
ing practice and it may teach you something about the control problem.
Fuzzy, expert, or planning systems-based control is probably not the first
thing to try when implementing a control system. Even if you do not have
a model, it is simple to develop a PID controller, or indeed a P controller
(proportional controller), that can be tuned manually. The computations
for simple proportional control involve, for instance, forming a difference
between the reference input and plant output, and multiplying this differ-
ence by a gain. The numerical operations to implement a fuzzy controller
are clearly more complex (although it is not always the case that they are
more complex than a conventional controller).

Proper Rule Base Construction

Assuming that you are using fuzzy control, one of the most critical steps in the
design process is the choice of the rule base. It is therefore very important to
pay significant attention to this problem. The main sources of information for
rule base construction are the following:

• Interviews of human plant operators (or learning how to operate the plant
yourself).

• A good understanding of the plant, the constraints imposed by it, and the
closed-loop specifications that you are trying to achieve.

• Modeling and simulation studies.
• Past development of controllers for the same plant (or similar ones).
• Controller implementation studies for controllers that ultimately do not
adequately achieve the specifications (e.g., the controller that you are try-
ing to replace in updating a control system to achieve higher performance).

There are several issues to pay attention to in rule base construction, includ-
ing the following:

• Conflicting rules: Most often (but not always), the rules in the rule base
should not conflict with one another (e.g., there should not be two rules
that apply in the same situation that say to do two very different things).
Note, however, that conflicting rules can be used in a fuzzy controller
since, depending on how you define the inference mechanism, it will simply
interpolate between the two different conclusions (e.g., in the ship steering
fuzzy controller four different rules may come on that say to do somewhat
different things and defuzzification combines the recommendations that
are in a sense conflicting, if only mildly).
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• Completeness: You must define the rule base so that there is at least one
rule that is “on” at each time (and if there is, we will call it a “complete
rule base”). This means that there is a sort of complete coverage of the
input space of the fuzzy controller so that there is a premise membership
function with nonzero certainty for all possible values of the inputs. For
an expert controller, it must be the case that there is at least one rule with
a premise term that evaluates to true at each time instant. Note that in
the ship steering example, no matter what the values of e and ė are, there
is a premise membership function that has nonzero certainty so that there
is always at least one rule on. If you do not have a complete rule base
then, depending on how you define the fuzzy controller, it can be that the
denominator in the defuzzification formula will have a zero value so that
you will not be able to compute an explicit output (and your software will
return a “divide by zero” error).

Reducing Controller Complexity

For simple academic problems, the complexity of the fuzzy controller is rarely a
problem, especially when only simulation examples are considered. The problem
is, however, that for real applications there are often limitations on computing
power (memory and “throughput”), so it is important to carefully consider
how to reduce the computations necessary for implementations. There are two
fundamental reasons why complexity arises in fuzzy and expert controllers:

• Complex nonlinear maps: For challenging applications where you have
spent a significant amount of time tuning the rule base, it is likely that
the resulting controller surface has a very interesting and complex shape,
and that this shape is critical in meeting the performance specifications.
Complex nonlinear maps take significant computations to implement, so
to get higher performance control you have to pay for it in controller
complexity (you do not get something for nothing).

• Exponential increase in number of rules: Recall that in Section 5.2.3, we
analyzed the number of parameters needed to define a fuzzy system for
a given number of inputs and membership functions. We found that if
you define rules for all possible combinations of linguistic values in the
premises, then there is an exponential number of rules (similar analy-
ses hold for expert controllers also). For example, for our ship steering
problem with two inputs and eleven membership functions on each input
universe of discourse there are 112 = 121 possible rules. Hence, increas-
ing the number of linguistic values or inputs causes large increases in the
number of rules and hence the complexity of the fuzzy controller (e.g.,
going from using e and ė as inputs to also using

∫ t

0
e(τ)dτ , with eleven

membership functions on the
∫ t

0
e(τ)dτ universe of discourse, would result

in 113 = 1331 rules).
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Methods to reduce complexity are as numerous as there are applications since
each is a special case and there are often methods to simplify the computations.
There are, however, some general approaches to reducing complexity and these
are listed next:

1. In some cases, upon further study, you may be able to determine that rule
base completeness can be achieved with fewer rules simply because it may
be the case that certain combinations of the inputs are not possible. In
this case the corresponding rules can be removed since they will never be
used anyway.

2. You can simply try to reduce the number of linguistic values so that the
total number of possible rules is reduced. For example, for the tanker ship
it is possible to get reasonably good performance (at least for nominal
conditions) using only nine rules (three membership functions on each of
the two input universes of discourse). Realize, however, that additional
rules allow for the implementation of more complex nonlinear control sur-
faces, that can then result in higher performance operation. The key is
to determine the minimum number of rules that still allows for the imple-
mentation of a control surface that can achieve adequate performance. In
some cases you may have to go back to the customer and indicate that if
you are only allowed a certain amount of computing power, then only a
certain performance level is possible.

3. For the case of MIMO fuzzy controllers, study the problem carefully to de-
termine if you truly need all the inputs for each of the fuzzy controllers for
each plant input. Elimination of one input, for even one MISO controller,
can result in significant savings.

4. Sometimes you may want to use some type of “multi-stage” fuzzy con-
troller where, for example, there are two inputs to each of two controllers
and their outputs are combined by a third fuzzy system that provides the
input to the plant. In this case we will implement three two-input fuzzy
controllers rather than one four-input fuzzy controller (which for some ap-
plications can make a big difference). This approach tends to be highly
application specific but the principle is valid: try to reduce the number of
inputs by cascading fuzzy controllers.

5. Another approach to reduction is to use one fuzzy controller to specify
parameters in another. For instance, if you were to develop a controller
for the ship that also took as an input the ship speed u, one approach would
be to simply use a three-input fuzzy controller (where the rule base would
indicate that for faster ship speeds a smaller rudder angle input is needed
since the ship is easier to steer when it is moving fast). Another approach,
one that avoids the implementation of a three-input fuzzy controller, is
to use the two-input fuzzy controller we already developed for the ship
but add another single-input single-output fuzzy controller with the ship
speed as an input that specifies the amount of correction to the rudder
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angle for different ship speeds. Now, this approach does not allow one
to make coordinated control actions (e.g., different rudder corrections for
different e and ė and ship speeds), but it may be sufficient to solve the
problem. Again, there are many approaches to reducing complexity using
this approach since they are application-dependent.

Effects of Disturbances and Plant Changes

Plant parameter variations, disturbances, speed changes, and sensor noise all
affect our ability to achieve good control. In this section we will use the ship

It is important to
evaluate the performance
of the fuzzy control
system under adverse
conditions.

example to illustrate their effect on heading regulation performance when a fuzzy
controller is used (this section parallels the simulation studies for the multilayer
perceptron and radial basis function controllers for the ship in Sections 4.3
and 4.5; here, we use the same types of variations as we did in those sections).
Our intent, however, is to alert the reader to these issues so that they can be
taken into account in the design process.
First, we will consider the performance of the fuzzy controller when the ship

is under “full” conditions. Figure 5.28 shows how the fuzzy control system,
which was tuned for ballast conditions, performs for full conditions. We see
that there now is a bit of overshoot in the ship heading since a lighter boat
steers easier. We see that plant parameter variations can affect performance.
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Figure 5.28: Response of fuzzy controller for tanker ship steering, “full” condi-
tions, g0 = 8π

18 , g1 =
2
π , and g2 = 250.

Next, consider the effect of a wind disturbance on the ship. If we use g0 = 8π
18 ,
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g1 = 2
π , and g2 = 250 (i.e., the good tuned values), we get the response in

Figure 5.29. We see that the wind affects our ability to achieve very good
regulation of the ship heading since it causes a 1 to 2 degree variation in the
tracking of the desired heading.

Adverse conditions
generally degrade
performance; however,
good controller designs
minimize such
performance
degradations.
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Figure 5.29: Response of fuzzy controller for tanker ship steering, wind distur-
bance, g0 = 8π

18 , g1 =
2
π , and g2 = 250.

If you use, for instance, an additive sensor noise uniformly distributed on
[−0.01, 0.01], there is little effect on the response so we do not show the plot (of
course, if you get sensors with worse performance characteristics, then you will
expect tracking errors to arise in an analogous manner to results for the wind).
Next, consider the effect of a speed change on our ability to steer the ship.

If we use g0 = 8π
18 , g1 =

2
π , and g2 = 250 (i.e., the good tuned values), we get

the response in Figure 5.30. We see that the speed decrease causes a significant
overshoot in the response since the rudder is not as effective.

Tracking Error

Steady-state tracking error is the value

lim
t→∞ e(t)

and for most control problems we would like this to be as small as possible
or zero when the reference input is, for example, a step change. Adding an
integrator to the control loop is one approach that is often successful at reducing
or eliminating steady-state error (since if the error is nonzero, the integrator’s
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Figure 5.30: Response of fuzzy controller for tanker ship steering, speed de-
crease, g0 = 8π

18 , g1 =
2
π , and g2 = 250.

value gets larger, thus causing a larger control input to force the plant to move
to reduce the error). In this ship example we did not need to add an integrator
to the control loop by putting one in the controller since there is already an
integration effect in the plant (note that if you hold the rudder angle input
constant, the ship heading will tend off to infinity).
For fuzzy control design, since the plant and controller are nonlinear (you

should not be trying to control a linear plant with a fuzzy controller since if the
plant is truly linear all that is needed to succeed is a linear controller), we cannot
be guaranteed that the addition of an integrator will help reduce steady-state
error, but often it does. There are basically two ways to add an integrator to
a fuzzy controller: as an input (to achieve, for instance, “PID fuzzy control,”
i.e., a fuzzy controller with P, I, and D inputs), or by adding an integrator
to the output of the plant (which in some discrete time implementations some
engineers do inherently by specifying that the output should be a change in the
control variable, not an absolute value).

5.4 Stability Analysis

Here, we will be brief by simply providing some examples of how you can en-
counter limit cycles and instabilities for the tanker ship and a brief explanation
of how to conduct stability analysis for fuzzy control systems.
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5.4.1 Example: Stability and Limit Cycles in Ship Steer-
ing

Stability is often viewed as a fundamental property of a control system since
if the system is unstable it is possible that the output response, and hence the
tracking error (assuming a bounded reference input), grows without bound. For
example, for the ship if you choose g0 = −8π

18 , g1 =
2
π , and g2 = 250 (notice

minus sign), you can get an unstable response. (In this case, the controller moves
the rudder in the wrong direction to try to reduce a heading error and each time
it does this, it creates a bigger error.) This is a rather simple mechanism that

Improper choices for the
rule base can result in a
closed-loop system with
limit cycles and
instability.

provides instability but there can be very complex ones.
Another type of tracking error that can result (that is often considered to be

a type of instability) is when e(t) is oscillating, for example, when the reference
input is a constant and the output of the plant is a sinusoid. In many applica-
tions this is an undesirable characteristic. If you pick the wrong values of the
scaling gains in the ship steering problem, you can get such oscillatory behavior.
For example, if you pick g0 = 2000π

18 , g1 = 2
π , and g2 = 0.000001 for the ship,

you get the response shown in Figure 5.31 where we see that the oscillation
characteristics are dependent on the magnitude of the reference input.
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Figure 5.31: Response of fuzzy controller for tanker ship steering, g0 = 2000π
18 ,

g1 = 2
π , and g2 = 0.000001.

What is happening in the fuzzy control system to achieve this type of be-
havior? Usually, it is because some gains are set too large (or small) and the
input or output signals are oscillating between their maximum values, forcing
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the plant to oscillate also (i.e., this is a “controller-induced oscillation” in this
case). Clearly, the designer must be alerted to this possibility and try to avoid
it. Methods to avoid this problem typically involve careful choice of rule bases
and scaling gains.

5.4.2 Discussion: Lyapunov Stability Analysis of Fuzzy
Control Systems

The central issue in fuzzy controller design is to obtain good insights into how
the plant behaves in order to determine how to shape the nonlinear function
that is implemented by the fuzzy controller. Of course, this nonlinear function

Lyapunov stability
analysis can be useful
for verification of fuzzy
control systems.

then affects the closed-loop dynamics. To characterize and analyze exactly
how the nonlinearity affects the closed-loop stability properties, you can use
mathematical stability analysis just as we did for the neural controller in the last
chapter. Moreover, the reader may be interested to know that Lyapunov’s first
method (via linearization), absolute stability, and describing function analysis
can be performed (see the “For Further Study” section at the end of this part
for more information).
How exactly do you perform stability analysis via Lyapunov’s direct method?

Consider the simple example in Section 4.6.5 on page 147. Note that

u = F (x)

could be specified as a fuzzy controller so that F (0) = 0, F (x) is smooth, and
for some scalar β > 0,

F (x) > −βx, x < 0
F (x) < −βx, x > 0

How do we construct a rule base so that this is the case? We will provide a
problem of this type to the reader in Exercise 5.8. Basically, however, when
you get familiar with the types of input-output mappings that are generated
for certain choices of rule bases and membership functions, you will see how to
construct nonlinear control surfaces with different shapes.

5.5 Expert Control

An expert system is a computer program that is designed to emulate a human’s
skills in a specific problem domain. If it is designed to emulate the expertise of a
human in performing control activities, it is called an “expert controller.” When
the expert controller is connected to a plant, the closed-loop system is called an
expert control system (see Figure 5.32). Traditionally, the expert system has
been split into two components: the knowledge base and inference mechanism.
The knowledge base is simply a generalization of the rule base in a fuzzy system
where more general types of information can be characterized. Correspondingly,
the inference mechanism is a generalization of the inference mechanism in a fuzzy
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controller that can incorporate other reasoning strategies. Hence, conceptually
the expert controller is closely related to the fuzzy controller in its structure
and function. Moreover, the design philosophy used to construct the expert

General representations
of knowledge and
inference can be used for
emulating sophisticated
control strategies.

controller is similar to that of the fuzzy controller. The main differences between
the two approaches lie in the details of how the knowledge base and inference
mechanism are constructed.
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r(t) u(t) y(t)

Inference
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Figure 5.32: Expert control system.

5.5.1 General Knowledge Representations

The knowledge base in the expert controller could be a rule base, but is not nec-
essarily so. It could be developed using other knowledge-representation struc-
tures, such as frames, semantic nets, causal diagrams, and so on (see the “For
Further Study” section at the end of this part for information on these). Here,
we will simply show how the form of the rules used in fuzzy controllers can be
generalized and used in expert control.
The rule premises can be defined in much more general ways. For instance,

any type of predicate logic can be used that can include any kind of Boolean
logic, functions, relations, and existential quantifiers (“for all,” and “there ex-
ists”). For example, a rule may have the form:

If e(t) > 2 or there exists a time over the last
10 sec. where de(t)

dt ≤ 0.5
Then u(t) = 2.

Testing the validity of the premise can be defined in many ways, but normally the
standard rules of logic are used (similar to how the premise part of a standard
computer “if-then” statement is tested). Moreover, degrees of matching the
premises to the current situation can be used in an analogous way to how it is
in fuzzy systems.
The specific types of rules needed for control depend on the application being

considered and often it requires significant expertise with the plant to develop
an effective set of rules. Indeed, for practical applications this is typically an
iterative trial-and-error process and may involve a team of process experts to
test and develop the rule base. Conceptually, however, the synthesis of the rule
base proceeds in basically the same way as for the fuzzy control methodology.
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Finally, it is interesting to note that in practical control systems there are
often rules used for “exception handling” and special situations. These rules
sometimes override a currently operating controller (e.g., a PID controller) to
take appropriate actions under special situations. The inclusion of such rules
in controllers should not be viewed as a rare occurrence in the development of
a practical control system; control rules are often present, and sometimes are
significantly more difficult to develop than the “conventional” (e.g., PID) part
of the overall control system.

5.5.2 General Inference Mechanisms

The inference mechanism in the expert controller is more general than that
of the fuzzy controller. It can use more sophisticated matching strategies to
determine which rules should be allowed to fire. Also, it can use more elaborate
inference strategies. For instance, some expert systems use

• “Refraction,” where if a rule has fired recently, it may not be allowed back
into the “conflict set” (i.e., the set of rules that are allowed to fire).

• “Recency,” where rules that were fired most recently are given priority
in being fired again (sometimes a valid approach since such rules may be
most relevant to the current situation).

• “Priority schemes” where certain rules are a priori given higher priority to
fire if they are both in the conflict set. It is also possible to dynamically
assign priority.

Verification of correct
behavior of general
reasoning systems used
as feedback controllers is
important and
challenging.

It is in fact the case that an expert system is in a sense more general than a
fuzzy system since it can be shown that a single rule in an expert controller can
be used to represent an entire fuzzy controller. To see this, note that a single
fuzzy controller can be represented with a single static input-output map. Then,
a single rule in an expert controller can represent that mapping. If an entire
set of fuzzy controllers is represented as a set of such rules, then the resulting
expert controller will reason about how to successively apply fuzzy controllers
at each time step.

5.5.3 Stability Analysis of Expert Control Systems

Just as for neural and fuzzy control systems, it is possible to analyze qualitative
properties of expert control systems. For instance, a discrete time formulation
can be used to study the following properties:

• Stability in the sense of Lyapunov that may characterize how well the ex-
pert system can stay focused on (attend to) a control task, or boundedness
of plant variables in the closed-loop when an expert controller is used.

• “Reachability” properties where, for instance, search algorithms can be
used to test if the expert controller can drive the plant into some state
(e.g., the goal state).
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• Cyclic properties where the expert system may get stuck in an infinite
loop (circular reasoning) and hence not be able to achieve its goal.

Here, we will not develop the mathematical models and show explicitly how
to conduct stability analysis for expert control systems since it basically follows
the same conceptual approach as for neural or fuzzy control systems. We do,
however, provide more references in the “For Further Study” section at the end
of this part for the interested reader, and Design Problem 5.3 where the reader
is asked to conduct stability analysis of a simple expert control system.

5.6 Hierarchical Rule-Based Control Systems

There are a variety of ways to construct hierarchical fuzzy or expert control
systems. For instance, you could use the following approaches:

Knowledge and inference
are sometimes
conveniently represented
via hierarchies.

• You could use a rule-based (fuzzy or expert) system as a supervisor for
the operation of a rule-based controller. This supervisor could monitor
certain plant conditions and modify the rules to try to maintain good
performance. It may be more convenient to implement the system as two
rule-based systems, rather than a single one that takes in all the inputs
that the two systems do, and outputs the input to the plant (e.g., it may
be more computationally efficient, or this may be the way that the human
operator thinks about controlling the plant).

• You could use a rule-based system to supervise the operation of an adap-
tive control system. This possibility will be discussed in more detail in
Section 9.4.5.

• Sometimes multiple layers of such supervision could be needed.
There are still other possibilities. For instance, you can think of the hierarchy

in Figure 1.11 and suppose that each block is a fuzzy or expert system. The
blocks at the low level may be standard fuzzy controllers. The blocks at the
coordination level may contain fuzzy systems with rules about how to coordinate
the operation of the fuzzy controllers at the execution level, and an expert
system at the management level could supervise both the levels below it. In this
context you may think of using rules at the higher levels to turn on appropriate
rules at the low levels (some would think of this as pruning the rules at the
lower levels).

5.7 Exercises and Design Problems

Exercise 5.1 (Defining Membership Functions: Single Universe of
Discourse): In this problem you will study how to represent various
concepts and quantify various relations with membership functions. For
each part below, there is more than one correct answer. Provide one of
these and justify your choice in each case.
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(a) Draw a membership function (and hence define a fuzzy set) that
quantifies the set of all people of medium height.

(b) Draw a membership function that quantifies the statement “the num-
ber x is near 10.”

(c) Draw a membership function that quantifies the statement “the num-
ber x is less than 10.”

Exercise 5.2 (Defining Membership Functions: Multiple Universes
of Discourse): In this problem you will study how to represent various
concepts and quantify various relations with membership functions when
there is more than one universe of discourse. Use minimum to quantify
the “and.” For each part below, there is more than one correct answer.
Provide one of these and justify your choice in each case. Also, in each
case, provide the three-dimensional plot of the membership function.

(a) Draw a membership function (and hence define a fuzzy set) that
quantifies the set of all people of medium height who are “tan” in
color (i.e., tan and medium-height people). Think of peoples’ colors
being on a spectrum from white to black.

(b) Draw a membership function that quantifies the statement “the num-
ber x is near 10 and the number y is near 2.”

Exercise 5.3 (Fuzzy Sets): There are many concepts that are used in fuzzy
sets that sometimes become useful when studying fuzzy control. The
following problems introduce some of the more popular fuzzy set concepts
that were not treated earlier in the chapter.

(a) The “support” of a fuzzy set with membership function μ(x) is the
(crisp) set of all points x on the universe of discourse such that μ(x) >
0 and the “α-cut” is the (crisp) set of all points on the universe of
discourse such that μ(x) > α. What is the support and 0.5-cut for
the fuzzy set shown in Figure 5.5 on page 163?

(b) The “height” of a fuzzy set with membership function μ(x) is the
highest value that μ(x) reaches on the universe of discourse on which
it is defined. A fuzzy set is said to be “normal” if its height is equal
to one. What is the height of the fuzzy set shown in Figure 5.5 on
page 163? Is it normal? Give an example of a fuzzy set that is not
normal.

(c) A fuzzy set with membership function μ(x) where the universe of
discourse is the set of real numbers is said to be “convex” if and only
if

μ(λx1 + (1− λ)x2) ≥ min{μ(x1), μ(x2)} (5.8)

for all x1 and x2 and all λ ∈ [0, 1]. Note that just because a fuzzy
set is said to be convex does not mean that its membership function
is a convex function in the usual sense. Prove that the fuzzy set
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shown in Figure 5.5 on page 163 is convex. Prove that the Gaussian
membership function is convex. Give an example of a fuzzy set that
is not convex.

(d) A linguistic “hedge” is a modifier to a linguistic value such as “very”
or “more or less.” When we use linguistic hedges for linguistic val-
ues that already have membership functions, we can simply modify
these membership functions so that they represent the modified lin-
guistic values. Consider the membership function in Figure 5.5 on
page 163. Suppose that we obtain the membership function for “error
is very possmall” from the one for “possmall” by squaring the mem-
bership values (i.e., μverypossmall = (μpossmall)2). Sketch the mem-
bership function for “error is very possmall.” For “error is more or
less possmall” we could use μmoreorlesspossmall =

√
μpossmall. Sketch

the membership function for “error is more or less possmall.”

Exercise 5.4 (Fuzzy Logic): There are many concepts that are used in
fuzzy logic that sometimes become useful when studying fuzzy control.
The following problems introduce some of the more popular fuzzy logic
concepts that were not treated earlier in the chapter or were treated only
briefly.

(a) The complement (“not”) of a fuzzy set with a membership function
μ has a membership function given by μ̄(x) = 1− μ(x). Sketch the
complement of the fuzzy set shown in Figure 5.5 on page 163.

(b) There are other ways to represent the conjunction “and” using fuzzy
sets, different from the minimum and product that were introduced in
the chapter. Let μ1 and μ2 denote two specific membership function
values. Then, to represent “and,” we could use the “bounded differ-
ence” (i.e., max{0, μ1 + μ2 − 1}) and “drastic intersection” (where
its value is μ1 when μ2 = 1, μ2 when μ1 = 1, and zero otherwise).
Consider the membership functions shown in Figure 5.8 on page 166.
Sketch the membership function for the premise “error is zero and
change-in-error is possmall” when the bounded difference is used to
represent this conjunction (premise). Do the same for the case when
we use the drastic intersection. Compare these to the case where the
minimum operation and the product were used (i.e., plot these also
and compare all four).

(c) Fuzzy logic can be used to represent the disjunction (“or”) of, for
example, two premise terms. While there are many ways to represent
“or” in fuzzy logic, the most popular one seems to be to simply use
the maximum of the membership values. Consider the membership
functions shown in Figure 5.8 on page 166. Sketch the membership
function for “error is zero or change-in-error is possmall” when the
maximum is used to represent this disjunction.

Exercise 5.5 (Matching, Inference, and Defuzzification: Hand Cal-
culations): Suppose that for the tanker ship you use the membership
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functions in Figure 5.8 on page 166 and the rule base in Table 5.1 on
page 162. Also, suppose that we have

e(t) =
π

2

and
ė(t) = −0.0045

at some time t. Assume that we use the rule base shown in Table 5.1 on
page 162 and minimum to represent both the premise and implication.

(a) On Table 5.1, draw boxes around the centers of the output member-
ship functions in the body of the table that correspond to the rules
that are on.

(b) Draw all the implied fuzzy sets on the output universe of discourse.
(c) Find the output of the fuzzy controller using center-average defuzzi-

fication.
(d) Find the output of the fuzzy controller using COG defuzzification.
(e) Assume that we use the product to represent both the premise and

implication. Repeat (b)–(d).
(f) Write a computer program to solve (b) and (c).

Exercise 5.6 (Graphical Depiction of Fuzzy Decision Making): De-
velop a graphical depiction of the operation of the fuzzy controller for the
tanker ship similar to the one given in Figure 5.19 on page 184. For this,
choose e(t) = π

2 and ė(t) = −0.0045, which will result in four rules being
on. Be sure to show all parts of the graphical depiction, including an
indication of the values for e(t) and ė(t), the implied fuzzy sets, and the
final defuzzified value.

(a) Use minimum for the premise and implication and COG defuzzifica-
tion.

(b) Use product for the premise and implication and center-average de-
fuzzification.

Exercise 5.7 (Takagi-Sugeno Fuzzy Systems): In this problem you will
study the way that a Takagi-Sugeno fuzzy system interpolates between
linear mappings. In particular, as an example, suppose that n = 1, R = 2,
and that we have rules

If ũ1 is Ã1
1 Then b1 = 2 + u1

If ũ1 is Ã2
1 Then b2 = 1 + u1

with the universe of discourse for u1 given in Figure 5.33 so that μ1 rep-
resents Ã1

1 and μ2 represents Ã2
1. We have

y =
b1μ1 + b2μ2

μ1 + μ2
= b1μ1 + b2μ2
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We see that for u1 > 1, μ1 = 0, so y = 1+ u1, which is a line. If u1 < −1,
μ2 = 0, so y = 2 + u1, which is a different line. In between −1 ≤ u1 ≤ 1,
the output y is an interpolation between the two lines.

-1 1 u1

μ μ1 2
1

"negative" "positive"

Figure 5.33: Membership functions for Takagi-Sugeno fuzzy system example.

(a) Show that the nonlinear mapping induced by this Takagi-Sugeno
fuzzy system is given by

y =

⎧⎨
⎩
1 + u1 if u1 > 1
0.5u1 + 1.5 if − 1 ≤ u1 ≤ 1
2 + u1 u1 < −1

(Hint: The Takagi-Sugeno fuzzy system represents three lines, two in
the consequents of the rules and one that interpolates between these
two.)

(b) Plot y versus u1 over a sufficient range of u1 to illustrate the nonlinear
mapping implemented by the Takagi-Sugeno fuzzy system.

Exercise 5.8 (Lyapunov’s Direct Method for Fuzzy Control Systems):
Consider Exercise 4.3 but now suppose that you design F (x) to be a fuzzy
controller.

(a) Repeat parts (a)-(c) in Exercise 4.3.
(b) From the perspective of stability analysis, for this simple example,

do you see any advantage of neural control over fuzzy control, or vice
versa?

Design Problem 5.1 (Design of a Fuzzy Controller for Cargo Ship
Steering): In this problem we study the development of fuzzy controllers
for a cargo ship steering problem. Use the nonlinear model of the tanker
ship provided in Equation (4.5) but with K0 = −3.86, τ10 = 5.66, τ20 =
0.38, τ30 = 0.89, and l = 161 meters [30]. Assume the rudder is saturated
at ±80 degrees as in the tanker case. Also, we will assume that the cargo
ship is traveling in the x direction at a velocity of 5 meters/sec. Similar
to the tanker ship, you should seek to get as good a steering response as
possible.

(a) Develop a fuzzy controller for the cargo ship steering problem and
simulate the closed-loop system to demonstrate its performance. Test
the cases where there is a wind disturbance (assume it is modeled in
the same way as for the tanker ship) and speed change.
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(b) Develop a proportional-derivative (PD) controller for the cargo ship
and test it under the same conditions as in (a).

(c) Compare the results in (a) and (b). Discuss.

Design Problem 5.2 (Design of a Fuzzy Controller that Balances an
Inverted Pendulum): Consider the simple problem of balancing an
inverted pendulum on a cart, as shown in Figure 5.34. Here, y denotes
the angle that the pendulum makes with the vertical (in radians), l is the
half-pendulum length (in meters), and u is the force input that moves the
cart (in Newtons). We will use r to denote the desired angular position of
the pendulum. The goal is to balance the pendulum in the upright position
(i.e., r = 0) when it initially starts with some nonzero angle off the vertical
(i.e., y �= 0). This is a very simple and academic nonlinear control problem,
and many good techniques already exist for its solution. Indeed, for this
standard configuration, a simple PID controller works quite well, even in
implementation. Here, you will develop a fuzzy controller for the inverted
pendulum simply to gain practice in fuzzy control design.

y

2l

u

Figure 5.34: Inverted pendulum on a cart.

One model for the inverted pendulum shown in Figure 5.34 is given by

ÿ =
9.8 sin(y) + cos(y)

[
−ū−0.25ẏ2 sin(y)

1.5

]
0.5

[
4
3 − 1

3 cos
2(y)

] (5.9)

˙̄u = −100ū+ 100u.

The first order filter on u to produce ū represents an actuator. In the
simulations of the fuzzy control system for balancing the inverted pendu-
lum, be sure to use an appropriate numerical simulation technique for the
nonlinear system and a small enough integration step size (e.g., a fourth-
order Runge-Kutta method with an integration step size of h = 0.001).
In your simulations, let the initial condition be y(0) = 0.1 radians (= 5.73
deg.), ẏ(0) = 0, and ÿ(0) = 0 (this translates into an initial condition on
the actuator state).
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(a) Develop a fuzzy controller that uses e = r − y and ė as inputs, the
minimum operator to represent both the “and” in the premise and
the implication, and COG defuzzification. Simulate the closed-loop
system and plot the output y and input u to demonstrate that your
fuzzy controller can balance the pendulum. You should add scaling
gains and tune the fuzzy controller as we did for the tanker ship
steering problem.

(b) Repeat (a) for the case where you use product to represent the
premise and implication and center-average defuzzification.

(c) Study the performance of the controllers in (a) and (b) for different
initial conditions.

Design Problem 5.3 (Design and Stability Analysis of Expert Con-
trol Systems)�: This problem is based on a chapter in [410] that you
should first obtain and read carefully before answering the following ques-
tions. You may also want to consult [338] for a related study.

(a) First, for the model of the tank provide a state transition diagram
(circles for states, directed arrows between circles to represent plant
changes for certain inputs) that represents the dynamics of the plant.
Next, specify the state-transition diagram for the closed-loop system
when the “seven-rule controller” is used. Also, draw the diagram for
the case where the “three-rule” controller is used.

(b) Simulate the closed-loop system. In simulation, demonstrate that for
each initial condition in the set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} (initial liquid
height) that the liquid level will converge to an appropriate set of
values.

(c) Explain what “reachability” is, provide a mathematical definition
for it, and analyze a reachability property of the tank system via
simulation.

(d) Repeat the stability analysis shown in the chapter, providing full
explanations at every step of the derivation, to illustrate mathemat-
ically that the closed-loop system processes the indicated stability
properties (do this for both the seven-rule and three-rule controllers).
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