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Fuzzy Logic Controller Design

• On the other hand, in adaptive fuzzy control, the 
structure and/or parameters of the fuzzy controller 
change during real-time operation.  Fixed fuzzy 
control is simpler than adaptive fuzzy control but 
requires more knowledge of the process model or 
heuristic rules.  Adaptive fuzzy control, on the other 
hand, is more expensive to implement, but requires 
less information and may perform better. 

• Many Fuzzy control can be classified into static fuzzy 
control and adaptive fuzzy control.  In static fuzzy 
control, the structure and parameters of the fuzzy 
controller are fixed and do not change during real-time 
operation.  
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Fuzzy Logic Controller Design

• Conventional control starts with a mathematical model 
of the process and controllers are designed based on the 
model.  Fuzzy control, on the other hand, starts with 
heuristics and human expertise (in terms of fuzzy IF-
THEN rules) and controllers are designed by 
synthesizing these rules.  That is, the information used 
to construct the two types of controllers are different. 

• Fuzzy control and conventional control have 
similarities and differences.  They are similar in the 
sense that they must address the same issues that are 
common to any control problem, such as stability and 
performance.  However, there is a fundamental 
difference between fuzzy control and conventional 
control.  
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Fuzzy Logic Controller Design

Fuzzy control and conventional control. 
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Fuzzy Logic Controller Design

• The design techniques for fuzzy controllers  can be 
classified into the trial-and-error approach and the 
theoretical approach. 

• Fuzzy control is most useful for these kinds of 
problems.  If mathematical model of the process is 
unknown, we can design fuzzy controllers in a 
systematic manner that guarantee certain key 
performance criteria.

• For many practical problems, it is difficult to obtain an 
accurate yet simple mathematical model, but there are 
human experts who can provide heuristics and rule-of-
thumb that are very useful for controlling the process.  
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Fuzzy Logic Controller Design

• In theoretical approach, the structure and parameters 
of the fuzzy controller are designed in such a way that 
certain performance criteria are guaranteed.  Both 
approaches, of course, can be combined to give the best 
fuzzy controllers. 

• The fuzzy controllers are tested in the real system and 
if the performance is not satisfactory, the rules are fine-
tuned or redesigned in several trial-and-error cycles 
until the performance is satisfactory.  

• In the trial-and-error approach, a set of fuzzy IF-
THEN rules are collected from human experts or 
documented knowledge base, and the fuzzy controllers 
are constructed from these fuzzy IF-THEN rules.  
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Trial-and-Error Approach

• Construct IF-THEN rules between the state and control 
variables.  The formulation of these rules can be 
achieved in two different heuristic approaches.  The 
most common approach is the linguistic verbalization
of human experts.  Another approach is to interrogate 
experienced experts or operators using a carefully 
organized questionnaire. 

• Select state and control variables. The state variables
should characterize the key features of the system and
the control variables should be able to influence the
states of the system. The state variables are the inputs
to the fuzzy controller and the control variables are the
output of the fuzzy controller.
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Trial-and-Error Approach

• The resulting fuzzy IF-THEN rule can be in the
following two types:

Type I: IF x1 is AND ... AND xn is , THEN u is

Type II:IF x1 is AND ... AND xn is ,

THEN u is

• Test the fuzzy IF-THEN rules in the system. The
closed-loop system with the fuzzy controller is run and
if the performance is not satisfactory, fine tune or
redesign the fuzzy controller and repeat the procedure
until the performance is satisfactory.
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Trial-and-Error Approach

• Comparing the two types, the THEN part of the rule
is changed from a linguistic description to a simple
mathematical formula. This change makes it easier to
combine the rules. In fact, Type II, the Takagi-
Sugeno system, is a weighted average of the rules in
the THEN parts of the rules.

• In Type I, both the antecedent and consequence have
linguistic variables. On the other hand, in Type II, the
consequent is a parameterized function of the input to
the fuzzy controller, or the state variables.
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Trial-and-Error Approach

• THEN part is a mathematical formula and therefore may
not provide a natural framework to represent human
knowledge, and

• There is not much freedom left to apply different
principles in fuzzy logic, so that the versatility of fuzzy
systems is not fully represented in this framework.

• Type II is useful in tuning the rules mathematically.

• On the other hand, it has drawbacks:
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Theoretical Approach

• Theoretical approach can be classified into the
following categories:
1. Stable controller design
2. Optimal controller design
3. Sliding mode controller design
4. Supervisory controller design
5. Fuzzy system model-based controller design

• In order to analyze the performance of the closed-
loop fuzzy control system theoretically, we need to
have some knowledge on the model of the system;
assumes a mathematical model for the system, so that
mathematical analysis can be performed to establish
the properties of the designed system.
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Automatic Tuning Method

• The domain of a variable, E or DE, is partitioned into
fuzzy sets, Ai , i = 1, …, n.

• Every fuzzy set is associated with a name that
represents qualitative statements, e.g., for i = 1, …, 5,
A1 = large negative (LN), A2 = small negative (SN),
A3 = zero (ZE), A4 = small positive (SP), and A5 =
large positive (LP).

• The variables of the premise and the consequent are
defined as the following:

Error (E) = process output - set point
Error change (DE) = current error - last error
Controller output = input applied to process.
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Automatic Tuning Method
• An example of a rule, where the consequent of the rule

is a parameterized function of the input variables, is:
IF error (E) is large negative (i = 1) and the change in
error (DE) is small negative (j = 2),
THEN the output is

= + + ,
where the subscripts represent Rule12, and the
parameters , k = 0, 1, and 2, need to be
determined.

• In general, the parameters for Ruleij , for all i and j, are
determined by the Automatic Tuning Method (ATM)
using the input and output data from the experiment
(Ramaswami, 1993).
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Automatic Tuning Method

The consequent of each rule of the controller has
the form

= + + ,

where is known steady-state controller output, and
and are the unknown parameters.

Most existing fuzzy logic controllers are designed
without using any mathematical model of a plant.
The construction procedures are generally based on
the experts’ understanding of the process. Therefore,
the rule base of a fuzzy logic controller must be
adjusted through trial and error to obtain the desired
performance.
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Automatic Tuning Method

In order to apply the Kalman filtering, the unknown
parameters are viewed as state variables, the
premise variables E(k) and DE(k) as time-varying
system coefficients, and the as the system output
variables. Then the dynamics of can be modeled
simply as a stochastic system in discrete-time:

To find these unknowns, the Kalman filter approach
is taken because the Kalman filter estimates are the
optimal mean-squared error estimates. Also, in this
recursive filter there is no need to store past
measurements for the purpose of computing present
estimates.
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Automatic Tuning Method

System Model:

Measurement Model:
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Automatic Tuning Method

Here wk and vk are process and measurement noise,
respectively, with normal distribution. In this
formulation, the process noise is assumed to be
completely unknown, and the measurement model is
assumed to have zero measurement noise. The
parameters are unknown constants and therefore their
changes at steady-state are zero. Also, the variations
of the two parameters are uncorrelated. From these
initial assumptions for the system model, the Kalman
filtering problem can be easily solved to give the
steady-state solution for the parameters .
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Nuclear Reactor Control
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NUCLEAR REACTOR CONTROL

The Reactor Power Plant Modeling
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Operation Regions
Gr  \ nr0 0.1 0.5 1.0
0.0290 Region 3 Region 4 Region 5
0.0145 Region 2 Region 1 Region 6
0.0070 Region 9 Region 8 Region 7

Test Case Studies:
Case A: Local control
100%  90%  100% power level changes in Region 6.
Case B: Global operation
40%  50%  40% power level changes in Region 1.
Case C: Emergency operation
100%  25% huge step down from Region 5 to Region 3.
Case D: Shut-down/Start-up
100%  10%  100% ramp down and ramp up from Region 5 to

Region 3.

Simulation Results
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Automatic Tuning Method
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Automatic Tuning Method
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Self-Organizing Fuzzy Logic Control

� Rules generated using the history of input-output data

� Fuzzy rule base updated on-line by a self-organizing 
procedure

Application of FARMA FLC to a Boiler-Turbine System

� Single loop control scheme

� Three input-output pairs of dominant relations

� Application of FARMA FLC to each single loops

Free Model
Discrete Plant:

y(k+1) = f (y(k), y(k-1), ..., u(k), u(k-1),... )

Free Model:

y(k+1) = f (y(k), y(k), 2y(k), 3y(k), ...,

u(k), u(k-1), 2u(k-1), 3u(k-1), ... )

where i is the Backward Difference Operator:

if(k) = i-1f(k) - i-1f(k-1), 0f(k) = f(k)

Inverse Model:

u(k) = g(yref, y(k), y(k), ..., u(k-1), u(k-1), ... ) 
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FARMA Rule

IF yref is A1i, y(k) is A2i, y(k) is A3i,..., n-1y(k) is A(n+1)i,
AND u(k-1) is B1i, u(k-1) is B2i, ..., m-1u(k-1) is Bmi,

THEN u(k) is Ci (for the i-th rule)

where n, m: number of output and input variables
Aij, Bij: antecedent linguistic values for the i-th rule
Ci : consequent linguistic value for the i-th rule

Membership function Ai for a crisp value x1:

where, [a, b] is input or output range
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FARMA Rule
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FARMA Rule
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FARMA Rule
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FARMA Rule
Inference with -operation

where Cn : net linguistic control action
i : truth value of the i-th rule
Ci: membership degree of linguistic value Ci

Defuzzification
� Net Control Range (NCR)

- -cut of the Cn where  = max (Cn)
- Subset [p, q] of [a, b] as the highest possibility

30

FARMA Rule

� Temporary target yr(k+1)

yr(k+1) = y(k) +  (yref - y(k))

where  is the target ratio constant (0 <   1)

� The final crisp control value u(k)

where [p q] is the NCR.
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FARMA Rule
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Self-Organization

Rule base update:

� Performance index

J = |yr(k+1) - y(k+1)|

where y(k+1): real plant output
yr(k+1): reference output

� Partition of the fuzzy rule space into a finite number of 
domains 

- Only one rule, i.e., a point, is stored in each domain
- If there is a new rule in domain,  replace it with the 

smaller J
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Self-Organization
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Self-Organizing Fuzzy Logic Control

The FARMA control system architecture
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Boiler-Turbine System

A MIMO nonlinear Model of a Boiler-Turbine System:

where

36

Input-Outputs
� Output variables

y1 : drum steam pressure (P in kg/cm2)

y2 : electric power (E in MW)

y3 : drum water level deviation (L in m)

� Input variables

u1 : fuel valve position

u2 : steam valve position

u3 : feedwater valve position

 Limited change of input variables
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MIMO Fuzzy Logic Control 

Dominant Input-Output Pairing:

� Drum steam pressure (y1): control with fuel valve (u1)

� Electric power(y2): control with steam valve (u2)

� Drum water level (y3): control with feedwater valve (u3)

Three Independent Single-Input-Single-Output Loops: 

Three FARMA FLCs
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Boiler-Turbine Control System

Three SISO FARMA FLCs for a MIMO System
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Simulation Results

Initial steady state: 

X=(100, 50, 449.5), Y=(100, 50, 0), U=(0.271, 0.604, 0.336)

Four cases of step-changes in references:

Case 1)

Case 2)

Case 3)

Case 4)
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Simulation Results

Case 1

41

Simulation Results

Case 3
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Simulation Results
Case 4
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Conclusions

Free-Model based Self-Organizing Fuzzy Logic Control

� Automatic generation of rules and the membership 
functions

� On-line self-organization of fuzzy rule base

Application to a Boiler-Turbine System

� Three input-output pairs of dominant relations

� Application of FARMA FLC to each single loops

Successful simulation results in a MIMO nonlinear model
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