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Artificial Neural Network Paradigms

1. Feedforward Neural Network (FNN)
. Static mapping
. Can not represent a dynamic response w/o tapped delays

2. Fully Connected Recurrent Neural Network (FRNN)
. Can naturally represent dynamic systems
. Difficult to train and to converge in a short time

3. Diagonal Recurrent Neural Network (DRNN)
. Fewer weights and shorter training time
. Can be implemented easily for real-time control




Feedforward Neural Network (FFNN)

1. Feedforward Neural Network (FFNN)
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Fully-Connected Recurrent Neural Network (FRNN)
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* Dynamic mapping

* Convergence problem

* Stability problem

Diagonal Recurrent Neural Network (DRNN)
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* Dynamic mapping

* Requires fewer weights

* Convergence is enhanced




Dynamic Representation of DRNN
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3 Delay
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DRNN-based Control System

Let y(k) and y(k) be the desired and actual responses of the
plant, respectively, then an error function for DRNC can be
defined as

1
E. = 5 (5 (k) - (k)" ®
The error function (3) is also modified for the DRNI by replac-
ing y,(k) and y(k) with y(k) and y.(k), respectively, where y..(k)

is the output of the DRNI, i.e.,

En = (k) - va()F, @ o




DRNN-based Control System
Ee= 3((k) - (b)) @

The gradient of error in (3) with respect to an arbitrary weight
vector W € R” is represented by

2E, By(k)

BO(k)
W (k) ow y

) () 5 )

where ¢,(k) = y,(k) - y(k) is the error between the desired and
output responses of the plant, and the factor y,(k)
sents the sensitivity of the plant with respect to its
the plant is normally unknown, the sensitivity needs to be es-
timated for the DRNC. However, in the case of the DRNI, the
gradient of error in (4) simply becomes

OE,, By (k) B0(k)
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DRNN-based Control System

o Linear neuron
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The output gradient 23! is common in (5) and (6), and needs
to be computed for both DRNC and DRNI. The gradient with
respect to output, recurrent, and input weights, respectively,

O(k) = Y WPX,(k), X,(k) = J(S,(k)), X t
7 are computed using the following equations

8(k) = WPX,(k ‘“Z“‘-’r"“’"

S0 = x, (70)
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TR =R,
Ok =t 2ol o where P(k) = %% and Qi = S, and satisfy
aw - oW - ow o o
R = i) (Xt -0+ WPBG - ), (5a)
0y = £5) (108 + WPy k- 1), ()
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DRNN-based Control System

B. Dynamic backpropagation for DRNI
From (6), the negative gradient of the error with respect to a
weight vector in ®" is

B
Tow

ent 208, ®

where the output gradient is given by (7) and (8), and W rep-
resents W, WP, or W/ in ", R™, or R, respectively.

The weights can now be adjusted following any gradient method
such as the steepest descent method, i.e., the update rule of the
weights becomes

Win 1) = Win) + (- Jom) + adW(n), (10)

where 5 is a learning rate, a is a momentum factor, and AW (n)
represents the change in weight in the n** iteration.
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DRNN-based Control System

C. Dynamic backpropagation for DRNC

In the case of DRNC, from (5), the negative gradient of the
error with respect to a weight vector in ®" is

oF,
28 etk 208) m)

Since the plant is normally unknown, the sensitivity term y.(k)
is unk . This unk value can be i ified by using the
DRNI. When the DRNI is trained, the dynamic behavior of the
DRNI is close to the unknown plant, i.e., y(k) = y.(k), where
(k) is the output of the DRNIL.

Theref the itivity was imated in [2] and shown
to be
wie) = P2l w0
;

where the variables and weights are those found in DRNIL
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Example 1 — BIBO Nonlinear Plant

Example 1: A BIBO nonlinear plant

Reference Model:

yr(k + 1) = 0.6y, (k) + (k)

(k) = siu(%’i) +.in(?l%'°)

Plant Model:

yk+1)= +u?(k)

y(k)
10+42(k)

In this example, 2. = {r(k),u(k - 1),y(k - 1)} and 2z =
{u(k),y(k - 1)}, thus n, =3 and n, = 2. Also, Ny =14 and
Wr=67. n=01andn =0.1.
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Example 1 — BIBO Nonlinear Plant
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Example 1 — BIBO Nonlinear Plant
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Example 1 — BIBO Nonlinear Plant

The on-line adapting ability of DRNN based control
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Example 2 — Model Reference Control

Reference model:
ok +1) = 0.6y, (k) + (k)

Desired reference:

2k
100.0

K .
(k) = 0,5"'"(:%0) + 0.58in(——)

Plant :

y(k +1) = 0.2g%(k) + 0.2y(k — 1) + 0.4sin[0.5(y(k)+

ylk = 1) eos(0.5(y(k) + y(k = 1)) + 1.20(k)
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Example 2 — Model Reference Control

Fig. 4 (a) Outputs of reference model and plant
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Example 2 — Model Reference Control
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Fig. 4 (b) Control signal generated from DRNC
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Example 3 — Flight Control

Example 3: Flight Control
Reference model:

4.0
B = Fissrio
Plant.

A6 = G0

training sebs (z,(0),z(0)) = (0.0,0.0), (0.1,0.3), and (0.5,0.75)

testing set (21(0),22(0)) = (0.8,1.0)

The step input is applied to the reference model, and r(t)=1

Nr =16 and Wy = 84. 7. and 17 , 2 , and both biases, b, and by, 1.0.
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Example 3 — Flight Control
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Example 3 — Flight Control
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Fig. 3 (b) Outputs of reference model, plant, and DRNI
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Example 4 — Controlled Van der Pol Dynamics

Ezample 2: A Controlled Van der Pol equation
‘The objective of this example is to investigate the
ability of DRNN based control system in control-
ling a nonlinear plant with a Van der Pol dynam-
ics.

Plant model:
2(2) — p(l = 22 (1))E() + z(t) = u(t)
or
#1(2) = za(t)
Z2(8) = —x1(t) + p(1 = 27(0))z2(t) + u(?)

and
¥(t) = z1(t) + z2(2).
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Example 4 — Controlled Van der Pol Dynamics
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Conclusion

1. A new neural network paradigm of DRNN is developed as a
minimal realization of the fully recurrent neural network.

2. The proposed paradigm has the desired features of simplicity and
recurrence. This makes the convergence and stability possible.

3. Adaptive learning algorithm is developed for on-line approach.
4. Convergence theorems are developed which not only guarantees

the error to converge to an arbitrary small value, but also
guarantees the closed-loop stability of the BIBO stable system.
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