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• Multilayer neural networks are used to design an optimal tracking 
neuro-controller (OTNC) for discrete-time nonlinear dynamic systems 
with quadratic cost function. 

• The OTNC is made of two controllers: Feedforward Neuro-Controller 
(FFNC) and Feedback Neuro-Controller (FBNC). 

• The FFNC controls the steady-state output of the plant, while the 
FBNC controls the transient-state output of the plant. 

• The FFNC is designed using a novel inverse mapping concept by 
using a neuro-identifier. 

• A Generalized Backpropagation-Through-Time (GBTT) algorithm is 
developed to minimize the general quadratic cost function for the 
FBNC training. 

• The proposed methodology is useful as an off-line control method 
where the plant is first identified and then a controller is designed for it. 

• A case study for a typical plant with nonlinear dynamics shows good 
performance of the proposed OTNC.

Introduction
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A. Optimal Tracking Problem 

We consider a system in the form of the general nonlinear auto-
regressive moving average (NARMA) model:

Where y and u, respectively, represent output and input variables, k
represents time index, and n and m represent the respective output and
input delay orders.

When the target output of a plant holds up for some time and varies from 
time to time, the control objectives can be defined as follows:

(1) Minimize the summation of the squares of regulating output error and 
the squares of input error in transient.

(2) Reduce the steady-state error to zero.

(1)

Optimal Tracking Problem
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The above control objectives can be achieved by minimizing the 
following well-known quadratic cost function:

is a reference output,

is the steady-state input corresponding to

Q and R are positive weighting factors.

Optimal Tracking Problem

This quadratic cost function or the performance index, not only forces
the plant output to follow the reference, but also forces the plant input
to be close to the steady-state value in maintaining the plant output to
its reference value.

6

A linear counter part to the NARMA model (1) is the following 
linear time-invariant system: 

In steady-state, then the above state equation becomes

By subtracting this from the system equation, and shifting the vectors 
as

Optimal Tracking Problem
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A linear counter part to the NARMA model (1) is the following 
linear time-invariant system: 

In steady-state, then the above state equation becomes

By subtracting this from the system equation, and shifting the vectors 
as

Optimal Tracking Problem
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Then, the optimal tracking problem is converted to the optimal 
regulator problem with zero output in steady-state:

with the quadratic cost function

The control law for the optimal regulator problem for is

where F is the optimal feedback gain matrix obtained. 

This shows an important observation that the control input 
consists of two parts, feedforward and feedback:

Optimal Tracking Problem

Thus, the optimal control for the original linear system is

9

B. Architecture for Optimal Tracking Neuro-Controller

Following the above observation, an optimal tracking neuro-controller 
(OTNC) is designed with two neuro-controllers in order to control a 
nonlinear plant that has a non-zero set point in steady-state. 

Optimal Tracking Neuro-Controller

• A feedforward neuro-controller (FFNC) is constructed to generate 
feedforward control input corresponding to the set point and trained 
by the well-known error Backpropagation algorithm. 

• A feedback neuro-controller (FBNC) is constructed to generate 
feedback control input and trained by a Generalized BTT (GBTT) 
algorithm to minimize the quadratic performance index.

• An independent neural network named neuro-identifier (NI) is used 
when the above two neuro-controllers are in training mode. This 
network is trained to emulate a plant dynamics and to backpropagate 
an equivalent error or generalized delta to the controllers under 
training. 
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Fig. 1. Block diagram for the optimal tracking neuro-controller.

Optimal Tracking Neuro-Controller
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A. Neuro-Identifier
The function of the neuro-identifier is to identify plant dynamics. It 
is then used to backpropagate the equivalent error to the neuro-
controllers. Training the neuro-identifier can be regarded as an 
approximation process of a nonlinear function using input-output 
data sets. 

where

is regarded as input vector.

is the output estimated, and

is the weight parameter vector for the neuro-identifier.

Neuro-Identifier

A NARMA model (1) can be viewed as a nonlinear mapping from 
(n+m)-dimensional input space to a one-dimensional output space:

Therefore, the neuro-identifier for the plant can be represented as

12

Fig. 2. Block diagram for training the neuro-identifier.  

Neuro-Identifier
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Neuro-Identifier
The objective of training the neuro-identifier 
is to reduce the average error defined by

where N is the number of samples in a group of training set. 

This error is then used backward to compute an equivalent error for a 
node in an arbitrary layer to update weight parameters in the 
Backpropagation Algorithm (BPA). Through the learning process, the 
plant characteristics is stored in the weight parameters of the neuro-
identifier:

The equivalent error on the output node of the network for the i-th 
sampled data is defined as the negative of the gradient:

14

Feedforward Neuro-Controller
B. Feedforward Neuro-Controller

In designing a controller for a plant to follow an arbitrary reference 
output, it is necessary to keep the steady-state tracking error to zero. 
For this purpose, the feedforward neuro-controller (FFNC)  is 
designed to generate a control input which will maintain the plant 
output to a given reference output in steady-state. The FFNC is then 
required to learn the inverse dynamics of the plant  in steady-state.

Note that the steady-state control input can be obtained by setting
and

for all k in the NARMA model (1):

or equivalently

which is the inverse function of the steady-state NARMA model. 

A novel approach is now proposed to develop the inverse mapping 
with the aid of the neuro-identifier:

i.e.,

15

Feedforward Neuro-Controller
The FFNC network G, as an inverse mapping of the plant in steady-
state, can be developed by using the neuro-identifier F as shown in
Fig. 3, i.e.,

Fig. 3. Block diagram for training the feedforward controller.
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Feedforward Neuro-Controller
The objective of training the FFNC is to 
reduce the average error defined by

where N is the number of samples in a group of training set.
To update the weight parameters in the FFNC the equivalent error is
propagated backward through the neuro-identifier. The equivalent error on
the output of the FFNC is defined as the negative sensitivity of the above
performance index with respect to uff , which can be calculated from the
equivalent error on the neuro-identifier input nodes:

Since is applied to the first m input nodes of the neuro-identifier,

i.e., , k = 1, 2, , m, then,

17

Feedforward Neuro-Controller

Training begins with small random values of weight parameters in the
FFNC. This allows the feedforward control input to grow from a small
random value, and converge to the smallest solution of , which is
preferred over all other possible solutions.

At the end of the training, the weight parameters in the FFNC are
adjusted so that the output of the neuro-identifier follows a given
reference output

Where is the equivalent error of -input node in the neuro-
identifier, which is computed by the BPA. Since is also the output
of the FFNC, the equivalent error can directly be used as the
equivalent error for the network G in the BPA.

18

Feedback Neuro-Controller
C. Feedback Neuro-Controller

The feedback neuro-controller (FBNC) is to stabilize tracking error dynamics 
when the plant output is following an arbitrarily given reference output. This 
objective can be achieved by minimizing the modified quadratic performance 
index:

where is the feedback control input.

From the NARMA model, the feedback control input can be viewed as an 
inverse mapping 

The corresponding FBNC can be represented as a nonlinear network

Since the target value for the optimal feedback control              is not available 
for training, traditional BPA method is not applicable here. 
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Generalized Backpropagation-Through-Time

D. Generalized Backpropagation-Through-Time Algorithm 

The GBTT is to generate an equivalent error from a general quadratic cost 
function, and it is an extension of the Backpropagation-Through-Time (BTT) 
algorithm of Werbos [10].  The original BTT was for the cost function with 
output error only. On the other hand, the GBTT is for the general quadratic cost 
function which includes not only output errors, but also input variables.

The GBTT is based upon output and input sensitivities of the cost function 
defined by:

Since, for a fixed feedforward control,

the subscript  fb will be dropped in the following development.

20

Generalized Backpropagation-Through-Time

Output Sensitivity Equation (OSE) :

An output y(k) will influence the plant dynamics for the next n steps:

Similarly, since the inverse dynamics also has n delayed output 
variables, an output y(k) will influence the input for the next n steps:

Recall that the performance index is defined on a finite interval, i.e.,

Thus, the gradient of J with respect to an output y(k) is

21

Generalized Backpropagation-Through-Time

Thus, the gradient of J with respect to an output y(k) is

By using the definition of sensitivities, 

Note that this output sensitivity equation (OSE) is depending on the input 
sensitivities as well.
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Generalized Backpropagation-Through-Time

Thus, the gradient of J with respect to an input

By using the definition of sensitivities, 

This ISE is also depending  on the output sensitivities, and both are 
coupled to one another.

23

Generalized Backpropagation-Through-Time
Since the plant dynamics and the inverse dynamics are not known, 
they are approximated by the corresponding networks, the neuro-
identifier F and the feedback neuro-controller H, to yield

It should be noted that the last terms in OSE and ISE are, 
respectively, the error terms for the output and input variables, and 
the terms under summation operations are the error (or delta) terms 
backpropagated through the networks F and H. 

The objective of the GBTT is to compute the sensitivity        ,
which will be used as the equivalent error for training of FBNC. This 
can be achieved by solving the OSE and ISE backward starting from j 
= N+1:

24

Generalized Backpropagation-Through-Time

j=N+1:

j=N:

j=N-1:

j=N-2:
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Generalized Backpropagation-Through-Time

Forward Simulator:

Before solving the OSE and ISE, the error terms need to be generated.
This can be done by driving the neuro-identifier with the controllers
FFNC and FBNC for N step forward. This process is illustrated by the
forward simulator shown in Fig. 4.

Fig. 4. Forward simulator for GBTT. 
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Generalized Backpropagation-Through-Time
Backward Simulator:

The OSE and ISE are to be simulated backward in order to backpropagate 
the error terms. This can be performed by the backward simulator shown in 
Fig. 5, where the summed advance operator :

The backward simulator can be shown to be the dual of the forward 
simulator, which is then constructed by using the duality principle, i.e., 
reversing the direction of arrows, interchanging the summers and nodes, 
and replacing the tapped delay operators with the summed advance 
operators.

Fig. 5. Backward simulator for GBTT.

27

Generalized Backpropagation-Through-Time

The process of the GBTT training algorithm is summarized as follows:

1) Set the weight parameters of the FBNC with small random 
numbers.

2) Set the reference output and initial state with random numbers in 
the operation region of the plant.

3) Run the forward simulator for N step forward from i = 1. 

4) Using the operation result in step 3), run the backward simulator 
backward from i = N to evaluate the equivalent error         and the 
weight adjustment vector        

5) Update the weight parameters in the FBNC by using the average of 
the weight adjustment vectors found in step 4).

6) Go to 2).   
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Case Study

Fig. 6. Inverted pendulum.

The optimal tracking neuro-controller (OTNC) is constructed and trained 
by the proposed method to meet the following control objectives:

(1) Set the pendulum to an arbitrarily given reference angle.

(2) Minimize the quadratic cost function while tracking the reference 
angle.

29

Case Study
A. Training of the Neuro-Identifier

The nonlinear differential equation of the plant dynamics is as 
follows:

A paradigm for the neuro-identifier is chosen by trial and error. It 
consists of two hidden layers with 40 nodes each, an input layer 
with 6 input nodes and an output layer with one node. Three of the 
six input nodes are for output history, 
and two for input history, 
and one for bias input, 1.0.

Training patterns of the neuro-identifier are generated from the 
mathematical model with random initial value and random input 
within the operation region of 1.1 [rad]. Discrete-time training 
patterns are obtained by applying the modified Euler method with 
time step-size of  0.13 [sec] in simulation.

30

Case Study
To avoid oscillation during training stage, weight parameters are 
corrected from the average of corrections calculated for every ten 
patterns. After training the neuro-identifier for 1 hour in a SUN-SPARC2 
workstation, it is tested with arbitrary initial conditions and sinusoidal 
inputs of different amplitude, which is presented in Fig. 7. The neuro-
identifier approximates the plant very closely and is sufficient for training 
the neuro-controllers.

Fig. 7. Training results of the neuro-identifier: 
(a) initial condition 
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Case Study

Fig. 7. Training results of the neuro-identifier: 
(b) initial condition 
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Case Study

B. Training of the Feedforward Controller

The feedforward neuro-controller (FFNC) has two hidden layers 
with 30 nodes each. The input layer has two nodes: 
one for reference output 
and one for the bias input, 
and the output layer has one node for the control

The reference output is given randomly to be within the operation 
region of 0.9 [rad] to train the FFNC, which is coupled with the 
neuro-identifier and the plant. 

After training  the FFNC for 1 hour, it is tested with a reference 
output varying within the operation region. Although the plant 
tracks the time-varying reference output, error remains small as 
shown in Fig. 8.

33

Case Study

Fig. 8.  Training result of the feedforward neuro-controller.
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Case Study

C. Training of the Feedback Neuro-Controller

The feedback neuro-controller (FBNC) has two hidden layers with 30 
nodes each. The input layer has five nodes: 
three for output history, 
one for previous input,
and one for the bias input. 

The cost function for the N-step ahead optimal controller is set as

The FBNC is trained once for an initial condition and a reference 
output which are randomly selected while driving the plant for N
steps. This training is repeated for other initial conditions and 
reference outputs. Each training is performed in two phases. First, the 
training is done with small N (=3)  since the controller in the beginning 
has little knowledge of control. This also prevents the pendulum from 
falling down. Then, the step is increased gradually to N =15. The 
second phase training is carried on with N fixed at 15.
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Case Study

After training the FBNC with the GBTT algorithm for 2 hours, it is 
tested with several non-zero set-points as presented in Fig. 9. It 
shows a larger overshoot for a larger set-point. A larger overshoot 
corresponds to an operating condition with severe nonlinearity. 

Fig. 9. Angle trajectories of the inverted pendulum for different 
reference set-points.
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Case Study
Fig. 10 shows a case for a set-point changing at each 40 time-
steps. It is seen that the OTNC for a nonlinear system behaves 
in a way similar to the usual optimal tracking controller for a 
linear quadratic problem; the shapes of output trajectories are 
typical fast responses with reasonable overshoots. 

Fig. 10. Control result with the OTNC for changing reference set-point.
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Case Study
Fig. 11 shows the corresponding feedforward and the feedback 
control inputs for the changing set-point. The FFNC generates the 
control input corresponding only to the reference output in steady-
state. On the other hand, the FBNC generates the control input 
corresponding to the regulating error between the reference and the 
plant outputs during transient.

Fig. 11. Feedforward and the feedback control inputs for a changing 
reference set-point.
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Conclusions

• For an optimal tracking control problem for nonlinear dynamic 
plants, a new architecture, the optimal tracking  neuro-controller 
(OTNC), is developed using feedback and feedforward controls.

• First, the feedforward neuro-controller (FFNC) is introduced to 
solve the tracking problem with a non-zero set-point. 

• A novel training method for the FFNC is developed by using the 
concept of an inverse mapping to generate the feedforward 
control input corresponding to the output set-point. 

• Second, the feedback neuro-controller (FBNC) is designed to 
solve an optimal regulator problem with general quadratic cost 
function. 

• A Generalized Backpropagation-Through-Time (GBTT) training 
algorithm is developed to train the FBNC. 

• Simulation results show good performance over a wide range of 
nonlinear operation and the possibility of using the OTNC for the 
optimal tracking control of other nonlinear systems.
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