Lecture Series on

Intelligent Control

Lecture 14
Neural Networks in
Control System Applications - Examples

Kwang Y. Lee
Professor of Electrical & Computer Engineering
Baylor University
Waco, TX 76706, USA
Kwang_Y_Lee@baylor.edu

1

2

Backpropagation

Output of output layer is

$$y_0(k) = \sum_i w_{j_0} x'_j \qquad (7.9)$$

Then, the approximation error is

$$e(k) = y(k) - y_n(k) \quad .$$

Error index function is designed as

$$=\frac{1}{2}e(k)^2\tag{7.10}$$

(2) Learning algorithm of BP

According to the steepest descent (gradient) method, the learning of weight value w_{j_0} is

$$\Delta w_{jo} = -\eta \frac{\partial E}{\partial w_{jo}} = \eta \cdot e(k) \cdot \frac{\partial y_o}{\partial w_{jo}} = \eta \cdot e(k) \cdot x_j'$$

The weight value at time k+1 is

$$w_{j_0}(k+1) = w_{j_0}(k) + \Delta w_{j_0} \qquad . \label{eq:wj0}$$

7

Backpropagation

Output of output layer is

$$\label{eq:epsilon} e(k) = y(k) - y_{\rm n}(k)$$
 Error index function is designed as

 $E = \frac{1}{2}e(k)^2$

$$x'_j = f(x_j) = \frac{1}{1 + e^{-x_j}}$$

$$\frac{\partial x'_j}{\partial x_i} = x'_j(1 - x'_j)$$

The learning of weight value w_{ij} is

$$\Delta w_{ij} = -\eta \frac{\partial E}{\partial w_{ij}} = \eta \cdot e(k) \cdot \frac{\partial y_o}{\partial w_{ij}}$$

where the chain rule is used, $\frac{\partial z_0}{\partial w_j} = \frac{\partial z_0}{\partial z_j}$, $\frac{\partial z_j}{\partial z_j} \cdot \frac{\partial z_j}{\partial w_j} = w_{j_0} \cdot \frac{\partial z_j}{\partial z_j}$, $x_i = w_{j_0} \cdot x_j'(1 - x_j') \cdot x_i$. The weight value at time k+1 is

time
$$k+1$$
 is

 $w_{ij}(k+1) = w_{ij}(k) + \Delta w_{ij}$

8

Backpropagation

The weight value at time k+1 is

$$w_{jo}(k+1) = w_{jo}(k) + \Delta w_{jo}$$

$$w_{ij}(k+1) = w_{ij}(k) + \Delta w_{ij}$$

Considering the effect of previous weight value change, the algorithm of weight value is

$$w_{j_0}(k+1) = w_{j_0}(k) + \Delta w_{j_0} + \alpha (w_{j_0}(k) - w_{j_0}(k-1))$$
 (7.11)

$$w_{ij}(t+1) = w_{ij}(t) + \Delta w_{ij} + \alpha(w_{ij}(t) - w_{ij}(t-1))$$
 (

where η is learning rate, α is momentum factor, $\eta \in [0, 1]$, $\alpha \in [0, 1]$.

Simulation Example

Fig. 7.8 BP approxim

Fig. 7.9 BP approximatio

13

Simulation Example

Fig. 7.10 Jacobian value identification

14

13

14

Radial Basis Function NN

In RBF neural network, $\mathbf{x} = [\mathbf{x}_i]^\mathsf{T}$ is input vector. Assuming there are mth neural nets, and radial basis function vector in hidden layer of RBF is $\mathbf{h} = [h_j]^\mathsf{T}$, h_j is Gaussian function value for neural net j in hidden layer, and

$$h_j = \exp\left(-\frac{\|x - c_j\|^2}{2b_j^2}\right)$$
 (7.14)

Radial Basis Function NN

In RBF neural network, $\mathbf{x} = [x_i]^\mathsf{T}$ is input vector. Assuming there are mth neural nets, and radial basis function vector in hidden layer of RBF is $h = [h_j]^\mathsf{T}$, h_j is Gaussian function value for neural net j in hidden layer, and

$$h_j = \exp\left(-\frac{\|x - c_j\|^2}{2b_j^2}\right)$$
 (7.14)

where $c = [c_{ij}] = \begin{bmatrix} c_{11} & \cdots & c_{1m} \\ \vdots & \cdots & \vdots \\ c_{n1} & \cdots & c_{nm} \end{bmatrix}$ represents the coordinate value of center poin

of the Gaussian function of neural net j for the ith input, i=1,2,...,n, j=1,2,...,m. For the vector $b=[b_1,...,b_m]^T$, b_j represents the width value of Gaussian function for neural net j.

The weight value of RBF is

$$\mathbf{w} = [w_1, \dots, w_m]^{\mathrm{T}} \tag{7.15}$$

The output of RBF neural network is

$$y(t) = w^{T}h = w_1h_1 + w_2h_2 + \dots + w_mh_m$$
 (7.16)

16

16

Radial Basis Function NN

The weight value of RBF is

$$v = [w_1, ..., w_m]^T$$
 (7.15)

The output of RBF neural network is

$$y(t) = \mathbf{w}^{\mathrm{T}} \mathbf{h} = w_1 h_1 + w_2 h_2 + \dots + w_m h_m$$
 (7.16)

17

17

RBF Neural Network Simulation

In RBF neural network, $\mathbf{x} = [\mathbf{x}_i]^T$ is input vector. Assuming there are mth neural nets, and radial basis function vector in hidden layer of RBF is $\mathbf{h} = [h_j]^T$, h_j is Gaussian function value for neural net j in hidden layer, and

$$h_j = \exp\left(-\frac{\|x - c_j\|^2}{2b_j^2}\right)$$
 (7.14)

Consider a structure 1-5-1 RBF neural network, we have one input as $x=x_1$, and $b=\begin{bmatrix}b_1&b_2&b_3&b_4&b_3\end{bmatrix}^\mathsf{T}, \quad c=\begin{bmatrix}c_{11}&c_{12}&c_{13}&c_{14}&c_{15}\end{bmatrix}, \quad h=\begin{bmatrix}h_1&h_2&h_3&h_4&h_3\end{bmatrix}^\mathsf{T}, \quad w=\begin{bmatrix}w_1&w_2&w_3&w_4&w_5\end{bmatrix}, \quad \text{and} \quad y(t)=w^\mathsf{T}h=w_1h_1+w_2h_2+w_3h_3+w_4h_4+w_5h_5.$

20

RBF Neural Network Simulation (3) Plot program: chap7_2plot.m plot(y(:,2),y(:,6),'k','linewidth',2); hold on; plot(y(:,2),y(:,7),'k','linewidth',2); % xey(:,2); % hiey(:,3); % hiey(:,3); % hiey(:,3); % hiey(:,6); % hiey(:,6); % hiey(:,6); % hiey(:,7); figure(1); plot(t,y(:,1),'k','linewidth',2); xlabel('time(a)');ylabel('y'); figure(2); plot(y(:,2),y(:,3),'k','linewidth',2); hold on; plot(y(:,2),y(:,4),'k','linewidth',2); hold on; plot(y(:,2),y(:,4),'k','linewidth',2); hold on; plot(y(:,2),y(:,5),'k','linewidth',2); hold on;

RBF Neural Network Simulation

(3) Plot program: chap7_3plot.m

Squre(3);
plot(y(:,3),y(:,4),'k','linewidth',2);
xlabal('x2');ylabel('hj');
hold on;
plot(y(:,3),y(:,5),'k','linewidth',2);
hold on;
plot(y(:,3),y(:,6),'k','linewidth',2);
hold on;
plot(y(:,3),y(:,6),'k','linewidth',2); close all; % ymy(:,1); % xlmy(:,2); % x2my(:,3); % h1my(:,4); % h2my(:,5); % h3my(:,6); % h4my(:,7); % h5my(:,8);

figure(1); plot(t,y(:,1),'k','linewidth',2); xlabel('time(s)');ylabel('y'); Association (in the control of the c

hold on; plot(y(:,2),y(:,8),'k','linewidth',2);

Fig. 7.14 Output of RBF

25

25

RBF Neural Network Simulation

26

26

RBF Neural Network Simulation

Fig. 7.16 Output of hidden neural net for second input

27

Modeling with RBF Neural Network

The output of RBF is

$$y_m(t) = w_1 h_1 + w_2 h_2 + \cdots + w_m h_m$$

28

The performance index function of RBF is

$$E(t) = \frac{1}{2}(y(t) - y_{m}(t))^{2}$$
(7.20)

28

Modeling with RBF Neural Network

The output of RBF is

$$y_m(t) = w_1 h_1 + w_2 h_2 + \dots + w_m h_m$$
 (7.19)

The performance index function of RBF is

$$E(t) = \frac{1}{2} (y(t) - y_{\rm m}(t))^2$$
 (7.20)

According to gradient descent method, the parameters can be updated as follows:

$$\Delta w_j(t) = -\eta \frac{\partial E}{\partial w_j} = \eta (y(t) - y_m(t)) h_j$$

$$w_j(t) = w_j(t-1) + \Delta w_j(t) + \alpha (w_j(t-1) - w_j(t-2))$$
 (7.21)

29

30

29

Modeling with RBF Neural Network

In RBF neural network, $x = [x_i]^\mathsf{T}$ is input vector. Assuming there are mth neural nets, and radial basis function vector in hidden layer of RBF is $h = [h_j]^\mathsf{T}$, h_j is Gaussian function value for neural net j in hidden layer, and

$$h_j = \exp\left(-\frac{\|x - c_j\|^2}{2b_i^2}\right)$$
 (7.14)

The output of RBF is

$$y_m(t) = w_1 h_1 + w_2 h_2 + \dots + w_m h_m$$
 (7.19)

The performance index function of RBF is

$$E(t) = \frac{1}{2}(y(t) - y_{m}(t))^{2}$$
 (7.20)

$$\Delta b_{j} = -\eta \frac{\partial E}{\partial b_{j}} = \eta(y(t) - y_{m}(t))w_{j}h_{j}\frac{\left\|\mathbf{x} - \mathbf{c}_{j}\right\|^{2}}{b_{j}^{3}} \tag{7.22}$$

$$b_j(t) = b_j(t-1) + \Delta b_j + \alpha (b_j(t-1) - b_j(t-2))$$
 (7.23)

$$\Delta c_{ji} = -\eta \frac{\partial E}{\partial c_{ji}} = \eta(y(t) - y_m(t))w_j \frac{x_j - c_{ji}}{b_i^2}$$
 (7.24)

$$c_{ji}(t) = c_{ji}(t-1) + \Delta c_{ji} + \alpha (c_{ji}(t-1) - c_{ji}(t-2))$$
 (7.25)

where $\eta \in (0,1)$ is the learning rate, $\alpha \in (0,1)$ is momentum factor.

Simulation Example

First example: only update w

Using RBF neural network to approximate the following discrete plant

$$G(s) = \frac{133}{s^2 + 25s}$$

Consider a structure 2-5-1 RBF neural network, we choose inputs as x(1) = u(t), x(2) = y(t), and set $\alpha = 0.05$, $\eta = 0.5$. The initial weight value is chosen as random value between 0 and 1. Choose the input as $u(t) = \sin t$, consider the range of the first input x(1) is [0, 1], the range of the second input x(2) is about [0, 10], we choose the initial parameters of Gaussian function as $c_j = \begin{bmatrix} -1 & -0.5 & 0 & 0.5 & 1 \\ -10 & -5 & 0 & 5 & 10 \end{bmatrix}^T$, $b_j = 1.5$, j = 1, 2, 3, 4, 5.

Gaussian function as
$$c_j = \begin{bmatrix} -1 & -0.5 & 0 & 0.5 & 1 \\ -10 & -5 & 0 & 5 & 10 \end{bmatrix}^{1}$$
, $b_j = 1.5$, $j = 1, 2, 3, 4, 5$.

31

32

Simulation Example ut=u(1); yout=u(2); xi=[ut yout]; for j=1:13; h(j)=exp(-norm(xi-ci(1,j))^2/(2*b^2)); end ymout=w*h'; d_we0*w; for j=1:1:5 %Only weight value update d_w(5) **xite* (yout-ymout) *h(j); end www_i*d_wealfa*(w_1-w_2); (3) Plot program: chap7_4plot.m 33

Simulation Example

Second example: update w, c_j , b by gradient descent method

Using RBF neural network to approximate the following discrete plant

$$y(k) = u(k)^3 + \frac{y(k-1)}{1 + y(k-1)^2}$$

Consider a structure 2-5-1 RBF neural network, and we choose x(1) = u(k), x(2) = y(k), and $\alpha = 0.05$, $\eta = 0.15$. The initial weight value is chosen as random value between 0 and 1. Choose the input as $u(k) = \sin t$, $t = k \times T$, T = 0.001, we set the initial parameters of Gaussian function as $c_f = \begin{bmatrix} -1 & -0.5 & 0.5 & 1 \\ -1 & -0.5 & 0.5 & 1 \end{bmatrix}^T$, k = -3.0, t = 1.2.3, t = 4.5

 $b_j = 3.0, j = 1, 2, 3, 4, 5.$

35

35

Simulation Example alfa=0.05; xite=0.15; x=(0.1]'; b=3*ones(5.1); c=(-1-0.500.51; -1-0.500.51); w=rands(5,1); end w=w_1+d_w+alfa*(w_1-w_2); y_1=y(k); c_2=c_1; c_1=c; ts=0.001; for k=1:1:10000 b_2=b_1; b_1=b; h_isb; end figure(1); subplot(21); plot(time,y,'r',time,ym,'k:','linewidth',2); xlaba!('time(s)');ylaba!('y and ym'); subplot(21); plot(time,y-ym,'k','linewidth',2); xlaba!('time(s)');ylaba!('error'); y(k)=u(k)^3+y_1/(1+y_1^2); for j=1:1:5 $h(j) = \exp\{-norm(x-c(:,j))^2/(2*b(j)*b(j))\};$ and ym(k) = ym(k) + ym(k) +36

