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Abstract- A large number of iterations and oscillation are 
those of the major concern in solving the economic load 
dispatch problem using the Hopfield neural network. This 
paper develops two different methods, which are the slope 
adjustment and bias adjustment methods, in order to speed up 
the convergence of the Hopfield neural network system. 
Algorithms of economic load dispatch for piecewise quadratic 
cost functions using the Hopfield neural network have been 
developed for the two approaches. The results are compared 
with those of a numerical approach and the traditional 
Hopfield neural network approach. To guarantee and for faster 
convergence, adaptive learning rates are also developed by 
using energy functions and applied to the slope and bias 
adjustment methods. The results of the traditional, fured 
learning rate, and adaptive learning rate methods are 
compared in economic load dispatch problem. 

Key words- Economic load dispatch, Hopfield neural 
networks, adaptive Hopfield neural networks. 

I. INTRODUCTION 

n power system, the operation cost at each time needs to I be minimized via economic load dispatch (ELD). 
Traditionally, the cost function of each generator has been 
approximately represented by a single quadratic cost 
function. Practically, operating con&tions of many 
generating units require that the generation cost function be 
segmented as piecewise quadratic functions. Therefore, it is 
more realistic to represent the generation cost function as a 
piecewise quadratic cost function, and Lin and Viviani [11 
presented the hierarchical economic dispatch for piecewise 
quadratic cost functions using a Lagrangian function. 
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Since Hopfield introduced in 1982 [2] and 1984 [3], the 
Hopfield neural networks have been used in many different 
applications. The important property of the Hopfield neural 
network is the decrease in energy by finite amount whenever 
there is any change in inputs [ll]. Thus, the Hopfield neural 
network can be used for optimization. Tank and Hopfield 
[4] described how several optimization problem can be 
rapidly solved by highly interconnected networks of a simple 
analog processor, which is an implementation of the 
Hopfield neural network. Park and others [5] presented the 
economic load dispatch for piecewise quadratic cost 
functions using the Hopfield neural network. The results of 
this method were compared very well with those of the 
numerical method in an hierarchical approach [ 13. King and 
others [6] applied the Hopfield neural network in the 
economic and environmental dispatching of electric power 
systems. These applications, however, involved a large 
number of iterations and often shown oscillations during 
transients. This suggests a need for improvement in 
convergence through an adaptive approach, such as the 
adaptive learning rate method developed by Ku and Lee 171 
for a diagonal recurrent neural network. 

11. ECONOMIC LOAD DISPATCH 

The ELD problem is to find the optimal combination of 
power generation that minimizes the total cost while 
satisfying the total demand. The cost function of ELD 
problem is defmed as follows: 

fuel 2, 
7 (2) 

where 
CJP, >: 
P, : 
a b  bZb C,k: 

cost of the ifh generator 
the power output of generator i 
cost coefficients of the irh generator for fuel 
type k. 
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In minimizing the total cost, the constraints of power 
balance and power limits should be satisfied: 

a) Power balance 

load demand and transmission-line loss: 
The total generating power has to be equal to the sum of 

D +  L - C < = O ,  (3 ) 

where D is total load, and Lis transmission loss. 

The transmission loss can be represented by the B-coefficient 
method as 

(4) 

where Bij is transmission loss coefficient. 

b) Maximum and mini" limits of power 

and it can be expressed as 
The generation power of each generator has some limits 

where 
- P : the minimum generation power 

P : the maximum generation power. 
- 

111. HOPFIELD NETWORKS AND MAPPING OF ELD. 

A. The Hopfield Neurul Networks 

The continuous neuron model is a generalized Hopfield 
network in which the computational energy decreases 
continuously in time [3,10]. For a very high-gain parameter 
(A) of the neurons, continuous networks perform in a way 
similar to the discrete model. Since the weight parameter 
vector is symmetric, the energy function of Hopfield neural 
network is defined as 

where V ,  is output value of neuron i, Ii is external input to 
neuron i, and 0, is threshold bias. 

The dynamics of the neurons is defined by 

d U .  1- - c q j v j  + Ii , (7) 

where Ui is the total input to neuron i and the sigmoidal 
function can be defined as 

Stability is known to be guaranteed since the energy function 
is bounded and its increment is found to be nonpositive as 

Since g,(U,) is a monotone increa 
term in this sum is nonnegative. Ther 
zero. The time evolution of the system is a motion in state- 
space that seeks out minima in E and comes to a stop at such 
points. 

B. Mupping of ELD Into the Hopfield 

function is defined by augmenting the objective function (1) 
with the constraint (2): 

1 Networks 

In order to solve the ELD problem, the follow 

E = - A ( D +  1 L - C e  ) z  +-BE(  1 
2 2 ,  

where aik, bZk, c1k are the cost coefficients as discrete 
functions of Pi defined in (1). 

By comparing (10) wi 
to be zero, the weight parame 
neuron i in the network [5] are g 

T .  = - A -  Bc. 
1 7  

T,  B = - A  , (11) 

where the diagonal weig nonzero. This converts (7) 
into the following syn 

Unlike the asynchronous , the synchronous model has 
fixed points as well as limit cycles as attractors. However, it 
does not get trapped to local minima as easily as the 
asynchronous model. 
synchronous model 
[9]. The sigmoidal fun 
meet the power h i t  con 

IV. ADAPTIVE HOPFIELD NETWORKS 

The traditional approach in solving the economic load 
dispatch @LD) problem using the Hopfield neural network 
requires a large number of iterations and often oscillates 
during the transient [5] and [8]. In order to speed up 
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Fig. 1.. Sigmoidal threshold function with different values of 
the gam parameter. 

convergence, two adaptive adjustment methods are 
developed in this paper: slope adjustment and bias 
adjustment methods. 

A. Slope Adjustment Method 

In transient state, the neuron input oscillates around the 
threshold value, zero in Figure 1. Some neuron inputs 
oscillate away from the threshold value. If the gain 
parameter is set too high, the oscillation will occur at the 
saturation region. If the slope in this region is too low, the 
neurons can not go to the stable state and will cause 
in stability. 

Since energy is to be minimized and its convergence 
depends on the gain parameter U,, the gradient-descent 
method can be applied to adjust the gain parameter as 

where q, is a learning rate. 

From (10) and (13), the gradient of energy with respect to 
the gain parameter can be computed as 

(15) 

The update rule of (14) needs a suitable choice of the 
learning rate qs. For a small value of qs, convergence is 
guaranteed but speed is too slow, on the other hand if the 
learning rate is too big, the algorithm becomes unstable. For 
faster and to guarantee convergence, a method to compute 
adaptive learning rates is developed following the procedure 
in Ku and Lee [7].  It can be shown [7,8] that convergence is 
guaranteed if the learning rate qs is chosen as 

-=c--. a E  a E  
au, i=las au, 

(16) 
2 

gs,,, 
O < q s  <2, 

where gs,max:=maxl(gs(k)ll, g,(k)=a E ( k ) / d  U,. 
Moreover, the optimal convergence is corresponding to 

. "  

This show an interesting result that any other learning rate 
larger than q does not guarantee a faster convergence. 

B. Bias Adjustment Method 

There is a limitation in the slope adjustment method, in 
that, slopes are small near the saturation region of the 
sigmoidal function, Fig 1. If every input can use the same 
maximum possible slope, convergence will be much faster. 
This can be achieved by changing the bias to shift the input 
near the center of the sigmoidal function. The bias can be 
changed following the similar gradient-descent method used 
in the slope adjustment method 

where q b  is a learning rate. 

The bias can be applied to every neuron as in (8), 
therefore, from (10) and (13), a derivative of energy with 
respect to a bias can be individually computed as 

ae i  aq sei' 
The adaptive learning rate is also developed following the 
similar procedure [8]. It can be shown that convergence is 
quaranteed if q b is chosen as 

where 

Moreover, the optimal convergence is corresponding to 

Again, any other learning rate larger than q does not 
guarantee a faster convergence. 

C. Momentum 

The speed of convergence can be accelerated by addmg 
momentum in the update processes. The momentum can be 
applied when updating the input in (12), the gain parameter 
in (14) and the bias in (18): 

U;(k )  - U;(k - 1) = qVj(k)  +a, AU,(k - 1) , (23) 
i 
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V, SIMULATION RESULTS 

The results of our Hopfield neural network are compared 
with those of the numerical method [l] and an earlier 
Hopfield neural network [5]. Then the results of slope 
adjustment and bias adjustment methods with fuced learning 
rate are compared with those with adaptive learning rates. 
Finally, momentum is applied to all update processes and 
results are compared. Graphs for 2500 MW load are 
compared in order to demonstrate the convergence 
properties. 

.1983e1 -.3114e-1 
S285e2 -.6348e0 

A. Conventional Hopfield Network 

The conventional Hopfield neural network for ELD 
problem using piecewise cost functions has been developed 
based on [5]. The same data has been used as in Table 1. 
Each generator has three types of fuel and there are four 
values of load demand, that is, 2400, 2500, 2600 and 2700 
MW. The results are compared with the numerical method 
and the earlier Hopfield network reported in [5] as shown in 
the Table 2. 

Table. 1: Cost coefficients for piecewise quadratic cost functions. 

I I  1 3 2 I 2 I -.5914e2 I .4864e0 

I 3 I .2668e3 1 -.2338e1 
5 I190 338 407 4901 1 I ,1392e2 I -.8733e-1 

I t  1 2 3 I 2 I .9976e2 I -.5206eO I 3 I -.5399e2 I .4462e0 
6 I 85 138 200 2651 1 I S285e2 I -.6348e0 

I I  2 1 3 I 2 1 .1983e1 I -.3114e-1 I 3 I .2668e3 1 -.2338e1 
7 1200 331 391 5001 1 I .1893e2 I -.1325eO 

ITS 
C 

.2176e-2 

.1861e-2 
S861e-2 
.4194e-2 
.1138e2 
.1620e2 
.1457e-2 
.1176e-4 
.8035e-3 
.1049e-2 
.2758e-2 
,5935e-2 
.1066e-2 
,1597e-2 
.1498e-3 
.2758e-2 
.1049e-2 
,593562 
.1107e2 
.1165e-2 
.2454e-3 
,104962 
.2758e-2 
,5935-2 
,155462 
.7033e-2 
.6121e-3 
.1102e-2 
.4164e-4 
.1137e-2 

Table 2 Results usin numerical method A , Hopfield neural 
network I (B), and Hopffeld neural network II [Cl. 

- 
U 

- 
1 
2 
3 
4 
5 
6 
7 
8 
9 
1c 

- 

- 

- 

A 

For the total load of 2400 MW, the final values (C) 
compared with those of numerical method (A) are very close 
when the gain parameter U. is 108. However, this is not the 
case for the earlier Hopfield network (B) where the output of 
unit 4 and unit 6 are interchanged. Also note that since the 
parameters of unit 4 and 8 are identical, the output power 
should also be the same, which is not the case for the earlier 
network, Hopfield network 1. When the 
set to be 100, the output power for 
different from those of the numerical method and Hopfield 
network I. However, the cost is lower and the constraints are 
met. Thus, the gain parameter has to be set to a suitable 
value and the new Network, Network 11, gives reasonable 
and better results. In other 1 demand, the gain parameter 
is set to be 100, and the outpt power is very close to those of 
other methods. A slightly higher cost for the numerical 
method is due to the numerical resolution in the earlier 
simulation reported in [5]. 

B. Slope Adjustment with Fined and Adaptive Learning 
Rates 

For slope adjustment method, Table 3, the number of 
iterations is reduced to about one half of that of the 
conventional Hopfield network, Table 2. Oscillation is also 
drastically reduced from about 40,000 to less than 100 
iterations, Fig 2. For the slope adjustment method, the final 
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U 

1 
2 

2400 Mw 2500 Mw 2600 Mw 2700 Mw 
A B A B A B A B  

196.8 189.9 205.6 205.1 215.7 214.5 223.2 224.6 
202.7 202.9 206.7 206.5 211.1 211.4 216.1 215.7 

I 3 I 251.2 I 252.1 1 265.3 1 266.4 

239.0 
342.1 

4 I 232.5 I 232.9 I 236.0 I 235.8 
5 I 240.4 I 241.7 I 257.9 I 256.8 

242.1 242.1 
345.2 352.3 

1 I 232:; I 232.9 I 7%:; 1 g23: 253.4 
232.5 232.9 236.0 235.8 
320.2 321.0 331.8 334.0 

10 I 238.9 I 240.4 I 255.5 I 254.4 
Total P I 2400.0 1 2400.0 I 2500.0 1 2500.0 

271.2 I 271.2 1 287.3 I 287.8 
2600.0 I 2600.0 I 2700.0 I 2700.0 

1.OEO4 

Table 4 
leaming rate, 

Results for the bias adjustment method with fixed 
= 1.0 (A) and adaptive learning rate (B). 

cost 
Iters 
U0 

theta 

197.6 189.4 208.3 206.7 212.4 
201.6 201.8 206.2 205.8 209.6 
252.3 253.5 265.2 265.6 280.0 
232.7 1 232.9 I 235.9 I 235.8 I 238.8 
239.9 I 242.1 I 257.1 I 258.2 I 277.9 
232.7 232.9 235.9 235.8 238.6 
251.5 253.8 268.3 269.4 288.1 

I 232.7 I 232.9 I 235.8 I 235.8 I 238.8 
I 318.8 I 319.3 I 330.9 I 330.1 I 341.9 
I 240.3 I 241.6 I 256.4 I 256.9 I 274.0 
I 2400.0 I 2400.01 2500.0 I 2500.0I 2600.0 

l w I  2700 MW 
B I  A I B  

217.9 I 221.4 I 228.8 
210.5 I 213.8 I 214.1 I 
278.8 293.3 292.0 

242.1 239.0 i 242.2 I 
275.8 295.4 293.6 
239.0 I 242.0 I 242.1 I 

290.4 I 290.1 I 272.3 I 
2600.0 2700.0 2700.0 
574.37 I 626.32 I 626.27 I 
99,335 
100.0 
50.0 
5.0 - 

70 "7 
I 

1 2 3 4 5 6 7 2001 

Iterations x 10 

Fig. 2. Cost of the using Hopfield network (dotted line), slope 
adjustment method with fixed learning rate (dashed line), and bias 
adjustment method with fixed learning rate (solid line). 

510' ; h 3 t 5 6 f 8 9 1 0 '  

Iterations x 10 

Cost for fixed leafning rate (solid line) and adaptive Fig. 3 :  
leaming rate (dashed-dotted h e ) .  

D. Momentum 

Momentum is applied to the input of each neuron to 
speed up the convergence of the system. When the 
momentum is applied to the system, the number of iterations 
is drastically reduced. In Table 5,  the momentum factor of 
0.9 is applied and the number of iterations is reduced to 
about 10 percent of those of the conventional Hopfield neural 
network, while lower momentum factors give slower 
responses. When the momentum with the same momentum 
factor is applied to the slope adjustment method with 
adaptive learning rates, the number of iterations is reduced 
further to be about 60 percent of that of the Hopfield neural 
network with the input momentum. The number of 
iterations, as seen in Table 6, can be reduced to about one 
third which is about 3 percent of the Hopfield network 
without momentum when the momentum factor for the gain 
parameter is 0.97. 
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U 

Table 5. Result with momentum, (~=0.9, applied to input for 
conventional Hopfield network (A), and adaptive slope adjustment 
method (B). 

2400 MW I 2500 MW 
Numercal I Slope I Bias I Numerical I Slope I Bias 

I 6 1 199.5 

Method I 

I 235.8 
258.4 

I Method I I 

232.7 I 235.7 

1 193.2 191.5 189.0 206.6 205.7 
2 204.1 203.0 201.7 206.5 207.5 

236.2 I 239.1 I 239.4 I 242.3 1 242.7 
258.5 1 276.4 I 276.1 I 293.8 I 293.7 

206.7 
205.8 

235.2 I 239.1 I 239.3 1 242.3 1 242.7 I 
269.8 I 286.1 I 286.4 1 302.8 I 303.3 
236.2 I 239.1 I 239.4 I 242.4 I 242.7 

U 2600 MW I 2700 MW 
Numercal I SloDe I Bias I Numerical I SloDe I Bias 

10 271.9 270.6 272.4 275.2 274.3 288.9 
TotalP 2599.3 2600.0 2600.0 2702.2 2699.9 2700.0 

Cost 574.03 574.37 574.37 625.18 623.78 626.24 

For the bias adjustment method, the effect of momentum 
is simaar to the case of slope adjustment method. However, 
this method gives better responses during transient and at 
the beginning of the process. Due to the slow convergence 
near the stable state, the system converges to the stable state 

:--... .............. 
:._ 
\r :-> :--... '. .............. 

............ 
540 

530 

I 
2000 4000 6000 8000 1000 1200C 

520 

Iterations 

................ 

0 

................ 
550 

540 

530 
I 

2000 4000 6000 8000 10000 12000 520 
I 

I temti ons 

Fig. 5:  Cost of 2500 MW load with 
for Hopfield network (dotted line), 
with momentum 0.97 applied at 
line), and the bias adjustment metho 

at the same iterations as tha 
Sensitivity analysis was 

more units to hit an upper or 
limit constraints have already been incorporated in the 
sigmoidal function (13), units can not exceed but approach 
the limits. For example, for 3000 
498.87 M W  which is close to its upp 
1900 MW load, Units 5, 7 and 10 have 190.84, 201.17 and 
200.171 MW, respectively; whi are all very close to but 
within the respective lower lim The simulation time of 
the numerical method with /780 was a little bit more 
than 1 sec. The conventional Hopfield network without any 
adjustment took about 28 sec. in the Compaq 90 MHz 
Pentium PC with Window 
the slope adjustment and 
momentum (Fig. 5 )  took abou 
Considering the use of a personal computer rather than a 
main frame, there is a great potential for the proposed 
methods; especially, when implemented in hardware. 
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VI. CONCLUSIONS 

This paper presents a unified adaptive learning approach 
in the Hopfield neural network using the slope adjustment 
and bias adjustment methods for application to economic 
load dispatch. The methods reduced the transient period 
drastically. The adaptive learning rate in both methods gives 
better response compared to the fixed learning rate. The bias 
adjustment method gives good response especially in the 
beginning of the process. Both methods reduced the number 
of iterations to one half of that of the traditional Hopfield 
neural network. When the momentum is introduced to all 
methods in either input or gain, the number of iterations and 
the computation time are reduced in the order of magnitudes. 
This promises a great potential of the proposed method for 
real-time economic load dispatch. 
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Discussion 

L L h i  R A G Siclirriile (Diiergy System Group, City 
Univorsiiy, London, ECIV OHR, UK) : 

Ihe authors have prcsenled an inlcrcsting papcr on application 
of Flopfield neural networks in economic load dispatch. 

The discussam havc rho following commcnrs, 

I n  1982, John J Hopfield, working at tho California Institulc of 
l'ochnology and fit AT&T Bell Lnbor~tories, conceptnnlised A 

model confoniiing to the asynchronous nature of  biologicaf 
nGurQns. lit WRS R Inore abstrtwt, fully in!erc"ected, random 
and asynchronous nctwork, In gmml ,  the Hnpfotd nctwork i s  
nn nuto msociative fiilly connected network of R siagle layer of 
nodes. The nelwork lakes two-valued inputs, n~mely, binmy or 
bipolptr, 

Ilopfleld described his model in tarm of an cncrgy furtctiot~. 
Tho acural nctwork musf bc ~ b l e  la escfipe IOCRI ~ninima niid 
settle at the globd Iiiiiiimum, thnt js, produce true rcslillts. Has 
the introduction of [ha slop0 and biRs djustment methods will 
also made sure that a global mlnimunt cwld be achicvcd? 

Manuscript received February 28, 1997. 

K. Y. Lee, A. Sode-Yome, and J. H. Park (Department of 
Electrical Engineering, The Pennsylvania State University, 
University Park, PA 16802, U.S.A.) : 

The authors appreciate the interest of the discussers and 
their comments. 

Hopfield networks 
they depend on the n 
define the energy fun 
selected for economi 
Hopfield network ma 
pointed out in the pa 
the synchronous n 
points as well as li 
not get trapped to local minima as easily as the asynchronous 
model, and has additional advantages 
hardware savings. 

In order to escape from a local mimim 
the concept of simulated annealing, i. 
the temperature is done sufficiently slow, the solid can reach 
thermal equilibrium at each temperature [1,2]. In fact, a 
close look at the sigmoid function (Fig. 1) reveals that the 
gain parameter is equivalent t emperature or control 
parameter in the simulated ling algorithm. By 
adjusting this control parame ciously one might be 
able to achieve the global minimum, which is the spirit of 
the adaptive Hopfield network propo 
observed in the simulation study for lo 
MW). Table 2 shows two solutions 
MW column for two different values of gains, 100 and 108. 
The gain of 100 gives the global solution while the gain of 
108 gives a local solution similar to Cases A and B. This 
same global minimum is found in the adjustment methods, 
Tables 3 through 6. 

[l.] E. Aarts and J. Korst, Simulated Annealing and 
Boltzmann Machines, John Wile 
NY, 1989. 

the Tkeory of Neu 
Menlo Park, CA, 19 

[2.] J. Hertz, A. Krogh, and R. 
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