Lecture Series on

Intelligent Control

Lecture 24
Evolutionary Strategies and Evolutionary
Programming

Kwang Y. Lee
Professor of Electrical & Computer Engineering
Baylor University
Waco, TX 76798, USA
Kwang_Y_Lee@baylor.edu

1

Evolutionary Strategies and Evolutionary Programming

A bit of history

- EVOLUTION STRATEGIES
 - Rechenberg, Schwefel,
 - Technical University of Berlin, 1963
 - https://en.wikipedia.org/wiki/Ingo_Rechenberg
- EVOLUTIONARY PROGRAMMING
 - L. Fogel
 - "Artificial Intelligence Through Simulated Evolution
 - <u>https://en.wikipedia.org/wiki/Lawrence_J._Fogel</u>
- · Are they really distinct?

2

INDIVIDUALS AND POPULATIONS

- An individual stands for an alternative or a solution
- An individual is represented by a real-valued vector (but in modern models it can also be an integer-valued or mixed integer-valued vector)
- A population is a set of individuals considered belonging to a same generation
- Offsprings are individuals (alternatives, solutions) derived from other solutions by means of *mutation* and *recombination*
- Fitness is a measure of adaptation to an environment or landscape - defined by the objective function in classical optimization

ES GENERAL PROCESS

- Generate initial population of μ individuals
- Evaluate fitness of the existing μ individuals

• DO

- Generate, from existing μ individuals, λ offspring (use recombination, then mutation)
- Evaluate fitness of new individuals
- Select μ survivors to form the next generation
- LOOP until termination criterion is met

4

4

$(\mu \text{ and } \lambda)$ ES EVOLUTION STRATEGIES

- (μ,λ) ES an evolutionary process where a population with μ individuals (parents) originates λ descendents (children), from which μ are selected to form a new population (a new generation).
- (μ+λ) ES an evolutionary process where a population with μ individuals (parents) originates λ descendents (children); and from the set of {μ+λ} individuals, μ are selected to form a new population (a new generation).
- Children are created by mutation and recombination.

5

THE FIRST: (1+1) ES

 The first historical model was a (1+1)ES: 1 parent, 1 offspring, fitness calculated for both, the best one selected (offspring generated by mutation).

The spherical model

• An isotropic fitness landscape

$$F_1(\mathbf{y}) = \sum_{i=1}^n (y_i - y_i^*)^2$$

- Mutated point $\tilde{y} = y + Z$
- Z is a random vector
- R is the radius of the domain of success of mutations
- Rate of progress $\phi = E\{R-r\}$

7

7

THE FIRST: (1+1) ES

- The selection scheme of the (1+1)ES is elitist.

 The mutation scheme is based on Gaussian mutations.
- A solution X is a vector with n real components
- A mutation is obtained by adding a random vector Z

X₁ X₂ ... X_n

$$\mathbf{Z} = \sigma(N_1(0,1),...,N_n(0,1))^t$$

- Each component is mutated according to a Gaussian distribution with 0 mean and variance 1
- σ is the step size or mutation strength

8

The 1/5 Rule

- To reach the optimum, the mutation strength $\boldsymbol{\sigma}$ cannot remain constant
 - The 1/5 Rule (Rechenberg): the Success Rate S(h) (ratio between successful mutations and all mutations) must be close to 1/5
- If S(h) > 1/5 in the last h generations \Longrightarrow increase σ
- If S(h) < 1/5 in the last h generations \Longrightarrow decrease σ

- Optimal value for h: h = 10n
- (n dimension of the search space)

 $\mathbf{Z} = \sigma(N_1(0,1),...,N_n(0,1))^t$

The $(1,\lambda)$ ES

- In the (1,λ) ES, 1 individual mutates to generate λ offspring and only 1 of these survives to the next generation. (parent and children do not compete)
- Each individual is formed of *n* object parameters (the variables)

 and one strategic parameter (the mutation strength, equal for all individuals)

10

10

The $\sigma SA(1,\lambda)$ ES

- σSA , a self-adapting scheme: the mutation strength evolves and is subject to selection
- The object parameters are added with Gaussian perturbations, but...
- The strategic parameter is subject to a multiplicative mutation

$$\sigma_k^{(g+1)} = \xi \sigma^{(g)}$$

 $\mathcal{E} = e^{\tau N(0,1)}$

- ξ is a random number with $E\{\xi\}=1$
- ξ may follow a lognormal distribution
 or a symmetrical two-point distribution
 - , ,

1

11

The $\sigma SA(1,\lambda) ES$

· Each descendent has a distinct mutation strength

• The selection process also selects the most favorable mutation strength...

12

The $\sigma SA(1,\lambda)$ ES

- How to select the learning parameter 7? $\xi = e^{\mathrm{rN}(0,1)}$
 - Schwefel's rule: $\tau \sim (n)^{-1/2}$, with *n* being the dimension of the search space
 - A model like this displays a linear convergence
 order
 - with nearly optimum convergence rate

13

13

The $\sigma SA(\mu,\lambda)$ ES

- The $(\mu,\!\lambda)$ ES is a natural extension of the $(1,\!\lambda)$ ES
- One may select individuals randomly to reproduce, or
- one may give preference to the most fit, by:
 - tournament selection
 - roulette selection

14

14

Search patterns in $\sigma SA(\mu,\lambda)$ ES

- Instead of a single strategic parameter, one may have a mutation strength associated with each variable
- Mutations in the variables of an individual are uncorrelated: they adapt to an anisotropic fitness landscape, but search proceeds along coordinate axes

15

$(\mu + \lambda)$ ES: Evolutionary Programming

- Make $\mu = \lambda$ this ES becomes EP!
- Major historical difference: German researchers gave preference to elitist selection, while Fogel followers adopted Stochastic Tournament (inspired by GA?)
- Simple Stochastic Tournament:
 - Randomly select two individuals
 - Compare fitness
 - Select to survive (to be reproduced) the best fit, with a given high probability
 - Repeat until λ individuals are selected

16

16

Evolutionary Programming

• Generate Initial Population

Replicate the Population and Mutate the offspring Compute fitness and Select Best Individuals

17

17

EP and self adaptation

- · Self-adaptation schemes have been adopted in EP.
- However, instead of Lognormal mutations, EP has traditionally adopted Gaussian mutations, still multiplicative

$$\sigma^{(g+1)} = \xi \sigma^{(g)} \qquad \xi = 1 + \tau N(0,1)$$

- But...
- it has been shown that this EP scheme is an approximation of the general ES scheme using the Lognormal distribution

Enhancing the mutation scheme

- · New strategic parameters:
- · correlation between mutations

- Z is a random vector and C is a Matrix defining a Mahalanobis metric in space it may be defined by elementary angles α , subject to mutations
- https://en.wikipedia.org/wiki/Mahalanobis_distance

19

Recombination: $(\mu/\rho,\lambda)$ ES

- Recombination: mixing ρ individuals (among μ parents) to obtain a new one
- Biology is based on $\rho = 2$ but... why stop at 2?
- Recombination variants:
 - uniform crossover
 - intermediary recombination
 - global
 - local
 - point crossover

20

22

Recombination variants

• Uniform crossover: a new individual is formed by randomly selecting each component from a different parent.

| 15 | 28 | -7 | ... | 45 |

• Example for $\rho = 3$

23

23

Recombination variants

- Intermediary recombination: each variable in the new individual is a combination of the values of the same variable in the ρ parents
 - $-\ there\ are\ many\ variants\ of\ intermediary\ recombination$
- Example for $\rho = 2$: for the variable k,

$$x_k^{new} = u_k x_{k,j1} + (1 - u_k) x_{k,j2}$$

- where \boldsymbol{u}_k is a random number sampled from a uniform distribution in $[0,\!1]$

2

Recombination variants

- Point crossover: the parents are sliced in parts (defined by randomly selecting γ points, common to all parents) and the new individual receives a part from each parent, in turns
 - this is what happens in Genetic Algorithms, for ρ = 2

25

Handling constraints

- As in all evolutionary algorithms...
- By controlling mutations so that no unfeasible individuals are generated
- By applying penalties to the fitness value of unfeasible individuals

26

26

Starting point

- Typically:
- By randomly generating the coordinates of the $\boldsymbol{\mu}$ first individuals
- By generation mutations from a seed or initial individual

2

Conclusions

- Evolution Strategies, as a general algorithmic approach, is very successful
- Among Evolutionary Algorithms, it ranks in a high place - there are many reports and examples where an ES model has performed better than a Genetic Algorithm model
- There is, however, no demonstration of definite superiority ultimately, it depends in a high degree of the skill and cleverness of the engineer or the scientist, when developing the model