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Abstract— A large number of iterations and oscillation are
those of the major concern in solving the economic load
dispatch problem using the Hopfield neural network. This
paper develops two different methods, which are the slope
adjustment and bias adjnstment methods, in order to speed up
the convergence of the Hopfield neural network system.
Algorithms of economic load dispatch for piecewise quadratic
cost functions using the Hopfield neural network have been
developed for the two approaches. The results are compared
with those of a mumerical approach and the traditional
Hopfield neural network approach. To guarantee and for faster
convergence, adaptive learning rates are also developed by
using energy functions and applied to the slope and bias
adjustment methods. The results of the traditional, fixed
learning rate, and adaptive learning rate methods are
compared in economic load dispatch problems.

Key words— Economic load dispatch, Hopfield neural
networks, adaptive Hopfield neural networks.

I. INTRODUCTION

n power system, the operation cost at each time needs to

be minimized via economic load dispatch (ELD).
Traditionally, the cost function of each generator has been
approximately represented by a single quadratic cost
function. Practically, operating conditions of many
generating units require that the generation cost function be
segmented as piecewise quadratic functions. Therefore, it is
more realistic to represent the generation cost function as a
piecewise quadratic cost function, and Lin and Viviani [1]
presented the hierarchical economic dispatch for piecewise
quadratic cost functions using a Lagrangian function.
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Since Hopfield introduced in 1982 [2] and 1984 [3], the
Hopfield neural networks have been used in many different
applications. The important property of the Hopfield neural
network is the decrease in energy by finite amount whenever
there is any change in inputs [11]. Thus, the Hopfield neural
network can be used for optimization. Tank and Hoptield
[4] described how several optimization problem can be
rapidly solved by highly interconnected networks of a simple
analog processor, which is an implementation of the
Hopfield neural network, Park and others [5] presented the
economic load dispatch for piecewise quadratic cost
functions using the Hopfield neural network, The results of
this method were compared very well with those of the
numerical method in an hierarchical approach [1]. King and
others [6] applied the Hopfield neural network in the
economic and environmental dispatching of electric power
systems. These applications, however, involved a large
number of iterations and often shown oscillations during
transients. This suggests a need for improvement in
convergence through an adaptive approach, such as the
adaptive learning rate method developed by Ku and Lee 7]
for a diagonal recurrent neural network.

1. ECONOMIC LOAD DISPATCH

The ELD problem is to find the optimal combination of
power generation that minimizes the total cost while
satisftying the total demand. The cost function of ELD
problem 1s defined as follows:

¢ = 36(r), <1>
ay+ba B +cy B, fuell, P, < P <P
2
C (P)= .ai2+b,-21“}+c,-2Pi , fuel2, B,<E<LP, , )
ay +by B +cy BY, fuelk B, <PB<PE
where
CAP;): cost of the i generator
P;: the power output of generator i
ax b ¢y cost coefficients of the i generator for fuel

type k.

08R85-8950 /98 /$10.00 © 1997 IEEE

Authorized licensed use limited to: Baylor University Libraries. Downloaded on February 17,2021 at 20:47:52 UTC from IEEE Xplore. Restrictions apply.



520

In minimizing the total cost, the constraints of power

balance and power limits should be satisfied:

a) Power balance
The total generating power has to be equal to the sum of
load demand and transmission-line loss:

D+ L-YP=0, (3)
where D is total load, and L is‘transmission loss.

The transmission loss can be represented by the B-coefficient
method as

L= ¥ Y FRB;F, )
T

where ' B;; is transmission loss coefficient.

b) Maximum and minimumm limits of power
The generation power of each generator has some limits

and it can be expressed as

B<P <E, NG

i
where
P the minimum generation power

P: the maximum generation power.

II. HOPFIELD NETWORKS AND MAPPING OF ELD.

A. The Hopfield Neural Networks

The continuous neuron model is a generalized Hopfield
network in which the computational energy decreases
continuously in time [3,10]. For a very high-gain parameter
(A) of the neurons, continuous networks perform in a way
similar to the discrete model. Since the weight parameter
vector is symmetric, the energy function of Hopfield neural
network is defined as

E—--zz VY, = LV, + 8.5, ©)

where V; 1s output valuc of neuron i, I; is external input to
neuron i, and 6; is threshold bias.

Th:e dynamics of the neurons is defined by
2 T,V + I, @)

where U; is the total input to neuron i and the sigmoidal
function can be defined as

U, 1
V=g (AU)=g.(—)= —. 8
;= &(AU) g,(UO) (U.+6.) ®)
I+exp| - IU -

4

Stability is known to be guaranteed since the energy function
is bounded and its increment is found to be nonpositive as

dE r o du.
2= Yo (U)E
P ‘Z&( Bl

O ©

Since ¢(U) is a monotone increasing function, each
term in this sum is nonnegative. Therefore (9) is less than
zero. The time evolution of the system is a motion in state-
space that seeks out minima in £ and comes to a stop at such
points.

B. Mapping of ELD Into the Hopfield ‘Neﬂral Networks

_ In order to solve the BLD problem, the following energy
function is defined by augmenting the objective function (1)
with the constraint (2):

= %A(D+ L-YEY +%B2(ai +bF+cP).(10)

where ap bi, Ci ate the -cost coefficients - as discrete
functions of P; defined in (1)

By comparing (10) w1th (6) whose threshold is assumed
to be zero, the weight parameters and external input of
neuron i in the network [5] are given by

——"‘A‘— BC,- P

:Z;'}' "_“'—A’ (11)

[=A(D+L) - %b—
where the diagonal weights ‘are nonzero.. This converts (7)
into the following synchronous updating rule:

ACRUAGHE SV, 1, (12)

L/ANN

Unlike the asynchronous quel, the 'synchronous mode] has
fixed points as well as limit cycles as attractors. However, it
does mot get trapped to local minima as easily as the
asynchronous model. There are additional advantages of the
synchronous model in computation and hardware savings
[9]1. The sigmoidal function (8) can be modified [5] to
meet the power limit constraint as follows:

! —+p. (3
U (k) +0, ] —
Uo }

Vi(k+1)=(Pi - P,)—
' ]+‘éj;p{—

IV. ADAPTIVE HOPFIELD NETWORKS

The traditional approach in solving the economic load
dispatch (ELD) problem using the Hopfield neural network
requires a large number of iterations and often oscillates
during the transient [S] and [8]. In order to speed up
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Fig. 1. Sigmoidal threshold function with different values of

the gain parameter.

convergence, two adaptive adjustment methods are
developed in this paper: slope adjustment and bias
adjustment methods.

A. Slope Adjustment Method

In transient state, the neuron input oscillates around the
threshold value, zero in Figure 1. Some neuron inputs
oscillate away from the threshold value. If the gain
parameter is set too high, the oscillation will occur at the
saturation region. If the slope in this region is too low, the
neurons can not go to the stable state and will cause
instability. '

Since energy is to be minimized and its convergence
depends on the gain parameter U, the gradient-descent
method can be applied to adjust the gain parameter as

oE
Ug(k+1) =Uy(k) =1, ——, 14
o(k+1) =Uy(k) -, v,
where 1), is a learning rate.
From (10) and (13), the gradient of energy with respect to
the gain parameter can be computed as

(15)

IE _ 2 AE P
W, SRV,
The update rule of (14) needs a suitable choice of the
learning rate 1,. For a small value of 1, convergence is
guaranteed but speed is too slow, on the other hand if the
learning rate is too big, the algorithm becomes unstable. For
faster and to guarantee convergence, a method to compute
adaptive learning rates is developed following the procedure
in Ku and Lee [7]. It can be shown [7,8] that convergence is
guaranteed if the learning rate 1, is chosen as
0<n, < —-2—2— , (16)

§,max

where g ..0= max"gs (k)||, g, (k)=0E(k)/IdU,.
Moreover, the optimal convergence is corresponding to
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Ny ==

8 §,max

a7

This show an interesting result that any other learning rate
larger than m; does not guarantee a faster convergence.

B. Bias Adjustment Method

There is a limitation in the slope adjustment method, in

that, slopes are small near the saturation region of the

sigmoidal function, Fig 1. If every input can use the same
maximum possible slope, convergence will be much faster.
This can be achicved by changing the bias to shift the input
near the center of the sigmoidal function. The bias can be
changed following the similar gradient-descent method used
in the slope adjustment method:

J0E

0,(k+1)=6,(k)-n, 3.’

(18)

where 1, is a learning rate.

The bias can be applied to every neuron as in (8),
therefore, from (10) and (13), a derivative of energy with
respect to a bias can be individually computed as

98 28 0R,

i . 1
30, 9P 98, (19

The adaptive learning rate is also developed following the
similar procedure [8]. It can be shown that convergence is

quaranteed if 1, is chosen as

0<m, <- (20)

8y k) ’
where

gb(k)zzz‘T.‘a_YLgYJ_ 1)

P30 00
Moreover, the optimal convergence is corresponding to
Ny =-—
=" .
8y (k)

Again, any other learning rate larger than 1, does not
guarantee a faster convergence.

(22)

C. Momentum

The speed of convergence can be accelerated by adding
momentum in the update processes. The momentum can be
applied when updating the input in (12), the gain parameter
in (14) and the bias in (18):

U.()-U,(k-D)=Y T,V,(k)+a, AU.(k-D,  (23)
j
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JE
Up(k) =Up(k =1) = ny o=+, AUs(k=1), (24
0

0(k)=0(k~1) - n, %—g—fochB(k—l), 25)

where o’s are momentum factors.
V. SIMULATION RESULTS

The results of our Hopfield neural network are compared
with those of the numerical method [1] and an earlier
Hopfield neural network [5]. Then the results of slope
adjustment and bias adjustment methods with fixed learning
rate are compared with those with adaptive learning rates.
Finally, momentum is applied to all update processes and
results are compared. Graphs for 2500 MW load are
compared in order to demonstrate the convergence
properties.

A. Conventional Hopfield Network

The conventional Hopfield neural network for ELD
problem using piecewise cost functions has been developed
based on [5]. The same data has been used as in Table 1.
Each generator has three types of fuel and there are four
values of load demand, that is, 2400, 2500, 2600 and 2700
MW. The results are compared with the numerical method
and the earlier Hopfield network reported in [5] as shown in
the Table 2.

Table. 1: Cost coefficients for piecewise quadratic cost functions.

U | GENERATION COST COBFFICIBNTS
Min Pl P2 Max] P a b ¢
F1 j) 3

1 ] 100 196 250 250] 1 26972 -3975¢0 | 2176e-2
1 2 2 2 21132 -3059¢0 | .1861e-2
2 21132 -.3059¢0 | .1861e-2
2 | 50 114 157 230 1 118463 -126%1 | .4194e-2
2 3 1 2 .1865¢e1 -.3988e-1 | .1138e-2
3 .1365¢2 -,1080e0 | .1620e-2
3 1200 332 388 s00] 1 3979¢2 | -.3116e0 | .1457e-2
1 3 2 2| -3914e2 .4864e0 1176e-4
3 | -.2876el 338%e-1 | .8035e-3
4 99 138 200 265 1 1983el “3114e-1 | .1049e-2
1 . 2 3 2 52852 -.6348¢0 | 2758e2
3 .2668e3 -.2338el1 .5935e-2
5 1190 338 407 490] 1 1302¢2 | -.8733e-1 | .1066e2
1 2 3 2 997662 -.5206e0 15972
3 | -.53992 4462¢0 | .1498e-3
6 | &5 138 200 2651 1 528562 | -.6348¢0 | .2758¢2
2 i - 3 2 .1983el -3114e-1 | .1049e-2
3 .2668¢3 -.2338el .5935e-2
7 200 331 391 500] 1 .1893e2 -1325¢0 | .1107e2
1 2 3 2 A4377e2 -, 220670 .1165e-2
- . 3 | -.4335e2 .3559¢0 2454e-3
8 |99 138 200 265] 1 1198361 ~3114e-1 | .104%e-2
1 2 3 2 .5285¢2 -.6348¢0 | .2758e-2
3 .2668e3 -,2338el .5935e-2
9 1130 213 370 240] 1 8853¢e2 -5675e0 | ~.1554¢2
3 1 3 2 15302 | -.4514e-1 | .7033e2
3 1423e2 | -.1817e-1 | .6121e3
10 | 200 362 407 490] 1 13972 | -.9938e-1 | .1102e-2
1 3 2 2 | -6113e2 50840 4164e-4
3 A4671e2 -,2024e0 | .1137e-2

Table 2: Results using numerical method (A), Hopfield neural
network I (B), and Hopfield neural network IT (C

[§] A0MW 250 MW,
A B C A B C
=100 | Un=108 =100
FIGN|F| GN |F| gV | F| GN | F]| GN{E| GN [ F] &N
1) 1] 1982] 1] 1927 | 1] 181 | 1] 1925 2] 2066 2] 2061 | 2} 2060
2{ 1| 2011 2038 | 1] 2020 | 1] 2089 | 1| 2065 1| 2063 | 1| 2063
3[ 121 1| 291 [ 1| 20| 1] 289 1] 2591 2657 | 1| 3657
413 2:3( 2] 1951 | 3] 2330 3] 24213} 2360 3| 2357 |.3] 2359
S 1] 200 1] 2487 | 1| 247 | 1] 2489 1] 282 1] 2582 [ 1| 2579
6111 155(3] 242 1 1] 2330 | 1| 19517] 3| 2860] 3] 2359 | 3| =359
7lil 2031 1| 2003 [ 1] 21 | 1] 2007.01] 20901 1| 291 | 1| 296
8|3 233 2342 [ 3] 2329 [ 3] 241 [ 3] 2360 3| 2359 | 3| 2359
9| 1] 3253 1] 3247 | 1| 3200 | 1} 38| 1|-3316) 1| 3312 1} 314"
100 1] 263 1] 2468 | 1] 2403 [ 1] 2470 { 1| 25521 1] 2557 | 1] 2554
P|2d012f P| 23998 | P| 24000 P| 24000 | P[ 25011 | P| 24998 [ P 24000
C| 4885 C| 48787 | C[ 48170 C| 4880 Cf 3670 C| 5613 | Cl 5%623
itr| NA |ir] NA |itr]199,130] itrf 143382) e Na L] Na e 181,80
U 2600 MW 2700 MW
A B C A B C
- U0=100 V0=100
F| GEN. | F GEN. F | GEN. | F| GEN. | F{: GEN. F}..GEN.
il 2Toea| 2] 2153 T2 2158 | 2] 2184 [ 2] 2245 | 2| 2257
21142109 | 1 2106 1 2107 1] 2118 1.} 2150 1| 2152
31112785 3 278.9 3 2794 11 28101{ 3 201.8 3 201.8
41312391 3 238.9 3 239.1 3123971 .3 242.2 3 242.3
50 1| 27544 1 2757 1 27631 1| 2790 1 2933 1 2937
61 323911 3 239.1 3 2391 [ 3] 2307 | 3 2422 3 242.3
71 11 2856 1 286.2 1 286.0.] -1 | 289.0 1 303.1 1 302.8
8] 312311 3 239.1 3 239.1 31.2397.| 3 2422 3 1423
9 3 (3433 1| 3435 | 1| 3428 | 3| 429027| 1| 3357 |1} 3551
10f 127191 1| 2726 | 1] 2719 | 1] 2752 | 1.1 2805 | 1. 288.8
PT | 2599.3| PT| 2599.8 [ PT| 2600.0 | PT|-2702.2| PT| 2699.7 | PT[ 2700.0
C157403] C| 57426 | C | 57437 C | 62518] C | 626.12 | C | 626.24
e | NA {ir] NA |t [151428] i} NA |in| NA |in] 173742

For the total load of 2400 MW, the final values (C)
compared with those of numerical method (A) are very close
when the gain parameter Uy 18 108. However, this is not the
case for the earlier Hopfield network (B) where the output of
unit 4 and unit 6 are interchanged. Also note that since the.
parameters of unit 4 and 8§ are identical, the output power
should also be the same, which is not the case for the earlier
network, Hopficld network 1. When the gain parameter is
set to be 100, the output power for 2400 MW load is
different from those of the numerical method and Hopfield
network I. However, the cost is lower and the constraints are
met. Thus, the gain parameter has to be set to a suitable
value and the new Network, Network II, gives reasonable
and better results. In other load demand, the gain parameter
is set to be 100, and the output power is very close 10 those of
other methods. A slightly higher cost for the numerical
method is due to the numerical reselution in . the earlier
simulation reported in [5].

B. Slope Adjustment with Fixed and Adaprive Learning
Rates ‘

For slope adjustment method, Table 3, the number of
iterations is reduced to about ome half of that of the
conventional Hopfield network, Table 2. Oscillation is also
drastically reduced from about 40,000 to less than 100

iterations, Fig 2. For the slope adjustment method, the final
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results of the adaptive learning rate are close to those of the
fixed learning rate. A fixed learning rate gives non-smooth
response when the learning rate is high, and gives an
incorrect answer for 2400 MW load. However for the
adaptive learning rate, the response is much smoother, and
at the same time the cost is also reduced, Fig 3. Compared
with the conventional Hopfield neural network, the degree of
freedom of the system increases from 1, which is Uy, to 2,
which are the initial conditions of U, and 1.

C. Bias Adjustment Method with Fixed and Adaptive
Learning Rates

For the bias adjustment method, Table 4, the number of
iteration is also reduced to about one half of that of the
conventional Hopfield network. Oscillation is - also
drastically reduced from about 40,000 to less than 100
iterations as seen in Fig 2. For the adaptive learning rate,
the number of iterations is reduced and the final resulits of
the adaptive learning rate are better than those of the fixed
learning rate, Fig 3. The stable point after the transient
period can be controlled by selecting initial values of U, and
1; then the number of iterations will be lower.

Table 3: Results for the slope adjustment method with fixed
learning rate, N = 1.0 (A) and adaptive learning rate (B).

U 2400 MW 2500 MW 2600 MW 2700 MW
A B A B A B A B
1 196.8 180.9 2056 | 2051 | 2157 | 2145 | 2232 | 2246
2 2027 202.9 2067 | 2065 | 2111 | 2114 | 2161 | 2157
3 2512 2521 2653 | 2664 | 2789 | 2788 | 2925 | 2919
4 232.5 232.9 2360 | 2358 | 2392 | 2393 | 2426 | 2426
5 2404 241.7 2579 | 2568 | 2761 | 2761 | 2941 | 2936
6 2325 2329 2360 | 2359 1 2392 | 2391 | 2424 | 2425
7 2522 2534 269.5 | 2693 | 286.0 { 287 | 303.5 | 303.0
8 232.5 2329 2360 | 2358 | 2392 | 2393 | 2427 | 2426
9 3202 321.0 3318 | 3340 | 3434 | 3436 | 3558 | 3557
10 2389 2404 2555 | 2544 | 2712 | 2712 | 2873 | 287.8
Total P | 2400.0 { 24000 [ 2500.0 | 2500.0 | 2600.0 | 2600.0 | 2700.0 | 2700.0
Cost 481.83 | 48171 | 526.23 | 52623 | 57436 | 57437 | 626.27 | 626.24
Tters 99992 | 4,791 | 80,156 1 86,061 | 72,993 1 79495 | 99948 | 99,811
o 95.0 110.0 1200 | 1000 | 1300 | 1200 | 160.0 | 1200
n 1.5 1.0E-04 1.0 |1.0E-04! 10 |1.0B-04{ 1.0 |1.0E-04

Table 4: Results for the bias adjustment method with fixed
learning rate, 1 = 1.0 (A) and adaptive learning rate (B).

U 2400 MW 2500 MW 2600 MW 2700 MW
A B A B A B A B
1 197.6 189.4 208.3 206.7 2124 217.9 221.4 228.8
2 201.6 201.8 206.2 205.8 209.6 210.5 2138 214.1
3 2523 | 2535 | 2652 | 2656 | 280.0 | 278.8 | 2933 | 2920
4 2327 232.9 235.9 235.8 238.8 239.0 242.1 242.2
5 239.9 242.1 257.1 258.2 2719 275.8 2954 293.6
6 2327 232.9 235.9 235.8 238.6 239.0 242.0 242.1
7 251.5 253.8 268.3 269.4 288.1 285.5 305.3 302.6
8 2327 2329 | 2358 | 2358 2388 [ 239.0 | 242.1 | 2421
9 318.8 319.3 330.9 330.1 341.9 342.1 3452 3523
10 2403 | 2416 1 2564 | 2569 ] 2740 | 2723 | 2904 | 290.1
Total P 2400.0 | 2400.0] 2500.0 | 2500.0} 2600.0 | 2600.0] 2700.0 | 2700.0
Cost 481.83 | 481.72| 526.24 | 526.23| 574.43 | 574.37| 626.32 | 626.27
Tters 99,960 | 99,904| 99,987 | 88,776| 99,981 | 99,337| 99,972 | 73,250
uo 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
theta 0.0 50.0 0.0 50.0 0.0 50.0 0.0 100.0
n 1.0 1.0 1.0 5.0 1.0 5.0 1.0 5.0
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D. Momentum

Momentum is applied to the input of each neuron to
speed up the convergence of the system. When the
momentum is applied to the system, the number of iterations
is drastically reduced. In Table 5, the momentum factor of
0.9 is applied and the number of iterations is reduced to
about 10 percent of those of the conventional Hopfield neural
network, while lower momentum factors give slower
responses. When the momentum with the same momentum
factor is applied to the slope adjustment method with
adaptive learning rates, the number of iterations is reduced
further to be about 60 percent of that of the Hopficld neural
network with the input momentum. The number of
iterations, as seen in Table 6, can be reduced to about one
third which is about 3 percent of the Hopfield network
without momentum when the momentum factor for the gain
parameter is 0.97.
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Table 5. Result with momentum, ¢=0.9, applied to input for
conventional Hopfield network (A), and adaptive slope adjustment
method (B).

U 2400 MW 2500 MW 2600 MW 2700 MW
A B A B A B A B
1 2077 | 1912 | 2056 | 2045 | 2153 | 2145 | 2254 | 2037
2 2069 | 2015 | 2062 | 2068 | 2107 | 2111 | 2152 | 2154
3 2670 | 2539 | 2656 | 2648 | 2791 | 2787 | 2920 | 291.8
4 199.5 | 2327 | 235.8 | 2362 | 230.1 | 2304 | 2423 | 2427
5 2596 | 242.0 | 2584 | 2585 | 2764 | 276.1 | 293.8 | 2937
6 1995 | 2327 | 2357 | 2352 | 2390 | 2393 | 2423 | 2427
7 2709 | 2539 | 2697 | 269.8 | 286.1 | 2864 | 3028 | 3033
8 1995 | 2327 | 235.8 | 2362 | 2390 | 2394 | 2424 | 2427
9 3328 1.3192 | 331.1 | 3317 | 3430 | 3434 | 3552 [ 3557
10 2566 | 2401 | 2560 | 256.5 | 2721 | 2717 | 2887 | 2882
Total P | 24000 | 2399.9 { 2500.0 | 2500.0 | 2600.0 | 2600.0 | 27600 | 26999
Cost | 501.81 | 4817 | 52623 | 526.23 | 57437 | 57437 | 626,24 | 626.24
Tters | 20,115 | 21,187 | 13,666'| 8,954 | 12,466 | 8,741 | 14,623 9,716
Uo 1000 | 950 | 1000 | 1000 | 1000 | 100.0 | 100.0 | 1000
n NA |1.0B-05] NA |1.0B-04] NA |1.0B-04] NA [1.0B-04
Table 6:

Result for numerical method (/?, adaptive -sloge
adjustment method with momentum 0.9 applied to input and 0.97
(0.9 for 2400 MW case ap;i}wd to gain parameter, (Bg and adaptive

bias adjustment method with momentum 0.9 applied to input (C).
U 2400 MW 2500 MW
Numercal Slope Bias Numerical Slope Bias
Method . Method
1 193.2 191.5 189.0 206.6 205.7 206.,7
2 204,1 203.0 201.7 206.5 207.5 205.8
3 259.1 254.2 | 2535 265.9 264.7 265.6
4 234.3 232.5 232.8 236.0 235.7 235.8
5 249.0 240.9 242.2 258.2 257.5 258.2
6 195.5 232.4 232.8 236.0 235.8 235.8
7 260.1 2532 253.9 269.0 269.9 269.4
8 234.3 232.5 232.8 236.0 2357 235.8
9 '325.3 321.8 319.1 331.6 332.5 330.1
10 246,3 237.9 242.0 255.2 255.1 256.9
Total P 2401.2 2399.9 2400.0 2501.1 2500.0 2500.0
Cost 488.5 481.7 481.72 526.70 526.23 526.23
Iters NA 15,148 8,707 NA 4,474 8,931
vo NA 95.0 100.0 NA 100.0 100.0
theta NA NA 100.0 NA NA 50.0
I NA 1.00E-05 1,0 NA 1.00B-04 0.5
U 2600 MW 2700 MW
Numercal Slope Bias Numerical Slope Bias
Method . Method
1 216.4 215.1 2181 218.4 218.6 2282
2 210.9 2117 2104 211.8 2116 214.8
3 278.5 279.1 278.8 281.0 281.2 291.7
4 239.1 239.1 239,1 - 2397 239.6 242.3
5 275.4 276.1 275.8 279.0 278.9 203.3
6 239.1 239.0 239.1 239.7 239.6 242.2
7 2856 - 286.6 2854 289.0 288.4 302.3
8, 239.1 . 2301 239.1 239.7 239.6 242.3
9 343.3 343.6 3419 428.2 427.9 354.2
10 - 2719 270.6 272.4 275.2 274.3 288.9
Total P | + 2599.3 2600.0 2600.0 2702.2 2699.9 2700.0
Cost 574.03 574.37 574.37 625.18 623.78 626.24
Iters NA 5224 9,303 NA 61,309 9,857
vo NA 100.0 100.0 NA 100.0 100.0
theta NA NA 50.0 NA NA 100.0
n NA 1.00B-04 5.0 NA 1.00E-04 5.0

For the bias adjustment method, - the effect of momentum
is similar to the case of slope adjustment method. However,
this method gives better responses duting transient and at
the beginning of the process. - Due to the slow convergence
near the stable state, the system converges to the stable state
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Fig. 4: Cost of 2500 MW load with momentum 0.9 applied at input
for conventional Hopfield network (dotted line})), the “slope
adjustment method (dashed-dotted line), and 'the bias adjustment
method (solid line). - : ; ,
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Fig. 5:. Cost of 2500 MW load with momentumi 0.9 applied at input
for Hopfield network (dotted lire), the slope-adjustment method
with momentum 0.97 applied at gain Ipa:ramctcr (dashed-dotted
line); and the bias adjustment method (solid linie). -

at the same iterations as that of the siopc adjustment method.
Sensitivity analysis was also performed by forcing one or
more units to hit an upper or lower limits; - Since the power
limit constraints have already been incorporated in the
sigmoidal function (13), units can not exceed but approach
the limits. For example, for 3000 MW load, Unit 3 has
498.87 MW which is close to its upper limit, 500 MW. For
1900 MW load, Units 5, 7 and 10 have 190.84, 201.17 and
200.171 MW, respectively; which dre all very close to but
within the respective lower limits, The simulation time of
the numerical method with VAX 11/780 was a little bit more
than 1 sec. The conventional Hopfield network without any
adjustment took about 28 sec. in ‘the Compaq 90 MHz
Pentium PC with Window 95 (Table 2). On the other hand,
the slope adjustment and the bias adjsutmernt methods with
momentum (Fig. 5) took. about 2.and 4 sec., respectively.
Considering the use of a personal computer rather than a
main frame, there is a great potential for the proposed
methods; especially, when implemented in hardware.
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VI. CONCLUSIONS

This paper presents a unified adaptive learning approach
in the Hopfield neural network using the slope adjustment
and bias adjustment methods for application to economic
load dispatch. The methods reduced the transient period
drastically. The adaptive learning rate in both methods gives
better response compared to the fixed learning rate. The bias
adjustment method gives good response especially in the
beginning of the process. Both methods reduced the number
of iterations to one half of that of the traditional Hopfield
neural network. When the momentum is introduced to all
methods in either input or gain, the number of iterations and
the computation time are reduced in the order of magnitudes.
This promises a great potential of the proposed method for
real-time economic load dispatch.

VIL. ACKNOWLEDGMENTS

This work is supported in part by the Electricity
Generating Authority of Thailand, the Allegheny Power
Company, and the NSF under grants “Research and
Curriculum Development for Power Plant Intelligent
Distributed Control” (EID-9212132) and “U.S.-Kotea
Cooperative Research on Intelligent Distributed Control of
Power Plants and Power Systems” (INT-9223030).

VIII. REFERENCES

[11 C. E. Lin, and G. L. Viviani, “Hierachical economic
dispatch for piecewise quadratic cost functions”, IEEE
Transactions on Power Apparatus and Systems., Vol.
PAS-10, No. 6., June 1984.

2] J. J. Hopfield, “Neural networks and physical systems
with emergent collective computational abilities™,;
Proceedings of National Academy of Science, USA.,
Vol. 79, pp. 2554-2558, April 1982.

[3] J. J. Hopfield, “Neurons with graded response have
collective computational properties like those of two-
state neurons”, Proceedings of National Academy of
Science, USA., Vol. 81, pp. 3088-3092, May 1984.

[4] W. D. Tank and J. J. Hopfield, “Simple neural
optimization networks: an A/D converter, signal
decision circuit, and a linear programming circuit”,
IEEE Transactions on-Systems, Mans, and Cybernetics,
Vol. CAS-33, No. 5, pp. 553-541, January/February
1992,

[5] J. H. Park, Y. S. Kim, I. K. Eom, and K. Y. Lee,
“Bconomic load dispatch for piecewise quadratic cost
function using hopfield neural networks,” IEEE
Transactions on Power system Apparatus and Systems,
Vol. 8, No. 3, pp. 1030-1038, August 1993.

[6] T. D. King, M. E. Bl.Hawary, and F. El-Hawary,
“Optimal environmental dispatching of electric power

525

system via an improved hopfield neural network model”,
IEEE Transactions on Power Systems, Vol. 1, No. 3, pp.
1559-1565, August 1995.

[7] C. C. Ku and K. Y. Lee, “Diagonal recurrent neural
networks for dynamic systems control,” IEEE,
Transactions on Neural Networks”, Vol. 6, No. 1, pp.
144-156, January 1995.

[8] A. Sode-Yome, Development of Adaptive Hopfield
Neural Networks with Applications to Economic Load
Dispatch, =~ M.S. Thesis, The Pennsylvania State
University, University Park, PA, August 1996,

91 S. Y. Kung, Digital Neural Networks, Prentice Hall,
Englewood Cliffs, NJ, 1993.

[101J. J. Hopfield and W, D. Tank, “Neural computation of
decisions in optimization problems”, Biological
Cybernetics, Vol. 52, pp 141-152, 1985.

[11]]. A. Freeman and D. M. Skapura, Neural Networks
Algorithms,  Applications,  and  Programming
Techniques, Addison-Wesley Pub. Co., Inc., July 1992.

Kwang Y. Lee was born in Pusan, Korea, March 6, 1942,
He received the B.S. degree in Electrical Engineering from
Seoul National University, Seoul, Korea, in 1964, the M.S.
degree in Electrical Engineering from North Dakota State
University, Fargo, ND, in 1967, and the Ph.D. degree in
System Science from Michigan State University, East
Lansing, in 1971. He is currently a professor of Electrical
Engineering at the Pennsylvania State University, University
Park, PA. His current research interests include control
theory, intelligence systems and their applications to power
systems.

Dr. Lee is currently the Director of Power Systems
Control Laboratory at Penn State. He is a senior member of
IEEE.

Arthit Sode-Yome was born in Bangkok, Thailand, August
30, 1970. He received the B.Eng. degree in Electrical
Engineering from Prince of Songkla University, Songkla,
Thailand, in 1993. He worked with the Electricity
Generating Authority of Thailand from 1993-1994. He
received the M.S. degree in Electrical Engineering from the
Pennsylvania State University, University Park, in 1996, His
research interests are in neural networks, power and control
system, and intelligent control.

June Ho Park was born in Masan, Korea, September 17,
1955. He received the B.S., M.S. and Ph.D. degrees in
Blectrical Engineering from Seoul National University,
Seoul, Korea, in 1978, 1980, and 1987, respectively. From
1980 to 1981, he was a researcher at Korea
Electrotechnology Research Institute. He has been on the
faculties of Chung-Nam National University from 1981-1984
and Pucan National University since 1984. Dr. Park has
been a member of IEEE.

Authorized licensed use limited to: Baylor University Libraries. Downloaded on February 17,2021 at 20:47:52 UTC from IEEE Xplore. Restrictions apply.



526

Discussion

L L Lai & A G Sichanic (Energy Systems Group, City
University, London, EC1V OHB, UK):

The authors have presented an interesting paper on application
of Hopfield neural networks in economic load dispatch.

The discussers have the following commonts,

In 1982, John J Hopfield, working at the California Institute of
Technology and at AT&T Beli Laboratories, conceptualised a
mode] conforming to the ssynchronous nature of biological
ncurons. It was a more abstract, fully interconnected, random
and asynchronous network. In general, the Hopfield network is
an auto asgociative fully connected network of a single layer of
nodes. The network takes two-valued inputs, namely, binary or
bipolar,

Iopfield described his model in terms of an cnergy function.
The neural network must be able to escape local minima and
settle at the global minimum, that is, produce true tesults. Has
the introduction of the slope and bias adjustment methods will
also made sure that a glebal minimunt could be achieved?

Manuscript received February 28, 1997.

K. Y. Lee, A. Sode-Yome, and J. H. Park (Department of
Electrical Engineering, The Pennsylvanja State University,
University Park, PA 16802, U.S.A.):

The authors appreciate the interest of the discussers and
their comments.

Hopfield networks can have many local minimum points and
they depend on the numerical values of paramefers that
define the enmergy function. Once an energy function is
selected for economic load dispatch problem, the usual
Hopfield network may converge to a local minimum. As
pointed out in the paper, unlike the asynchronous network,
the synchronous network adopted in the paper has fixed
points as well as limit cycles as attractors. However, it does
not get trapped to local minima as easily as the asynchronons
model, and has additional advantages in, -computation. and
hardware savings.

In order to escape from a local mlmlmum, one might apply
the concept of simulated annealing, i.e., if the lowering of
the temperature is done sufficiently slow, the solid can reach
thermal equilibrium at each temperature [1,2). In fact, a
close look at the sigmoid function (Fig. 1) reveals that the
gain parameter is equivalent to the temperature or control
parameter in the simulated annealing algorithm. = By
adjusting this control parameter judiciously one might be
able to achieve the global minimum, which is the spirit of
the adaptive Hopfield network propesed.. - This behavior is
observed in the simulation study for low load demand (2400
MW). Table 2 shows two solutions. for Case C in the 2400
MW column for two different values of gains, 100 and 108.
The gain of 100 gives the global solution while the gain of
108 gives a local solution similar to-Cases A and B. This
same global minimum is found in the adjustment methods,
Tables 3 through 6. C

[L.]1E. Aarts and J. Korst, Simulated Annealing and
Boltzmann Machines, John. Wiley & Sons, New: York,
NY, 1989.

[2.] J. Hertz, A. Krogh, and R. G. Palmer Introductzon to
the Theory of Neural Computation, Addison-Wesley,
Menlo Park, CA, 1991,
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