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Computational Intelligence (CI):
• Evolutionary Computation (EC)
• Fuzzy Systems 
• Artificial Neural Networks

Evolutionary Computation

Part of an even more complex universe, incorporating 
Artificial Life, Fractal Geometry, and other Complex 
Systems Sciences, which might someday be referred 
to as Natural Computation (NC).
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Evolutionary Computation

• Global Optimization algorithms imitating certain 
principles of created nature have proved their 
usefulness in various domains of applications.  
Especially worth copying are those principles where 
nature has found "stable islands" in a "turbulent ocean" 
of solution possibilities.  

• Such phenomena can be found in annealing processes, 
central nervous systems and biological evolutionary 
hypothesis; and have lead to the following 
optimization methods: Simulated Annealing (SA), 
Artificial Neural Networks (ANNs) and the field of 
Evolutionary Computation (EC).
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• EC may currently be characterized by the following 
pathways: 
– Genetic Algorithms (GA), 
– Evolutionary Programming (EP), 
– Evolution Strategies (ES), 
– Classifier Systems (CFS), 
– Genetic Programming (GP), and 
– several other problem solving strategies, 
Based upon biological observations dating back to 

Charles Darwin's conjectures in the 19th century - the 
means of natural selection and survival of the fittest, 
and theories of evolution.  The inspired algorithms are 
thus termed Evolutionary Algorithms (EA).  

Evolutionary Computation
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Evolutionaty Algorithm

• Evolutionary Algorithm (EA): 
Computer-based problem solving systems, 

which use computational models of some of the 
hypothetical evolution mechanisms as key elements 
in their design and implementation.  

• Common conceptual base:
Simulate the evolution of individual structures 

via processes of Selection, Mutation, and 
Reproduction. The processes depend on the 
perceived Performance of the individual structures 
as defined by an Environment. 
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Evolutionary Algorithm
• Population of structures:

Evolve according to rules of Selection and other 
operators, those are referred to as "search operators," (or 
Genetic Operators), such as Recombination and Mutation.  

• Each Individual in the population receives a measure of its 
Fitness in the Environment.  

• Reproduction focuses attention on high fitness individuals, 
thus exploiting the available fitness information.  

• Recombination and Mutation perturb those individuals, 
providing general heuristics for Exploration. 

• Although simple, these algorithms are sufficiently complex to 
provide robust and powerful adaptive search mechanisms. 
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Biological Basis

• Evolution is not a purposive or directed process:
There is no evidence to support the assertion that 

the goal of evolution is to produce Mankind.  
• The processes of nature seem to boil down to a 

haphazard Generation of biologically diverse
organisms.  

• Some of evolution is determined by natural Selection, 
or different Individuals competing for resources in the 
Environment.  Some are better than others.  

• Those that are better are more likely to survive and 
propagate their genetic material.  
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Biological Basis

• In nature, we see that the encoding for genetic 
information (Genome) is done in a way that admits 
asexual Reproduction.  

• Asexual reproduction typically results in offspring 
that are genetically identical to the Parent. (Large 
numbers of organisms reproduce asexually; this 
includes most bacteria, which some biologists hold to 
be the most successful Species known).  
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Biological Basis

• Sexual Reproduction allows some shuffling of 
Chromosomes, producing offspring that contain a 
combination of information from each Parent.  At the 
molecular level what occurs (wild oversimplification 
alert!) is that a pair of almost identical chromosomes 
bump into one another, exchange chunks of genetic 
information and drift apart.  

• This is the Recombination operation, which is often 
referred to as Crossover because of the way that 
biologists have observed strands of chromosomes 
crossing over during the exchange.  
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Biological Basis

• Recombination happens in an Environment where 
the Selection of who gets to mate is largely a 
function of the Fitness of the Individual, i.e., how 
good the individual is at competing in its 
environment.  Some "luck" (random effect) is usually 
involved too.  

• Some EAs use a simple function of the fitness
measure to select individuals (probabilistically) to 
undergo genetic operations such as Crossover or 
asexual Reproduction (the propagation of genetic 
material unaltered).  This is fitness-proportionate
Selection.  
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Biological Basis

• Other implementations use a model in which certain 
randomly selected individuals in a subgroup compete and 
the fittest is selected.  This is called Tournament Selection
and is the form of Selection we see in nature when stags rut 
to vie for the privilege of mating with a herd of hinds. 

• Much EA research has assumed that the two processes that 
most contribute to Evolution are Crossover and Fitness 
based Selection/reproduction.  As it turns out, there are 
mathematical proofs that indicate that the process of fitness 
proportionate Reproduction is, in fact, near optimal in 
some senses. 
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Biological Basis

• Evolution, by definition, absolutely requires diversity
in order to work.  In nature, an important source of 
diversity is Mutation.  In an EA, a large amount of 
diversity is usually introduced at the start of the 
algorithm, by randomizing the Genes in the 
Population.  

• The importance of Mutation, which introduces further 
diversity while the algorithm is running, therefore 
continues to be a matter of debate.  Some refer to it as 
a background operator, simply replacing some of the 
original diversity which has been lost, while others 
view it as playing the dominant role in the 
evolutionary process. 
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Biological Basis

• It cannot be stressed too strongly that an evolutionary 
algorithm (as a Simulation of a genetic process) is not
a random search for a solution to a problem (highly fit 
Individual).  EAs use stochastic processes, but the 
result is distinctly non-random (better than random). 
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Evolutionary Algorithm 
• Algorithm EA is
• t := 0; // start with an initial time
• initpopulation P (t);    // initialize a usually random population of 

individuals
• evaluate P (t); // evaluate fitness of all initial individuals 

in population
• while not done do // test for termination criterion (time, 

fitness, etc.)
• t := t + 1; // increase the time counter
• P' := selectparents P (t); // select sub-population for 

offspring production
• recombine P' (t); // recombine the "genes" of selected 

parents
• mutate P' (t); // perturb the mated population 

stochastically
• evaluate P' (t); // evaluate it's new fitness
• P := survive P,P' (t); // select the survivors from present fitness
• end EA. // done
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Genetic Algorithm

• The Genetic Algorithm is a model of machine 
learning, which derives its behavior from a metaphor 
of some of the mechanisms of Evolutionary 
hypotheses.  

• This is done by the creation within a machine of a 
Population of Individuals represented by 
Chromosomes, in essence a set of character strings that 
are analogous to the base-4 chromosomes that we see 
in our own DNA.  The individuals in the population 
then go through a process of simulated "evolution".
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Genetic Algorithm

• Applications:  

Multidimensional optimization problems in which 
the character string of the Chromosome can be used to 
encode the values for the different parameters being 
optimized. 

• Implement this genetic model of computation by 
having arrays of bits or characters to represent the 
Chromosomes.  Simple bit manipulation operations 
allow the implementation of Crossover, Mutation and 
other operations.  
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Genetic Algorithm

• Although a substantial amount of research has been 
performed on variable-length strings and other 
structures, the majority of work with Genetic 
Algorithms is focused on fixed-length character strings. 

• We should focus on both this aspect of fixed-length and 
the need to encode the representation of the solution 
being sought as a character string, since these are 
crucial aspects that distinguish Genetic Programming, 
which does not have a fixed length representation and 
there is typically no encoding of the problem. 
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Genetic Algorithm

• When the Genetic Algorithm is implemented it is 
usually done in the following cycle: 

 Evaluate the Fitness of all of the Individuals in the 
Population.  

 Create a new population by performing operations 
such as Crossover, fitness-proportionate 
Reproduction and Mutation on the individuals 
whose fitness has just been measured.  

 Discard the old population and iterate using the new 
population.
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Genetic Algorithm

• Implementation Model:

One iteration of this loop is referred to as a 
Generation. 

• The first (initial) Generation (generation 0) of this 
process operates on a Population of randomly generated 
Individuals.  

• From there on, the genetic operations, in concert with 
the Fitness measure, operate to improve the population. 
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Genetic Algorithm

GA have certain characteristics that differentiate them 
from traditional optimization methods:

• GA code parameters in a bit string and not in the values 
of the parameters. 

• GA search from a population of points, and not from a 
single point.

• GA use only the fitness function and don't need 
knowledge about derivatives or problem structure.

• GA use transition probabilistic rules (represented by the 
operators Selection, Crossover and Mutation), instead 
of deterministic rules. 
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Historical Perspectives

• In this point we refer to the main steps in the field of 
Genetic Algorithms since their birth in 1962 by the 
hand of J. Holland.  

• Before that date some attempts were made in modeling 
genetic systems in computer systems (Barricelli, 1957, 
1962; Fraser 1960, 1962, Martin and Cockerham, 
1960).  However these studies' fundamental objective 
was to understand some biological phenomena. 

• John Holland and his students were the first to 
recognize the usefulness of using Genetic Operators in 
artificial adaptation problems. 
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Historical Perspectives

• Bagley in 1967 first mentioned the expression "Genetic 
Algorithm" and the first to present a practical 
application of this knowledge. 

• In 1971, John Holland sets the basis for the theory 
behind the use of Genetic Algorithms: The Schema 
Theorem.

• In 1975 two important works were published: 

"Adaptation in Natural and Artificial Systems" of J. 
Holland, and 

"An Analysis of the behavior of a class of Genetic 
Adaptive Systems" of De Jong.  
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Historical Perspectives

• In 1989, Goldberg published 

"Genetic Algorithms in Search, Optimization and 
Machine Learning“, a reference book for Genetic 
Algorithms.  

• In the present Genetic Algorithms are reaching their 
adult phase, being used in several applications in 
different fields, especially where conventional methods 
are not applicable. 

24

Canonical Genetic Algorithm

• Canonical algorithm: Deals with three genetic 
operators (Selection, Crossover and Mutation) and 
linear, binary, fixed-size chromosomes. 

• Canonical GA uses a fixed-size, non-overlapping
population scheme and each new generation is created 
by the Selection operator and altered by Crossover and 
Mutation.  The first population is generated at random.

• Also called Simple Genetic Algorithm.
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Canonical Genetic Algorithm

Coding:

• Each chromosome represents a potential solution for the 
problem to solve and must be expressed in binary form.  

• For instance, in the integer interval, I=[0,31], we could 
simply code x in binary base, using 5 bits (such as 
10010 or 00101).  

• If we have a set of binary variables, each variable will 
be represented by a bit.  

26

Canonical Genetic Algorithm

Coding:

• For a multivariable problem, each variable has to be 
coded in the chromosome.  

• All of the search process takes place at the coding level. 
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Canonical Genetic Algorithm

Fitness:

• Each solution must be evaluated by the fitness function 
to produce a value. 

• This objective function characterizes the problem to be 
solved and, playing the role of environment, establishes 
the basis for Selection.  

e.g., If we want to maximize the function f(x)=x2, 

11011 receives the fitness value 272=729

00111 receives the fitness value 72=49

• The pair (chromosome, fitness) represents an 
individual. 
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Canonical Genetic Algorithm

• In most cases, the fitness function can be assimilated to 
the objective function of a classical optimization 
problem.  It will also include penalties for violated 
constraints. 

Fitness function:

Proportional fitness assignment:

Scale & shifting:
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Canonical Genetic Algorithm

• The fitness function does not necessarily have to be in a 
mathematical form.  It can be expressed also in 
qualitative form, and there are examples of GA models, 
in Power Systems, with fuzzy fitness function.

• It is traditional to assume that the fitness function is a 
monotone increasing function with the desirability of the 
solutions. 

30

Canonical Genetic Algorithm

Selection:

• The Selection operator creates a new population (or 
generation) by selecting individuals from the old 
population, biased towards the best.  This means that 
there will be more copies of the best individuals, 
although there may be some copies of the worst.  

• This operator can be implemented in a variety of ways, 
although the most used techniques are those known as 
Stochastic Tournament and Roulette [Goldberg, 1991]. 
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Canonical Genetic Algorithm

Stochastic Tournament -

• This implementation is suited to distributed 
implementations and is very simple: every time we 
want to select an individual for reproduction, we 
choose two, at random, and the best wins with some 
fixed probability, typically 0.8.  

• This scheme can be enhanced by using more 
individuals on the competition [Goldberg, 1991] or 
even by considering evolving winning probability, 
eventually leading to Boltzman Tournament [Goldberg, 
1991], generalizing the Simulated Annealing paradigm
[Kirkpatrick, 1983]. 
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Canonical Genetic Algorithm
Roulette –

• In this process, the individuals of each generation are selected for 
survival into the next generation according to a probability value 
proportional to the ratio of individual fitness over total population 
fitness; 

• this means that on average the next generation will receive copies 
of an individual in proportion to the importance of its fitness value. 

33

Canonical Genetic Algorithm

We construct such a roulette wheel as follows:

Calculate the fitness value f(xi) for each chromosome
xi

Find the total fitness of the population: 

F = sum (f(xi))

Calculate the probability of a selection pi for each 
chromosome:

pi= f(xi)/F

31
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Canonical Genetic Algorithm

Calculate a cumulative probability qi for each 
chromosome xi

qi = sum (pj; 1, …, i)

The selection process is based on spinning the roulette 
wheel n times; each time we select a single 
chromosome for a new population in the following 
way:

Generate a random number r from the range [0, 1].

If r<q1 then select the first chromosome (x1); otherwise 
select the i-th chromosome xi (2<i<n) such that qi-

1<r<qi. 
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Canonical Genetic Algorithm
Crossover -

• The recombination operator used in the Canonical 
Genetic Algorithm is called Single Point 
Crossover.  Individuals are paired at random with 
a high probability that Crossover will take place.  

• In affirmative case, a Crossover point is selected 
at random and, say, the rightmost segments of 
each individual are exchanged to produce two 
offsprings as illustrated in the next figure, where 
two 7-bit chromosomes A and B exchange parts 
(the Crossover point is p=4) resulting in the 
chromosomes A' and B':
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Canonical Genetic Algorithm

Crossover operation.
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Canonical Genetic Algorithm

Multi-point Crossover operation

38

Canonical Genetic Algorithm

Uniform Crossover operation
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Mutation -

• In the Canonical Genetic Algorithm Mutation 
consists of simply flipping each individual bit 
with a very low probability (A typical value would 
be Pm = 0.001).  This background operator is used 
to ensure that the probability of searching a 
particular subspace of the problem space is never 
zero, thereby tending to inhibit the possibility of 
ending the search at a local, rather than a global 
optimum. 

Canonical Genetic Algorithm
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Mutation:

Canonical Genetic Algorithm

Crossover:

41

Parameters-

• Like other optimization methods, GA have certain 
parameters like, for example:

- Population size;

- Genetic Operations Probabilities;

- Number of individuals involved in the Selection 
procedure, etc.

• These parameters must be selected with maximum care, 
for the performance of GA depends largely on the values 
used.  Normally, it's recommended to use a relatively low
population number, high Crossover and low Mutation 
probabilities.  

Canonical Genetic Algorithm

42

How GA Works -

• A canonical GA is a very simple process: we first 
generate a random initial population, evaluate it 
and start creating new populations by applying 
genetic operators.  This high-level behavior can be 
depicted on the following piece of pseudo-C:

Canonical Genetic Algorithm
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main()

{

int gen;

generate(oldpop);

for(gen = 0; gen < MAXGEN; gen++)

{

evaluate(oldpop);

newpop = select(oldpop);

Crossover(newpop);

Mutation(oldpop);

oldpop = newpop;

}

}

Canonical Genetic Algorithm
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The importance of recombination

45   38Max the success in life f
f(x,y) = x2 + y2 x,y [0,100]

X (Intelligence)
Y (Beauty)

100   14 9    100

45

The importance of recombination

GLOBAL
OPTIMUM

100   14 9    100

9     14 100  100
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