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Widrow and Smith (1987):

ADAptive LINear Element (ADALINE): control of an 
inverted pendulum

Albus (197x):

Cerebella Model Articulation Controller (CMAC) - to 
control robotic manipulators

Modified ADALINE - Perceptron’s architecture 
combined with ADALINE for binary encoding of the 
input space

BACKGROUND
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Chow & Thomas (1989) - machine modeling
Santoso & Tan (1990) - capacitor control in distribution system
Weerasooriya & El-Sharkawi (1991) - identification and control 
of dc motor
Wu et al. (1992) - NN regulator for turbogenerator
Cho et al. (1992) - neuro-fuzzy controller for an induction 
machine
Hsu & Chen (1991), Saitoh et al. (1991a,b), Zhang et al.
(1992,93,94) - PSS

Power System Control and Identification
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Hiyama et al. (1995) - tracking controller for photovoltaic 
system
Beaufays & Widrow (1993) - load-frequency control
Neily et al. (1992) - joint var controller
Djukanovic et al. (1995) - coordinated stabilization control of 
exciter and governor
Park, Choi, & Lee (1994) - decentralized control for PSS
Ku, Lee, & Edwards (1992) - on-line control of nuclear reactor

Power System Control and Identification
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Continuous-Time Representation:

Discrete-Time Representation:

NARMA Representation:

Representation of Plants
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Learning Modeling Architectures

Four learning modeling architectures: (a) forward plant modeling,  (b) inverse plant 
modeling, (c) specialized inverse plant modeling,  (d) operator modeling.
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Learning Modeling Architectures

Forward Plant Modeling:

 to predict the plant performance

 for fault diagnosis

Jy = E(y
2 (t) )

Minimize the Mean Square Output 
error: 
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Learning Modeling Architectures

Direct Inverse Plant Modeling:

 the overall controller/plant
architecture has a unity transfer function

 modeling error perturbs the transfer 
function away from unity

 combined with feedback control provides 
good performance

 minimizes the MSE in the control space 
rather than the output space

Ju = E(u
2 (t) )
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Learning Modeling Architectures

Specialized Inverse Plant Modeling:

 inverse model/plant has a unity transfer 
function

 forward plant model is first constructed, and 
error is back propagated to tune the inverse 
model

 goal driven - plant error causes the inverse 
model to move into previously unexplored 
regions of input space

 not as robust as alternative learning 
controllers due to lack of feedback information
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Learning Modeling architectures

Operator Modeling:

 learning from an expert

 signal contains a large amount of 
noise due to the operator using 
different actions for similar inputs

 signal have to be filtered before 
learning algorithm can be applied
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Supervised Control Architectures

 Fixed Stabilizing Controllers

 Predictive Learning Control Scheme

 Model Reference Adaptive Control

 Internal Model Control
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Supervised Control Architectures

Fixed Stabilizing Controllers:

 direct learning control scheme 

 the closed-loop system is stable 
in every operating region

 the learning controller builds up a 
nonlinear model of the desired 
control surface
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Supervised Control Architectures

Predictive Learning Control 
Scheme:

 formulate a control strategy by 
assessing the affect of  its action into 
the future and select the optimal
control action

 learning control 

 excellent closed-loop control for 
good plant model with proper 
performance function and search 
strategy
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Supervised Control Architectures

Internal Model Control:

 model the process directly

 error between the model and 
the plant output is used as a feedback 
signal

 internal model controller is designed 
to be an inverse plant model

 stability results are available, with 
assumptions on the open-loop stability, 
exact modeling and/or inverse modeling
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Reinforcement Learning Systems

Reinforcement Schemes:

 learning with a critic

 minimally supervised 
learning algorithms

Two adaptive elements:

 Associative Search Element (ASE) -
produces the optimal control signal

 Adaptive Critic Element (ACE) -
provides a reinforcement signal
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Parameterizing Linear Controllers

Intelligent Gain-Scheduling Approach:

 linear feedback controllers
 known results on robustness and stability
 low implementation cost

Neurocontrollers: 

 calculate control parameters for both 
off-line and on-line control

 adapt to time-varying processes
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SUPERVISED NEURAL NETWORK STRUCTURES

Multi-layer Feedforward Networks:
 Input signal is propagated forward through several processing 
layers
 FNN is a static mapping
 FNN with the aid of tapped delays represents dynamic mapping

Radial Basis Function Networks:
 biological paradigm in favor of topology, simpler and more 
amenable to training    
 a single layer of hidden nodes with radially symmetric basis 
activation function
 RBN is locally responsive
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Linear neuron

Sigmoid neuron

Delay Operatord

Recurrent Neural Networks

RNA:

 FNN with some feedbacks
 nonlinear dynamic network
 has attractor dynamics and store 
information for later use
 can deal with time-varying input/output
 dynamic mapping
 no or fewer external feedback through 
tapped delays

Diagonal Recurrent Neural Networks:

 minimal RNN
 no interlinks or cross talks
 fewer weights than FRNN
 real-time implementation
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Architecture for DRNN-Based Control System

Neuroidentifier (DRNI):
 models the plant and provide 
the sensitivity to DRNC

Neurocontroller (DRNC):
 controls the plant to follow 
a reference model

Dynamic Backpropagation (DBP)
Algorithm

Adaptive Learning Rate: 
Convergence & Stability
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Nuclear Reactor Control

19

20

21



9/25/2023

8

22

NUCLEAR REACTOR CONTROL

The Reactor Power Plant Modeling

23

Operation Regions
Gr  \ nr0 0.1 0.5 1.0
0.0290 Region 3 Region 4 Region 5
0.0145 Region 2 Region 1 Region 6
0.0070 Region 9 Region 8 Region 7

Test Case Studies:
Case A: Local control
100%  90%  100% power level changes in Region 6.
Case B: Global operation
40%  50%  40% power level changes in Region 1.
Case C: Emergency operation
100%  25% huge step down from Region 5 to Region 3.
Case D: Shut-down/Start-up
100%  10%  100% ramp down and ramp up from Region 5 to

Region 3.

Simulation Results
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Case A: Local control in Region 6 for 100%  90%  100% power change.
(a) Relative reactor power. (b) Exit temperature. (c) Control rod speed. (Solid
line: reference. Dotted line: plant response).

Simulation Results
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Simulation Results

Case B: Global operation in Region 1 for 40%  50%  40% power change. (a)
Relative reactor power. (b) Exit temperature. (c) Control rod speed. (Solid line:
reference. Dotted line: plant response).
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Simulation Results

Case C: Emergency operation from Region 3 for 100%  25% power change.
(a) Relative power. (b) temperature response.
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Case D: Start-up/shut-down for 100%  10%  100% power change.
(a) Relative reactor power (dot-dash line). (b) temperature (solid line)
responses. (c) control rod speed responses.

Simulation Results
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CONCLUSIONS

 The use of neural networks for controlling dynamic systems

 Neural network architectures for modeling and control

 Neural network paradigms for neuromodeling and neurocontrol

 Diagonal recurrent neural networks

 DRNN-based control architecture for on-line implementation

 Nuclear reactor control
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