
ELC 5396 Intelligent Control 1

1

Lecture Series on

Intelligent Control

Lecture 21
Evolutionary Computation and Genetic

Algorithms

Kwang Y. Lee

Professor of Electrical & Computer Engineering

Baylor University

Waco, TX 76798, USA

Kwang_Y_Lee@baylor.edu

2

Computational Intelligence (CI):
• Evolutionary Computation (EC)
• Fuzzy Systems
• Artificial Neural Networks

Evolutionary Computation

Part of an even more complex universe, incorporating
Artificial Life, Fractal Geometry, and other Complex
Systems Sciences, which might someday be referred
to as Natural Computation (NC).

3

Evolutionary Computation

• Global Optimization algorithms imitating certain
principles of created nature have proved their
usefulness in various domains of applications.
Especially worth copying are those principles where
nature has found "stable islands" in a "turbulent ocean"
of solution possibilities.

• Such phenomena can be found in annealing processes,
central nervous systems and biological evolutionary
hypothesis; and have lead to the following
optimization methods: Simulated Annealing (SA),
Artificial Neural Networks (ANNs) and the field of
Evolutionary Computation (EC).

1

2

3

ELC 5396 Intelligent Control 2

4

• EC may currently be characterized by the following
pathways:
– Genetic Algorithms (GA),
– Evolutionary Programming (EP),
– Evolution Strategies (ES),
– Classifier Systems (CFS),
– Genetic Programming (GP), and
– several other problem solving strategies,
Based upon biological observations dating back to

Charles Darwin's conjectures in the 19th century - the
means of natural selection and survival of the fittest,
and theories of evolution. The inspired algorithms are
thus termed Evolutionary Algorithms (EA).

Evolutionary Computation

5

Evolutionaty Algorithm

• Evolutionary Algorithm (EA):
Computer-based problem solving systems,

which use computational models of some of the
hypothetical evolution mechanisms as key elements
in their design and implementation.

• Common conceptual base:
Simulate the evolution of individual structures

via processes of Selection, Mutation, and
Reproduction. The processes depend on the
perceived Performance of the individual structures
as defined by an Environment.

6

Evolutionary Algorithm
• Population of structures:

Evolve according to rules of Selection and other
operators, those are referred to as "search operators," (or
Genetic Operators), such as Recombination and Mutation.

• Each Individual in the population receives a measure of its
Fitness in the Environment.

• Reproduction focuses attention on high fitness individuals,
thus exploiting the available fitness information.

• Recombination and Mutation perturb those individuals,
providing general heuristics for Exploration.

• Although simple, these algorithms are sufficiently complex to
provide robust and powerful adaptive search mechanisms.

4

5

6

ELC 5396 Intelligent Control 3

7

Biological Basis

• Evolution is not a purposive or directed process:
There is no evidence to support the assertion that

the goal of evolution is to produce Mankind.
• The processes of nature seem to boil down to a

haphazard Generation of biologically diverse
organisms.

• Some of evolution is determined by natural Selection,
or different Individuals competing for resources in the
Environment. Some are better than others.

• Those that are better are more likely to survive and
propagate their genetic material.

8

Biological Basis

• In nature, we see that the encoding for genetic
information (Genome) is done in a way that admits
asexual Reproduction.

• Asexual reproduction typically results in offspring
that are genetically identical to the Parent. (Large
numbers of organisms reproduce asexually; this
includes most bacteria, which some biologists hold to
be the most successful Species known).

9

Biological Basis

• Sexual Reproduction allows some shuffling of
Chromosomes, producing offspring that contain a
combination of information from each Parent. At the
molecular level what occurs (wild oversimplification
alert!) is that a pair of almost identical chromosomes
bump into one another, exchange chunks of genetic
information and drift apart.

• This is the Recombination operation, which is often
referred to as Crossover because of the way that
biologists have observed strands of chromosomes
crossing over during the exchange.

7

8

9

ELC 5396 Intelligent Control 4

10

Biological Basis

• Recombination happens in an Environment where
the Selection of who gets to mate is largely a
function of the Fitness of the Individual, i.e., how
good the individual is at competing in its
environment. Some "luck" (random effect) is usually
involved too.

• Some EAs use a simple function of the fitness
measure to select individuals (probabilistically) to
undergo genetic operations such as Crossover or
asexual Reproduction (the propagation of genetic
material unaltered). This is fitness-proportionate
Selection.

11

Biological Basis

• Other implementations use a model in which certain
randomly selected individuals in a subgroup compete and
the fittest is selected. This is called Tournament Selection
and is the form of Selection we see in nature when stags rut
to vie for the privilege of mating with a herd of hinds.

• Much EA research has assumed that the two processes that
most contribute to Evolution are Crossover and Fitness
based Selection/reproduction. As it turns out, there are
mathematical proofs that indicate that the process of fitness
proportionate Reproduction is, in fact, near optimal in
some senses.

12

Biological Basis

• Evolution, by definition, absolutely requires diversity
in order to work. In nature, an important source of
diversity is Mutation. In an EA, a large amount of
diversity is usually introduced at the start of the
algorithm, by randomizing the Genes in the
Population.

• The importance of Mutation, which introduces further
diversity while the algorithm is running, therefore
continues to be a matter of debate. Some refer to it as
a background operator, simply replacing some of the
original diversity which has been lost, while others
view it as playing the dominant role in the
evolutionary process.

10

11

12

ELC 5396 Intelligent Control 5

13

Biological Basis

• It cannot be stressed too strongly that an evolutionary
algorithm (as a Simulation of a genetic process) is not
a random search for a solution to a problem (highly fit
Individual). EAs use stochastic processes, but the
result is distinctly non-random (better than random).

14

Evolutionary Algorithm
• Algorithm EA is
• t := 0; // start with an initial time
• initpopulation P (t); // initialize a usually random population of

individuals
• evaluate P (t); // evaluate fitness of all initial individuals

in population
• while not done do // test for termination criterion (time,

fitness, etc.)
• t := t + 1; // increase the time counter
• P' := selectparents P (t); // select sub-population for

offspring production
• recombine P' (t); // recombine the "genes" of selected

parents
• mutate P' (t); // perturb the mated population

stochastically
• evaluate P' (t); // evaluate it's new fitness
• P := survive P,P' (t); // select the survivors from present fitness
• end EA. // done

15

Genetic Algorithm

• The Genetic Algorithm is a model of machine
learning, which derives its behavior from a metaphor
of some of the mechanisms of Evolutionary
hypotheses.

• This is done by the creation within a machine of a
Population of Individuals represented by
Chromosomes, in essence a set of character strings that
are analogous to the base-4 chromosomes that we see
in our own DNA. The individuals in the population
then go through a process of simulated "evolution".

13

14

15

ELC 5396 Intelligent Control 6

16

Genetic Algorithm

• Applications:

Multidimensional optimization problems in which
the character string of the Chromosome can be used to
encode the values for the different parameters being
optimized.

• Implement this genetic model of computation by
having arrays of bits or characters to represent the
Chromosomes. Simple bit manipulation operations
allow the implementation of Crossover, Mutation and
other operations.

17

Genetic Algorithm

• Although a substantial amount of research has been
performed on variable-length strings and other
structures, the majority of work with Genetic
Algorithms is focused on fixed-length character strings.

• We should focus on both this aspect of fixed-length and
the need to encode the representation of the solution
being sought as a character string, since these are
crucial aspects that distinguish Genetic Programming,
which does not have a fixed length representation and
there is typically no encoding of the problem.

18

Genetic Algorithm

• When the Genetic Algorithm is implemented it is
usually done in the following cycle:

 Evaluate the Fitness of all of the Individuals in the
Population.

 Create a new population by performing operations
such as Crossover, fitness-proportionate
Reproduction and Mutation on the individuals
whose fitness has just been measured.

 Discard the old population and iterate using the new
population.

16

17

18

ELC 5396 Intelligent Control 7

19

Genetic Algorithm

• Implementation Model:

One iteration of this loop is referred to as a
Generation.

• The first (initial) Generation (generation 0) of this
process operates on a Population of randomly generated
Individuals.

• From there on, the genetic operations, in concert with
the Fitness measure, operate to improve the population.

20

Genetic Algorithm

GA have certain characteristics that differentiate them
from traditional optimization methods:

• GA code parameters in a bit string and not in the values
of the parameters.

• GA search from a population of points, and not from a
single point.

• GA use only the fitness function and don't need
knowledge about derivatives or problem structure.

• GA use transition probabilistic rules (represented by the
operators Selection, Crossover and Mutation), instead
of deterministic rules.

21

Historical Perspectives

• In this point we refer to the main steps in the field of
Genetic Algorithms since their birth in 1962 by the
hand of J. Holland.

• Before that date some attempts were made in modeling
genetic systems in computer systems (Barricelli, 1957,
1962; Fraser 1960, 1962, Martin and Cockerham,
1960). However these studies' fundamental objective
was to understand some biological phenomena.

• John Holland and his students were the first to
recognize the usefulness of using Genetic Operators in
artificial adaptation problems.

19

20

21

ELC 5396 Intelligent Control 8

22

Historical Perspectives

• Bagley in 1967 first mentioned the expression "Genetic
Algorithm" and the first to present a practical
application of this knowledge.

• In 1971, John Holland sets the basis for the theory
behind the use of Genetic Algorithms: The Schema
Theorem.

• In 1975 two important works were published:

"Adaptation in Natural and Artificial Systems" of J.
Holland, and

"An Analysis of the behavior of a class of Genetic
Adaptive Systems" of De Jong.

23

Historical Perspectives

• In 1989, Goldberg published

"Genetic Algorithms in Search, Optimization and
Machine Learning“, a reference book for Genetic
Algorithms.

• In the present Genetic Algorithms are reaching their
adult phase, being used in several applications in
different fields, especially where conventional methods
are not applicable.

24

Canonical Genetic Algorithm

• Canonical algorithm: Deals with three genetic
operators (Selection, Crossover and Mutation) and
linear, binary, fixed-size chromosomes.

• Canonical GA uses a fixed-size, non-overlapping
population scheme and each new generation is created
by the Selection operator and altered by Crossover and
Mutation. The first population is generated at random.

• Also called Simple Genetic Algorithm.

22

23

24

ELC 5396 Intelligent Control 9

25

Canonical Genetic Algorithm

Coding:

• Each chromosome represents a potential solution for the
problem to solve and must be expressed in binary form.

• For instance, in the integer interval, I=[0,31], we could
simply code x in binary base, using 5 bits (such as
10010 or 00101).

• If we have a set of binary variables, each variable will
be represented by a bit.

26

Canonical Genetic Algorithm

Coding:

• For a multivariable problem, each variable has to be
coded in the chromosome.

• All of the search process takes place at the coding level.

27

Canonical Genetic Algorithm

Fitness:

• Each solution must be evaluated by the fitness function
to produce a value.

• This objective function characterizes the problem to be
solved and, playing the role of environment, establishes
the basis for Selection.

e.g., If we want to maximize the function f(x)=x2,

11011 receives the fitness value 272=729

00111 receives the fitness value 72=49

• The pair (chromosome, fitness) represents an
individual.

25

26

27

ELC 5396 Intelligent Control 10

28

Canonical Genetic Algorithm

• In most cases, the fitness function can be assimilated to
the objective function of a classical optimization
problem. It will also include penalties for violated
constraints.

Fitness function:

Proportional fitness assignment:

Scale & shifting:

29

Canonical Genetic Algorithm

• The fitness function does not necessarily have to be in a
mathematical form. It can be expressed also in
qualitative form, and there are examples of GA models,
in Power Systems, with fuzzy fitness function.

• It is traditional to assume that the fitness function is a
monotone increasing function with the desirability of the
solutions.

30

Canonical Genetic Algorithm

Selection:

• The Selection operator creates a new population (or
generation) by selecting individuals from the old
population, biased towards the best. This means that
there will be more copies of the best individuals,
although there may be some copies of the worst.

• This operator can be implemented in a variety of ways,
although the most used techniques are those known as
Stochastic Tournament and Roulette [Goldberg, 1991].

28

29

30

ELC 5396 Intelligent Control 11

31

Canonical Genetic Algorithm

Stochastic Tournament -

• This implementation is suited to distributed
implementations and is very simple: every time we
want to select an individual for reproduction, we
choose two, at random, and the best wins with some
fixed probability, typically 0.8.

• This scheme can be enhanced by using more
individuals on the competition [Goldberg, 1991] or
even by considering evolving winning probability,
eventually leading to Boltzman Tournament [Goldberg,
1991], generalizing the Simulated Annealing paradigm
[Kirkpatrick, 1983].

32

Canonical Genetic Algorithm
Roulette –

• In this process, the individuals of each generation are selected for
survival into the next generation according to a probability value
proportional to the ratio of individual fitness over total population
fitness;

• this means that on average the next generation will receive copies
of an individual in proportion to the importance of its fitness value.

33

Canonical Genetic Algorithm

We construct such a roulette wheel as follows:

Calculate the fitness value f(xi) for each chromosome
xi

Find the total fitness of the population:

F = sum (f(xi))

Calculate the probability of a selection pi for each
chromosome:

pi= f(xi)/F

31

32

33

ELC 5396 Intelligent Control 12

34

Canonical Genetic Algorithm

Calculate a cumulative probability qi for each
chromosome xi

qi = sum (pj; 1, …, i)

The selection process is based on spinning the roulette
wheel n times; each time we select a single
chromosome for a new population in the following
way:

Generate a random number r from the range [0, 1].

If r<q1 then select the first chromosome (x1); otherwise
select the i-th chromosome xi (2<i<n) such that qi-

1<r<qi.

35

Canonical Genetic Algorithm
Crossover -

• The recombination operator used in the Canonical
Genetic Algorithm is called Single Point
Crossover. Individuals are paired at random with
a high probability that Crossover will take place.

• In affirmative case, a Crossover point is selected
at random and, say, the rightmost segments of
each individual are exchanged to produce two
offsprings as illustrated in the next figure, where
two 7-bit chromosomes A and B exchange parts
(the Crossover point is p=4) resulting in the
chromosomes A' and B':

36

Canonical Genetic Algorithm

Crossover operation.

34

35

36

ELC 5396 Intelligent Control 13

37

Canonical Genetic Algorithm

Multi-point Crossover operation

38

Canonical Genetic Algorithm

Uniform Crossover operation

39

Mutation -

• In the Canonical Genetic Algorithm Mutation
consists of simply flipping each individual bit
with a very low probability (A typical value would
be Pm = 0.001). This background operator is used
to ensure that the probability of searching a
particular subspace of the problem space is never
zero, thereby tending to inhibit the possibility of
ending the search at a local, rather than a global
optimum.

Canonical Genetic Algorithm

37

38

39

ELC 5396 Intelligent Control 14

40

Mutation:

Canonical Genetic Algorithm

Crossover:

41

Parameters-

• Like other optimization methods, GA have certain
parameters like, for example:

- Population size;

- Genetic Operations Probabilities;

- Number of individuals involved in the Selection
procedure, etc.

• These parameters must be selected with maximum care,
for the performance of GA depends largely on the values
used. Normally, it's recommended to use a relatively low
population number, high Crossover and low Mutation
probabilities.

Canonical Genetic Algorithm

42

How GA Works -

• A canonical GA is a very simple process: we first
generate a random initial population, evaluate it
and start creating new populations by applying
genetic operators. This high-level behavior can be
depicted on the following piece of pseudo-C:

Canonical Genetic Algorithm

40

41

42

ELC 5396 Intelligent Control 15

43

main()

{

int gen;

generate(oldpop);

for(gen = 0; gen < MAXGEN; gen++)

{

evaluate(oldpop);

newpop = select(oldpop);

Crossover(newpop);

Mutation(oldpop);

oldpop = newpop;

}

}

Canonical Genetic Algorithm

44

The importance of recombination

45 38Max the success in life f
f(x,y) = x2 + y2 x,y [0,100]

X (Intelligence)
Y (Beauty)

100 14 9 100

45

The importance of recombination

GLOBAL
OPTIMUM

100 14 9 100

9 14 100 100

43

44

45

