Lecture Series on

Intelligent Control

Lecture 13 Neural Networks in Control System Applications

Kwang Y. Lee
Professor of Electrical & Computer Engineering
Baylor University
Waco, TX 76706, USA
Kwang_Y_Lee@baylor.edu

1

OVERVIEW

- Introduction
- Background
- Neural Network Architectures for Modeling and Control
- Supervised Neural Network Structures
- Diagonal Recurrent Neural Network-Based Control System
- Convergence and Stability
- Nuclear Reactor Control
- Conclusion

2

2

BACKGROUND

Widrow and Smith (1987):

ADAptive LINear Element (ADALINE): control of an inverted pendulum

Albus (197x):

 $\label{lem:controller} Cerebella\ Model\ Articulation\ Controller\ (CMAC)\ -\ to\ control\ robotic\ manipulators$

Modified ADALINE - Perceptron's architecture combined with ADALINE for binary encoding of the input space

Power System Control and Identification

Chow & Thomas (1989) - machine modeling Santoso & Tan (1990) - capacitor control in distribution system Weerasooriya & El-Sharkawi (1991) - identification and control of dc motor

Wu et al. (1992) - NN regulator for turbogenerator Cho et al. (1992) - neuro-fuzzy controller for an induction machine

Hsu & Chen (1991), Saitoh et al. (1991a,b), Zhang et al. (1992,93,94) - PSS

4

4

Power System Control and Identification

Hiyama $\it et \, \it al. \, (1995)$ - tracking controller for photovoltaic system

Beaufays & Widrow (1993) - load-frequency control Neily *et al.* (1992) - joint var controller Djukanovic *et al.* (1995) - coordinated stabilization control of

Djukanovic et al. (1995) - coordinated stabilization control of exciter and governor

Park, Choi, & Lee (1994) - decentralized control for PSS Ku, Lee, & Edwards (1992) - on-line control of nuclear reactor

5

5

Representation of Plants

Continuous-Time Representation:

 $\underline{x}(t) = \underline{f}(\underline{x}(t), u(t))$ $y(t) = \underline{g}(\underline{x}(t))$

Discrete-Time Representation:

 $\underline{x}(t+1) = \underline{f}(\underline{x}(t), u(t))$ $y(t) = g(\underline{x}(t))$

NARMA Representation:

 $y(t) = h(\underline{y}(t-1), \underline{u}(t))$ $\underline{y}(t-1) = [y(t-1), y(t-2), ..., y(t-n)]^{T}$ $\underline{u}(t) = [u(t), u(t-1), ..., u(t-m)]^{T}$

Learning Modeling Architectures Specialized Inverse Plant Modeling: • inverse model/plant has a unity transfer function • forward plant model is first constructed, and error is back propagated to tune the inverse model • goal driven - plant error causes the inverse model to move into previously unexplored regions of input space • not as robust as alternative learning controllers due to lack of feedback information

10

Learning Modeling architectures Operator Modeling: • learning from an expert • signal contains a large amount of noise due to the operator using different actions for similar inputs • signal have to be filtered before learning algorithm can be applied

11

Supervised Control Architectures

- Fixed Stabilizing Controllers
- Predictive Learning Control Scheme
- Model Reference Adaptive Control
- Internal Model Control

Supervised Control Architectures Fixed Stabilizing Controllers: • direct learning control scheme • the closed-loop system is stable in every operating region • the learning controller builds up a nonlinear model of the desired control surface

13

14

Supervised Control Architectures Internal Model Control: • model the process directly • error between the model and the plant output is used as a feedback signal • internal model controller is designed to be an inverse plant model • stability results are available, with assumptions on the open-loop stability, exact modeling and/or inverse modeling

17

SUPERVISED NEURAL NETWORK STRUCTURES

Multi-layer Feedforward Networks:

- Input signal is propagated forward through several processing layers
- FNN is a static mapping
- FNN with the aid of tapped delays represents dynamic mapping

Radial Basis Function Networks:

- biological paradigm in favor of topology, simpler and more amenable to training

 a single layer of hidden nodes with *radially symmetric* basis
- activation function
- RBN is locally responsive

NUCLEAR REACTOR CONTROL

The Reactor Power Plant Modeling

$$\begin{split} \frac{d}{dt}n &= \frac{\delta \rho - \beta}{\Lambda}n + \lambda c & \frac{d}{dt}n_c = \frac{\delta \rho - \beta}{\Lambda}n_c + \frac{\beta}{\Lambda}c_c \\ \frac{d}{dt}c &= \frac{\beta}{\Lambda}n - \lambda c, & \frac{d}{dt}c_c = \lambda n_c - \lambda c_c. \\ P_s(t) &= P_o n_c(t), & P_s(t) &= \Omega(T_f - T_s), & P_s(t) &= M(T_f - T_s), \\ f_f P_s(t) &= \mu_f \frac{d}{dt}T_f + P_s(t) & (1 - f_f)P_s(t) + P_s(t) &= \mu_c \frac{d}{dt}T_f + P_s(t), \\ \delta \rho &= \delta \rho_c + \alpha_f (T_f - T_{fo}) + \alpha_c (T_c - T_{co}) \\ \frac{d}{dt}\delta \rho_c &= G_s Z_c. \end{split}$$

22

Simulation Results

Operation Regions

 $G_{r} \setminus n_{r\theta} \\ 0.0290 \\ 0.0145$ 0.1 Region 3 Region 4 Region 5 Region 6 Region 7 Region 2 Region 9 Region 1 Region 8 0.0070

Test Case Studies:

Case A: Local control $100\% \rightarrow 90\% \rightarrow 100\%$ power level changes in Region 6.

Case B: Global operation 40% → 50% → 40% power level changes in Region 1.

40% → 50% → 40% power tever changes in Region 1.

Case C: Emergency operation

100% → 25% huge step down from Region 5 to Region 3.

Case D: Shut-down/Start-up

100% → 10% → 100% ramp down and ramp up from Region 5 to

Region 3.

23

23

Case A: Local control in Region 6 for $100\% \rightarrow 90\% \rightarrow 100\%$ power change. (a) Relative reactor power. (b) Exit temperature. (c) Control rod speed. (Solid line: reference. Dotted line: plant response).

CONCLUSIONS

- The use of neural networks for controlling dynamic systems
- Neural network architectures for modeling and control
- Neural network paradigms for neuromodeling and neurocontrol
- Diagonal recurrent neural networks
- DRNN-based control architecture for on-line implementation
- Nuclear reactor control
