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Backpropagation

(1) Feed-forward calculation
Input of hidden layer is

n= W (7.1)
7
Output of hidden layer is

(7.8)

—d ,
oy~ Y )

Output of output layer is

Yolk) = 3w (.9)

1]

Then, the approximation error is
e(k) = y(k) = yn(k)
Error index function is designed as

E=%e(k)z (7.10)




Backpropagation
Qutput of output layer is

Yolk) = 3 wx| (79)
7

Then, the approximation error is

e(k) = y(k) — ya(k)
Exvor index function is designed as

(7.10)

(2) Leaming algorithm of BP

According to the stecpest descent (gradient) method, the leaming of weight
value w, is

By s

SE Oy "
*nﬁ‘—ﬂ*q-rrk, &‘F—n (k) - xj

The weight value at time k+ 1 is

Wiolk+ 1) = wyo(k) + Awg
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Backpropagation

Output of output layer is

Yolk) = 3" wiex)
!
Then, the approximation error is

(k) = y(k) — ya (k)
Error index function is designed as
E=

1 2
Er(k,

then

The learning of weight value wy is

&
where the chain rule is used, 22 = 25 21 4 = B u=we X(1-¥) x.
The weight value at time k+ 1 is

wylk+1) = wy(k) + Awy

Backpropagation
The weight value at time k + 1 is

Wio(k+ 1) = wi (k) + Awy

wylk+1) = wy(k) + Awy

Considering the effect of previous weight value change, the algorithm of weight
value is

wolk+1)

wio(k) + A + at(wjo (k) — wio(k = 1)) (7.11)
wy(t +1) = wy(r) + Awy + a(wy(r) — wylt = 1)) (7.12)
where 7 is leaming rate, « is momentum factor, 5 € [0, 1), « € [0, 1)




Modeling with NN
I
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By using BP neural network approximation, Jacobian value can be calculated as
follows:

) _ o,
Bulk) ~ Bulk)

- Sweg(1-x)wy  (113)

9/25/2023

10

Simulation Example
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The plant is as follows

y(k-1)

- 3
o = w4 T2

Input signal is chosen as u(k) = 0.5sin(6xr), let neural network input
vector as x = [u(k) y(k) ], NN structure is chosen as 2 e initial value of Wi,
W is chosen as random value in [—1 4+ 1], 5 = 0.50, « = 0.05.
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Simulation Example
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Simulation Example
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Simulation Example
Fig. 7.10 Jacobian value
identification
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Radial Basis Function NN
In RBF neural network, x = (x]” is input vector. Assuming there are mth neural
nets, and radial basis function vector in hidden layer of RBF is h = [T, k is
Gaussian function value for ncural net j in hidden layer, and
lix - sl*
h = -— 0
] c:p( Zb} (7.14)
15
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Radial Basis Function NN

In RBF neural network, x = [x]7 is input vector. Assuming there are mith neural
nets, and radial basis function vector in hidden layer of RBF is h = [, k is
Gaussian function value for neural net j in hidden layer, and

2
,I‘ :cx;.(-l"‘ ;;ll ) (1.14)

]

€ vt Cm
: represents the coordinate value of center point

€l Cam
of the Gaussian function of neural pet j for the ith input, i=1,2,...,n,
Jj=1,2,...,m. For the vector b = [by,..., bn|", b; represents the width value of
Gaussian function for neural net j.

The weight value of RBF is
=h T
w=[wy,. .., W) (7.15)

The output of RBF neural network is
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¥(1) = wTh = wihy +wahy + - - 4 wphy (7.16)
16
Radial Basis Function NN
The weight value of RBF is
W= [y, Wa)T (7.15)
The output of RBF neural network is
y(t) = wTh = wihy +wahy + -+ +Wohim (7.16)
17
RBF Neural Network Simulation
In RBF neural network, x = [x;]7 is input vector. Assuming there are mth neural
nets, and radial basis function vector in hidden layer of RBF is h = [h]", h; is
Gaussian function value for neural net j in hidden layer, and
G Hz
by =exp| - ‘ (7.14)
!
Consider a structure 1-5-1 RBF neural network, we have one input as x = x,,
ad b=[b b by b b5, c=[cu e n cw as], h=
[ Bk by he hs)'s w=(wi wa wy we ws], and y(e) =wTh=
Wiy +wahg + wahy + wahy + wshs. 18
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RBF Neural Network Simulation

Simulation programs
(1) Simulink main program: chap?_sim.mdl

Clock To Workspace
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RBF Neural Network Simulation

(2) § function of RBF: chap7?_2rbL.m

vhandled fiag = s

function [sys,x0, str, ts) wndl Initial isesizes

simsizes

mdlOutputs (t.x,u

i WMidden Layer

 Layer
20
RBF Neural Network Simulation
(3) Plot program: chap?_2plot.m plotiyl:,2),y(:,6), k', ‘linewidth*,2);
- hold on;
plotiy(:.2).¥( k', 'linewidth',2
+ 'k, 'linewidth’',2);
xlabel (‘time(s) ") ;ylabel('y');
figure(2);
Pletiy(:,2),y(:,3), k', 'linewidth' ,2);
xlabel (*x*);ylabel('hj‘);:
hold on;
plotiy(:,2),y(:,4),'k linewidth',2);
hold on;
plotiy(:,2),y(:,5), k", " 1ine dth',2);
y — o

hold on;

21



RBF Neural Network Simulation

g 712 Owget of RBF a8

Fig. 713 Outpos of ik
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RBF Neural Network Simulation
Consider a structure 2-5-1 RBF neural network, we have x =[x, x|,
b=[b by be bslT, = |1 €2 € Cu as| -
(& b2 by bu bs) « lem en e ou o b
i ke by ke hs]s w=[w w2 wy we ws]', and ) =wh=
wyhy 4 wahy + wyhy + wehy +wshs.
(1) Simulink main program: chap7_3sim.mdl
»
>
chap7_3rbf
Sine Wave > SFuncton Position1
Clock To Workspace
23
RBF Neural Network Simulation
(2) S function of RBF: chap7_3rbf.m N2
function [sys,x0,str.ts) = spacemodel (t,x,u, flag)
switch flag.
case 0,
Isys, x0,str, ts)=ndlInitializeSizes.
case 3,
endlOutputs (t.x.u
case (2.4.9)
2/(3*b3)B131)) 5 Viidden
sysell
error (| 'Ushandled fag » ' .nualstr (flag) )}
ed
£ 0, stx, ta] emdl Initialisedizes
xu
24
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RBF Neural Network Simulation

(3) Plot program: chap7_3plot.m figure(d);
plotiyl:.3),y(:,.4)
xlabel ('x2") sylabel (*hj');

close all
Glose s hold on;
plotiy(:,3).y(:.5), k', ' linewidth'
hold on:
plotiyl:,3),y(:,6), k', *linewidsh®,
1d o
«3),¥(:,7), 'k*, " linewiden' ,
hold on
Plotly(s,3),y(:,8), "k, 'linewidth',

1), 'k", *1inewidth',2);
xlabel (*time(s) ) rylabel ('y*);

figure(2)

2),y05.4), "k, *dinewiden',2) ;
sylabal(*hi'};

1oy€:.5), "K', *1inewideh*, 2)

+ "k, *1inewideh',2) 5

y(1.7), "k, *1inewideh,2);

Voy(i.8), k', ‘linewidth®,2)

linewidth’,

25
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RBF Neural Network Simulation

Fig. 7.14 Output of REF

Fig. 78 Outpet of hidden
neural et for st input
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RBF Neural Network Simulation

Fig. 7.16 Output of hidden
Bearal pet for second input
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Modeling with RBF Neural Network

(k)

The output of RBF is
Ymr) = wihy +waly + - -+ 4 Wbt (7.19)

The performance index function of RBF is

9/25/2023

1
E() =500) —ya ()’ (720)
28
Modeling with RBF Neural Network
The output of RBF is
Ym(8) = wihy +waly + -+ + Welim (7.19)
The performance index function of RBF is
1
E(1) =5 0(1) = ya()* (7.20)
According to gradient descent method, the parameters can be updated as follows:
E
Bwi(n) = —n g = nly(e) = ym(t))y
d
wy(t) = wy(t — 1) + Aw;(t) + a(wlt = 1) = wy(r = 2)) (7.21)
29
Modeling with RBF Neural Network
In RBF neural network, x = [x]T is input vector. Assuming there are mth neural
nets, and radial basis function vector in hidden layer of RBE is h = [T, h is
Gaussian function value for neural net j in hidden layer, and
b= =Lp(f b= (7.14)
The output of RBF is
V() = wiby +wahy + -+ + Wk (7.19)
The performance index function of RBF is
E(1) =%o~(n 0 (7.20)
OE Ix — /|
Aty = —ngp = N0 = ya (sl % (122)
By(e) = by{r — 1) + Aby+a(by(t — 1) = by(¢ - 2)) (7.23)
9E _ . -
8op = =nz= = n0(0) = m(i)w 5’5—(" (7.24)
() = cult = 1) + Acy + a(cult = 1) = cu(r - 2)) (7.25)
30

where 1 € (0,1) is the learning rate, a € (0,1) is momentum factor.

30
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Simulation Example

First example: only update w
Using RBF neural network to approximate the following discrete plant

133

o) =53

Consider a structure 2-5-1 RBF neural network, we choose inputs as
x(1) = ult), x(2) = y(r), and set a =0.05, n = 0.5. The initial weight value is
chosen as random value between 0 and 1.

Choose the input as u(t) = sin , consider the range of the first input x(1) is [0, 1],
the range of the second input x(2) is about [0, 10), we choose the initial parameters of

T
Gaussian function as ¢; = _-1|0 -_u: g 05'5 ll[] By =15j=1,2,34,5. 31

31

Simulation Example

32
32
Simulation Example
@) S fanction of RBF: chap?_drbl.m
33

33
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Simulation Example
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Fig. 718 RBF neural network approximation

34
Simulation Example
Second example: update w, ¢j, b by gradient descent method
Using RBF neural network to approximate the following discrete plant
(k=1)
&) = u(k)® + 2V
(k) = u(k) TG 1F
Consider a structure 2-5-1 RBF neural network, and we choose x(1) = u(k),
x(2) = y(k), and « = 0.05, i = 0.15. The initial we ight value is chosen as random
value between 0 and 1. Choose the input as u(k) = sint, r = k x T, T = 0,001, we
set the initial parameters of Gaussian function as ¢; = [-1 -03 0 05 1]7
T l-1 ~05 0 05 1
by=30,j=1,234,5. 35
Simulation Example
Simulation program: chap7_S.m -
ARar approximation
linewidth®,2);
xlabel (time(s) ‘) aym');
pprexisation’ )
B
y=ym, 'k', *linewidth',2); 36
(“tima(s) ‘) rylabel (*error);
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Simulation Example
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Fig. 120 RBF searal setwork spprosiamation by spdatiog w, b ¢ (M = 2)
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