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Fuzzy Control
1. A set of If-Then rfiles), which
¢ xpert’s ligfguistif: description
2. An » called an “inference engine” or “fuzzy in
fere rert’s decision-making in inter
pretiffg and applyin, dge w best to control the plant
3. A fuzzificat oller inputs into information
that the inference wd apply rules
1. A defu wsions of the inference
mechanism into actual inputs for
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Inputs and Outputs for Fuzzy Controller
A
Figure 5.2: Human controlling a tanker ship.
e(t) = (1) — wi(t)
de(t)
T
- . L - Task, v >
Figure 5.3: Fuzzy controller for a tanker ship steering problem R




Rule Base

Linguistic Descriptions “error” describes e(t)
“change-in-error” describes
“rudder-input” describes §(t)

Just as e(t) takes on a value of, for example, 0.1 at ¢ 2 (e(2
linguistic variables assume “linguistic values

A7

That is, the values that
umically. Suppose for the tar
and “rudder-input” take on th

iables take on over time ch
ample that “error,” “ch
values:

e dy

-5 for “neghugs
-4 for “neglarge”
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-3 for “negbig”
-2 for “negmed”
-1 for “negsmall”
0 for “zero”
1 for “possmall”
2 for “posmed”
3 for “posbig”
4 for “poslarge”
4
5 for “poshugi
Rules
¥, = desired ship heading is 45 deg.. the dotted
¥ = ship heading, thin solid lincs with amrow at end indicating direction of ship travel
n the ship is movin
1
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Figure 5.4: Tanker ship in various positions
1. If error is negsmall and change-in-error is negsmall Then rudder-input is
posmed
2. If error is zero and change-in-error is possmall Then rudder-input is
negsmall
3. If error is possmall and change-in-error is negsmall Then rudder-input is
zero
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Rule Bases

I Ship
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Then, for instance, the (+1,—1) position (where the “+1" represents
the row having “+1" for a numeric-linguistic value and the “~1" represents the
column having “—1" for a numeric-linguistic value) has a 0 (“zero™) in the body
of the table and represents the rule

If error is Il and ch:

ge-i Tor is Il Then rudder-input is zere




Fuzzy Quantification of Knowledge

Membership Function

A “fuzzy set”: a set A of values that is described by a
membership function.

e.g., % is an element of a fuzzy set 4 with absolute

certainty, but less certain that 4z is an element of A.
10

Membership in the set is fuzzy
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Fuzzy Quantification of Knowledge
Membership Function
[
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Figure 5.7: Membership function for a crisp set
“Crisp” membership function:
normal interval = g2
wS’wsm
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Membership Function Shapes
" possmall ®
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2) Trapezoid
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rad.) rad.)
c) Sharp pea
Figure 5.6: Some example membership function choices for representing “error
is possmall.”
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Input and Output Membership Functions
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Figure 5.8: Membership functions for a ship steering example 10
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Rule Table

Table 5.2: Rule Table for the Tanker Ship (body of table holds the output mem-
bership function centers where each element should be multiplied by 87 /18)

5 i 3 2 1 0 1 2 3 1 5

5 1 1 1 1 1 1 8 6 3 1 0
1 1 1 1 1 1 8 K 3 1 0 1
3 1 1 1 1 ] [ 3 1 0 1 3
2 1 1 1 ] ] 3 1 0 1 K] 6
1 1 1 8 [ 3 1 [1] 1 3 [ 5
¢ 0 1 K. (i 3 1 (1] 1 3 K ] 1
1 8 [ 3 1 0 1 3 G 8 1 1
2 [ 3 1 0 1 3 (1 ] 1 1 1
i} 3 1 0 1 3 6 8 1 1 1 1
1 1 0 1 K] 6 8 1 1 1 1 1
5 0 1 3 6 8 1 1 1 1 1 1
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Matching: Determining Which Rules to Use

Premise Quantification via Fuzzy Logic

rules with fuzzy logic
To do this, we first quantify the me premises of the rules that
eral terms, each of which involves a fuzzy controller input
Consider Figure 5.9, where we list two terms from the premise of the rule

ATE COMPOS

If error is zero and change-in-error is possmall Then rudder-input is negsmall

error is zero and change-in-error is possmall™
quantified with quantified with
N pomalr
as ¥ porama
= | 3% an.nd) 0002 0008 e, (radvec
o 0 ]

Figure 5.9: Membership functions of premise terms.
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“And” Operation

To sce how to quantify the “and” operation, begin by su ng that e(t
#/10 and é(f) = 0.0005, so that using Figure 5.8 (or Figure 5.9) we see that
(t)) =0,
and
M &(t)) = 0.25
quantified with quantified with
1
o possmall”
7810 i
Hzero
ost Hpossmalt
S | 28 g(1), (rad) 0.001 0.002 0004 de, (rad/sec)
10 10

dt
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“And” Operation
Hzerole(t)) = 0.5

Hpossmali (€(t)) = 0.25

What, for these values of e(t) and é(t), is the certainty of the statement

“error is zero

-in-error is possmall

that is the premise from the above rule? We will denote this certainty by

Ppremise- There are actually several ways to define it

o Minimum: Define fipyemise min{0.5,0.25) 0.25, that is, using the
minimum of the two membership values.

o Product: Define piyemise = (0.5)(0.25) = 0.125, that is, using the product

of the two membership values
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Minimum Operation

Figure 5.10: Membership function of the premise for a single rule using minimum
to represent the conjunction,
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Product Operation

Promuss memberate Lo ton g b

§
$os
!

s

5.11: Membership function of the premise for a single rule using product
to represent the conjunction.
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Active Rules

on. Suppose that
e(t)=0

and

e(t) 0.0015

ith input values 17

Consider, for the ship steering example, how we compute the rules that are
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Active Rules

Table 5.3: Rule Table for the Tanker Ship with Rules That Are “On” (high
lighted). (Body of table holds the output membership function centers where
each element should be multiplied by 87/18.)

3 1 3 ] T[]0 T 2 3 i 3

5] 1 1 1 ] 1 T 5 0 g T[]0
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0 1 ] 6 3 o ] 6 ] 1
1 5] 0 d T 10 1 7 [ 5 T T
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5 | 0 T = -1 1 1 T T T

If error is zero and change-in-error is zero Then rudder-input is zero

[t error is zero and e

negsmall 18

e-in-error is possmall Then rudder-input is
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Inference

Recommendation from One Rule
Consider the conclusion reached by the rule

If error is zero and change-in-error is zero Then rudder-input is zero

which for convenience we will refer to as “rule (1 Using the minimum to

represent the premise, we have
Ipremis min{1,0.25} = 0.25

Membership function for the consequent by rule (1):

H1y(8) = min{jipremise,y, s Bizera(d)
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Inference ; I
Recommendation from Another Rule = ¥ T~
Next, consider the conclusion reached by the other rule that is on A
If error is zero and change-in-error is possmall Then ru input is negsmall I _________
we will refer to as “rule (2)." Using the minimum to
we have
Hpremis min{1, 0.75 0.75
Membership function for the consequent by rule (2):
pig2)(8) = min{ppremis Hinegs 9)
Fi
wit 20

20

Defuzzification

5.1.6 Converting Decisions into Actions

21
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Inference

Due to its popularity, we will first consider the “center of gravity” (COG) de-
fuzzification method for combining the recommendations represented by the i
plied fuzzy sets from all the rules. Let b, denote the center of the membership
rule (i.e., where the membership

function for the implied fuzzy set for the i*"
function for the i rule reaches its peak for our example since the output fuzzy
sots are all symmetric about their peaks). For our example we have

b 0.0

and by = 0.1 ( ‘T;)

as shown in Figure 5.15. Let

denote the area under the membership function The COG method com

putes 6 1o be
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Center of Gravity
Using Equation (5.1) with Figure 5.15, we have
0.0952
793 rad. 1), (rad.)
Figure 5.16: Implied fuzzy sets
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Alternative Ways
Other Ways to Compute and Combine Recommendations
As another example, it is interesting to consider how to compute, by hand, the
sperations that the fuzzy controller takes when we u he product to resent
the implication or the “center-average” de thod.
First, consider the use of the product. Cor r Figure 5.18, where we have
drawn the output membership functions for “negsmall” and “zero” as dotte
lines. The implied fuzzy set from rule iven by the membership function
Hig1)(8) = 0251, (8
n in Figure 5.18 as the shaded triangle; the imp§ed fuzzy set for rule (2
ven by the membership function
S0, (rad)
pzzy sets when the product is used to represent the im
24
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Next,
troduce t
let

Figure 5.18
plication.

another

‘center-avers

Center-Average

f how to combine recommendations, we will in
" method for defuzzification. For this method we

ampl

X bin

161 16m
180 180

&), (rad.)

Implied fuzzy sets when the product is used to represent the im-
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0)(0.25 )
5 55 0.1047
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Summary

W erroris zero and change-in-error is zeo Then m‘l‘l.u input is ;.-w

Figure 5.19: Gray al representation of fuzzy controller operations
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